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Abstract 

Myeloid leukemia 1 (MCL-1) is an antiapoptotic protein of the BCL-2 family that prevents apoptosis by binding to the 

pro-apoptotic BCL-2 proteins. Overexpression of MCL-1 is frequently observed in many tumor types and is closely 

associated with tumorigenesis, poor prognosis and drug resistance. The central role of MCL-1 in regulating the 

mitochondrial apoptotic pathway makes it an attractive target for cancer therapy. Significant progress has been made 

with regard to MCL-1 inhibitors, some of which have entered clinical trials. Here, we discuss the mechanism by which 

MCL-1 regulates cancer cell apoptosis and review the progress related to MCL-1 small molecule inhibitors and their 

role in cancer therapy.
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Introduction

�e orderly and delicate regulation of apoptosis of cells 

under physiological and pathological conditions is an 

autonomous clearance mechanism adopted by cells to 

maintain their own homeostasis [1]. Under normal cir-

cumstances, cell growth, proliferation and death main-

tain a dynamic balance to ensure cellular homeostasis 

and normal physiological function. When an organism 

is subjected to certain stimuli that disrupt this balance, it 

may cause cell proliferation to outpace apoptosis, poten-

tially even leading to tumorigenesis.

�ere are two apoptotic pathways: the intrinsic (or 

mitochondrial) pathway of apoptosis and the extrinsic 

pathway of apoptosis. �e mitochondrial pathway is acti-

vated by intracellular signals and is strictly controlled by 

the BCL-2 family [2]. BCL-2 family proteins share one 

or four BCL-2 homologous domains (BH 1–4) and are 

grouped into three subsets (Fig. 1a) [3, 4]: antiapoptotic 

BCL-2 proteins (BCL-2, BCL-xL, BCL-W, MCL-1 and 

BCL-2-related gene A1), proapoptotic effectors (BAX 

and BAK) and BH3-only proteins. �e BH3-only pro-

teins are subdivided into the “activator” (BIM, BID and 

PUMA) and the “sensitizer” (BAD, BIK, BMF, HRK 

and NOXA) [5]. �ese BCL-2 family proteins function 

through complex interactions to regulate the integrity of 

the mitochondrial membrane (Fig. 1b).

Myeloid leukemia 1 (MCL-1) is an antiapoptotic mem-

ber of the BCL-2 family. MCL-1 inhibits mitochondrial 

outer membrane permeabilization (MOMP) and the 

release of cytochrome C from mitochondria. MCL-1 is 

necessary for the survival of many cells, such as the nerv-

ous system [6], T/B lymphocytes [7], and cardiomyo-

cytes [8]. MCL-1 also has high oncogenic potential and 

is upregulated in a range of malignancies, including solid 

tumors and hematological malignancies [9]. Overexpres-

sion of the MCL-1 protein or amplification of the MCL-1 

gene protects cancer cells from apoptosis and decreases 

their sensitivity to commonly used anticancer drugs, 

which has emerged as a resistance mechanism against 

multiple anticancer therapies, including radiotherapy, 

chemotherapy, and BH3 mimics targeting BCL-2/BCL-

XL [10, 11]. �erefore, MCL-1 is a very promising target 

for tumor treatment.
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In this review, we describe the known functions of 

MCL-1 in normal and malignant cells and discuss the 

development and clinical trials of some MCL-1 small 

molecule inhibitors in the quest for new anticancer 

drugs.

Isoforms of MCL-1 protein

�ere are three splicing variants of the human MCL-1 

gene, including MCL-1L, MCL-1S and MCL-1ES 

(Fig. 2a). �e three splice variants play distinct roles in 

apoptosis. �e long variant (MCL-1L) encoded by exons 

I to III of the MCL-1 gene acts as an anti-apoptotic fac-

tor, and MCL-1L is traditionally referred to as MCL-

1. MCL-1 shares four BH domains. Similar to other 

multidomain BCL-2 proteins, the tertiary structure of 

the BH core of MCL-1 is composed of eight α helices 

(Fig.  2b). �e BH1 domain constitutes turn regions 

linking helices 4 and 5, and the BH2 domains constitute 

turn regions linking helices 7 and 8. �e BH3 domain 

is located in helix 2, and the BH4 domain is located 

in helix 1. Helices 2–5 and 8 constitute a hydrophobic 

groove (called the BH3-binding groove) that is critical 

for its interactions with the BH3 domain of proapop-

totic BCL-2 members (Fig. 2c, d) [12]. MCL-1 also has 

a transmembrane α-helix domain at the C-terminus, 

allowing it to localize to the cell membrane, especially 

the outer mitochondrial membrane [13]. In particu-

lar, MCL-1 has a large N-terminal region with a PEST 

domain rich in proline (P), glutamic acid (E), serine 

(S), and threonine (T). Multiple sites of phosphoryla-

tion, ubiquitination, and caspase enzymatic cleavage 

are present within the PEST domain, allowing for rapid 

fine-tuning of the function and stability of the MCL-1 

protein in response to environmental and stress signals, 

consistent with the short half-life of the MCL-1 protein 

[13].

�e two short isoforms, MCL-1S and MCL-1ES, dis-

play proapoptotic activity [14]. MCL-1S has only a BH3 

domain, which represents a new pro-apoptotic BH3-

only protein and is primarily located in the cytoplasm. 

Dimerization of MCL-1S and MCL-1L can antagonize 

the antiapoptotic effect of MCL-1L [15]. �e splice var-

iant MCL-1ES retains the BH3, BH1, and BH2 domains. 

It can induce mitochondrial apoptosis independently of 

BAK and BAX. MCL-1L can facilitate the proper locali-

zation of MCL-1ES oligomers on the mitochondrial 

outer membrane, and MCL-1ES neutralize the antia-

poptotic activity of MCL-1L. �ese findings indicate 

that MCL-1ES may be a selective and effective target 

of MCL-1L in diseases that involve abnormal MCL-1L 

expression [16, 17]
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Fig. 1 An overview of BCL-2 family proteins. a Schematic representation of the domains of BCL-2 family proteins. Anti-apoptotic proteins and 

pro-apoptotic effector proteins both contain BH domains 1–4 (BH 1–4). BH3-only proteins contain only the BH3 domain (except for BID, which has 

BH1-4). b The interactions of BCL-2 family proteins. Antiapoptotic proteins prevent the activation of the effector proteins BAX and BAK. BH3-only 

proteins are divided into “sensitizers” and “activators”. “Activators” directly activate BAX and BAK and inhibit antiapoptotic proteins. “Sensitizers” only 

suppress anti-apoptotic proteins. The specific interaction network is shown
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Regulation of MCL-1 expression

MCL-1 is subject to multiple modulations at the tran-

scriptional, translational, and posttranslational levels. 

