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Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine implicated in the

pathogenesis of inflammation and cancer. It is produced by various cells and circulating

MIF has been identified as a biomarker for a range of diseases. Extracellular MIF mainly

binds to the cluster of differentiation 74 (CD74)/CD44 to activate downstream signaling

pathways. These in turn activate immune responses, enhance inflammation and can

promote cancer cell proliferation and invasion. Extracellular MIF also binds to the C-X-C

chemokine receptors cooperating with or without CD74 to activate chemokine response.

Intracellular MIF is involved in Toll-like receptor and inflammasome-mediated inflammatory

response. Pharmacological inhibition of MIF has been shown to hold great promise in

treating inflammatory diseases and cancer, including small molecule MIF inhibitors

targeting the tautomerase active site of MIF and antibodies that neutralize MIF. In the

current review, we discuss the role of MIF signaling pathways in inflammation and cancer

and summarize the recent advances of the role of MIF in experimental and clinical exocrine

pancreatic diseases. We expect to provide insights into clinical translation of MIF

antagonism as a strategy for treating acute pancreatitis and pancreatic cancer.

Keywords: macrophagemigration inhibitory factor, acute inflammatory response, toll-like receptor, inflammasome,

acute pancreatitis, pancreatic cancer

INTRODUCTION

Macrophage migration inhibitory factor (MIF) was originally discovered in 1966 as a lymphokine
derived from activated T cells during delayed-type hypersensitivity (Bloom and Bennett, 1966;
David, 1966), exhibiting inhibition function of macrophage migration. Since being cloned in the
early 1990s (Bernhagen et al., 1993; Bernhagen et al., 1994), numerous researchers have investigated
its association with disease, multifaceted versatile functions, receptors, and downstream signaling
pathways. MIF is now known to have a pivotal role in metabolic (Morrison and Kleemann, 2015),
acute inflammatory (Hertelendy et al., 2018), autoimmune (Greven et al., 2010) and infectious
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diseases (Leaver et al., 2010), and cancers (O’reilly et al., 2016)
including colorectal (He et al., 2009), malignant melanoma
(Oliveira et al., 2014), lung (Tomiyasu et al., 2002), breast
(Tomiyasu et al., 2002), and prostate (Meyer-Siegler et al.,
2002) cancers as well as glioblastomas (Munaut et al., 2002).

Acute pancreatitis (AP) is one of the most common
gastroenterological diseases with an increasing global incidence
and is complicated by considerable comorbidity, mortality, and
financial burden (Peery et al., 2019; Petrov and Yadav, 2019). In
the course of the disease, injured pancreatic acinar cells secrete
inflammatory mediators such as interleukin-6 (IL-6), tumor
necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), MIF,
chemokines and their ligands that mediate recruitment and
infiltration of neutrophils and monocytes at the injury site
(Lugea et al., 2017), further aggravating local injury and
systemic inflammation (Linkermann et al., 2014). As a result,
anti-inflammatory treatment strategies have been tested in AP
(Gukovskaya et al., 2017). Despite an enormous amount of pre-
clinical research (Habtezion et al., 2019; Lee and Papachristou,
2019; Saluja et al., 2019) and clinical trials (Moggia et al., 2017),
no effective targeted pharmacological treatment for AP has been
discovered. Therefore, the current treatment of AP is limited to
supportive care as well as the management of local and systemic
complications (Vege et al., 2018).

AP, chronic pancreatitis, and pancreatic cancer are the
common diseases of the exocrine pancreas (Petrov and Yadav,
2019). About 10% of AP patients will develop chronic pancreatitis
(Sankaran et al., 2015) and its global incidence is 10 cases per
100,000 general population per year (Xiao et al., 2016). The
estimates of incidence and mortality for pancreatic cancer are
8.14 cases and 6.92 deaths per 100,000 persons annually,
respectively (Xiao et al., 2016). In China, pancreatic ductal
adenocarcinoma (PDAC) is expected to be the second leading
cause of cancer-related death by 2030 (Siegel et al., 2019).

Emerging evidence suggests that inflammatory cytokines
including MIF, TNF-α, interferon gamma, and transforming
growth factor beta are increased in the setting of cancer
(Lippitz, 2013). An elevated cytokine concentration profile is
associated with reduced survival in pancreatic cancer patients
(Babic et al., 2018). There remains no effective pharmacological
treatment for PDAC and the prognosis is still extremely poor
(Lippitz, 2013; Ryan et al., 2014). There appears to be a
compelling role for MIF in pancreatic diseases. Circulating
MIF levels are significantly higher in obese or type 2 diabetic
populations compared to healthy controls (Morrison and
Kleemann, 2015), are significantly elevated in experimental
and human AP and correlated with disease severity (Sakai
et al., 2003), and are also highly up-regulated in exosomes
(Costa-Silva et al., 2015) and in PDAC tissue (Funamizu et al.,
2013; Lippitz, 2013; Tan et al., 2014). Small molecular MIF
inhibitors, anti-MIF antibodies, and genetic ablation of MIF
have all been tested and show protective effects in
experimental AP (Sakai et al., 2003; Matsuda et al., 2006; Guo
et al., 2018; Li et al., 2019; Zhu et al., 2020) and PDAC (Winner
et al., 2007; Denz et al., 2010; Funamizu et al., 2013; Tan et al.,
2014; Costa-Silva et al., 2015; Guo et al., 2016; Yang et al., 2016;
Wang et al., 2018; Suresh et al., 2019) models.

The aim of this review is to describe what is known about the
structure and function of MIF with a particular focus on signaling
pathways involved in inflammation and cancer. The role of MIF
in AP and PDAC and the potential for MIF targeted treatment
strategies are also emphasised.

LITERATURE SEARCH

A systematic literature search was conducted in Ovid Medline
(PubMed), Scopus, Science Citation Index expanded, and Google
Scholar to find related articles. The key words were “acute
pancreatitis,” “pancreatitis,” “chronic pancreatitis,” or
“pancreatic cancer” in combination with “macrophage
migration inhibitory factor” or “D-Dopachrome tautomerase.”
All studies investigating MIF in experimental and clinical
exocrine pancreatic diseases were collated. Reference lists of
relevant reviews and other non-primary data sources regarding
this context captured by the search strategy were also manually
screened. Only publications in English were included. In total, 15
studies investigating MIF in AP and 14 studies in PDAC were
summarized in this review. We did not identify original study
investigating MIF and chronic pancreatitis.

STRUCTURE AND FUNCTION OF MIF

MIF is a highly conserved protein of 12.5 kDa, with evolutionarily
ancient homologues in plants, protozoans, nematodes, and
invertebrates (Sparkes et al., 2017). The MIF protein is a 115-
amino acid polypeptide that folds to form two antiparallel α-helices
that pack against a 4-stranded β-sheet (Trivedi-Parmar and
Jorgensen, 2018). On the basis of X-ray crystallography data,
the biologically active form of MIF is a homotrimer (Suzuki
et al., 1996). MIF is different from other cytokines because its
structure contains three evolutionarily stable catalytic sites that are
associated with tautomerase and oxidoreductase activities
(Rosengren et al., 1996; Sun et al., 1996; Suzuki et al., 1996).

MIF is secreted by the anterior pituitary and immune cells
(Calandra et al., 1994) and is ubiquitously stored and expressed in
a variety of cells including epithelial, endothelial, mesenchymal,
dendritic, and other cell types (Jankauskas et al., 2019).
Constitutive release of MIF from cells results in its high
concentration in the extracellular space (Lee et al., 2016; Lang
et al., 2018). However, the process by which MIF is released is not
fully understood. Unlike other cytokines, MIF exists as a pre-
formed type inmultiple cell sub-populations throughout the body
(Calandra et al., 1994; Bacher et al., 1997), and is particularly
distributed and expressed in cells of the nervous (Nishibori et al.,
1996) and endocrine systems (Calandra and Roger, 2003) that
have direct contact with the natural environment, (e.g. lung, skin,
and gastrointestinal). MIF production is largely facilitated in
response to an array of stimuli including hypoxia, hydrogen
peroxide, lipopolysaccharide (LPS), TNF-α, thrombin, and
angiotensin II (Jankauskas et al., 2019). Waeber et al. (Waeber
et al., 1997) reported that MIF was highly expressed in several
insulin-secreting cell lines, colocalized with insulin-containing
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secretory granules, and was secreted in response to glucose
stimulation in a time- and concentration-dependent manner.
Immunoneutralization of MIF by anti-MIF IgG reduced the
first and second phase of the glucose-induced insulin secretion
response by 39 and 31%, respectively. Whether pancreatic acinar
cells produce and release MIF remains to be determined.

