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Abstract

Background: Interleukin-1 receptor associated kinase 1 (IRAK1), as a down-stream of toll-like receptor (TLR)

signaling, plays important roles in series of malignancies. However, the role of IRAK1 in hepatocellular carcinoma

(HCC) remains little known.

Methods: In our study, reverse transcription-PCR (RT-PCR), Western Blot, and immunohistochemical staining were

used to assess the mRNA and protein levels of IRAK1 in clinical samples and cell lines. Cell counting assay and

flow cytometry were employed to analyze the effect of IRAK1 on cell cycle and apoptosis. Transwell assay was

used to study the role of IRAK1 in cell migration. Moreover, subcutaneous xenograft tumor models predict the

efficacy of targeting IRAK1 against HCC in vivo.

Results: IRAK1 was over-expressed in HCC tissues and cell lines. Suppression of IRAK1 by small interference RNA

(siRNA) or a pharmaceutical IRAK1/4 inhibitor impeded cell growth, induced apoptosis and lessened HCC xenograft

tumor growth. Particularly, IRAK1/4 inhibitor treatment caused G1/S cell cycle arrest and apoptosis, confirming IRAK1 as

a new therapeutic target for HCC.

Conclusion: IRAK1 promotes cell proliferation and protects against apoptosis in HCC, and can be a novel target

for HCC treatment.
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Background

Primary hepatocellular carcinoma (HCC), one of the

most common malignant solid tumors, is a prototype

of inflammation-related cancer due to a history of un-

controlled inflammation and cirrhosis, and most hu-

man HCC cases are related to inflammation and

cirrhosis [1–5]. Previous reports suggested that the

chronic damage and inflammation had closed rela-

tionship with carcinogenesis [6]. For example,

interleukin-1β (IL-1β) is a critical inflammatory cyto-

kine linking with chronic inflammation [7, 8]. The

gender difference of liver cancer is the result of sex-

associated differential production of IL-6, which relies

on IL-1R/IRAK-1 signaling [9]. In addition, IL-1β/IRAK-1

signaling contributes to persistent expression of oncogene

Gankyrin, and the later promotes HCC progression [8].

Aberrant IRAK1 expression has been shown in multiple

tumors, such as myeloma, leukemia and several types

of solid cancers. Accordingly, there has been much ef-

fort to target IRAK1 using pharmaceutical inhibitors

[10–12].

IRAK1, the first protein to be discovered in IRAK

family, is the main mediator of TLR/IL1R signal path-

ways. After IL1R/TLR binding, IRAK1 interacts with

MyD88, which could be rapidly recruited to the recep-

tor. The phosphorylation of IRAK1 is a multistep

* Correspondence: hywangk@vip.sina.com
†Equal contributors
1State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer

Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine,

Shanghai, People’s Republic of China
2International Cooperation Laboratory on Signal Transduction, Eastern

Hepatobiliary Surgery Institute/Hospital, 225 Changhai Road, Shanghai

200438, People’s Republic of China

Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Li et al. Journal of Experimental & Clinical Cancer Research  (2016) 35:140 

DOI 10.1186/s13046-016-0413-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s13046-016-0413-0&domain=pdf
mailto:hywangk@vip.sina.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


process and results in the activation of IRAK1. In this

process, the threonine 209 (T209) is vital for IRAK1

kinase activity [13–15]. Phosphorylated IRAK1 could

release from the receptor complex and bind to the E3

ubiquitin ligase and TRAF6. As the result, NF-kB signal

pathway is activated [16–18]. In some malignant tu-

mors, disordered inflammatory toll-like receptor (TLR)

signaling is related to up-regulated NF-kB activity. The

IRAK family members are mediators of TLR/IL1R sig-

nal pathways, and amounts of evidence implicate that

these kinases including IRAK1 are vital cancer targets

[19, 20]. IRAK1 is also related to the formation and

development of series of myeloid malignancies or

tumors, especially in myelodysplastic syndrome (MDS),

acute myeloid leukaemia (AML) [21], melanoma [22],

Lung Cancer [23, 24] and Breast cancer [25, 26]. How-

ever, the roles of IRAK1 in HCC have not been investi-

gated by now.