Many studies have suggested that multiple cytokines 

and signaling pathways are involved in the regulation of 

MCL-1. VEGF and interleukin-6 (IL-6) can regulate the 

expression of MCL-1 via autocrine signaling loops [18]. 

Activation of the ERK survival pathway prevents MCL-1 

degradation and enhances its stability [19]. Activation of 

the Notch-1 signaling pathway induces the production of 

IL-6, further promoting the expression of MCL-1 [20]. 

MCL-1 protein levels are also regulated by cytokines, 

including IL-15 and IL-22, through the STAT3/MCL-1 

[21] pathway or JAK/STAT and PI3K pathways [22].

Broad networks of miRNAs can regulate the expression 

of MCL-1. MiR-596 negatively regulates the MAPK/ERK 

signaling pathway by targeting MEK1 and regulates the 

apoptosis pathway by targeting MCL-1 and BCL-2 [23]. 

Upregulation of miR-15a/miR-16–1 leads to downregu-

lation of the target genes BCL-2, MCL-1 and cyclin-D1, 

which directly leads to the death of leukemia cells [24, 

25]. Other miRNAs, such as miR-26a [26], miR-15a, miR-

101 and miR-197, can downregulate the expression of 

MCL-1 in vivo and inhibit cancer cell growth or apopto-

sis [27].

Stability of the MCL-1 protein can be controlled 

by a variety of E3 ubiquitin ligases, including MULE, 

SCFFbw7, APC/CCdc20 and SCFB-TrCP. �ese ubiqui-

tin ligases effectively polyubiquitinate MCL-1 for degra-

dation, while the deubiquitinases USP9X [28] and USP13 

[29] stabilize expression of the MCL-1 protein. �e PEST 

domain of MCL-1 contains many phosphorylation sites, 

such as �r-92, �r-163, Ser-64, Ser-155 and Ser-159. 

Phosphorylation of MCL-1 residues in the PEST domain 

by protein kinases, such as CDK1/2, GSK-3, JNK, and 

ERK, also affects the stability of MCL-1 [13, 30, 31].

MCL-1 as a target for cancer therapy

MCL-1 is a key survival factor for many cell types, allow-

ing it to strictly regulate cell fate. In normal cells, MCL-1 

sequesters the BH3-only activators BIM, BID and PUMA 

or neutralizes the effector proteins BAX and BAK, 
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Fig. 2 The isoforms and three-dimensional structure of MCL-1. a Three splicing variants of the human MCL-1 gene. b Cartoon representation of the 

tertiary structure of MCL-1 (PDB ID: 6QB3). The BH core of MCL-1 is composed of eight α helices. The BH1 (blue), BH2 (yellow) and BH3 (red) domains 

form a hydrophobic groove called the BH3-binding groove. c Surface representation of the BH3 binding groove of MCL-1 (PDB ID: 2NL9). The four 

hydrophobic pockets (P1–4) are highlighted and labelled. d Structure of the MCL-1/BIM complex (PDB ID: 2NL9). MCL-1 is shown as surface. BIM is 

shown as cyan cartoon. The four hydrophobic residues of BIM (h1, h2, h3, h4) are shown as cyan sticks
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thereby antagonizing apoptosis [32] (Fig. 3a). When cells 

experience irreparable damage, they initiate an apoptotic 

program that increases the expression of pro-apoptotic 

BH3-only proteins, such as BIM, PUMA and NOXA 

[33, 34]. �en, BAX and BAK homopolymerize to form 

pores in the outer mitochondrial membrane, leading to 

infiltration of cytochrome c and other apoptotic proteins 

into the cytoplasm, promoting the formation of apoptotic 

microsomes, activation of caspases, cell lysis, and death 

[35, 36].

In recent years, many studies have shown that MCL-1 

is essential for the survival and development of can-

cer cells. High levels of MCL-1 have been reported in 

hematological malignancies and a wide range of solid 

tumors [37, 38]. Overexpression of MCL-1 in cancer 

cells disrupts the balance between antiapoptotic and 

proapoptotic proteins, which prevents cancer cells 

from undergoing apoptosis, resulting in malignant 

proliferation [39] (Fig.  3b). Cancer has the capacity to 

develop multi-drug resistance against various therapies 

of different molecular pathways [40]. �e mechanisms 

of resistance can be divided into intrinsic and acquired 

resistance. To escape apoptosis, cancer cells often 

express high levels of anti-apoptotic proteins and are 

"attracted" to them for their survival. Inhibition of one 

member of the BCL-2 anti-apoptotic family may cause 

dysregulation of the expression of other members. 

Increased expression of MCL-1 is a common response 

to long-term treatment with selective inhibitors of 

BCL-2/BCL-XL [41].�erefore, available evidences 
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Fig. 3 MCL-1 as a target for cancer therapy. a In normal cells, MCL-1 sequesters BH3-only proteins or neutralizes the effector proteins BAX and BAK, 

preventing cell death and maintaining cell survival. Various cell stress factors increase the expression of the special “activator” NOXA, subsequently 

replacing or preventing MCL-1 binding to BAX and BAK. BAX and BAK homo-oligomerize and form pores spanning the outer mitochondrial 

membrane to allow cytochrome C to be released into the cytoplasm, which triggers the activation of the caspase cascade and ultimately leads to 

cell apoptosis. b In malignant cells, overexpression of MCL-1 allows cancer cells to evade apoptosis by sequestering pro-apoptotic proteins. MCL-1 

inhibitors selectively bind to MCL-1, freeing pro-apoptotic proteins, BAX/BAK, which initiates apoptosis
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indicate that MCL-1 is an attractive target for cancer 

treatment.

Strategies for the discovery of MCL-1 inhibitors

Many approaches have led to the development of MCL-1 

inhibitors. Some drugs were not designed to specifi-

cally target MCL-1, but downregulate the expression of 

MCL-1 in an indirect way. For examples, cyclin-depend-

ent kinase (CDK) inhibitors lead to decreased transcrip-

tion of MCL-1, mTOR inhibitors block translation of 

MCL-1, and deubiquitinase inhibitors induce MCL-1 

degradation through the proteasome system [42–44]. 