PATHOPHYSIOLOGIC ROLE OF MIF

MIF circulates normally at levels from 2 ng/ml to 6 ng/ml, following
a circadian rhythm that correlates with plasma cortisol under
physiological conditions (Petrovsky et al., 2003). This is of
particular clinical relevance as low concentration of
glucocorticoids induce release of MIF into circulation and in turn,
circulating MIF overrides glucocorticoid-mediated inhibition of
cytokine secretion, and has been shown to fully abolish the
protective effect of glucocorticoids in a lethal model of endotoxin-
induced inflammation (Calandra et al., 1995; Bloom et al., 2016a). In
the case of acute inflammatory diseases, MIF has been demonstrated
to be implicated in the pathogenesis of glomerulonephritis, acute
lung injury, sepsis, and AP, and its elevation is closely associated with
disease severity or progression (Harris et al., 2019). In addition to its
cytokine activity, mammalian MIF also harbors diverse catalytic
functions. In this regard, tautomerase activity is the most widely
studied function, exhibiting the ability to catalyze tautomerization of
phenylpyruvate, p-hydroxyphenylpyruvate, and D-dopachrome
(Rosengren et al., 1996; Rosengren et al., 1997). Moreover, MIF
interferes in cell cycle regulation by negatively interacting with c-Jun
activation binding protein-1 (JAB1, also referred to the fifth
component of the constitutive photomorphogenic-9 signalosome,
CSN5)-dependent pathways, resulting in degradation of cyclin-
dependent kinase inhibitor p27Kip1 and cell cycle progression
(Kleemann et al., 2000).

D-DOPACHROME TAUTOMERASE

D-dopachrome tautomerase (D-DT, also referred to MIF-2)
comprises 117 amino acids with a molecular weight of 13 kDa
(Zhang et al., 1995; Nishihira et al., 1998). It has a highly homologous
tertiary structure and similar biological properties toMIF (Sugimoto
et al., 1999; Merk et al., 2011). Whereas plasma D-DT and MIF
circulate in similar concentrations under basal or pathological
conditions, LPS-treated macrophages release 20-fold more MIF
than D-DT, indicating D-DT derived from nonmacrophage
sources prominently contribute to plasma D-DT expressions in
vivo (Merk et al., 2011). The differences and coincidences
between D-DT and MIF have been reviewed by Illescas et al.
(Illescas et al., 2020). Regardless of the similarities, D-DT seems
to play different or even opposed role from MIF under some
circumstances. For example, D-DT lacks both the CXXC redox
motif and pseudo (E)LR motifs present on MIF, while the former
one is important in sensing redox signals and the latter one is
essential for its chemokine function (Esumi et al., 1998; Bernhagen
et al., 2007; Merk et al., 2011). In adipose tissues, D-DT andMIF are
differentially expressed and have distinct roles in adipogenesis.

While D-DT is negatively correlated with obesity and reverses
glucose intolerance, MIF is positively correlated with obesity and
insulin resistance (Kim et al., 2015). D-DT also binds to JAB1 and
the interaction affinity between JAB1 and D-DT is comparable to
that observed between JAB1 and MIF (Merk et al., 2011).

MIF SIGNALLING PATHWAYS IN
INFLAMMATION AND CANCER

The MIF-related key signaling pathways in inflammation and
cancer are delineated in Figure 1.

MIF Receptor-Mediated Signaling
Pathways
When extracellular MIF binds to its primary receptor cluster of
differentiation 74 (CD74) (Leng et al., 2003) on the cell membrane,
co-receptors including CD44 or C-X-C chemokine receptors
(CXCRs; CXCR2, CXCR4, and CXCR7) (Bernhagen et al., 2007;
Alampour-Rajabi et al., 2015) are also required to activate
downstream signaling pathways (Shi et al., 2006). Once the
CD74/CD44 complex is activated by MIF through the proto-
oncogene tyrosine-protein kinase (SRC) (Leng et al., 2003),
mitogen-activated protein kinase (MAPK) family members such
as the extracellular signal-related kinase 1/2 (ERK1/2),
phosphoinositide 3-kinase (PI3K), and protein kinase B (PKB,
also known as AKT) are phosphorylated and subsequently
activated (Leng et al., 2003; Shi et al., 2006; Lue et al., 2007;
Gore et al., 2008). Sustained ERK1/2 activation promotes cancer
cell invasion and inhibits cell death (Mitchell et al., 1999). AKT
activation leads to phosphorylation of the proapoptotic proteins
including Bcl-2 agonist of cell death (BAD) and transcription factor
forkhead box O-3a (FoxO3a), promoting cancer cell survival (Lue
et al., 2007). MIF-induced cyclo-oxygenase-2 (COX-2)/
prostaglandin E2 (PGE-2) activation enhances tumor growth,
cancer cell viability, and metastasis. MIF downregulates tumor
suppressor protein p53, leading to inhibition of p53-dependent
apoptosis, accumulation of mutation, and proliferation of cancer
cells (Hudson et al., 1999; Mitchell et al., 2002). ERK1/2 and PI3K/
AKT also activate transcription factors including nuclear factor-
kappa B (NF-κB) and activator protein-1 (AP1), which result in the
release of pro-inflammatory cytokines such as IL-6, IL-8, IL-10,
and TNF-α. IL-6 and IL-8 also exhibit pro-tumourigenic functions
including promotion of tumor formation by enhancing
proliferation, reducing apoptosis, and promoting invasiveness
(Taniguchi and Karin, 2014; Johnson et al., 2018). Besides, MIF
inhibits p53-mediated apoptosis in macrophage with the induction
of increased cytoplasmic phospholipase A2 (PLA2), arachidonic
acid, COX2 and PGE2, which sustains the macrophage pro-
inflammatory function (Mitchell. et al., 1999; Mitchell et al.,
2002). MIF production is upregulated in hypoxic conditions
associated with tumor development and progression (Winner
et al., 2007). During hypoxia, MIF binding to CD74 contributes
to hypoxia inducible factor 1 alpha (HIF1α) activation and
stabilization, which then upregulates the expression of
angiogenic growth factors including vascular endothelial growth
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factor (VEGF), lysyl oxidase (LOX), and connective tissue growth
factor (CTGF) (Coleman et al., 2008; Oda et al., 2008; Xu et al.,
2008; O’reilly et al., 2016). Therefore, MIF supports tumor growth
through significantly enhancing angiogenesis. These pathways
provide mechanistic bases to explain the role of MIF in the
action of pro-inflammatory effects and cancer progression.

MIF can individually bind to CD74 or CXCR2/4 independent
of whether the other receptor type is co-expressed (Bernhagen
et al., 2007; Schwartz et al., 2009). Extracellular MIF triggers
mononuclear (monocytes, neutrophils, and T cells) cell
chemotaxis via MIF/CXCR2 and MIF/CXCR4. Monocyte
arrest elicited by MIF depends on CD74 and the complex
formed by MIF/CXCR2 or MIF/CXCR4 in the context of
inflammation and atherosclerosis (Bernhagen et al., 2007).
This effect can be suppressed by either a MIF genetic
deficiency or antibodies to MIF, CXCR2 or CD74 (Bernhagen
et al., 2007). Moreover, MIF can directly interact with CXCR7
(Alampour-Rajabi et al., 2015), resulting in MIF/CXCR7-
mediated functional responses that include promotion of
human CXCR7 internalization, activation of MIF-mediated
ERK1/2 zeta-chain associated protein kinase-70 signaling
pathway as well as B cell chemotaxis. It is not completely

elucidated whether CD44 is also involved in the receptor
complexes of CD74 with the CXCRs. Therefore, tissue
responsiveness to MIF depends on its specific expression of
MIF receptors and co-receptors, (i.e. CD44 and CXCRs).