Given that IL-1R/MyD88/IRAK signaling plays a

critical role as a contributor to progression of HCC

[8], the goal of our study was to gain a greater

understanding of the significance of IRAK1 in the

growth and survival of HCC. We found that HCC

cells expressed elevated levels of IRAK1 mRNA as

well as protein levels of total IRAK1. Inhibition of

IRAK1 with siRNAs or a small molecular inhibitor

retarded cell proliferation. At a mechanistic level,

IRAK1 regulated G1/S phase of cell cycle and cell

apoptosis. The importance of targeting IRAK1 in

HCC was emphasized by demonstrating that treat-

ment with IRAK1 siRNAs suppressed HCC tumor

growth in xenograft model. Our study highlighted a

critical of IRAK1 in HCC proliferation and suggested

a pathophysiological role and clinical implication for

patients with HCC.

Methods

Reagents and cell lines

All chemical reagents were purchased from Sigma-Aldrich

(St Louis, MO, USA). The IRAK1/4 inhibitor, which se-

lectively inhibits the kinase activity of IRAK1 at the

IC50 of 0.75 mM and prevents TRAF6-mediated

canonical NF-kB activation, has been developed for

autoimmune disease and Myelodysplastic Syndrome

[27–29]. Here, the IRAK1/4 inhibitor (I5409) dissolved

in DMSO was used for the inhibition of p-IRAK1. Cis-

platin (Cis) and epirubicin (ADM) were used for stimu-

lating the cell apoptosis as previous report of our lab

[8]. HEK293T, MHCC-LM3, SMMU-7721, HepG2,

PLC/PRF/5 and PVTT cell lines were purchased from Cell

Bank of Type Culture Collection of Chinese Academy of

Sciences (Shanghai, China). Cells were grown in DMEM

(Life Technologies, Carlsbad, CA, USA) which was

supplemented with 10 % fetal bovine serum (FBS, Life

Technologies), 100 U/ml penicillin and 100 μg/ml

streptomycin, and at 37 °C with 5 % CO2.

HCC samples and immunohistochemical straining

About 33 HCC samples were collected from Eastern

Hepatobiliary Surgery Hospital (Shanghai, China) and

the procedure of human sample collection was approved

by the Ethical Committee of Eastern Hepatobiliary

Surgery Hospital. Immunohistochemical staining was

performed with total IRAK1 antibody (Santa Cruz, CA,

USA) and Ki67 antibody (Santa Cruz) as reported previ-

ously [8].

Lentivirus-mediated knockdown of IRAK1

Three si-IRAK1 lentiviruses were purchased from

Hanbio (Shanghai, China). MHCC-LM3 and SMMU-

7721 Cells were transfected with Si-IRAK1 lentivirus

at multiplicity of infection (MOI) of 0.5 ~ 1 at the cell

density of 105/ml. At 48 h after transfection, puro-

mycin was added to the cell medium for screening

positive cells.

Real-time PCR analysis

RNA was extracted with the Trizol reagent (Thermo

Fisher Scientific, Hudson, NH, USA) and reverse tran-

scription was carried out with SuperScript® IV Reverse

Transcriptase (Thermo Fisher Scientific). Real-time PCR

was performed with SYBR Green qPCR mix (Life Tech-

nologies) and Lightcycler 96 System (Roche Diagnostics,

Rotkreuz, Switzerland) while 18 s cDNA was used as the

reference.

Cell migration analysis

Cell migration assay was performed with transwell

chambers (Costar, Cambridge, MA) as the method of

Binhui Xie et al. [30]. For SMMU-7721 cell lines, about

2 × 105 cells were plated into the chamber with serum

free-DMEM medium. Then, the chamber were placed

into wells of the 12-well plate which was added with the

medium containing 10 % FBS. After incubation for 24 h,

the migrated cells were fixed with 4 % paraformaldehyde

and stained with crystal violet for 10 min.