Here we mainly report strategies for the direct and selec-

tive inhibitors against MCL-1.

�e realization that BH3-only proteins function as nat-

ural inhibitors of antiapoptotic BCL-2 proteins led to the 

development of BH3 mimetics. �ese BH3 mimetics bind 

competitively to the hydrophobic BH3-binding groove of 

antiapoptotic proteins, resulting in dissociation of proap-

optotic BH3-only proteins or BAX/BAK and subsequent 

activation of apoptosis. Progress related to BH3 mimetics 

targeting BCL-2 and BCL-xL has been made [45], such as 

ABT-737, which binds BCL-2, BCL-xL, and BCL-W [46]; 

ABT-263 (navitoclax), which binds BCL-2, BCL-xL [47], 

and venetoclax (ABT-199), which selectively binds BCL-2 

[48] and has been approved by the FDA for chronic lym-

phocytic leukemia (CLL) treatment.

However, most BCL-2 family inhibitors cannot bind to 

highly differentiated MCL-1 molecules. Upregulation of 

MCL-1 has been shown by several studies to be a major 

limiting factor in the development of ABT-737 and ABT-

263 resistance in tumor treatment. �e creation of high-

affinity inhibitors that directly target MCL-1 remains 

a challenge. Furthermore, MCL-1 has a BH3-binding 

groove that lacks plasticity. �e binding pockets on 

MCL-1 are shallow and relatively inflexible compared to 

those of BCL-2 and BCL-xL. Increasing structural stud-

ies demonstrate that MCL-1 interact with the BH3-only 

proteins through a canonical mechanism similar to that 

of BCL-2 and BCL-xL, in which four hydrophobic resi-

dues (h1, h2, h3, and h4) of the BH3 helix of BH3-only 

proteins respectively interact with four pockets (P1–P4) 

in the hydrophobic binding groove of MCL-1 (Fig. 2c, d), 

and a common salt bridge is formed between an Asp of 

BH3-only proteins and Arg263 of MCL-1[12, 49]. �e 

P1-P4 pockets and Arg263 are considered as hot-spots of 

MCL-1 to design BH3 mimetics [50].

Although there are many challenges in the process of 

new drug research and development, the most funda-

mental is the discovery and optimization of lead com-

pounds [51, 52]. High-throughput screening (HTS) and 

virtual screening are widely used for the discovery of lead 

compounds [53, 54]. Molecular modeling can predict 

the binding mode of small molecules to target proteins, 

which may facilitate the optimization of small mol-

ecule drugs and the development of MCL-1 inhibitors 

with higher safety and efficacy [53, 54]. In recent years, 

more strategies have been applied to the screening and 

optimization of MCL-1 inhibitors, such as NMR-based 

fragment screening, computational modeling and frag-

ment-based design.

In the following sections, we summarize the current 

discoveries of direct and selective inhibitors of MCL-1, 

including the current status and future applications of 

these small molecule inhibitors, as well as their use alone 

and in combination to treat a variety of cancers.

Direct and selective inhibitors targeting MCL-1

MCL‑1 inhibitors in clinical trials

In recent years, considerable progresses has been made 

with potent and highly selective MCL-1 inhibitors. Until 

now, six compounds have entered phase 1 clinical trials 

and they have been shown to induce cancer cell apoptosis 

in preclinical trials (Table 1).

S63845/S64315

S63845 is a potent and selective small molecule inhibitor 

of MCL-1 discovered by NMR-based fragment screen-

ing. It inhibits MCL-1 with a Ki < 1.2  nM and Kd of 

0.19  nM and has no evident binding to BCL-2 or BCL-

xL (K
i > 10,000 nM) [55]. �e structure of S63845 in com-

plex with MCL-1 (PDB: 5LOF) shows that S63845 forms 

a salt bridge with Arg263 via a carboxyl group, while its 

aromatic scaffold stretches deep into the P2 pocket and a 

terminal trifluoromethyl group extends into the small P4 

pocket, with some P1 residues constituting part of the P2 

pocket (Fig. 4a) [55].

S64315 (MIK665) belongs to the same series of com-

pounds as S63845 [56]. �e filling of the P2 pocket and 

the extension of the P4 pocket increased the activity of 

S64315 (PDB: 6YBL) compared to S63845 (Fig. 4b) [57]. 

S64315 is currently in a phase 1 clinical trial to evaluate 

the maximal tolerated dose and the recommended dose 

for expansion. A further study will evaluate the toler-

ability, safety, and antitumor activity of MIK665 for the 

treatment of refractory or recurrent lymphoma and mul-

tiple myeloma (MM) (NCT02992483) [58], acute myeloid 

leukemia (AML), and myelodysplastic syndrome (MDS) 

(NCT02979366) [59]. A dose-escalation study of S64315 

in combination with venetoclax for AML is also under-

way (NCT03672695) [60].

AZD5991

AZD5991 is a macrocyclic molecular inhibitor with 

high selectivity and affinity for MCL-1 (K
i = 200  pM, 

 IC50 = 0.72  nM) [61]. AstraZeneca researchers designed 
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and synthesized AZD5991 by analyzing indole-2-carbox-

ylic acid derivatives previously reported by the Abbvie 

[62] and Fesik’s laboratory [63]. �e co-crystal structure 

(PDB: 6FS0) shows that AZD5991 binds largely in the P2 

and P3 pockets (Fig.  4c) [61]. Its naphthalene ring pen-

etrates deep into the P2 pocket, and the indole core inter-

acts mainly with P3 residues. �e methyl group distal to 

the indole core makes contact with P1 pocket. Moreover, 

the carboxylic acid orthogonal to the indole ring makes 

strong salt-bridge interactions with Arg263 [61]. Cur-

rently, clinical trials of single-drug intravenous injection 

of AZD5991 and in combination with venetoclax are 

ongoing in patients with recurrent or refractory hemato-

logic malignancies (NCT03218683) [64].

AMG-176

AMGEN screened compound 1 from 248,090 com-

pounds using HTS method, and subsequently optimized 

to obtain AMG-176 using structure-based design. 