Intracellular MIF-Mediated Signaling
Pathways
In addition to its extracellular activities, it is reported that endocytic
MIF can transcriptionally and post-transcriptionally override the
immunosuppressive effects of glucocorticoids (Calandra and
Roger, 2003). Other studies (Roger et al., 2001; Galvão et al.,
2016; Lang et al., 2018; Shin. et al., 2019) published in the past
few years collectively support a regulatory effect of endogenous
MIF on Toll-like receptor 4 (TLR4) and the NLR family pyrin
domain containing 3 (NLRP3) inflammasome signaling pathways.
These are thought to play a critical role in AP for developing
further pancreatic injury and systemic inflammation (Sharif et al.,
2009; Sendler et al., 2020). In response to the stimulation by LPS
and Gram-negative bacteria (canonical TLR4 activators), the MIF-
deficient macrophages were found to be hyposensitive (reduced
production of pro-inflammatory cytokines, e.g., TNF-α and

FIGURE 1 |MIF-mediated signal transduction and regulation in inflammation and cancer. Intracellularly, MIF overrides glucocorticoids induced suppression of NF-

ĸB synthesis and nuclear translocation, leading to increased cytokine production, (e.g. IL-6 and TNF-α). MIF also facilitates NLRP3 inflammasome assembly through

interacting with ASC, vimentin and NLRP3, resulting in pyroptosis and elevated production of IL-1β and IL-18. MIF upregulates the expression of TLR4 by facilitating the

transcription of NF-ĸB, which allows rapid recognition of LPS by TLR4, promoting the production of cytokines (including MIF). Intracellular MIF also binds to JAB1,

resulting in tumor cell cycle progression. After MIF is released, extracellular MIF binds to the transmembrane receptor complex CD74 and CD44, resulting in the

subsequent phosphorylation of ERK/MAPK and PI3K/AKT. ERK1/2 activates transcription elements AP1/ETS, which leads to expression of pro-inflammatory cytokines.

On the other side, the activation of ERK/COX2 inhibits p53-dependent apoptosis, promoting tumor cell proliferation. PI3K/AKT activation phosphorylated Bcl-2 family

member protein BAD and Foxo transcription factor Foxo3a, enhancing cancer cell survival and invasion. During hypoxia, the binding of MIF to CD74 contributes to HIF1α

activation and stabilization, which then upregulates the expression of angiogenic growth factors including VEGF, LOX, and CTGF that consequently promote

angiogenesis. Meanwhile, CD74/CD44 receptor complex releases CD74 intracellular domain (CD74-ICD), it translocates into the nucleus and increases NF-ĸB

activation, leading to increased caspase-1 activation and NLRP3 production. Extracellular MIF also binds to G-protein-coupled chemokine receptors CXCR2, CXCR4,

and CXCR7 individually or dependent on CD74 to form MIF/CXCR2 and MIF/CXCR4 complex, activating leucocyte chemotaxis. Abbreviations: NF-ĸB, nuclear factor

kappa B; IL, interleukin; TNF, tumor necrosis factor; NLRP3, NLR Family Pyrin Domain Containing three; TLR4, toll-like receptor four; LPS, lipopolysaccharide; CD74,

Cluster of Differentiation 74; ERK, extracellular signal-regulated kinase; MAPK, mitogen-activated protein kinase; PI3K, phosphoinositide 3-kinase; AP1, activator protein

1; COX2, cyclooxygenase-2; BAD, Bcl-2 agonist of cell death; FoxO3a, forkhead box O3a; HIF1α, hypoxia inducible factor 1 alpha; VEGF, vascular endothelial growth

factor; LOX, lysyl oxidase; CTGF, connective tissue growth factor; CXCR, C-X-C chemokine receptor.
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IL-6) (Roger. et al., 2001), highlighting a role for MIF in
modulation of TLR4 downstream signaling pathways.

MIF as a regulator of the NLRP3-mediated inflammatory
response has been described in recent studies (Lang et al.,

2018; Shin. et al., 2019). One study showed that MIF
colocalized with ASC (apoptosis-associated speck-like protein
containing a CARD), vimentin and NLRP3, potentially
modulating the interaction between NLRP3 and vimentin to

TABLE 1 | Experimental studies of MIF in acute pancreatitis.

Model Species Regimen Key findings Refs

Cerulein (6 × 50 μg/kg/

h; i.p.)

Wistar rats, male NA MIF levels were significantly increased in

ascitic fluid but not in serum in AP model

Sakai et al.

(2003)

Cerulein (3 × 20 μg/kg/h;

s.c.) + LPS (4 mg/kg;

i.v., after last cerulein

injection)

Mif−/- and wild type

BALB/c mice, male

Anti-PAR-2 Ab (100 μg/animal) or anti-MIF Ab

(20 mg/animal), i.v., immediately before first

cerulein injection

1) acute lung injury was less severe in Mif−/−

mice of AP complicated by endotoxemia; 2)

Anti-MIF Ab or anti-PAR-2 Ab suppressed

the AP-induced elevation of lung TLR4

protein expression

Matsuda et al.

(2006)

CDE diet (for 48 h) CD-1 mice, female Anti-MIF Ab (10 mg/kg) or control rabbit IgG,

i.p., immediately after the onset of CDE diet,

repeated every 12 h

1) MIF expression was increased in lung of

AP model; 2) Anti-MIF Ab improved the

survival rate from 16 to 37% in AP mice

Sakai et al.

(2003)

L-arginine (2 × 2.5 g/kg;

i.p., 1 h interval)

Wistar rats Glucocorticoid agonist (methylprednisolone;

30 mg/kg) or antagonist (RU-38486; 5 mg/kg),

s.c., before disease induction

Antagonist treatment led to significantly

higher MIF production at 8 and 12 h after AP

induction compared with the agonist-treated

or non-treated group

Paszt et al.

(2008)

L-arginine (2 × 5 g/kg;

i.p., 1 h interval)

C57BL/6 mice, male Chlorogenic acid (20 or 40 mg/kg; i.p., 1 h

before AP induction)

Chlorogenic acid suppressed AP-induced

increase of MIF levels in serum and

pancreatic tissue

Ohkawara et al.

(2017)

L-arginine (2 × 4 g/kg;

i.p., 1 h interval)

Mif−/- and WT C57BL/6

mice

ISO-1 (3.5 mg/kg; i.p. 30 min before first

L-arginine induction)

1) pancreatic NF-κB p65, IL-1β, and TNF-α,

serum IL-1β and TNF-α levels, and multiple

organ injury were significantly reduced in

Mif−/- mice with AP; 2) ISO-1 markedly

reduced severity of AP in wild type mice

Zhu et al. (2020)

TCA (5%, 0.2 ml/min; PD

injection)

Wistar rats, male Anti-MIF Ab (16 mg/kg) or nonspecific rabbit

IgG (control) was given 1 h before, immediately

after, or 1 h after induction, i.p

1) MIF levels were increased in serum (peak

at 9 h: 197 ± 9 ng/ml), ascitic fluid and lung,

but not in pancreas or liver in AP model; 2)

Anti-MIF Ab reduced lung TNF-α levels and

improved survival rate (88 vs. 44%, given 1 h

before; 92 vs. 33%, given immediately; 61

vs. 39%, given 1 h after induction) of AP rats

Sakai et al.

