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Abstract

Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we
screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor,
designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral
activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles
(DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete
inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a
membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that
K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of
DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range
of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS–CoV), and efficient inhibition was achieved
in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study
proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular
membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect
this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and
human virus infections.
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Introduction

Prior to the emergence of the highly pathogenic severe acute

respiratory syndrome-associated coronavirus (SARS-CoV) in 2003

[1–3] only two circulating human coronaviruses (HCoVs), HCoV-

229E [4] and HCoV-OC43 [5] causing relatively mild common

cold-like respiratory tract infections, were known, and coronavi-

ruses have not been regarded as significant threat for human

health. Now, more than ten years later, the emergence of another

highly pathogenic coronavirus of zoonotic origin, the Middle East

respiratory syndrome coronavirus (MERS-CoV) [6–8], boosted

community awareness towards the pending need to develop

effective therapeutic options to combat coronavirus infections.

Coronaviruses are enveloped viruses and their positive strand

RNA genome, the largest of all RNA viruses, encodes for as many

as 16 non-structural proteins (nsps), 4 major structural proteins,

and up to 8 accessory proteins (reviewed in [9]). Many of these

proteins provide essential, frequently enzymatic, functions during

the viral life cycle and are therefore attractive targets for antiviral

intervention. Antiviral strategies are mainly proposed for targeting

coronavirus entry and essential enzymatic functions, such as

coronavirus protease or RNA-dependent RNA polymerase
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(RdRp) activities. For example, the spike (S) protein mediates

binding of different HCoVs to their specific cellular receptors [10–

14], an event associated with preferential virus tropism for either

ciliated or non-ciliated cells of the airway epithelium [15]. The S

protein also mediates fusion between lipids of the viral envelope

and the host cell plasma membrane or membranes of endocytic

vesicles to promote delivery of viral genomic RNA into the

cytoplasm. Virus binding and cell entry events can be inhibited by

antibodies directed against the S protein, antibodies or small

molecules interfering with the virus receptors, or synthetic peptides

derived from the fusion-triggering heptad repeat regions of the S

protein (reviewed in [16]). Following virus entry, the coronavirus

genome, a positive sense, capped and polyadenylated RNA strand,

is directly translated resulting in the synthesis of coronavirus

replicase gene-encoded nsps. Coronavirus nsps are translated as

two large polyproteins harboring proteolytic enzymes, namely

papain-like and chymotrypsin-like proteinases that extensively

process coronavirus polyproteins to liberate up to 16 nsps (nsp

1–16) [9], [17–20]. These proteolytic functions are considered

essential for coronavirus replication and, consequently, a

number of candidate drugs were reported to inhibit coronavirus

polyprotein processing [21–26]. Likewise, the coronavirus

RdRp activities, which reside in nsp8 [27] and nsp12 [28],

are considered essential for coronavirus replication and

attractive targets for antiviral intervention. In addition to these

classical drug targets, coronaviruses encode an array of RNA-

processing enzymes representing additional candidate targets.

These include a helicase activity linked to an NTPase activity

in nsp13, a 39-59-exonuclease activity linked to a N7-methyl-

transferase activity in nsp14, an endonuclease activity in nsp15,

and a 29-O-methyltransferase activity in nsp16 (reviewed in

[28]).

Like all positive strand RNA viruses, coronaviruses synthesize

viral RNA at organelle-like structures in order to compartmental-

ize this critical step of the viral life cycle to a specialized

environment that is enriched in replicative viral and host-cell

factors, and at the same time protected from antiviral host defense

mechanisms [29–31]. There is now a growing body of knowledge

concerning the involvement, rearrangement and requirement

of cellular membranes for RNA synthesis of a number of

positive-strand RNA viruses, including coronaviruses [30],

[32–35]. Three coronaviral nsps, i.e., nsp3, nsp4, and nsp6 [9],

[36], [37] are thought to participate in formation of these sites

for viral RNA synthesis. In particular, these proteins contain

multiple trans-membrane domains that are thought to anchor

the coronavirus replication complex through recruitment of

intracellular membranes to form a reticulovesicular network

(RVN) of modified, frequently paired, membranes that

includes convoluted membranes [32] and double membrane

vesicles (DVM) [38] interconnected via the outer membrane

with the rough ER [32]. Indeed, Angelini and colleagues [39]

have recently shown that co-expression of all three transmem-

brane domain-containing SARS-CoV nsps (nsp3, nsp4, and

nsp6) is required to induce DMVs that are similar to those

observed in SARS-CoV-infected cells. Such organelle-like

compartments harboring membrane-bound replication com-

plexes show remarkable parallels amongst a broad range of

positive-strand RNA virus families, and are potentially

evolutionary linked to similar mechanisms in the life cycle of

double-strand (ds)RNA, reverse-transcribing, and cytoplasmic

replicating DNA viruses [29]. Coronavirus ER-derived DMVs

are induced early after virus entry into the host cell cytoplasm

[9], [32], [34], [38–43], and display striking similarities to

DMVs induced by hepatitis C virus [33]. The evolutionary

conservation of engaging host cell-derived organelle-like

membranous structures for virus RNA synthesis and genetic

evidence that impairment of coronavirus DMV integrity is

associated with severe reduction of virus replication [44], [45]

suggest that antiviral intervention by targeting membranes

involved in virus replication represents an attractive, however

yet largely unexplored approach.