AMG-176 is a potent MCL-1 inhibitor (K
i = 0.06  nM) 

and shows little affinity for BCL-2 (K
i = 0.95  µM) and 

BCL-xL (K
i = 0.7  µM) [65]. �e structure of MCL-1 

Table 1 MCL-1 targeted anti-tumor drugs in clinical trials

RS Richter syndrome, SLL Small lymphocytic lymphoma

Agents Frist report time (drug 
discovery method)

Identifier/phase Population Regimen

Monotherapy

S64315
(MIK665)

2016 (NMR-based fragment 
screen)

NCT02979366 Phase 1 AML, MDS Once or twice a week (21/28-
day cycle), the starting dose is 
50 mg (intravenous)

NCT02992483 Phase 1 MM, DLBCL Dose finding (intravenous)

AZD5991

2018 (NMR-based fragment 
screen and Structure-based 
design)

NCT03218683 Phase 1 AML, CLL, MDS, MM Intravenously for 9 cycles (21-day 
cycle)

AMG-176

2016 (High-throughput screen-
ing)

NCT02675452 (Suspended)
Phase 1

MM, AML Dose finding(intravenous)

AMG-397

2018 (-)

NCT03465540
(Suspended)Phase 1

MM, NHL, AML, DLBCL Once a day for 2 consecutive 
days followed by 5 days break 
at a weekly interval (28-day 
cycle) (oral)

ABBV-467 NA NCT04178902 Phase 1
2019

MM and Cancer Dose finding (intravenous)

PRT1419 NA NCT04543305 Phase 1
2020

MM, NHL, AML, MDS Dose finding (oral)

Combination therapy

S64315 + Venetoclaxv NCT03672695 Phase 1 AML S64315 once a week (intrave-
nous)

Venetoclax once a day (oral) (21-
day cycle)

AZD5991 + Venetoclaxv NCT03218683 Phase 2 AML, MDS Ascending oral doses of Vene-
toclax

AMG-176 + Venetoclaxv NCT03797261
(Suspended)Phase 1

AML, NHL/DLBCL Two-consecutive days per week 
(QD2)
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complexed with AM-8621 (PDB: 6OQB), a ligand 

structurally similar to AMG-176, shows that the inhibi-

tor primarily makes contact with P2 and P3 pockets, 

whereas no hydrogen bond or salt bridge is observed 

between the carbonyl group and Arg263 (Fig. 4d) [65]. 

Recent reports [66, 67] show that additional hydro-

gen bond between the carbonyl group of AMG-176 

and Arg263 of MCL-1 would allow for tighter interac-

tions in the P3 pocket. AMG-176 was first subjected to 

relapsed or refractory MM or AML in a human clini-

cal trial to obtain an intravenous dose of AMG-176 that 

is safe and tolerable for the patient (NCT02675452) 

[68]. Another clinical trial of AMG-176 combined with 

venetoclax is also currently underway [69].

AMG-397

Based on the chemical structure of AMG-176, a struc-

ture-guided approach in combination with ligand-

based design was used to obtain AMG-397 with higher 

affinity and antitumor activity [66, 67]. AMG-397 is the 

first oral MCL-1 inhibitor to reached the clinical trial 

stage. It inhibits MCL-1 with a K
i of 15 pM and inter-

feres with the interaction of MCL-1 with BIM in cells 

[66]. A clinical trial is evaluating AMG-397 in patients 

with MM, AML, and non-Hodgkin’s lymphoma (NHL). 

AMG-397 was administered orally two days a week, fol-

lowed by a five-day break. However, due to safety sig-

nals of cardiotoxicity, a phase 1 dose escalation clinical 

trial is being put on hold (NCT 03465540) [70]. Based 

MCL-1· S63845(5LOF) MCL-1· AZD5991(6FS0)MCL-1· S64315(6YBL)
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Fig. 4 Co-crystal structures of MCL-1 in complex with its inhibitor. a MCL-1/S63845 complex (PDB: 5LOF), b MCL-1/S64315 complex (PDB: 6YBL), c 

MCL-1/AZD5991 complex (PDB: 6FS0), D. MCL-1/AM-8621 complex (PDB: 6OQB), e MCL-1/VU661013 complex (PDB: 6NE5), f MCL-1/A-1210477 lead 

compound complex (PDB: 5VKC). The four hydrophobic pockets (P1-4) and Arg263 are highlighted and labelled. g MCL-1 hot-spots residues for 

P1-P4 pockets and the four hydrophobic residues of BIM (h1, h2, h3, h4) based on the MCL-1/BIM structure (PDB: 2NL9)
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on this safety issue, the first phase of the AMG-176 trial 

has also been voluntarily suspended.

ABBV-467

ABBV-467 is a selective MCL-1 inhibitor. Currently, 

there are few reports on ABBV-467, but it is being stud-

ied in a phase 1 clinical study (NCT04178902) [71]. �is 

study will evaluate the safety and tolerability of ABBV-

467 in adult participants with relapsed/refractory MM.

PRT1419

PRT1419 is a potent, selective oral inhibitor of MCL-1 

developed by Prelude �erapeutics. Prelude �erapeutics 

claims that PRT1419 specifically binds MCL-1 in preclin-

ical models of hematologic tumors and shows efficacy. 

Phase I dose expansion study of PRT1419 in relapsed/

refractory hematologic malignancies currently underway 

(NCT04543305) [72].

Preclinical MCL‑1 inhibitors

Currently, although a small number of MCL-1 inhibitors 

have entered clinical trials, no drugs have been approved 

for clinical use. Given the prominence of MCL-1 inhibi-

tors in cancer therapy, researchers have utilized vari-

ous approaches to identify a cohort of MCL-1 inhibitors 

(Table 2), which are expected to enter clinical trials.

NOXA-like compound

NOXA is a naturally occurring, highly selective MCL-1 

inhibitor [73]. NOXA can competitively bind MCL-1 and 

release BAX and BAK, which originally bind to MCL-1. 

NOXA has been reported to enhance MOMP and apop-

tosis in a variety of cancers, such as glioblastoma [74], 

cholangiocarcinoma [75], and chronic myeloid leuke-

mia [76]. Hedir and colleagues identified a compound12 

with polar substituents that can bind to the inside of the 

MCL-1 pocket in a NOXA-like manner, thereby releasing 

BIM and BAK and inducing cell apoptosis [77, 78].

BIM-BH3 peptide

�e BH3 domain of BIM can bind to the BH3 hydropho-

bic groove of BCL-2 antiapoptotic proteins and directly 

activate the apoptotic effector proteins BAK and BAX. 