CCK-8 and colony formation analysis

The CCK-8 analysis was carried out according to the in-

struction of Cell Counting Kit-8 (CCK-8, Dojindo,

Tokyo, Japan). Briefly, IRAK1 inhibitor at concentrations

of 0, 10, 20 μM were added into SMMU-7721, HepG2,

PLC/PRF/5 and PVTT for 1–5 days. Then, 1/10 diluted

CCK-8 solution with DMEM was added into the target

wells of 96-well plate after discarding the culture

medium, following the incubation for 1 h and measure-

ment using a microplate reader (Bio-Rad Laboratories,
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Hercules, CA). Cell proliferation rates were calculated

and normalization with the OD value of 1st day.

Colony formation analysis was carried out in SMMU-

7721 and HepG2 cell lines. The cells were plated into a

6-well plate (3 × 103 cells per well) and incubated for

12 days. Cells were fixed with 4 % para-formaldehyde

and stained with crystal violet.

Cell cycle and apoptosis analysis

SMMU-7721 were plated into the 6-well plate and cul-

tured in serum-free DMEM medium for 12 h in order to

synchronize cells. Then the medium was changed into

DMEM medium with 10 % FBS. After 24 h or 48 h, the

cells were fixed with 70 % ethanol at 4 °C for more than

4 h and then washed by phosphate buffered saline (PBS).

In order to remove RNA, RNase A (1 mg/ml of final

concentration) was used to digest the fixed cells for

30 min. Then, the staining was carried out with 50 μg/ml

propidium iodide (PI) in PBS-Triton X-100 for another

20 min at 4 °C. Finally, results were acquired by the flow

cytometer (Life Technologies) analysis.

The cell apoptosis analysis was carried out with the

previous method [31]. After treated with IRAK1/4 in-

hibitor (20 μM) for 24 h and 48 h, SMMU-7721 cells

were stained with the Annexin V/PI kit (Life technology)

according to the instruction. Cell apoptosis was detected

and analyzed by the flow cytometer.

Nucleocytoplasmic separation

The nucleocytoplasmic separation was carried out with

the NE-PER nuclear and cytoplasmic extract Kit

(Thermo Fisher Scientific). As the method described in

this kit, SMMU-7721-SiIRAK1-1 and SMMU-7721-NC

cell lines were cultured and harvested for extracting the

cytoplasmic and nuclear proteins after stimulated by cis-

platin (Cis) and epirubicin (ADM) for cell apoptosis. P65

was detected with Western Blot analysis while Histone

H3 and GAPDH as the internal control.

Western blot analysis

As the previously described methods [8], proteins (30 μg/

lane) were isolated by SDS-PAGE electrophoresis and

then transferred to NC membranes. Then, the membranes

were blocked with 5 % milk in Tris–HCl buffer and

0.05 % Tween-20 (TBS/Tween) for 1 h and incubated with

primary antibodies against total IRAK1(Santa Cruz),

phosphorylated-IRAK-1 (Ser 209) (Cell Signaling Tech-

nology, Danvers, MA, USA), P65 (Cell Signaling Technol-

ogy), GAPDH (Cell Signaling Technology), Histone H3

(Cell Signaling Technology) and β-actin (Cell Signaling

Technology) overnight at 4 °C. Subsequently, the mem-

brane was incubated with fluorescence-conjugated sec-

ondary antibody (Cell Signaling Technology) and

scanned with Odyssey scanner (LI-COR Biosciences,

Lincoln, Nebraska).

In vivo subcutaneous tumor model

Five weeks old male nude mice were purchased from

Shanghai Experimental Animal Center (Shanghai, China)

and fed in Experimental Animal Center of Second Mili-

tary Medical University (Shanghai, China). All animal

experiments were carried out according to the directions

of Second Military Medical University Animal Care

Facility and the National Institutes of Health guidelines.