In this work, we describe a novel inhibitor of coronavirus

replication that specifically interferes with membrane-bound

coronaviral RNA synthesis. This novel mode-of-action is charac-

terized by severe impairment of DMV formation that results in

near-complete inhibition of RNA synthesis. Notably, the inhibitor

displayed antiviral activity against a broad range of animal and

human coronaviruses, including the recently emerging MERS-

CoV.

Results

Identification of anti-HCoV-229E hit compound K22
To identify novel inhibitors of coronavirus infectivity we screened

the ChemBioNet collection of 16671 compounds for antiviral

activity against HCoV-229E. To this end, MRC-5 cells growing on

384-well plates were supplemented with a specific library compound

(20 mM) and then inoculated with HCoV-229E. Compounds that

reduced or abolished viral cytopathic effect were re-tested in 24-well

plate format for more precise evaluation of their antiviral potential.

This two-step screening procedure resulted in several hits including

two structurally similar compounds referred to as K22 (Figure 1A)

and J15 (Figure S1A). The former compound, K22, whose structural

name is (Z)-N-(3-(4-(4-bromophenyl)-4-hydroxypiperidin-1-yl)-3-

oxo-1-phenylprop-1-en-2-yl)benzamide was examined in detail.

The compound was completely soluble in medium up to 50 mM.

The concentration of K22 that inhibited the number of HCoV-

229E plaques by 50% (IC50) was 0.7 mM (Figure 1B). K22 did not

reduce viability of MRC-5 cells by .50% (CC50) at a concentration

range of 0.032–500 mM (Figure 1C). However this compound

decreased proliferation of MRC-5 cells with a CC50 value of

110 mM (Figure 1C). Hence, using the CC50 value determined in

Author Summary

Viruses that replicate in the host cell cytoplasm have
evolved to employ host cell-derived membranes to
compartmentalize genome replication and transcription.
Specifically for positive-stranded RNA viruses, accumulat-
ing knowledge concerning the involvement, rearrange-
ment and requirement of cellular membranes for RNA
synthesis specify the establishment of the viral replicase
complex at host cell-derived membranes as an evolution-
ary conserved and essential step in the early phase of the
viral life cycle. Here we describe a small compound
inhibitor of coronavirus replication that (i) specifically
targets this membrane-bound RNA replication step and (ii)
has broad antiviral activity against number of diverse
coronaviruses including highly pathogenic SARS-CoV and
MERS-CoV. Since resistance mutations appear in an
integral membrane-spanning component of the coronavi-
rus replicase complex, and since all positive stranded RNA
viruses have very similar membrane-spanning or mem-
brane-associated replicase components implicated in
anchoring the viral replication complex to host cell-derived
membranes, our data suggest that the membrane-bound
replication step of the viral life cycle is a novel, vulnerable,
and druggable target for antiviral intervention of a wide
range of RNA virus infections.
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cell proliferation assay, the selective index for K22, i.e. the CC50/

IC50 quotient, was 157. Compound J15, although showing

anti-HCoV-229E activity similar to that of K22 exhibited a

somewhat less favorable cytotoxicity profile in the cell viability

assay (Figure S1B).

K22 inhibits HCoV-229E during the early, post entry
phase of the viral life cycle
To assess which step of the HCoV-229E life cycle is affected by

K22, a time-of-addition/removal experiment was performed. K22

(4 mM) was incubated with cells for a period of only two hours

Figure 1. K22 structure, antiviral activity, and cytotoxicity. (A) K22 structure. (B) Anti-HCoV-229E activity of K22 in MRC-5 cells. K22 and HCoV-
229E were added to MRC-5 cells, and the number of viral plaques developed after 48 h were assessed. Data shown are means (6SD) of duplicate
determinations from three independent experiments. PFU, plaque forming unit. (C) Viability and proliferation of MRC-5 cells in the presence of K22.
MRC-5 cells were incubated with K22 or DMSO solvent for 48 h at 37uC and the cell viability determined using tetrazolium-based reagent while cell
proliferation was assayed by counting of cells. Data shown are means (6SD) of duplicate determinations from two independent experiments. (D) K22
affects the post-entry phase of viral life cycle. K22 (4 mM) or DMSO solvent were incubated with cells for a period of 2 h either before (22 h), during
(0 h) or after a 2 h period of cell inoculation with HCoV-229E, and the number of viral plaques developed after 48 h were assessed. Data shown are
means of duplicate determinations from three independent experiments.*P,0.05; n=3. ***P,0.005; n=3. (E-F) K22 exhibits potent antiviral activity
when added up to 6 h after infection of cells. MRC-5 cells were inoculated with HCoV-229E at a moi of 0.05 for 45 min at 4uC, and K22 (10 mM) added
at specific time points relative to the end of inoculation period. The culture medium and cells were harvested after 24 h of incubation at 37uC, and
the viral RNA (E) and infectivity (F) determined. Data shown are means (6SD) of duplicate determinations from two independent experiments. EX,
extracellular medium; CA, cell-associated sample.
doi:10.1371/journal.ppat.1004166.g001
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either prior to, during, or after infection with HCoV-229E. As