BIM-SAHBA is a hydrocarbon-stapled peptide based on 

the BH3 structural domain of BIM, and its primary intra-

cellular target is MCL-1 [79]. MCL-1 knockout mouse 

embryonic fibroblasts are resistant to apoptosis induced 

by BIM-SAHBA at the mitochondrial level. Screening of 

the yeast surface display library of the BIM-BH3 identi-

fied the MCL-1-specific peptide MS1 [80]. MS1 induces 

apoptosis in a variety of MCL-1-dependent tumor cells 

with higher sensitivity than NoxaA [80].

MIM1, ML311/EU-5346 and UMI-77

MIM1 was obtained from 71,296 compounds by HTS 

with the help of fluorescence polarization assay [81]. 

ML311/EU-5346 was confirmed from 315,100 com-

pounds by HTS, which interfered with the MCL-1/BIM 

interaction and induced cell death in MCL-1-dependent 

cell lines  (EC50 = 0.3  μM) [82, 83]. Fardokht et  al. iden-

tified and verified UMI-59 from 53,000 compounds 

by HTS method [84]. UMI-77 is the product of further 

chemical modification of UMI-59 and has a higher affin-

ity for MCL-1, with Ki = 0.49  µM [84]. �ese inhibitors 

were predicted to bind at the P2 and P3 pockets, while 

forms a hydrogen bond with Arg263 [81, 84].

A-1210477

Abbvie identified indole acid derivative that selectively 

bind MCL-1 by HTS method combined with fluores-

cence polarization assay, which were later optimized to 

yield A-1210477 [62]. A-1210477 has a potent affinity for 

MCL-1 (K
i = 4–5  nM). �e structure of a close analog 

complexed with MCL-1 (PDB: 5VKC) indicates that it 

forms a typical hydrogen bond with Arg263, and binds to 

P2, P3 and P4 pockets with the naphthyl ring stretching 

deep into P2 pocket (Fig.  4e) [62]. A-1210477 disrupts 

the interaction between intracellular BIM and MCL-1 

and promotes apoptosis in a mitochondria-dependent 

manner [62, 85].

VU661013

VU661013 is established after a series of structural opti-

mizations, which has an effective and selective activ-

ity to MCL-1 (Ki = 97 ± 30  pM). It interferes with the 

binding stability of BIM and MCL-1 [63, 86–89]. �e 

co-crystal structure MCL-1/VU661013 complex (PDB: 

6NE5) reveals that the dimethyl chlorophenyl ether of 

VU661013 inserts deep into P2 pocket, with the methyl 

group of the trimethyl pyrazole pointing towards P3 

pocket (Fig. 4f ) [90]. Notably, its indole headpiece makes 

a cation-π interaction with Arg263, and positions the 

carboxylic acid to form a favorable hydrogen bond with 

Asn260 [90].

MI-223

Besides anti-apoptotic functions, MCL-1 is also involved 

in the regulation of non-apoptotic functions, includ-

ing mitochondrial homeostasis, cell cycle regulation, 

DNA damage repair and autophagy [43]. MCL-1 inter-

acts with the dimeric complex of Ku proteins through its 

BH1 and BH3 domains to inhibit Ku protein-mediated 

non-homologous end-joining and promote homologous 

recombination-mediated DNA repair [91]. Based on this 

mechanism, a new small molecule compound MI-223 
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Table 2 MCL-1 targeted anti-tumor drugs in the preclinical stage

Compound Efficacy towards malignant 
cells

In vitro potency drug discovery method References

MIM1 MCL-1 dependent leukemia 
cells

IC50: < 4.2 μM HTS (2013) [81]

UMI-59/77 BxPC-3 xenograft model Ki: 490 nM HTS (2014) [84]

Complex 39 NCI-H460 cell line and 
xenograft model

IC50: 12–18 μM [102]

Complex 14 NCI-H460 xenograft model Ki: 1.4 nM [101]

Pyridoclax/Compound12 Ovarian cancer cell line – (2014/2018) [77, 78]

ML311/EU-5346 Active MCL-1 cell line IC50: 0.31 μM HTS (2013) [82, 83]

A-1210477 MCL-1-dependent cell lines Ki: 4–5 nM HTS (2015) [62]

BIM  SAHBA NA DLBCL cell lines EC50: 2–18 μM [79]

MS1 PREIWMTQGLRRLGDEIN-
AYYAR 

MCL-1 dependent cell lines Kd:1.9 ± 1.0 nM [80]

VU661013 AML, MM, triple negative 
breast cancer cell lines

Ki: 97 ± 30 pM Structure-based design 
(2018)

[90, 124]

Wang.Compound12 NCI-H345 cell line IC50: 2.2 μM Fragment-based approach 
(2016)

[107]

Compound8 A2780, MCF-7, SMMC-7721 
and DLD1 cell lines

IC50: 38–47 μM Virtual screening (2017) [108]

Compound24 Lymphoma cell lines Ki: 100 nM HTS and virtual screening 
(2020)

[109]

Compound M08 Hematological and solid 
cancer cell lines

Ki: 0.53 ± 0.07 μM Structure-based virtual 
screening (2020)

[110]
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was discovered, which directly binds to the BH1 domain 

of MCL-1 (K
i = 193 ± 4.3  nM), disrupts MCL-1 and Ku 

protein interactions.

Covalent inhibitory

Covalent inhibitors exert biological functions by interact-

ing with target protein residues through covalent bonds. 

�erefore, they have the advantages of high selectivity, 

strong affinity, low effective drug concentration and low 

possibility of resistance. Akçay et  al. [92] analyzed the 

crystal structure of MCL-1 and concluded that Lys234 

was likely to be covalently modified. Subsequently, they 

used aryl boronic acid to covalently modify the noncata-

lytic lysine residues. In a panel of compounds, compound 

5 had an  IC50 of 3.4 nM, and compound 11 directly inter-

fered with the MCL-1/BAK interaction in the cell. After 

mutation of the lysine 234 site, no covalent compounds 

were formed by mass spectrometry analysis, further veri-

fying that Lys234 was covalently modified. Additionally, 

the efficacy of this reversible covalent inhibitor in  vivo 

needs to be further refined.

Natural products

Some drugs extracted from natural products are charac-

terized by high biological activity and low toxicity [93]. 