SMMU-7721-SiIRAK1-1 and SMMU-7721-NC cell lines

were cultured and subcutaneously injected at 5 × 106

cells/nude mouse. About two months later, six nude

mice were sacrificed for harvesting subcutaneous tumor.

At last, the subcutaneous tumor samples were analyzed

by immunohistochemical straining with the Ki67 anti-

body (Cell Signaling Technology).

For the IRAK1/4 inhibitor treatment, the IRAK1/4

inhibitor was dissolved in DMSO at the concentration of

5 mM, and further diluted in PBS. The SMMU-7721 cell

line was implanted subcutaneously in mice and allowed

to grow until the tumors reached a size of approximately

150 mm3. In vivo delivery of the IRAK1/4 inhibitor ap-

proach is adapted from previous reports of Yang. et al.

[29] and Rhyasen GW. et al. [20], xenografted mice were

randomized and injected i.p. with 2.12 mg/kg IRAK1/4

inhibitor four times per week for two weeks.

Statistical analysis

All experiments were repeated for three times and the

data analysis was performed with student T-test and

two-way ANOVA analysis with GraphPad software.

Tumor volumes from two groups in subcutaneous HCC

models were analyzed by two-way ANOVA analysis. The

data were presented as the mean ± SEM. P < 0.05 was

considered statistically significant.

Results

IRAK1 was over-expressed in HCC tumor tissues

The mRNA and protein level of IRAK1 was investi-

gated in 33 clinical HCC specimens. We found that

IRAK1 was highly expressed in the HCC tissues com-

paring with adjacent normal tissues by immunohisto-

chemical staining (Fig. 1a). IRAK1 was mostly located

in the cytoplasm, while some existed in nucleus.

Increased IRAK1 mRNA levels were comparable to

those in non-malignant tissues (Fig. 1b). As is showed

in Fig. 1c and d, increased protein levels of IRAK1 was

detected in 12 HCC biopsies, suggesting that IRAK1

was over-expressed in most HCC specimens.
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Knockdown of IRAK1 reduced HCC cell growth

To investigate the role of IRAK1 in HCC cell growth,

the protein levels of IRAK1 in liver cancer cell lines were

examined, including PLC/PRF/5, Huh7, HepG2, SMMU-

7721 and MHCC-LM3. As shown in Fig. 2a and b, en-

dogenous protein levels of IRAK1 were high in most cell

lines. Considering the coherence of high expression of

IRAK1 in HCC and most liver cancer cell lines, MHCC-

LM3 and SMMU-7721 were interfered by lentivirus-

mediated siRNA to stably suppress IRAK1 expression.

Two different siRNAs were used to knockdown IRAK1

in both cell lines (Fig. 3a and b). Cells infected with con-

trol lentivirus grew rapidly, whereas cells infected with

lenti-si-IRAK1 had inhibited the cell growth (Fig. 3c). At

the same time, si-IRAK1 was able to augment the chem-

ical drug cisplatin (Cis)-induced apoptosis in SMMC-

Fig. 1 High expression of IRAK1 in HCC tissues (T) comparing with adjacent normal tissues (N). a IRAK1 expression was analyzed by IHC in 33

human liver tissues. Representative IRAK1 staining of de-paraffinized sections of adjacent normal liver (N) and HCC tumor (T) tissues. b RT-PCR

analysis of IRAK1 mRNA in HCC tumor tissues. c Western Blot analysis of IRAK1 in HCC tumor tissues (T1-12) and adjacent liver tissues (N1-12).

d The normalization expression of IRAK1/β-actin. Actin was used as a loading control

Fig. 2 High expression of IRAK1 in different HCC Cell lines. a Western Blot analysis of IRAK1 in different HCC cell lines. b The normalization

expression of IRAK1/β-actin
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7721 or MHCC-LM3 cell lines as shown in (Fig. 3d).