shown in Figure 1D, K22 treatment prior to infection resulted in

only marginal reduction of virus infectivity thus excluding

blockade of cellular receptor(s) for HCoV-229E as its mode-of-

action. Simultaneous addition of K22 and virus resulted in ,50%

reduction of virus infectivity suggesting that the compound may

interact with viral particles thus inactivating their binding or cell-

entry activity. To clarify this possibility, the virus was incubated

with ,70 IC50 doses of K22 or DMSO solvent for 15 min at

37uC, followed by virus dilution and its titration at non-inhibitory

compound concentrations. Similar titers were observed for the

virus treated with K22 (7.26105/ml68.9%) and DMSO

(7.56105/ml64.7%) (n = 2; two experiments), indicating that

K22 exhibited no virus particle-inactivating activity. Thus, the

,50% reduction in plaque number (Figure 1D) observed by

simultaneous addition of K22 and virus is likely due to cellular

uptake of K22 and inhibitory activity of probably not yet

metabolically processed compound during a very early step of

virus replication rather than the drug binding to viral particles and

interference with their penetration into cells. This idea is further

corroborated by the most pronounced inhibition of HCoV-229E

replication when K22 was added after infection (Figure 1D). To

more precisely determine the time window of efficient K22-

mediated inhibition of HCoV-229E, K22 (10 mM) was added to

infected cells at different time points post infection (p.i.), and intra-

and extracellular viral RNA, and infectious particles were

quantified at 24 hours p.i.. As shown in Figures 1E-F, K22

addition within the first 6 hours p.i. resulted in near complete

inhibition of viral RNA synthesis and ,1000-fold reduction of

produced infectious virus, suggesting that K22 inhibits most

potently post virus entry during the early phase of the HCoV-229E

life cycle.

K22 resistant mutants contain substitutions in nsp6
To obtain further insight concerning the target of K22

inhibition we aimed to generate K22-resistant mutants and

therefore subjected plaque purified HCoV-229E to 10–13

consecutive passages on MRC-5 cells in presence of increasing

concentrations of K22 (2–16 mM). In two independent experi-

ments we isolated and plaque purified several variants displaying

moderate (,2-fold) to strong (,12-fold) K22 resistance (IC50 of

1.6–8.5 mM; Table 1). Whole genome sequencing analysis of wild

type (wt) HCoV-229E, mock passaged virus, and K22 passaged

virus revealed two amino acid substitutions within nsp 6 (H121L;

M159V) that were associated with strong K22 resistance (Table 1).

Sequence alignment and prediction of potential transmembrane

regions of nsp6 homologs of HCoV-229E and other coronaviruses

used in this study, revealed presence of 7 potential membrane-

spanning domains (Figure 2) 6 of which are proposed to be used as

membrane anchors in other coronaviruses [36], [37], and that

mutations conferring resistance to K22 are located in or near these

regions (Figure 3A). Subsequent generation of recombinant

mutants, designated HCoV-229EH121L, HCoV-229EM159V, and

HCoV-229EH121L/M159V, carrying the nsp6 mutations individu-

ally or combined by reverse genetics confirmed that these

mutations confer resistance to K22 inhibition as revealed by

plaque inhibition (Table 1) and the time-of-addition (Figures 3B-C)

assays. Thus, as expected from the previous experiment

(Figure 1E), K22 addition within the first 6 hours p.i. with the

wt HCoV-229E resulted in near complete inhibition of viral RNA

synthesis (Figure 3C), an effect completely abrogated in the drug-

resistant recombinant mutant viruses (Figure 3B). Notably,

although the amount of intracellular (Figure 3D) and extracellular

(Figure 3E) viral RNA was comparable between K22-resistant

mutants and parental wt HCoV-229E, production of infectious

particles during infection with K22-resistant mutant viruses was

greatly reduced (up to 34 fold at 48h p.i.) (Figure 3F). This

difference cannot be attributed to the presence of free viral RNA

in preparations of extracellular virus, since the treatment of K22-

resistant HCoV-229EM159V mutant virus with ribonuclease A did

not reduce the quantity of viral RNA (Figure S2). This observation

suggests that K22 resistance-conferring mutations in nsp6 are

associated with a fitness cost (reduced specific infectivity).

K22 treatment results in loss of DMVs
The observation that amino acid substitutions in nsp6 confer