(2003)

STC (5%, 0.6 ml/kg; PD

infusion)

Sprague–Dawley rats,

pregnant female

ISO-1 (3.5 mg/kg; i.p., 30 min before STC

infusion)

1) MIF expression in fetal liver was elevated in

AP which was reduced by ISO-1 treatment;

2) ISO-1 markedly reduced pancreatic and

liver histopathological scores, inhibited

activation of myeloperoxidase, NF-κB, IL-1β,

TNF-α, and HMGB1 in fetal liver in AP rats

Guo et al. (2018)

STC (5%, 1 ml/kg; PD

infusion)

Wistar rats, pregnant

female

ISO-1 (3.5 mg/kg; i.p., 30 min before STC

infusion)

1) ISO-1 alleviated pathological injury of

pancreas and lung, attenuated serum levels

of IL-1β, IL-6, and TNF-α, inhibited activation

of lung p38 MAPK and NF-κB in AP rats; 2)

ISO-1 reduced MIF expression, increased

expression of p38 MAPK, p-p38, NF-κB, as

well as TNF-α and IL-1β levels of fetal kidney

tissue in AP rats

Zhou et al.

(2018); Li et al.

(2019)

STC (5%, 1 ml/kg; PD

infusion)

Wistar rats Ginkgo biloba extract (20 mg/kg; s.c., twice a

day pre-operation for 2 days, then given once

at the end of the operation)

1) AP resulted in a significant up-regulation

expression of MIF and TNF-α proteins in

alveolar macrophage; 2) ginkgo biloba

extract down-regulated expression of TNF-α

(6 h, p < 0.001; 12 h, p < 0.001) andMIF (6 h,

p � 0.095; 12 h, p < 0.001) in alveolar

macrophage compared with AP groups

Xu et al. (2014)

STC (5%, 1 ml/kg; PD

infusion)

Wistar rats, male NA The expression of MIF mRNA and protein

was significantly upregulated in intrahepatic

bile duct cells in AP rats

Wang et al.

(2019)

MIF, macrophage migration inhibitory factor; TCA, taurocholic acid; PD, pancreaticobiliary duct infusion; Ab, antibody; i. p., intraperitoneal; TNF-α, tumor necrosis factor-alpha; NA, not

available; CDE, choline deficient ethionine-supplemented; LPS, lipopolysaccharide; i. v., intravenous; PAR-2, protease activated rec eptor-2; TLR, toll-like receptor; s. c., subcutaneous;

STC, sodium taurocholate; ISO-1, (S,R)3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester; NF-κB, nuclear factor kappa B; IL, interleukin; HMGB, high mobility group

box; MAPK, mitogen-activated protein kinase.
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facilitate the NLRP3 inflammasome assembly, leading to
acceleration of downstream cytokine release and pyroptosis
(Lang et al., 2018). Accordingly, depletion or inhibition of
MIF in macrophages and dendritic cells resulted in the
inhibition of IL-1α, IL-1β, and IL-18 release in response to
NLRP3-activating stimuli. Another study illustrated the link
between MIF and NLRP3 activation in human peripheral
blood monocytes using U1 small nuclear ribonucleoprotein
immune complex, a NLRP3 inflammasome activator (Shin
et al., 2012; Shin. et al., 2019), which can stimulate MIF and
IL-1β production in human monocytes. MIF levels were
increased in synovial fluid and positively associated with IL-1β
in a murine acute gout model and human patients (Galvão et al.,
2016). Taken together, these studies highlight the role of MIF in
modulating activation of downstream events through TLR4/
NLRP3 signaling pathways.

Moreover, intracellular MIF binds to JAB1 and results in
tumor cell cycle progression and proliferation. MIF-JAB1
interaction also stabilize HIF1α by preventing its
hydroxylation (Winner et al., 2007), resulting in increased
expression of pro-angiogenic factors such as VEGF and IL-8
(Oda et al., 2008). It subsequently promotes tumor angiogenesis.

MIF AND EXOCRINE PANCREATIC
DISEASES

MIF and Experimental AP
Results from studies investigating MIF and experimental AP
are summarized in Table 1. Investigation of MIF in AP began
in 2003, when Sakai and colleagues demonstrated a functional
role for MIF in experimental models of AP induced by
taurocholic acid (TCA-AP), caerulein (CER-AP), and
choline-deficient, ethionine-supplemented diet (CDE-AP)
(Sakai et al., 2003). In isolated peritoneal macrophages from
ascitic fluid of TCA-AP rats, co-incubation with anti-MIF
antibodies significantly inhibited IL-8 production (Sakai
et al., 2003). MIF levels of serum, ascitic fluid, and lung
tissue, but not pancreas or liver, were significantly increased
in the TCA-AP in rats. Similarly, MIF levels in the lung were
also significantly increased in the CDE-AP in mice. As for
CER-AP in rats, the MIF levels were only markedly elevated in
pancreatic ascites and thus peritoneal macrophages were
considered to be the cellular sources of ascitic MIF. In
2006, Matsuda et al. (Matsuda et al., 2006) reported that
plasma and lung MIF levels were increased by 7-fold and
4.7-fold, respectively, in a severe AP model induced by
three injections of caerulein and a low dose of LPS in mice
(CER/LPS-AP). The MIF levels in pancreatic tissue and serum
were increased in L-arginine-induced AP (ARG-AP) in mice
(Ohkawara et al., 2017) and their expression was up-regulated
in the intrahepatic bile duct cells in a sodium taurocholate-
induced AP (STC-AP) in rats (Wang et al., 2019).

Compared with wild type littermates, Mif−/− mice reduced
pancreatic and serum pro-inflammatory indices as well as
severity in ARG-AP (Zhu et al., 2020) and acute lung injury
in CER/LPS-AP (Matsuda et al., 2006). Pre-treatment with anti-

MIF antibody decreased lung TNF-α levels in the TCA-AP (Sakai
et al., 2003) and suppressed the AP-induced elevation of lung
TLR4 expression in CER/LPS-AP (Matsuda et al., 2006).
Furthermore, anti-MIF antibody significantly reduced lethality
in TCA-AP (Sakai et al., 2003), CDE-AP (Sakai et al., 2003), and
CER/LPS-AP (Matsuda et al., 2006). MIF specific inhibitor ISO-1
((S, R)3-(4-hydroxyphenyl)-4, 5-dihydro-5-isoxazole acetic acid
methyl ester) significantly mitigated pancreatic (Zhou et al.,
2018), lung (Zhou et al., 2018), liver (Guo et al., 2018), and
kidney (Li et al., 2019) injury with simultaneous reduction of MIF
and a spectrum of pro-inflammatory mediators in STC-AP in
pregnant rats. In addition, administration of anti-protease-
activated receptor-2 antibody (CER/LPS-AP) (Matsuda et al.,
2006), glucocorticoid agonist (ARG-AP) (Paszt et al., 2008),
chlorogenic acid (ARG-AP) (Ohkawara et al., 2017), and
ginkgo biloba extract (STC-AP) (Xu et al., 2014) also reduced
the severity of AP and circulating, pancreatic, or alveolar
macrophage MIF levels in experimental models.

MIF and Human AP
Clinical studies of MIF and AP are displayed in Table 2. Clinical
studies (Sakai et al., 2003; Makhija et al., 2007; Rahman et al.,
2007; Dambrauskas et al., 2010; Deng et al., 2017) that measured
circulating MIF levels collectively and consistently demonstrated
that the admission circulating MIF levels were proportionally
associated with severity of AP patients. Sakai et al. (Sakai et al.,
2003) determined serum MIF levels of 28 patients with mild AP
and 18 with severe APwithin 72 h disease onset in parallel with 12
healthy individuals, revealing that severe AP were associated with
markedly higher serum MIF levels compared to mild AP and
healthy controls (both p < 0.01). But there was no statistical
difference between mild AP and controls. Similar results were
observed in the study conducted by Rahman et al. (Rahman et al.,
2007), although the serum samples were collected earlier at 24 h
after AP onset. In addition, serum MIF levels were significantly
raised in patients who developed pancreatic necrosis or multiple
organ failure, indicating MIF could act as a sensitive biomarker to
predict local and systemic complications for AP. Another study
(Dambrauskas et al., 2010) comprising 108 AP patients (60 mild,
48 severe) also found that serum MIF levels within 72 h disease
onset could be used as discriminator of severe and necrotizing
AP. A study performed by our group (Deng et al., 2017) identified
MIF as an early predictor for discriminating AP patients who had
persistent organ failure (n � 20) from those without (n � 50) and
healthy controls (n � 10) with an area under the receiver
operating characteristic curve (AUC) of 0.90 (95% confidence
interval [CI], 0.81–0.96). A most recent study (Shen et al., 2021)
demonstrated that MIF at a cut-off value of 2.3 ng/ml has the best
discriminative power (AUC, 0.950; 95% CI, 0.914–0.987) for
predicting severe AP which was higher than Acute Physiology
and Chronic Health Evaluation II (AUC, 0.899), Bedside Index
for Severity in Acute Pancreatitis (AUC, 0.886), and serum IL-6
(AUC, 0.826). Therefore, MIF could be used as a potential early
severity predictor in patients with AP and this needs further
validation.