Moreover, in the presence of cisplatin (Cis) or epirubicin

(ADM), si-IRAK1 diminished the nuclear protein levels

of NF-kB/p65 (Fig. 3e). Additionally, we detected the

protein levels of p-IRAK1 (T209) in MHCC-LM3-

SiIRAK1-1 and SMMU-7721-SiIRAK1-1 cell lines and

found that the p-IRAK1(T209) levels were decreased

as down-regulation of IRAK1 (Fig. 3f ). Therefore, we

assumed that down-regulation of IRAK1 slowed prolifera-

tion and induced apoptosis mainly through phospho-

IRAK1 status [14, 16].

Inhibition of p-IRAK1 impeded cell proliferation

and migration

To further study whether p-IRAK1 (T209) contributes

to HCC cells proliferation, the inhibitor of IRAK1/4,

which selectively inhibits the activities of IRAK1 and

IRAK4, was used to repress the activity of IRAK1 in

SMMU-7721 and HepG2 cell lines. Sensitivity of

IRAK1/4 inhibitor was evaluated by treating cells with

serial dilutions of the drug for 5 days and then analyz-

ing cell growth by CCK-8 assays. As displayed in Fig. 4a,

phosphorylation of IRAK1 was significantly inhibited,

Fig. 3 Knockdown of IRAK1 inhibited proliferation and induced apoptosis in HCC cells. a Western Blot analysis of IRAK1 in MHCC-LM3 and

SMMU-7721 cell lines after IRAK1 knockdown. b The normalization expression of IRAK1/β-actin. c The proliferation curves of MHCC-LM3 and

SMMU-7721 cell lines after IRAK1 knockdown. d Apoptosis analysis of MHCC-LM3 and SMMU-7721 cell lines with the stimulation of cisplatin

(Cis, 25 μg/ml). e The nucleocytoplasmic separation analysis of SMMU-7721 cell lines under the stimulation of cisplatin (Cis, 25 μg/ml) or epirubicin

(ADM, 5 μg/ml). f Western Blot analysis of p-IRAK1 (T209) after IRAK1 knocked down. NC: control cell lines; SiIRAK1-1: IRAK1 knockdown cell lines with s1

fragment sequence; SiIRAK1-2: IRAK1 knockdown cell lines with s2 fragment sequence; s1, s2: different shRNA fragments in si-IRAK1 lentivirus. * P < 0.05
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which led to impaired proliferation of both cell lines in

a dose-dependent manner. However, it was noted that

the p-IRAK1 (S376), which might not be the main

phosphorylated form in liver cancer cell lines, was al-

most not expressed in SMMU-7721 and HepG2 cell

lines. After the inhibition of p-IRAK1 (T209) in four

different cell lines, including SMMU-7721, HepG2,

PVTT and PLC/PRF/5, the proliferation rates were

greatly attenuated as showed in Fig. 4c, especially in the

SMMU-7721 and HepG2. In addition, the colony for-

mation analysis of SMMU-7721 and HepG2 cells with

the IRAK1 inhibitor (0, 10 μM and 20 μM) for 48 h fur-

ther confirmed the role of p-IRAK1(T209) in promot-

ing HCC proliferation (Fig. 4d). It implicated that

IRAK1 enhances proliferation in human HCCs mainly

depending on its phosphorylation form (T209).

As is known, migration is crucial for HCC progression

[32]. In this study, we further analyzed the effect of

IRAK1 activity on HCC migration. As the results in

Fig. 4b, the IRAK1/4 inhibitor (20 μM) decreased the

number of migrated cells in SMMU-7721 cells, revealing

that IRAK1 improves HCC migration.

Inhibition of p-IRAK1 lessened cell cycle arrest but

increased apoptosis in HCC cells

Generally, cell proliferation is closely corresponding with

the regulation of cell cycle. However, whether the inhib-

ition of p-IRAK1 affected the cell cycle was unknown.