K22 resistance strongly suggests a mode-of-action based on

interference with host cell membranes required for coronavirus

replication. Nsp6 is expressed as a membrane-spanning integral

component of the viral replication complex, and is, together with

nsp3 and nsp4, implicated in anchoring the coronavirus replicase

complex to DMVs or related membrane structures [9], [36], [37],

[39], [43]. Indeed, there is genetic and experimental evidence

concerning nsp4-mediated alterations of coronavirus DMVs [44],

[45], and that ectopic expression of nsp6 results in the formation of

ER-derived vesicles [46]. We therefore assessed if K22 may impact

the formation of coronavirus-induced DMV by electron micros-

copy (Figure 4). As expected, perinuclear DMV clusters as well as

viral particles were readily detectable in wt HCoV-229E-infected

cells (Figure 4A). In sharp contrast, no DMV clusters or viral

particles were detectable in wt HCoV-229E-infected and K22-

treated (4 mM) cells (Figure 4A). Since double-stranded (ds) RNA is

indicative of coronavirus replication and has been shown to reside

predominantly within the inner lumen of coronavirus-induced

DMVs [32] we also performed immunofluorescence analysis and

stained HCoV-229E-infected cells for viral replicase complex

(nsp8) and dsRNA. Strikingly, the characteristic perinuclear

immunofluorescence staining pattern for viral replicase complexes

and dsRNA visible in wt HCoV-229E-infected cells was

completely absent under K22 treatment (Figure 5), confirming

the remarkable efficacy of K22-mediated inhibition of viral

replication and supporting the notion that K22 blocks the

formation of DMVs. In contrast to parental wt HCoV-229E and

irrespectively whether K22 was applied, recombinant K22 escape

mutants were still capable of inducing the formation of DMVs

(Figure 4B) and displayed the characteristic staining pattern for

replicase complexes and dsRNA (Figure 5). Likewise, compound

J15 efficiently blocked replication (Figure S1B) and DMV

formation of wt HCoV-229E but not K22 resistant nsp6

recombinant HCoV-229EM159V (Figure S3) suggesting that J15

may have the same target and mode-of-action. Notably, in cells

infected with K22 escape mutants the overall number of DMVs

per cell was reduced (30.3629.7 in HCoV-229EM159V versus

65650.1 in wt HCoV-229E infected cells; P,0.05; n=20), similar

as previously described for mouse hepatitis virus (MHV) nsp4

mutants [44], [45], while the number of intracellular viral particles

that were often packed in tubular vesicle-like structures

(Figures 4A-B) was comparable to that of wt virus (471.86212.6

in HCoV-229EM159V versus 438.3696.8 in wt virus infected cells;

n=10). We could also frequently detect DMVs displaying partially

collapsed inner membranes in cells infected with K22 escape

mutants (irrespectively whether or not K22 was applied;

Figure 4B), again similarly as reported for MHV nsp4 mutants

[45], suggesting that nsp6, like nsp4, has a pivotal role in

coronavirus DMV formation. Overall, these findings demonstrate

that the antiviral activity of K22 (and that of the structurally

similar compound J15) results in complete loss of DMVs. This

efficient block in replication can be overcome by resistance

Inhibition of Membrane-Bound Viral RNA Synthesis
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Figure 2. Alignment of coronavirus nsp6 sequences. Alignment of nsp6 sequences derived from coronaviruses used in this study was
performed with Geneious Software (Biomatters Ltd, New Zealand). Coronavirus species and corresponding GenBank accession numbers are
indicated. Membrane domains predicted by TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/) are indicated by cyan shading while
conserved amino acid residues are highlighted by black/grey shading. K22 resistance-conferring mutations in HCoV-229E nsp6, identified in this
study, are depicted.
doi:10.1371/journal.ppat.1004166.g002

Figure 3. Analysis of recombinant HCoV-229E nsp6 mutants. (A) Predicted topological structure of HCoV-229E nsp6 indicating the location of
K22 resistance mutations. Concerning transmembrane domains VI and VII two proposed topologies are shown. (B-C) Recombinant nsp6 mutant
viruses are resistant to K22. MRC-5 cells were inoculated with nsp6 recombinant HCoV-229EH121L, HCoV-229EM159V, HCoV-229EH121L/M159V or wild-type
HCoV-229E at a moi of 0.05 for 45 min at 4uC, and K22 (10 mM) was added at specific time points relative to the end of inoculation period. The
infectious cell culture medium and cells were harvested after 24 h of incubation at 37uC, and copy numbers of cell-associated (CA) or extracellular
(EX) viral RNA was determined. Data shown are means (6SD) of duplicate determinations from two independent experiments. (D-F) Replication
kinetics of recombinant nsp6 mutant viruses. MRC-5 cells were inoculated with nsp6 recombinant HCoV-229EH121L, HCoV-229EM159V, HCoV-229EH121L/
M159V or wild-type HCoV-229E at an moi of 0.05 for 1 h at 4uC. The infectious cell culture medium and cells were harvested at specific time points
relative to the end of inoculation period, and copy numbers of cell-associated (CA; D) or extracellular (EX; E) viral RNA and infectivity (F) was
determined. Data shown are means (6SD) of duplicate determinations from two independent experiments.
doi:10.1371/journal.ppat.1004166.g003
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mutations in nsp6, and DMVs induced by nsp6 mutant viruses are

reduced in numbers and structurally impaired – both findings

concurring with the established function of nsp6 in DMV

formation.

K22 does not impact cellular autophagy
Our data show that K22 targets a very early step in the HCoV-

229E life cycle, and the appearance of resistance-conferring

mutations in nsp6 suggests that K22 impairs DMV formation. We

therefore assessed if K22 treatment may, independent of virus

infection, impact autophagy, a cellular process displaying similar-

ities to coronaviral DMV formation. To this end we first

transfected Huh7 cells with a plasmid encoding LC3B-GFP in

order to trace rapamycin-induced autophagsomes by life imaging.

This analysis revealed that three to six hours after adding

rapamycin to the culture medium green fluorescent autophago-

cytic vesicles become apparent, irrespectively if K22 (20 mM) was

added or not (data not shown). We corroborated this result by

immunofluorescence analysis of Huh7 cells that were stained for

endogenous LC3B at six hours post addition of rapamycin. As

shown in supplementary Figure S4 rapamycin-incuced autopha-

gocytic vesicles were again readily detectable in the presence of

K22 (20 mM), suggesting that K22 does not impact cellular

autophagy.

K22 inhibits a number of diverse coronaviruses
Since K22 inhibits a crucial step in the HCoV-229E life cycle,

we assessed the antiviral activity of K22 against a panel of diverse

coronaviruses representing the major phylogenetic lineages of a-,

b- and ???-coronaviruses. As shown in Figure 6A-D and

supplementary Figure S5, K22 indeed displayed antiviral activity

against recombinant MHV (strain A59 [47]) expressing Gaussia

luciferase as marker for virus replication, recombinant type-I feline

coronavirus (FCoV; strain Black [48]) expressing Renilla luciferase

as marker for virus replication, avian infectious bronchitis virus

(IBV; strain Beaudette [49]), and SARS- CoV (strain Frankfurt-1

[50]), suggesting that K22 targets a broad range of coronaviruses.