Previous studies described the ‘G’ to ‘C’ single nucleotide
polymorphism (at −173 position) of MIF in patients with
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systemic-onset juvenile idiopathic arthritis (Donn et al.,
2001) and sarcoidosis (Amoli et al., 2002), and a CATT
repeat microsatellite (at -794 position) to be associated with
lower disease severity in rheumatoid arthritis (Baugh et al.,
2002). Accordingly, Makhija et al. (Makhija et al., 2007)
compared the MIF gene polymorphism of a United Kingdom
cohort of 164 AP patients with 197 healthy controls. It is
shown that the distribution of MIF-173 genotype was
significantly different between the two groups (p � 0.046),
whilst there was no difference regarding the distribution of
MIF-794 microsatellite genotypes and alleles. However,
these findings warrant confirmation from a larger
population.

MIF and Experimental Pancreatic Cancer
The in vitro and in vivo studies of MIF and pancreatic cancer are
outlined in Tables 3, 4. The levels of MIF expression vary in
pancreatic cancer cell lines with high over-expression in PT-45,
CFPAC-1, PaCa2, and Capan-1 cells (Ct < 6.5) (Denz et al., 2010).
MIF over-expression is associated with reduced E-cadherin
expression and increased vimentin expression, indicative of
epithelial-to-mesenchymal transition characteristics thus
enhanced invasiveness in pancreatic cancer cell lines
(Funamizu et al., 2013). Besides, MIF over-expression is also
associated with increased proliferation and reduced sensitivity to
gemcitabine (Funamizu et al., 2013; Yang et al., 2016). Activation
of PI3K/Akt (Denz et al., 2010; Guo et al., 2016; Yang et al., 2016;

TABLE 2 | Patient studies of MIF in acute pancreatitis.

Patient population Severity definition Blood

sampling time

from pain

onset

Key findings Refs

Healthy controls (n � 12). Mild AP (n � 28).

Severe AP (n � 18)

OAC <72 h Serum MIF levels were significantly higher in severe AP

(median 45, range [20–112] ng/ml) compared with mild

AP (26 [1–70] ng/ml) or healthy controls (18 [11–34] ng/

ml) (both p < 0.01)

Sakai et al. (2003)

Healthy controls (n � 10). Mild AP (n � 45).

Severe AP (n � 19)

OAC 24 h 1) serum MIF levels were raised in severe AP (median 58,

range [13–181] ng/ml), multiple organ failure, or

pancreatic necrosis compared with mild AP (20 [5–80]

ng/ml) or healthy controls (18 [12–57] ng/ml) (all p < 0.01);

2) serumMIF levels significantly correlated with serum 24-

h CRP (r � 0.36, p � 0.02), peak CRP (r � 0.36, p � 0.003),

and 48-h APACHE II score (r � 0.29, p � 0.03). 3) 24-h

serum MIF was superior to sCD14 and sCD163 in

predicting severity (AUC, 0.84), multiple organ failure

(AUC, 0.80), and pancreatic necrosis (AUC, 0.86) (all p <

0.001)

Rahman et al.

(2007)

Healthy controls (n � 197). Mild AP (n �

116). Severe (n � 48)

OAC NA 1) AP vs. controls for distribution of MIF-173 gene

genotype (p � 0.046); 2) AP vs. controls for distribution of

MIF-794 microsatellite genotypes (p � 0.367) and alleles

(p � 0.342)

Makhija et al. (2007)

Healthy controls (n � 18). Mild AP (n � 60).

Severe (n � 48)

APACHE II > 7, imrie-

glasgow > 2, or MODS >2

<72 h 1) peripheral leukocyte mRNA levels of MIF in AP patients

were 6.5-fold higher than healthy controls; serum MIF

levels in AP patients were 10.3-fold higher than controls;

2) prognostic utility of serum MIF: Severity: Cutoff

(>1,186 pg/ml), AUC (0.71), Se � 0.47, Sp � 0.93, p <

0.01. Necrosis: Cutoff (>2,707 pg/ml), AUC (0.55), Se �

0.23, Sp � 0.95, p � 0.47. Death: Cutoff (>633 pg/ml),

AUC (0.84), Se � 1.00, Sp � 0.61, p < 0.01

Dambrauskas et al.

(2010)

Healthy controls (n � 10). Mild AP (n � 20).

Moderately severe AP (n � 30). Severe AP

(n � 20)

RAC <72 h 1) plasma MIF levels were elevated in AP patients and

were associated with disease severity (control: IQR 296,

[57–557] pg/ml; mild: 438 [143–1,453] pg/ml; moderately

severe: 717 [201–2,631] pg/ml; severe: 2,984

[74–44,786] pg/ml); 2) prognostic utility of plasma MIF in

discriminating severe AP from non-severe AP and healthy

controls: Cutoff (>1,520 pg/ml), AUC (0.90), Se � 0.75,

Sp � 0.98, p < 0.001

Deng et al. (2017)

Healthy controls (n � 10). Mild AP (n � 52).

Moderate severe AP (n � 65). Severe AP

(n � 26)

RAC <48 h 1) plasma MIF levels were elevated in non-severe AP

(1.68 ± 2.04 ng/ml) and severe AP (6.04 ± 4.05 ng/ml)

than healthy controls (0.51 ± 0.23 ng/ml); 2) prognostic

utility of plasmaMIF in discriminating severe AP from non-

severe AP and healthy controls: Cut-off (> 2.30 ng/ml),

AUC (0.950), Se � 0.962, Sp � 0.803

Shen et al. (2021)

MIF, macrophage migration inhibitory factor; AP, acute pancreatitis; OAC, original Atlanta classification; CRP, C-reactive protein; APACHE II, Acute Physiology and Chronic Health

Evaluation II; AUC, area under the receiver operating characteristic curve; RAC, revised Atlanta classification; Se, sensitivity; Sp, specificity.
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Wang et al., 2018) and ERK (Guo et al., 2016; Wang et al., 2018)
mediated signaling pathways were demonstrated to be involved in
the process. MIF knockdown by siRNA attenuated proliferation

and invasion along with increased apoptosis in pancreatic cancer
cell lines via upregulation of p53 and downregulation of ERK1/2
and AKT phosphorylation (Denz et al., 2010; Guo et al., 2016;

TABLE 3 | In vitro studies of MIF in pancreatic cancer.

Cell types Interventions Key findings Refs

MIA PaCa-2, PANC-1 MIF knockdown/knockout 1) hypoxia induced MIF expression and secretion in PC cell lines

in a HIF-1α–dependent manner; 2) MIF was required for maximal

hypoxia-induced HIF-1α stabilization in PC cell lines; 3) MIF

bound to CSN5 in PC cell lines and MIF depletion resulted in a

loss of CSN5 binding and stabilization of HIF-1α

Winner et al.

(2007)

MIAPaCa-2,AsPC-1,BxPC-3,Capan-1,CFPAC-1,

HPAF-II, PANC-1, Colo357, PANC-89, PancTuI,

PT-45, PT-64

MIF knockdown 1) qRT-PCR of MIF in PC cell lines showed PT-45, CFPAC-1,

PancTuI, and Capan-1 cells displayed the highest MIF

expression (Ct < 6.5), Panc-89 and Panc-1 showed low

expression levels (Ct > 8). AsPC-1, Colo357, BxPC-3, PT-64,

HPAF-II, and MIA PaCa-2 showed an average expression of MIF

(7 < Ct < 8); 2) MIF knockdown cells showed decreased

proliferation and viability and increased apoptosis; 3) MIF

knockdown downregulated total Akt expression but increased

phosphitylation at the Thr308 residue of Akt

Denz et al.