Fig. 4 The inhibition of p-IRAK1 attenuated proliferation in HCC cells. a The protein levels of p-IRAK1 and total IRAK1 in SMMU-7721 and HepG2

with IRAK1/4 inhibitors (0, 10 μM, 20 μM). b Cell migration analysis in SMMU-7721 cell lines with IRAK1/4 inhibitors (0, 20 μM) treatment for 24 h.

c The proliferation analysis in four different cell lines with IRAK1/4 inhibitors (0, 10 μM, 20 μM) for 1–5 days. d Colony formation analysis in

SMMU-7721 and HepG2 cells with IRAK1/4 inhibitor (0, 10 μM and 20 μM) for 48 h
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We further determined whether the inhibition of p-

IRAK1 affected cell cycle distribution using flow cytom-

etry. In Fig. 5a and b, IRAK1/4 inhibitor treatment (0,

10 or 20 μM) for 24 h or 48 h led to a decrease in the

percentage of cells in S phase. Moreover, IRAK1/4 in-

hibitor treatment at the concentration of 20 μM also

caused apoptosis at 24 h and 48 h in SMMU-7721 cells

(Fig. 5c), suggesting the anti-apoptosis role of IRAK1 in

liver cancer.

The proliferation promoting of IRAK1 in subcutaneous

tumor in vivo

To further study the promoting-tumor effects of IRAK1 in

vivo, we employed SMMU-7721 HCC exnograft models.

Fig. 5 The IRAK1 inhibitor arrested the cell cylce and induced apoptosis in HCC cells. a Flow cytometry assays of cell cycle arrest in SMMU-7721

cell line, with treatment of IRAK1/4 inhibitors (0, 10 μM, 20 μM) for 24 h and 48 h and staining with PI. b The fractions of cells in each phase of

the cell cycle including G0/G1, S and G2/M phases. c Flow cytometry assays of cell apoptosis in SMMU-7721 cell line, with treatment of the

IRAK1/4 inhibitor (20 μM) for 24 h and 48 h and staining with Annexin V and PI
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SMMU-7721-SiIRAK1-1 cells were injected subcutaneously

into the flanks of nude mice. As presented in Fig. 6a and b,

the average tumor volumes and weights in the SMMU-

7721-SiIRAK1-1 groups were smaller than those in the NC

control. Additionally, the immunohistochemical staining of

Ki-67 also showed that shIRAK1 delayed SMMU-7721 cell

proliferation in HCC xenograft model (Fig. 6c).

Moreover, based on SMMU-7721 HCC xenograft

model, IRAK1/4 inhibitor treatment was also used to

investigate the pro-tumor effects of IRAK1 in vivo.

SMMU-7721 cells were injected subcutaneously into

the flanks of nude mice. After the palpable xenograft

tumors were established, the mice were randomly

assigned into treatment with IRAK1/4 inhibitor or

DMSO (control group). As shown in Fig. 6d, the

average tumor volumes and weights in the IRAK1/4

inhibitor-treated groups were also smaller than those

in the DMSO groups (p < 0.05). Mice treated with in-

hibitor showed no obvious signs of toxicity due to no

difference among body weight, food and water intake,

activity during treatment.

Discussion

The pathogenesis of HCC is complex and diverse, in-

volving different signal pathways, such as Wnt [33, 34],

MAPK [30, 35, 36] and PI3K/AKT [31]. Recent studies

also showed that inflammation signal pathways were

closely related to tumorigenesis and development of

HCC [37, 38]. As IRAK1 plays a key role in the TLRs/

IL-1 signaling pathway by activating the downstream of

NF-kB, the functions of IRAK1 in different tumors have

been wildly focused. In acute myeloid leukemia (AML),

over-expressed IRAK1 and universal activation were fre-

quent [21]. In the melanoma cell lines, both IRAK4 and

IRAK1 are highly expressed and activated, and promote

primary melanoma progression [22]. IRAK1 has been

proved as the therapeutic target for lung cancer [23, 24].