Furthermore, there was no cytotoxicity detectable in cells of feline

(FCWF cells), murine (L929 cells), and primate (Vero cells) origin

in the K22 concentration range assessed, and analysis of K22

Table 1. Alterations detected in the K22 resistant variants of HCoV-229E.

Alterationa

Viral variant Nucleotide Amino acid (protein) K22 sensitivity GenBank accession no.

Initialb None None 0.7c KF293664

K22 passage 10 a10455t H121L (Nsp6) 9.8 (14)d KF293666

c19463t T281I (Nsp15)

c26667t P328S (Nucleocapsid)

A a10455t H121L (Nsp6) 8.2 (12) KF285470

B a10455t H121L (Nsp6) 8.2 (12) KF285471

D a10455t H121L (Nsp6) 7.6 (11) KF285472

G a10455t H121L (Nsp6) 6.9 (10) KF285473

K c19463t T281I (Nsp15) 1.6 (2) KF285481

c26667t P328S (Nucleocapsid) KF293662

L c19463t T281I (Nsp15) 2.2 (3) KF285482

c26667t P328S (Nucleocapsid) KF293663

K22 passage 13 - Me a10568g M159V (Nsp6) 6.7 (10) KF285474

a23130c N854T (Spike) KF285480

N a10568g M159V (Nsp6) 7.1 (10) KF285475

O a10568g M159V (Nsp6) 7.7 (11) KF285476

P a10568g M159V (Nsp6) 8.5 (12) KF285477

Q a10568g M159V (Nsp6) 7.7 (11) KF285478

R a10568g M159V (Nsp6) 6.8 (10) KF285479

HCoV-229Ef 0.6

gHCoV-229EH121L a10455t H121L (Nsp6) 7.2 (12)

gHCoV-229EM159V a10568g M159V (Nsp6) 6.3 (11)

gHCoV229EH121L/M159V a10455t H121L (Nsp6) 8.2 (14)

a10568g M159V (Nsp6)

aDetected by comparison of the nucleotide sequences of HCoV-229E subjected to 10–13 passages in the presence of K22 including its plaque purified variants A-R with
those of initial virus or mock-passaged virus (accession number KF293665).
bPlaque purified HCoV-229E that served as initial material for the virus passages.
cIC50 (mM).
dFold resistance to K22 as related to initial virus is shown in parentheses.
eVirus preparation and its plaque purified variants M-R obtained in separate K22 selection experiment.
fThe virus used for preparation of recombinant nsp6 mutants.
gK22 resistant recombinant viruses.
doi:10.1371/journal.ppat.1004166.t001
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cytostatic activities in the cell proliferation assay revealed CC50

values $40 mM (Table S1), i.e., the highest drug concentration

used in antiviral assays. Notably, the efficacy of K22-mediated

inhibition varied amongst different coronaviruses, however

whether this is related, as in HCoV-229E, to nsp6 function would

require generation and analysis of K22 resistant variants for all

coronaviruses tested. In contrast, K22 exhibited little or no effect

on replication of poliovirus (Figure S6), a pathogen that like

coronaviruses induces rearrangement of cellular membranes to

assist RNA replication.

Inhibition of HCoV-229E and MERS-CoV in primary
human airway epithelia cultures
Finally, we assessed the efficacy of K22 inhibition in the primary

target cells of respiratory virus infection, the human airway

Figure 4. K22 affects formation of double membrane vesicles (DMVs). MRC-5 cells growing on Melinex polyester film were infected with
wild type HCoV-229E (WT) or with K22-resistant recombinant nsp6 mutant HCoV-229EM159V (M159V) and incubated for 18 h at 37uC with or without
K22. The cells were then fixed with glutaraldehyde and processed for electron microscopy without their scrapping or pelleting. (A) Electron
micrographs of cells infected with WT virus show presence of perinuclear clusters of DMVs (arrow) and viral particles (arrowhead), and the lack of their
production upon K22 treatment (4 mM). (B) Note presence of DMVs and viral particles in cells infected with K22-resistant nsp6 recombinant HCoV-
229EM159V (M159V) irrespective of the addition of K22. Each image shown was selected from a pool of over 30 images captured in three separate
experiments.
doi:10.1371/journal.ppat.1004166.g004

Figure 5. K22 affects formation of coronavirus replication complex in cells. MRC-5 cells were infected with wild type HCoV-229E (WT) and
K22-resistant recombinants HCoV-229EH121L (H121L), HCoV-229EM159V (M159V), and HCoV-229EH121L/M159V (H121L/M159V) and incubated for 18 h
with or without the presence of K22. The cells were then fixed with 4% paraformaldehyde and immunostained for immunofluorescence analysis.
Note the lack of detection of dsRNA and nsp8 upon K22 treatment (4 mM) of cells infected with WT but not recombinant viruses. Scale bar is 10 mM.
doi:10.1371/journal.ppat.1004166.g005
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epithelium. Fully differentiated primary human airway epithelia