(2010)

PANC-1, Capan-2 Overexpression and knockdown

of MIF, gemcitabine

1) MIF overexpression decreased E-cadherin and increased

vimentin in PC cells, consistent with the features of EMT; 2) MIF

overexpressing PC cells showed significantly higher invasive

ability and increased proliferation than vector control cells,

sensitivity to gemcitabine was reduced

Funamizu et al.

(2013)

PANC-1, Capan-2, HPDE6, HIT-T15 Knockin and knockdown of MIF,

rMIF, PP1, AZD0530

1) rMIF inhibited insulin secretion of isolated mouse islets and

HIT-T15 cells on a dose-dependent pattern; 2) rMIF depressed

VDCC Ca2+ currents in HIT-T15 cells via regulating Src family

tyrosine kinase activity; 3) the regulatory effect of PANC1, Capan-

2, and MIF-expressing HPDE6 cells on insulin secretion from islet

cells was significantly ameliorated by using PP1 or AZD0530

Tan et al. (2014)

PANC-1, BxPC-3, ASPC-1, HEK293 Knockdown of DDT and MIF,

4-IPP

1) knockdown of MIF and DDT synergistically inhibited ERK1/2

and Akt phosphorylation, increased p53 expression and

attenuated proliferation and invasion of PANC-1 cells; 2) 4-IPP

reduced PANC-1 proliferation and colony formation

Guo et al.

(2016)

PANC-1, CFPAC-1, Capan-2, MIA PaCa-2 LY294002 (PI3K/Akt inhibitor),

AZD6244 (MEK inhibitor)

1) MIF-induced increase in miR-301b targets and reduces

NR3C2 levels in PANC-1 and Capan-2 cell lines; 2) NR3C2

inhibited proliferation, colony formation, migration, invasion, and

enhances sensitivity of PC cell lines to gemcitabine; 3) MIF

enhanced PC cell lines invasiveness by targeting NR3C2 through

the upregulation of miR-301b; 4) AZD6244 didn’t alter miR-301b

or NR3C2 in MIF-overexpressing PC cell lines; 5) treatment of

MIF-overexpression PC cells with LY294002 resulted in miR-

301b decrease and NR3C2 increase

Yang et al.

(2016)

PANC-1, BxPC-3 MIF knockdown 1) knockdown of MIF suppressed proliferation and invasion of

PDAC cells; 2) knockdown of MIF inhibited the activation of Akt

and ERK, and suppressed the expression of cyclin D1 and

MMP-2

Wang et al.

(2018)

Hamster PBMCs, HapT1 Recombinant MaMIF, ISO-1,

MaMIF knockdown

1) the primary sequence, biochemical properties, and crystal

structure of MaMIF showed great similarity with human MIF; 2)

recombinant MaMIF induced significantly higher expression of

TNF-α, IL-6, and VEGF in hamster PBMCs than non-treated

group, ISO-1 suppressed the expression of these factors in

PBMCs; 3) recombinant MaMIF showed no effect on the overall

growth of HapT1 cells; 4) intracellular MIF knockdown by siRNA

or inactivation by ISO-1 reduced overall growth of HapT1 cells

Suresh et al.

(2019)

MIF, macrophage migration inhibitory factor; PC, pancreatic cancer; HIF-1α, hypoxia inducible factor-1α; CSN5, COP9 signalosome subunit five; PDAC, pancreatic ductal

adenocarcinoma; AUC, area under the receiver operating characteristic curve; EMT, epithelial-to-mesenchymal transition; IHC, immunohistochemistry; PTX3, pentraxin3; rMIF,

recombinant MIF; PP1, protein phosphatase one; AZD0530, saracatinib; VDCC, voltage-gated calcium channel; PanIN, pancreatic intraepithelial neoplasias; DDT, D-dopachrome

tautomerase; 4-IPP, 4-iodo-6-phenylpyrimidine; ERK, extracellular signal-regulated kinases; oxMIF, oxidative MIF; PI3K, phosphoinositide 3-kinase; MEK, mitogen-activated protein

kinase; NR3C2, nuclear receptor subfamily three group C member two; MMP-2, matrix metalloproteinase-2; PBMCs, peripheral blood mononuclear cells; MaMIF,Mesocricetus auratus

MIF; ISO-1, (S, R)-3-(4-hydroxyphenyl)-4, 5-dihydro-5-isoxazole acetic acid methyl ester; TNF-α, tumor necrosis factor-α; IL-6, interleukin-6; VEGF, vascular endothelial growth factor.
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Wang et al., 2018). MIF inhibitor (4-iodo-6-phenylpyrimidine; 4-
IPP) reduced proliferation and colony formation in PANC-1 cells
(Guo et al., 2016).

A recent study (Suresh et al., 2019) found that recombinant
MIF treatment significantly enhanced tumor growth via
promoting angiogenesis in a hamster pancreatic cancer model
induced by subcutaneous inoculation with HapT1 cells.
Conversely, MIF knockdown or inhibition (ISO-1) reduced
overall cell growth in HapT1 cells.

Intriguingly, MIF has been linked to exosomes in PDAC.
Costa-Silva et al. (Costa-Silva et al., 2015) demonstrated that MIF
levels in plasma exosomes isolated from a mouse pancreatic
cancer model were markedly increased compared to non-
cancerous controls, even at an early stage of pancreatic
intraepithelial neoplasia. The process of MIF-expressing
PAN02 exosome “education”, (whereby naive, wild-type mice
were injected retro-orbitally every other day for three weeks with
5 μg of PAN02-derived exosomes), induced liver pre-metastatic
niche formation in treated mice which was also inhibited by MIF
knockdown.

Yang et al. (Yang et al., 2016) demonstrated the role of
MIF–miR-301b–NR3C2 axis in the pathogenesis of PDAC.
Over-expression of MIF induced a marked increase of miR-
301b and reduction of NR3C2 levels, resulting in profound
proliferation, migration, and invasion of pancreatic cancer cell
lines (PANC-1 and Capan-2). While inhibition of miR-301b
abolished MIF-induced suppression of NR3C2 in vitro, Mif−/−

mice were associated with reduced metastasis and improved
survival in a pancreatic cancer mouse model (LSL-KrasG12D,
LSL-Trp53R172H/+, Pdx-1-Cre) in vivo.

MIF and Human Pancreatic Cancer
Clinical studies of MIF and pancreatic cancer are presented in
Table 5. Collectively, these clinical studies have determined the
circulating MIF levels (Winner et al., 2007; Fredriksson et al.,
2008; Chen et al., 2010; Kondo et al., 2013; Tan et al., 2014;
Schinagl et al., 2016) and MIF expression in dissected pancreatic
tissue (Cui et al., 2009; Denz et al., 2010; Funamizu et al., 2013;
Tan et al., 2014; Guo et al., 2016; Schinagl et al., 2016; Yang et al.,

2016; Wang et al., 2018) of PDAC patients and healthy controls.
All the studies reported that MIF levels in serum/plasma or
pancreatic tissue were significantly higher in PDAC patients
than healthy controls or paired non-cancerous tissue with
preferable diagnostic utility, except for one study (Fredriksson
et al., 2008) in which there was 30% increase in PDAC without
significant difference compared with healthy controls (p � 0.15).
Higher MIF expression in tumor tissue was associated with worse
survival of PDAC patients (Funamizu et al., 2013; Wang et al.,
2018).