Gapil et al. extracted 26 carboxamides from natural fislat-

ifolic acid, one of which exhibited submicromolar affinity 

for MCL-1 and BCL-2, and showed moderate cytotoxic-

ity in lung and breast cancer cell lines [94]. Meiogynin A1 

inhibited BCL-xL and MCL-1, and had no toxic effects 

on normal cells [95]. �e modification of side chains 

gives these compounds better affinity and antitumor 

activity [96]. Cryptosphaerolide inhibited the interaction 

between MCL-1 and BAK and showed strong inhibitory 

activity against colon cancer cell line HCT-116 with an 

 IC50 of 4.5  μM [97]. Maritoclax selectively inhibits the 

proliferation of leukemic cells with high MCL-1 expres-

sion and significantly enhances the therapeutic effect of 

ABT-737 on various hematological malignancies [98, 99].

Metal-based complexes

Copper is essential element that participate in the reac-

tions of various enzymes in the body, so copper-based 

complexes are promising anti-cancer drugs [100]. Lu 

et  al. designed and synthesized a series of copper(II) 

complexes of 9-substituted β-carboline [101]. Complex 

14 was able to selectively inhibit MCL-1 and disrupt 

MCL-1/BAX and MCL-1/BAK complexes in tumor cells, 

inducing BAX/BAK-dependent apoptosis in tumor cells. 

Structural model indicates that complex 39 can interact 

Table 2 (continued)

Compound Efficacy towards malignant 
cells

In vitro potency drug discovery method References

Compound5 L-363, LP-1, NCI-H929 and 
MOLP-8

IC50: 3.4 nM [92]

C3 HeLa, K562, NCI-H23 cell line IC50: 0.78 ± 0.12 μM (2019) [105]

dMCL1-2 MM cell line OPM2 Kd: 30 nM (2019) [104]

MI-223 H1299 cell Kd: 193 ± 4.3 nM Virtual screening (2018) [91]

APG-3526 NA MM cell line IC50: 7 nM (2020) [106]

EC50 Half-maximal concentration of drug, IC50 Concentration inhibitory to 50% of cells, Ki Inhibition constant, Kd Dissociation constant
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with Arg263 of MCL-1 while the long alkyl chain inserted 

into the P2 pocket of MCL-1 [102]. �ese findings have 

laid the foundation for the development of metal-based 

MCL-1 inhibitors.

MCL-1 PROTACs

Proteolysis-targeting chimeras (PROTACs) are a novel 

class of drug molecules designed to degrade proteins. 

�ey consist of three parts: an E3-binding ubiquitin 

ligase, a moiety that binds to the target protein, and a 

linker group that connects the two [103]. Recruitment 

of E3 ligase to the target protein can lead to proteasomal 

ubiquitination and subsequent degradation of the tar-

get protein. Structure–activity relationship (SAR) stud-

ies have yielded dMCL1-2 (Kd = 30  nM) [104] and C3 

 (IC50 = 0.78 ± 0.12  μM) [105]. �rough the formation of 

a "target protein-PROTAC-E3 ligase" complex, the affin-

ity between MCL-1 and the E3 ligase CRBN is effectively 

enhanced, which selectively degrades MCL-1 to obtain 

stronger tumor cell killing activity.

Other compounds

Ascentage Pharma has recently identified two lead com-

pounds for MCL-1 inhibitors, APG-3526 and AS00491, 

using a protein–protein interaction platform [106]. 

In vitro and in vivo studies demonstrates that APG-3526 

 (IC50 = 7 nM) and AS00491 have high affinity for MCL-1 

and anti-tumor proliferative capacity [106]. �ere are 

also many other preclinical MCL-1 inhibitors [102, 107–

110] (Table 2). �ese compounds aim to promote MCL-

1-dependent cancer cell apoptosis and exhibit differential 

activity.

Targeting MCL-1 in di�erent cancers

Evasion of apoptosis through dysregulation of BCL-2 

family is a significant hallmark of tumorigenesis and 

drug resistance. Different types of tumors determine 

the sensitivity to MCL-1 inhibitors by the expression of 

MCL-1. MCL-1 inhibitors can restart apoptosis when in 

combination with other therapies, allowing various can-

cer types to benefit from it. Here, we present the patho-

logical and treatment role of MCL-1 in different kinds of 

cancers.

Multiple myeloma

Gain or amplification of chromosome 1q21 encoding 

MCL-1 and IL-6 receptor in patients with MM is asso-

ciated with significantly shorter progression-free sur-

vival [111]. MCL-1 protein expression increased in newly 

diagnosed MM patients, with higher levels in relapsed 

patients [112]. Most MM cell lines are dependent on 

MCL-1 for survival, and targeting MCL-1 induces apop-

tosis in approximately 70% of myeloma cell lines [113]. 

Cell-dependent analysis of 33 human MM cell lines 

showed a significant increase in MCL-1 dependence 

from 33% at diagnosis to 69% at relapse, suggesting that 

MCL-1 cell dependence favors relapse [114].

Targeting MCL-1 represents a novel and effective 

strategy for the treatment of MM. S63845 showed high 

efficacy and sensitivity in a panel of MM cell lines with 

 IC50 < 0.1  μM, and exhibited dose-dependent antitumor 

activity in MM xenograft mice. Moreover, S63845 may 

be effective in cases with refractory/relapsed MM or drug 

resistance, as its efficacy is not limited to patients carry-

ing chromosomal translocations or mutations. 100  days 

after treatment of the AMO1 (MM cell line) model with 

25  mg/kg dose of S63845, seven mice (eight in total) 

showed complete tumor regression [55].

AZD5991 directly binds to MCL-1 in MOLP-8 (MM 

cell line) cells and releases BAK from the MCL-1/BAK 

complex within 15 min at a concentration of 10 nM [61]. 

After a single intravenous injection of 10 mg/kg, 30 mg/

kg, and 100  mg/kg AZD5991, xenograft models of MM 

mice showed 52%, 93%, and almost complete 100% tumor 

regression, respectively [61].

In MM xenograft models, oral administration of 

AMG-176 resulted in BAK activation, cleaved caspase 

3, and cleaved poly-ADP ribose polymerase (PARP) 

within 2  h [65]. Also in MM mice, oral administration 

of AMG-176 at a daily dose of 60 mg/kg or once-weekly 

dose of 100 mg/kg achieved 100% tumor growth inhibi-

tion and 97% regression, respectively. �e combination 

of AZD5991 or AMG-176 with venetoclax or protea-

some inhibitors achieves a more potent antitumor kill-

ing effect than either single agent in MM [61, 65]. In MM 

xenografts models, AMG-397 administered orally once 

or twice weekly at 25 or 50  mg/kg exhibited significant 

tumor regression [66]. Of these, nine mice (ten in total) 

in the dose of 50 mg/kg had complete tumor regression 

at the end of the study [66].