(HAE) cultures [15], [51] derived from three different donors and

grown under air-liquid interphase conditions were infected with a

recombinant HCoV-229E expressing Renilla luciferase as marker

for virus replication [52], and with MERS-CoV [8], [51]. MERS-

CoV was first described in 2012 and was isolated from a 60-year

old man with acute pneumonia, renal failure and fatal outcome in

Saudi Arabia [8]. The virus is most likely of zoonotic origin [7],

[53] and by February 2014 the number of laboratory-confirmed

cases of MERS-CoV infection reported to the World Health

Organization exceeded 182, including more than 79 cases with

fatal outcome. We have previously shown that MERS-CoV can

readily replicate on primary HAE cells [51] by infecting non-

ciliated cells expressing the cellular receptor dipeptidyl peptidase 4

Figure 6. K22 affects replication of diverse coronaviruses including MERS-CoV. (A-D) The log reduction of the antiviral activity (bars) and
cell toxicity ratio (data points above bars) of K22 during MHV-Gluc (A), FCoV-RL (B), SARS-CoV (C) and IBV (D) infection on representative continuous
cell lines of murine (L-929 cells; A), feline (FCWF cells; B), or primate (Vero cells; C-D) origin. Data are shown as mean (6SD) of a representative
experiment, from two independent experiments performed in triplicate. Toxicity values for Vero cells in panels C and D are derived from the same
experiments. (E-F). The log reduction of the antiviral activity (bars) and cell toxicity ratio (data points above bars) of K22 in HCoV-229E-ren (E) and
MERS-CoV (F) infected differentiated human airway epithelial (HAE) cultures. Data are shown as mean (6SD) of three independent experiments
performed in triplicate (log reduction), or mean (6SD) of a representative experiment, from two independent experiments performed in triplicate
(cell viability). (G-H) Immunofluorescence analysis of HAE cultures infected with MERS-CoV in presence or absence of K22 in a representative
overview (G, 20x; H, 40x) confocal Z-stack image. Stainings were performed using antibodies directed against (G) dsRNA (green), and DAPI (cell
nucleus; blue), and (H) dsRNA, DAPI, b-tubulin (ciliated cells; white), and ZO1 (tight junctions, red). Scale bars are 50 (G) or 20 (H) mm.
doi:10.1371/journal.ppat.1004166.g006
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[14]. As shown in Figure 6, HCoV-229E and MERS-CoV

infections were inhibited by K22 treatment with remarkable

efficacy, illustrated by reduction of viral replication by several

orders of magnitude (Figure 6E-F) and substantial reduction of

dsRNA inMERS-CoV-infected primary HAE cultures (Figure 6G-

H). This result demonstrates that the broad anti-coronaviral

activity of K22 makes this compound particularly promising for

the development of efficacious treatment options for emerging

coronaviruses, such as MERS-CoV.

Discussion

Here we describe the discovery of a novel class of inhibitor and

propose a mode-of-action that targets membrane-bound viral

replication. Like all positive strand RNA viruses, coronaviruses

employ host cell membranes to assemble the viral replicase

complex. This evolutionary conserved strategy provides a com-

partment for viral RNA synthesis that is enriched in replicative

viral and host cell-derived proteins and believed to protect from

antiviral host cell defense mechanisms. The remarkable efficacy of

K22-mediated inhibition of coronavirus replication confirms that

the employment of host cell membranes for viral RNA synthesis is

a crucial step in the coronavirus life cycle, and importantly,

demonstrates that this step is extremely vulnerable and also

druggable for antiviral intervention.

The observation that K22 resistance is mediated through

mutations in nsp6 defines transmembrane domain-containing nsps

implicated in anchoring viral replicase complexes to host cell-

derived membranes, as novel targets for anti-coronaviral inter-

vention. Moreover, we expect this mode-of-action to serve as a

paradigm for the development of similar antiviral drugs to combat

infections caused by many other positive strand RNA viruses.

Notably, resistance conferring mutations in nsp6 emerged only

after 10–13 consecutive passages of HCoV-229E under K22

selection, and we were so far not successful in obtaining K22-

resistant MHV-A59 mutants (data not shown). This suggests that

escape mutations in membrane domain-containing coronavirus

nsps compatible with maintaining efficient RNA synthesis are

limited. In addition, the nsp6 escape mutants we have obtained for

HCoV-229E display a remarkable reduction of specific infectivity.

Thus, although RNA synthesis appears to be unaffected and viral

RNA detected in preparations of extracellular virus was ribonu-

clease insensitive implying its adequate package in viral particles,

mutations in nsp6 seem to reduce virus fitness. Thus, it is

conceivable that the nsp6 mutants may be functionally impaired

during an early step in the viral life cycle. Since dsRNA is localized

in DMVs and nsp6 escape mutants induced decreased number of

DMVs that are structurally impaired, it is possible that the reduced

specific infectivity of these viruses could be related to dsRNA-

triggered innate immune responses.

SARS-CoV nsp6 was recently found to contribute to the

establishment of the virus-induced RVN by promoting vesicle

formation in transfected cells [39], and our observation that K22

resistant mutants generated decreased number of DMVs implies

that specific alterations may adversely affect the vesicle-forming

capability of nsp6. Nsp6 of HCoV-229E (this report), MHV, and

SARS-CoV [36], [37] is predicted as a hexaspaning protein

comprising a conserved C-terminal cytoplasmic tail. The latter

domain may serve as a wedge-like amphipathic helix which upon

insertion into the lipid membrane can trigger its bending due to

induction of positive membrane curvature (reviewed in [54]). The

vesicle formation would also require a putative ion channel activity

that depolarizes curved membranes thus facilitating their fusion

and vesicle scission. The question as to whether nsp6 or other

components of the coronavirus replicase complex exhibit such

activities would require further investigation.