In addition, Denz et al. (Denz et al., 2010) reported that MIF
mRNA expression in pancreatic tissue was higher in PDAC than
chronic pancreatitis, both were higher than normal controls.
Chen et al. (Chen et al., 2010) compared the serum MIF in
PDAC patients and controls including AP, chronic pancreatitis
and healthy donors, showing that MIF had an area under the
curve of receiver operating characteristic of 0.78 in discriminating
pancreatic cancer from controls. Tan et al. (Tan et al., 2014)
focused on diabetes mellitus-associated pancreatic cancer (DM-
PC) and found that MIF expression in pancreatic tissues of DM-
PC was markedly higher when comparing to chronic pancreatitis
or pancreatic cancer without DM. Similarly, serum MIF levels
were also higher in new-onset than long term DM-PC, pancreatic
cancer without DM, or new-onset T2DM patients (all p < 0.001).

MIF TARGETED TREATMENT STRATEGIES

Different MIF antagonism strategies are depicted in Figure 2.

Small Molecular Inhibitors
Pharmacological inhibition ofMIF with small molecule inhibitors
have shown promise in the suppression of inflammation in
various animals models such as severe sepsis (Calandra et al.,
2000), rheumatoid arthritis (Mikulowska et al., 1997), allergic
airway inflammation (Amano et al., 2007), colitis (Ohkawara
et al., 2002), glomerulonephritis (Brown et al., 2002), and chronic
obstructive pulmonary disease (Russell et al., 2016). Development
of MIF inhibitors has been comprehensively and elegantly

TABLE 4 | In vivo studies of MIF in pancreatic cancer.

Model Interventions Key findings Refs

Orthotopic xenografts (Capan 2 cells) MIF

overexpression

MIF overexpression enhanced primary tumor growth and metastasis Funamizu et al.

(2013)

1) PKCY mouse PC model; 2) intraplenic

injection (PAN02 cells)

MIF knockdown 1) levels of MIF in exosomes derived from plasma of PKCY mice at PanIN and

PDAC stages were significantly higher than controls; 2) MIF-expressing PAN02

exosomes education induced liver pre-metastatic niche formation and

metastasis, was inhibited by MIF knockdown

Costa-Silva et al.

(2015)

Subcutaneous injection (PANC-1 cells) 4-IPP 4-IPP treatment reduced tumor formation in mice within 28 days but did not

change the expression of MIF or DDT in xenograft tumors, compared with

vehicle treatment

Guo et al. (2016)

KPC mouse PC model MIF knockout MIF knockout disrupted MIF–miR-301b–NR3C2 axis, enhanced survival, and

reduced metastasis in KPC mouse model

Yang et al. (2016)

Subcutaneous injection (HapT1 cells) Recombinant

MaMIF

Recombinant MaMIF significantly enhanced tumor growth in hamster via

promoting tumor angiogenesis

Suresh et al. (2019)

MIF, macrophage migration inhibitory factor; PC, pancreatic cancer; 4-IPP, 4-iodo-6-phenylpyrimidine; DDT, D-dopachrome tautomerase; NR3C2, nuclear receptor subfamily three

group C member two; MaMIF, Mesocricetus auratus MIF.
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reviewed elsewhere (Xu et al., 2013; Kok et al., 2018; Trivedi-
Parmar and Jorgensen, 2018). Small inhibitory agents of MIF
have also been widely demonstrated in experimental cancer
models, including lung cancer (Mawhinney et al., 2015),
bladder cancer (Choudhary et al., 2013), adenoid cystic
carcinoma (Liu et al., 2013), melanoma, and colon cancer
(Ioanou et al., 2014). Briefly, small-molecule inhibitors of MIF
primarily focus on rational structure-based design that target the
MIF tautomerase activity and MIF-CD74 binding (Brown et al.,
2009; Xu et al., 2013; Dickerhof et al., 2014; Spencer et al., 2015;

Trivedi-Parmar and Jorgensen, 2018). The drought of a reliable,
consensus-based in vitro assays for MIF biological activity has
been a significant challenge to the development of small molecule
MIF inhibitors. Further work should focus on developing a robust
high-throughput clinically relevant MIF bioassay that can be
applied for second-pass screening, glucocorticoid override,
cellular proliferation, and cytokine release detection to
expedite the discovery of efficient small molecular MIF
inhibitors (Bloom et al., 2016b). In AP and PDAC, only ISO-1
and 4-IPP have been investigated in experimental animal models

TABLE 5 | Patient studies of MIF in pancreatic cancer.

Sampling type Key findings Refs

Plasma. PC patients (n � 30), healthy controls (n � 10) Plasma MIF levels in PC (mean 36 ng/ml) was significantly higher than

healthy controls (24 ng/ml) (p � 0.038)

Winner et al. (2007)

Plasma. PC patients (n � 18), healthy controls (n � 19) Plasma MIF levels in PC were not significantly different from healthy

controls with an average increase of 30% (p � 0.15)

Fredriksson et al.

(2008)

Plasma. PDAC patients (n � 78) 1) mean plasma MIF levels in PDAC patients was 7,240 pg/ml; 2) plasma

PTX3 levels were positively correlated with levels of MIF (r � 0.38, p � 0.001)

Kondo et al. (2013)

Serum. PC (n � 17), AP (n � 26), CP (n � 26), healthy controls (n � 16) 1) compared with healthy controls, serum MIF levels in PC patients and

pancreatitis patients were 10.6-fold and 9.2-fold higher, respectively; 2) the

AUC of serum MIF in discriminating PC patients from healthy controls or all

controls (including AP, CP, and healthy controls) were 1.00 or 0.78,

respectively

Chen et al. (2010)

Pancreatic tissue. DM-PC, CP, and healthy controls. Serum. PC and non-

PC patients: New-onset DM-PC (n � 35), PC without DM (n � 35), new-

onset T2DM (n � 35), healthy controls (n � 35)

1) MIF expression was significantly higher in DM-PC tissues than CP or PC

patients without DM; 2) mean serum MIF levels (ng/ml) were higher in new-

onset DM-PC (32), vs. PC without DM (17, p < 0.001), long-term DM-PC

(20, p < 0.001), new-onset T2DM patients (21, p < 0.01), and healthy

controls (14, p < 0.001); 3) diagnostic utility of serum MIF in distinguishing

new-onset DM-PC from new-onset T2DM: AUC, 0.85; Se, 86%; Sp, 60%

Tan et al. (2014)

Pancreatic tissue. PDAC patients (n � 11), healthy controls (n � 7) 1) MIF protein expression in PC nests was 2.7-fold higher than normal

pancreatic ducts; 2) the AUC of pancreatic MIF levels in discriminating PC

from normal pancreas was >0.7 with p < 0.001

Cui et al. (2009)

Pancreatic tissue. PDAC patients (n � 11), CP (n � 9), Paired tissue.

PDAC patients (n � 11), healthy controls (unknown)

MIF mRNA expression in pancreatic tissues was higher in PDAC than CP,

stromal tissue of PDAC, and normal ductal area

Denz et al. (2010)

Pancreatic tissue. PDAC patients (n � 57) 1) higher MIF expression in tumors was associated with poorer survival

independent of tumor stage; 2) IHC showed an increased expression of

MIF in cancer cells compared with surrounding non-tumor ductal cells

Funamizu et al.

(2013)

Pancreatic tissue. PDAC patients (n � 64) DDT was over-expressed in PDAC tissues in a pattern positively correlated

with that of MIF (r � 0.346, p � 0.0001)

Guo et al. (2016)

Plasma and pancreatic tissue. PanIN and PDAC patients (n � 40), healthy

donors (n � 91)

1) plasma levels of both total MIF and oxMIF were not significantly different

between PC patients and healthy donors; 2) in IHC, oxMIF was over-

expressed in PanINs and PDAC tissues and was correlated with cancer

stage, stronger in later stage tumors; adjacent normal pancreatic tissue did

not show oxMIF staining

Schinagl et al.