Leukemia

AML usually exhibits heterogeneous expression of antia-

poptotic proteins, especially MCL-1 [115]. Detection of 

BCL-2, BCL-xL and MCL-1 expression in hematopoietic 

progenitor cells and leukemic cells from AML patients 

revealed that MCL-1 transcripts were expressed at high 

levels in all samples tested [116]. MCL-1 is a key survival 

molecule required to promote the survival of B progeni-

tor cell populations during BCR-ABL transformation and 

the continued survival of BCR-ABL B-acute lymphoblas-

tic leukemia cells [117]. MCL-1 overexpression has been 

identified in chemotherapy-relapsed AML and is a major 

factor in resistance to the dual BCL-2/BCL-XL inhibitor 

ABT-737 in AML cell lines [118]. MCL-1 and BCL-xL 
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can make cells resistant to the BCL-2 inhibitor ABT-199 

[119].

MCL-1 inhibition can be a rational therapeu-

tic approach against AML. All eight AML cell lines 

were sensitive to S63845 treatment with  IC50 values of 

4–233 nM [55]. AML xenograft model mice treated with 

25 mg/kg dose of S63845 for 80 days resulted in complete 

remission in 6 out of 8 mice [55]. Compared to other 

BH3 mimics, such as ABT-199/A1331852  (EC50 < 3 μM), 

S63845 is more effective in killing primary AML cells and 

their derived cell lines  (EC50 < 150 nM) and has the least 

toxicity to CD34 + progenitor cells [120].

AZD5991 induced apoptosis only in MCL-1-dependent 

cells. In AML mouse models, once weekly intravenous 

injection of 60 mg/kg AZD5991 reduced leukemic cells in 

both peripheral blood and bone marrow, while daily oral 

administration of 100  mg/kg venetoclax only reduced 

leukemic cells in peripheral blood [61]. For AML cells 

resistant to either single agent, AZD5991 combination 

with Venetoclax can overcame resistance without signifi-

cant changes in body weight [61]. �e synergistic effect of 

AZD5991 with penatinib or venetoclax results in a new 

clinical choice for patients with T315I (+) Ph + leukemia 

[121].

In the MOLM-13 luciferase labeled AML model, oral 

AMG 176 at a dose of 60 mg/kg twice weekly resulted in 

69% tumor regression [65]. Treatment of MOLM-13 mice 

with AMG-176 (30 mg/kg) twice weekly or with veneto-

clax (50  mg/kg) daily both significantly reduced tumor 

load by 55% and 23%, respectively. Synergistic use dem-

onstrated 100% complete tumor suppression compared 

to monotherapy. Similar results were obtained in samples 

of patients with primary AML. In 9 of 13 samples, the 

combination of equimolar concentrations of AM-8621 

and venetoclax significantly inhibited tumors compared 

to either drug alone [65]. Compared to DMSO, AMG-

176 caused a negligible number of normal hematopoietic 

cell deaths [122].

AMG-397 showed a strong sensitivity to AML cell 

lines. In the MOLM-13 orthotopic model of AML, 

twice-weekly dosing at 30  mg/kg achieved 99% tumor 

growth inhibition. �e combination of oral AMG-397 at 

10 mg/kg twice weekly and venetoclax at 50 mg/kg daily 

achieved 45% regression [66].

A-1210477 overcomes the resistance of AML mouse 

models and cell lines to the BCL-2/BCL-XL inhibitor 

agent (ABT-737) [123]. VU661013-resistant AML cells 

were significantly more sensitive to venetoclax than their 

initial response and that cells resistant to venetoclax were 

more sensitive to MCL-1 inhibitors [124]. AML mice 

treated with VU661013 (75 mg/kg daily) for 3 weeks died 

of AML 42  days later. But with venetoclax effectively 

induced apoptosis [124].

Non-Hodgkin lymphoma

MCL-1 is highly expressed in malignant B cells and 

aggressive B-NHL [125]. MCL-1 transgenic mice develop 

B-cell lymphoma at high frequency [126]. MCL-1 is 

important for the survival of B lymphocyte progenitor 

cells in MYC-driven lymphomagenesis. Overexpression 

of MCL-1 greatly accelerates the development of lym-

phoma driven by the oncogene c-MYC. Although the 

loss of one MCL-1 allele does not significantly impair 

the survival of normal B lymphocyte-like cells, it almost 

completely abrogates the development of MYC-driven 

lymphomas [127]. MCL-1 knockdown triggers spontane-

ous apoptosis in several mantle cell lymphoma cell lines 

[128]. In two different mantle cell lymphoma cell lines, 

one normal cell line (JeKo-1) and one invasive cell line 

(MAVER-1), silencing MCL-1 induced a dose-dependent 

increase in the proportion of apoptotic cells [129].

In a human MCL-1 murine lymphoma transplant 

model, a single dose of S63845 at 12.5  mg/kg or cyclo-

phosphamide at 50  mg/kg in combination with S63845 

at 7.5 mg/kg inhibited tumor growth by 60% and almost 

100%, respectively [130]. S63845 combined with BCL-2/

BCL-xL inhibitors exhibited improved antitumor activity 

in B-cell acute lymphoblastic leukemia [131].

BIM-SAHBA can induce the apoptosis of diffuse large 

B cell lymphoma (DLBCL)  (EC50 = 2–18  μM), regard-

less of the expression of antiapoptotic proteins, and it is 

most effective among DLBCL with resistance to ABT-

737 and ABT-199 [79]. In BCL-2High NHL cell lines, both 

A-1210477 and CDK inhibitors downregulated MCL-1 

expression and induced apoptosis in synergy with Vene-

toclax. In most BCL-2Low NHL cell lines, A-1210477 also 

exerted synergistic effects with navitoclax [132].