Although our data reveal that the K22 escape mutations occur

in nsp6, further binding experiments are required to clarify

whether K22 targets nsp6 directly. We observed that K22 is most

active in inhibiting replication of the tested a-coronaviruses

(HCoV-229E, FCoV) and the c-coronavirus IBV, whereas

amongst b-coronaviruses K22 was highly active in inhibiting

MERS-CoV, but only moderately against MHV or SARS-CoV

(Figure 6). It is conceivable that K22 may strong inhibit a-
coronaviruses, since K22 has been identified by screening for anti-

HCoV-229E activity. However, the limited nsp6 sequence

similarity between coronaviruses (Figure 2) does not allow

predicting the strength of K22-mediated inhibition of replication

based on nsp6 homology. We also like to address in future studies

a question of how the moderately resistant virus variant L

(containing mutations in nsp15 and nucleocapsid) can escape K22-

mediated inhibition of replication. This variant, in contrast to

these containing resistance mutations in nsp6, exhibited only

moderate resistance to K22 (,2-3-fold) and was not consistently

selected in separate selection experiments. Although nsp15 and

nucleocapsid protein have not yet been described as being directly

involved in DMV formation, these proteins are components of the

replicase complex that may somehow affect/modulate nsp6

functions, and compensatory mutations in these proteins may

partially relieve K22 blockade of nsp6. An alternative possibility is

that the actual K22 target may be a cellular protein or a process of

recruitment of a cellular protein that participates in coronavirus-

induced membrane rearrangements by interacting with nsp6.

While we could not observe any detectable impact of K22 on the

formation of autophagosomes, further studies are required to

address if K22 may target similar vesicles, such as EDEMosomes

[41]. Both possibilities are compatible with the observed pheno-

type of DMV impairment and the detection of resistance

mutations at regions of HCoV-229E nsp6 that are structurally

conserved while displaying only limited sequence similarity. It is

thus conceivable that membrane domain-containing nsp3 and

nsp4 may represent additional drug targets. Similar as described

for the related arteriviruses, where co-expression of membrane-

spanning nsp2 and nsp3 results in membrane alterations and

DMV formation similar to those observed during arterivirus

infection [55], [56], co-expression of coronavirus nsp3, nsp4 and

nsp6 is required to produce coronavirus-like membrane rear-

rangements including DMVs [39]. Expression of nsp3, nsp4 or

nsp6 alone or in combinations of two induces aberrant membrane

rearrangements that only partially mimic membrane structures

known from coronavirus infection [39]. Thus, there is growing

evidence that nsp3, nsp4, nsp6, and possibly ER membrane-

resident host cell proteins [41], [57], orchestrate critical events that

lead to the development of suitable membrane structures

facilitating coronavirus RNA synthesis. Since K22 apparently

interferes with these processes, inhibitors like K22 and corre-

sponding escape mutants will likely become valuable tools to

further our understanding on the induction of membrane

alterations and DMV formation that take place during the early

phase of the coronavirus life cycle. For example, co-expression of

nsp3, nsp4 and native or mutated nsp6 in the absence of virus

replication, similar as described by Angelini and colleagues [39],

may help to clarify whether presence of K22 would affect

formation of DMV by directly targeting nsp6 or cellular protein(s)

required and recruited for DMV formation.

We emphasize that the identification of K22 and its proposed

mode-of-action is only the very first step towards an approved drug

for therapeutic use in animals or humans. Specifically, we are
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currently focusing on the structure-activity relationship analysis of

K22 analogs, with the aim to identify compounds with improved

antiviral and cytotoxic profiles prior to their assessment in vivo.

However, one important lesson of the past SARS-CoV and recent

MERS-CoV outbreaks is that zoonotic transmission of coronavi-

ruses into the human population can pose considerable threat to

human health and that it is warranted to eventually invest

significant efforts to developing efficacious and approved drugs to

increase preparedness and combat coronavirus infections. The

antiviral activity against a number of diverse coronaviruses makes

K22 an ideal candidate for further development towards an

efficacious ‘‘pan-coronavirus inhibitor’’. Broad anti-coronaviral

activity has been proposed for inhibitors targeting highly

conserved enzymatic functions, such as coronavirus proteinase

activities [26], [58], or more recently, for compounds targeting

host cell factors required for efficient replication, such as

cyclophilins [59], [60]. The concept of targeting multiple key

functions of viral replication led to the development of efficacious

treatment regimens against HIV and hepatitis C virus by

combining multiple antiviral drugs [61], [62] and it is tempting

to speculate that this concept will be applicable to combat

coronavirus infections in the future. Moreover, with the identifi-

cation of K22, we demonstrate that there are yet additional critical

steps in the life cycle of positive strand RNA viruses to explore as

targets for antiviral intervention.

Materials and Methods

Ethics statement
Human bronchial epithelial cells were isolated from patients (.

18 years old) who underwent bronchoscopy and/or surgical lung

resection in their diagnostic pathway for any pulmonary disease

and that gave written informed consent. This was done in

accordance with local regulation of the Kanton St. Gallen,

Switzerland, as part of the St. Gallen Lung Biopsy Biobank

(SGLBB) of the Kantonal Hospital, St. Gallen, which received

approval by the ethics committee of the Kanton St. Gallen (EKSG

11/044, EKSG 11/103).