(2016)

Pancreatic tissue. PDAC patients: MIF-high (n � 43), MIF-low (n � 42) 1) the majority of PDAC tumor tissue (75/85) exhibited significantly higher

MIF expression than paired noncancerous tissue; 2) higher MIF expression

in tumor tissue is associated with poor survival of PDAC patients (p �

0.023)

Wang et al. (2018)

Pancreatic tissue. PDAC patients: 1) test cohort (n � 69): MIF-high (n �

35), MIF-low (n � 34); 2) validation cohort-1 (n � 41): MIF-high (n � 21),

MIF-low (n � 20); 3) validation cohort-2 (n � 69): MIF-high (n � 35), MIF-low

(n � 34)

1) miRNA profiling identified 53 differentially expressed miRNAs in MIF-high

vs. MIF-low tumors, a higher expression of miR-301b, miR-15b, miR-10b,

miR-93, and miR-590–5p in MIF-high tumors were also associated with

poor survival in PDAC cases; 2) MIF expression in the tumor was positively

correlated with miR-301b and negatively correlated with NR3C2

expression

Yang et al. (2016)

Exosomes isolated from plasma. PDAC patients: With liver metastasis (n �

18), with no evidence of disease five years post-diagnosis (n � 10), with

progression of disease post-diagnosis (n � 12), healthy controls (n � 15)

1) MIF levels in exosomes isolated from PDAC with progression of disease

post-diagnosis were significantly higher than PDAC with no evidence of

disease 5 years post diagnosis and healthy controls; 2) MIF levels were

lower in PDAC patients with liver metastasis that those with progression of

disease, without significance

Costa-Silva et al.

(2015)

MIF, macrophage migration inhibitory factor; PC, pancreatic cancer; PDAC, pancreatic ductal adenocarcinoma; AUC, area under the receiver operating characteristic curve; AP, acute

pancreatitis; CP, chronic pancreatitis; IHC, immunohistochemistry; PTX3, pentraxin3; DM-PC, pancreatic cancer associated diabetes mellitus; T2DM, type-2 diabetes mellitus; Se,

sensitivity; Sp, specificity. PanIN, pancreatic intraepithelial neoplasia; DDT, D-dopachrome tautomerase; oxMIF, oxidative MIF.
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so far with limited data available, more endeavors are required to
test small molecular MIF inhibitors in AP and PDAC in vitro and
in vivo thus to consolidate the evidence for clinical translation.

Anti-MIF Antibodies
In AP, two studies (Sakai et al., 2003; Matsuda et al., 2006) have
demonstrated the efficacy of anti-MIF antibody in CER/LPS and
CDE diet AP models, respectively, revealing a promising
therapeutic target. A newly established series of nanobodies
(NbE5 and NbE10) have shown to attenuate lethality in in
vivo septic shock model (Sparkes et al., 2018), is of great
interest to be applied in other conditions of inflammatory
end-organ damage, such as severe AP. A number of MIF
monoclonal antibodies developed by researchers at Baxter
have revealed significant anti-MIF activity in human PC3
prostate cancer cell lines and in vivo xenograft model (Hussain
et al., 2013). In vitro, BaxG03, BaxB01, and BaxM159 reduced cell
growth and viability by inhibiting ERK1/2 and AKT pathways.
The antibodies also inhibited MIF-promoted migration and
invasion. In vivo, treatment with anti-MIF antibodies reduced
tumor growth in a dose-dependent manner. Recently, a phase 1
clinical trial using imalumab (Bax69) in solid tumors and
metastatic colorectal adenocarcinoma demonstrated that
imalumab has a maximum tolerated dose of 37.5 mg/kg every

2 weeks and a biologically active dose of 10 mg/kg weekly
(Mahalingam et al., 2020). Further investigation is warranted
to define the role of anti-MIF antibody as a treatment strategy for
pancreatic cancer. Of note, the development of antibodies may be
mitigated by their short half-life, high costs associated with
production, and potential immunogenicity.

Targeting MIF Receptors
As MIF relies largely on CD74 to regulate the downstream
cellular events, treatment targeting CD74 holds great potential
to inhibit MIF signaling. A humanized anti-CD74 monoclonal
antibody, milatuzumab has shown to significantly prolong the
survival duration of multiple myeloma xenograft mice models
(Stein et al., 2004; Stein et al., 2009). It has reached phase 1 clinical
trial in multiple myeloma (Kaufman et al., 2013) and systemic
lupus erythematosus (Wallace et al., 2016), indicating no severe
adverse effects. Apart from CD74, inhibitors against CXCL2
(Reparixin) and CXCL4 (Plerixafor) are also of interest for
further investigation (Steinberg and Silva, 2010; Goldstein
et al., 2020). However, as MIF/CD74 pathway also plays an
important role in wound repair by activating pro-survival and
proliferative pathways that protects the host during injury (Farr
et al., 2020), complete inhibition of CD74 could cause some
unpredictable side effects which need precaution.

FIGURE 2 | Therapeutic strategies targetingMIF. (A)Compounds bind toMIF’s tautomerase active site. For example, ISO-1 binds to the active-site residue Asn-97

of MIF (PDB 1LJT), leading to structural changes that block MIF–CD74 binding; 4-IPP covalently binds to Pro-1 of MIF or DDT, altering their structure and preventing

function; and the non-competitive allosteric tautomerase inhibitor Ibudilast. (B) Anti-MIF antibodies. (C) Drugs targeting MIF receptors. (D)Gene therapy. Abbreviations:

ISO-1, (S, R)3-(4-hydroxyphenyl)-4, 5-dihydro-5-isoxazole acetic acid methyl ester; CD74, Cluster of Differentiation 74; 4-IPP, 4-iodo-6-phenylpyrimidine; DDT,

D-dopachrome tautomerase.
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MIF-Related Gene Therapy
First of all, MIF knockout animals are long lived with no
characteristic health issues, giving the opportunity for the
initiation of MIF-related gene therapy (Harper et al., 2010).
MIF related gene therapy such as Mif gene knockout/
knockdown, DDT gene knockdown, or CD74 gene knockdown
has exhibited great potential in pre-clinical studies of AP
(Matsuda et al., 2006; Zhu et al., 2020) and PDAC (Winner
et al., 2007; Denz et al., 2010; Funamizu et al., 2013; Tan et al.,
2014; Costa-Silva et al., 2015; Guo et al., 2016; Yang et al., 2016;
Wang et al., 2018; Suresh et al., 2019). Furthermore, it was
demonstrated that a xenograft model of head and neck
squamous cell carcinoma with MIF knockdown was more
sensitive to cisplatin and 5-fluorouracil treatment than control
(Kindt et al., 2013). On the other hand, overexpressing MIF in
pancreatic cancer cells reduced the sensitivity to gemcitabine
(Funamizu et al., 2013). Taken together, it supports that MIF
downregulation may potentiate the effect of chemotherapy agents
in cancer. There remain ongoing opportunities to develop
additional MIF suppression therapies for clinical evaluation.

CONCLUSION

In summary, we have comprehensively reviewed the role of MIF
in AP and PDAC. It is apparent from the review that
investigations of MIF in AP are at a relatively early stage. Up
to now, in vivo AP studies have measured circulating MIF levels,
confirmed MIF expression in target organs, and commenced
applying MIF inhibitory drugs for efficacy testing. Whether
pancreatic acinar cells express MIF and how MIF contributes
to the early acinar cell events in AP, (i.e. calcium overload,
mitochondrial dysfunction, oxidative stress, endothelial
reticulum stress, and trypsinogen activation) remains unclear.
It is notable that anti-MIF antibodies and the MIF inhibitor ISO-
1, have shown encouraging potential for improving pancreatic

damage and associated organ injury in AP animal models.
Clinical studies have identified circulating MIF as a potential
biomarker for early prediction of AP severity which needs further
validation. Future research is warranted to detail the underlying
molecular mechanisms, (i.e. TLR4/NLRP3) of MIF in pancreatic
acinar cells and AP. In chronic pancreatitis, the role of MIF
remains elusive. In pancreatic cancer, MIF enhances the
proliferation and invasion of tumor cells, resulting in
increased tumor growth and metastasis in vivo. Early studies
of MIF knockdown or use of specific inhibitors support MIF as a
potential target for PDAC. Future research is required to bring
forward a range of promising treatment approaches to clinical
evaluation.
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