Moreover, a recent study showed over-expression of

IRAK1 in breast cancer and demonstrated its potential

target for triple-negative breast cancer (TNBC) metasta-

sis to overcome paclitaxel resistance [26]. Christian

Pilarsky et al. reported that IRAK1 gene was over-

expressed in 10 kinds of cancers, including liver cancer,

Fig. 6 Inhibition of IRAK1 attenuates tumor growth in subcutaneous HCC models. a Xenografted tumor of SMMU-7721 cell lines stably

transfected with lentivirus-delivering shRNA for IRAK1 (shIRAK2) in nude mice. b The graph shows changes in the volume or weight of tumors. The

data are the mean ± SE (n = 4). c The Ki67 staining of Xenografted tumor (X100 and X200). d The graph shows changes in the volumes or weights of

tumors. The data are the mean ± SE (n = 4). SMMU-7721 cell lines were implanted subcutaneously in mice and allowed to grow until the tumors

reached a size of approximately 150 mm3. Xenografted mice were randomized and injected i.p. with 2.12 mg/kg IRAK1/4 inhibitor 4 times per week.

Two weeks later, the average tumor volumes and weights of the IRAK1/4 inhibitor group were analyzed comparing with the control group.

Tumor volumes from two groups were analyzed by two-way ANOVA analysis (*p < 0.05). The graph shows individual tumor volume (t-test, *p < 0.05)
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but there was no further investigation of the function of

IRAK1 [39].

Due to unrestrained proliferation is an important

characteristic for most malignant tumors including

HCC [40, 41], it is meaningful to study the related

mechanism and seek a new therapy strategy. In this

study, frequently high expressions of IRAK1 in HCC

tissues and liver cancer cells were confirmed, revealing

the crucial role of IRAK1 in HCC development. We fo-

cused on the effect of IRAK1 on cell proliferation, and

found the promotive role of IRAK1 for cell proliferation by

regulating cell cycle. Suppression of IRAK1, by either siR-

NAs or the pharmaceutical IRAK1/4 inhibitor, lessened cell

proliferation in HCC cell lines in vitro and HCC xenograft

tumor growth in vivo. A recent research of breast cancers

[26] showed that over-expression of IRAK1 could promote

TNBC growth through regulating NF-kB-related cytokines

secretion. However, in liver cancer, our data were more

prone to its regulation about S phase in cell cycle. Next,

more efforts will be focused on the detail mechanism of

IRAK1 in the cell proliferation in liver cancer.

Chemical inhibition of IRAK1 in melanoma cells re-

sulted in increased apoptosis in vitro and in vivo [22].

Adam et al. [42] also discovered that genetic or pharma-

cologic inhibition of IRAK1 attenuated ERK1/2 pathway

through TRAF6 and induced cell apoptosis in head and

neck cancer cell lines. Combination increased apoptosis

and reduced migration by IRAK1/4 inhibitor in HCC

cell lines, IRAK1 is postulated to promote HCC progres-

sion by controlling HCC cell proliferation and apoptosis.

The pharmaceutical IRAK1/4 inhibitor has already

been frequently used for acute myeloid leukemia (AML)

treatments [21]. Our work further discovered that

IRAK1/4 inhibitor as a novel strategy for HCC therapy.

The high expression (mRNA and protein) of IRAK1 as

well as activated IRAK1 (T209) observed in myelodysplas-

tic syndrome, acute myeloid leukaemia [19, 20], melan-

oma [22] and HCC [8] showed the probable correlation

between IRAK1 and its phosphorylated activation. Since

the function of IRAK1 mainly relies on its phosphorylated

status in most tissues and cells [14, 16], in this study,

si-IRAK1 or the IRAK1/4 inhibitor suppressed

phosphor-IRAK1 protein levels, indicating that high

expression of IRAK1 in HCC promotes cell prolifera-

tion and anti-apoptosis mainly through its phosphory-

lated status. Moreover, the data from xenograft of

HCC cell line confirmed this possibility. Of course, it

still remains further study on the molecular mechan-

ism about this association observed in HCC.

Conclusions

We revealed the important role of IRAK1 in promoting

HCC growth and apoptosis, and discovered it as a candi-

date target for HCC treatment. More details about the

mechanisms and personalized therapy need to be further

studied in future.
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