Lung cancer

Munkhbaatar et  al. validated the high-frequency of 

MCL-1 in lung adenocarcinoma in multiple open data-

bases [133]. MCL-1 overexpression is associated with 

poor survival in non-small cell lung cancer [134]. �e 

PEST domain of MCL-1 interacts with AKT on the PH 

domain to activate AKT, which together promote lung 

cancer progression [135]. Lung cancer models with stable 

expression of BCL-xL and MCL-1 treated with radiother-

apy induce negligible numbers of apoptotic cells [136].

S63845 induced cytotoxicity in lung adenocarcinoma 

cell lines is positively correlated with MCL-1 protein 

expression, which delays tumor progression and reduces 

tumor size in mouse [133]. MCL-1 inhibition can be used 

in combination with other therapeutic strategies to lower 

the apoptosis threshold [133]. MI-223 in combination 

with olaparib significantly inhibited lung tumor growth 

without hematological or histopathological toxicity [91]. 
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Metal-based complex 14 and 39 significantly inhibited 

tumor growth in the NCI-H460 xenograft model [101].

Breast cancer

Amplification of MCL-1 is more frequent in clinical 

breast cancer datasets than BCL-2 and BCL-xL, and 

is associated with poor prognosis [137]. In  vitro and 

in  vivo experiments demonstrated the dependence of 

triple-negative breast cancers (TNBC) on MCL-1 [137]. 

HER2-positive breast cancer has significantly lower 

NOXA levels and mediates resistance to HER2 inhibitors 

through upregulation of MCL-1 [138].

In breast cancer with high expression of MCL-1, 

S63845 displayed synergistic activity with docetaxel 

in TNBC and with trastuzumab or lapatinib in HER2-

amplified breast cancer [139]. Combined inhibition of 

BCL-2 and BCL-xL with ABT-263 had limited efficacy on 

breast cancer owing to high expression of MCL-1, while 

A-1210477 or VU661013 in combination ABT-263 has 

a synergistic effect [140, 141]. EU-5346 in combination 

with paclitaxel induced synergistic activity in both pacli-

taxel-sensitive and paclitaxel-resistant TNBC cells [142].

Colorectal cancer

MCL-1 expression is significantly increased in colorectal 

cancer and is associated with tumor stage, lymph node 

metastasis, and poor prognosis [143]. MCL-1 inhibi-

tors synergize with standard therapies to exert antitu-

mor activity in colorectal cancer. Decreased degradation 

of MCL-1 is involved in the E3 ubiquitin ligase FBW7 

mutation-induced resistance to regorafenib in colorec-

tal cancer patients [144]. �e MCL-1 inhibitor S63845, 

AZD5991, AMG-176 restore sensitivity to regorafenib 

in FBW7 mutant colorectal cancer cells by restoring the 

apoptotic response [145]. In  BRAFV600E-mutant colorec-

tal cancer, mutant BRAF upregulates MCL-1 to confer 

apoptosis resistance [146]. MCL-1 inhibitor A-1210477 

in combination with cobimetinib reverses colorectal can-

cer drug resistance and enhances cobimetinib-induced 

apoptosis [146].

Melanoma

Increased MCL-1 expression through oncogenic acti-

vation of BRAF was observed in cutaneous metastatic 

melanoma [147]. MCL-1 depletion significantly induced 

apoptosis in melanoma cells and resensitized mutant 

BRAF melanoma cells to anoikis compared with deple-

tion of BCL-2 or BCL-xL [148]. Combined inhibition 

of MCL-1 and BCL-xL by S63845/S64315 plus Navi-

toclax [149] or the combination of MCL-1 and BCL-2 

by S63845/S64315 plus ABT-199 [150] synergistically 

induces extensive death in advanced/refractory mela-

noma cell lines both in vitro and in vivo. MIM1 promotes 

mitochondrial membrane rupture, glutathione depletion 

and cell cycle arrest, inducing melanoma cell death [151, 

152].

Hepatocellular carcinoma

MCL-1 is a survival factor for hepatocellular carcinoma 

(HCC) [153]. MCL-1 expression was enhanced in HCC 

cell lines as well as in human HCC tissues. High expres-

sion of MCL-1 inhibits JQ1-triggered apoptosis in HCC 

cells [154]. MCL-1 knockdown or specific inhibitors of 

S63845 or A-1210477 significantly inhibited hepatocel-

lular carcinoma spheroid cell formation and triggered 

apoptotic signals [153]. Targeting MCL-1 directly pro-

moted apoptosis of hepatoma cells without affecting the 

growth of normal hepatocytes [155]. A combination of 

inhibitory CDK can overcome the resistance of hepato-

cellular carcinoma cells to sorafenib, and CDK-mediated 

inhibition of MCL-1 plays a key role in mediating this 

process [156].

Other solid tumors

�e dependence of solid tumors on MCL-1 may be 

responsible for drug resistance. MCL-1 small molecule 

inhibitors, such as MIM1, UMI-77, and A-1210477, in 

combination with other standard therapies may be an 

effective strategy to restore the sensitivity of resistant 

cells, including head and neck squamous cell carcinoma 

[157], glioblastoma [158], cervical cancer [159], pan-

creatic cancer [84], ovarian cancer [160], and esopha-

geal squamous cell carcinoma [161]. �us, MCL-1 is a 

potential therapeutic target for restoring cell apoptosis in 

multidrug-resistant cancers. MCL-1 inhibitors in com-

bination with existing radiotherapy/chemotherapy can 

overcome resistant/relapsed tumors, increasing the dis-

ease-free survival of cancer patients.

Conclusions

MCL-1 plays important roles in cancer development, 

and is associated with drug resistance of a variety of can-

cers. In recent years, significant progress has been made 

with MCL-1 inhibitors, and some drugs have entered 

clinical trials. In this review, we present a comprehen-

sive summary of inhibitors that selectively target MCL-1, 

including small molecule inhibitors, peptide inhibitors, 

covalent inhibitors, natural products, metal-based com-

plexes, and MCL-1 PROTACs. We analyze these inhibi-

tors in terms of screening methods, chemical structures, 

binding modes and co-crystal structures. In addition, we 

discuss the use of MCL-1 selective inhibitors in different 

hematologic malignancies and solid tumors. In 2016, the 

FDA approved the BCL-2 selective inhibitor venetoclax 

for the treatment of chronic lymphocytic leukemia. As 

the clinical development of MCL-1 selective inhibitors 
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progresses, MCL-1 selective inhibitors may become a 

new class of anti-cancer drugs that will bring clinical 

benefits to patients with a variety of hematologic malig-

nancies and solid tumors.
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