Cells and viruses
Human embryonic lung diploid fibroblasts (MRC-5), African

green monkey kidney cells (Vero), baby hamster kidney cells

(BHK-21), felis catus whole fetus 4 cells (FCWF-4), were

purchased from the American Type Culture Collection (ATCC),

murine fibroblast cells (L929), African green monkey kidney cells

(CV-1) were purchased from the European Collection of Cell

Cultures. D980R cells were a kind gift from G. L. Smith, Imperial

College, London, United Kingdom. African green monkey kidney

(GMK AH1) cells were obtained from the Swedish Institute for

Infectious Disease Control, Stockholm. Cells were grown in

Eagle’s minimum essential medium (EMEM) (MRC-5, CV-1,

D980R, L929, BHK-21, GMK AH1 cells) or in Dulbecco’s

modified EMEM (DMEM) (FCWF-4, Vero cells), supplemented

with 5–10% heat-inactivated fetal calf serum, (HI-FCS), 1% L-

glutamine, penicillin (60 mg/ml) and streptomycin (100 mg/ml)

(PEST). Isolation and cultivation of primary human bronchial

epithelial cells to form pseudostratified/differentiated human

airway epithelial (HAE) cultures was performed as described

previously [15], [63].

Human CoV strain 229E [4] (HCoV-229E) was obtained from

ATCC (VR-740). HCoV-229E stocks were prepared from virus

passages 6–8 in MRC-5 cells growing in EMEM supplemented

with 2% HI-FCS, 1% L-glutamine, HEPES (10 mM) and PEST

(EMEM-FP). In some experiments, the virus was concentrated by

centrifugation of infectious culture fluid of MRC-5 cells over a

1.5 ml cushion of 20% sucrose for 2 h at 22000 rpm (SW28.1

rotor, Beckman). The pellet was covered with PBS (137 mM

NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, 1.5 mM KH2PO), left

overnight at 4uC, and then gently suspended by pipetting. The

following viruses and their propagation were described previously:

recombinant HCoV- 229E [64], recombinant HCoV-229E-Ren

expressing Renilla luciferase [52], recombinant feline coronavirus

(strain Black) expressing Renilla luciferase (recFCoV-RL) [48],

SARS-CoV strain Frankfurt-1 [50], recombinant avian infectious

bronchitis virus (IBV, strain Beaudette) [49], MERS-CoV [8],

[51]. Recombinant MHV strain A59 expressing Gaussia luciferase

(MHV-Gluc) was generated based on the previously described

reverse genetics system [47], [65]. Briefly, the MHV-A59

accessory gene 4 was replaced by the gene encoding the codon-

optimized Gaussia luciferase [66] (hGLuc) using vaccinia-virus-

mediated homologous recombination essentially as described for

the generation of MHV-GP33-GFP [67]. The plasmid DNA used

for recombination contained MHV-A59 nucleotides (nts) 27500–

27967, the hGLuc Gaussia luciferase gene, and MHV-A59 nts

28265–28700. Recombinant HCoV-229E containing mutations

conferring K22 resistance in nsp6 were generated based on the

previously described reverse genetics system [64], [65]. Briefly,

vaccinia virus HCoV-inf1 (containing the full-length HCoV-229E

cDNA) [64] was used to recombine with a plasmid based on

pGPT1 [68] where the Escherichia coli guanine phosphoribosyl-

transferase (GPT) gene was flanked by HCoV-229E nts 9398–

10098 and 10930–11580. The resulting GPT-positive vaccinia

virus was then used to recombine with plasmids containing the

HCoV-229E nts 9398–11580 with modification of nucleotide

10455 (A to T; HCoV-229EH121L), or nt 10568 (A to G; HCoV-

229EM159V), or both nts 10455 and 10568 (HCoV-229EH121L/

M159V). The resulting vaccinia viruses were then used to rescue

HCoV-229EH121L, HCoV-229EM159V, and HCoV-229EH121L/

M159V as described previously [64], [65]. The identity of plasmid

DNA and recombinant vaccinia viruses and recombinant coro-

naviruses was confirmed by sequencing. In some experiments

poliovirus 1 strain Sabin (obtained from the Swedish Institute for

Infectious Disease Control, Stockholm) was used.

Reagents
The ChemBioNet diversity library of 16671 compounds was

obtained from the Leibniz Institute for Molecular Pharmacology

(Berlin, Germany). Library was provided in a 384 well plate

format, each well containing 5 ml of a compound solubilized in

DMSO to a final concentration of 10 mM. Hit compound K22

was purchased from ChemDiv (San Diego, CA; catalog number

4295–0370). The correct structure and purity of K22 (.95%) was

confirmed in our laboratory by NMR and LCMS analyses.

Immunofluorescence analysis
MRC-5 cells were infected at a multiplicity of infection (moi) of

0.05 with wtHCoV-229E and K22-resistant recombinants HCoV-

229EH121L, HCoV-229EM159V, and HCoV-229EH121L/M159V

with or without the presence of K22 (4 mM). The cells were fixed

at 18 h p.i. with 4% paraformaldehyde (PFA) and immunostained

[69] using the mouse monoclonal anti-dsRNA (J2, English &

Scientific Consulting Bt.) and rabbit anti-HCoV-229E nsp8 [70]

(kindly provided by John Ziebuhr, University of Giessen,

Germany) as primary antibodies for detection of double-stranded

(ds) RNA and viral replication complexes. Donkey derived,

Dylight 488 labeled, anti-mouse IgG (H+L) and Dylight 647

labeled, anti-rabbit IgG (H+L) (Jackson Immunoresearch) were

applied as secondary antibodies. Cells were counterstained with
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DAPI (4’,6-diamidino-2-phenylindole; Invitrogen) to visualize

nuclei. HAE cell cultures were inoculated with 40000 plaque

forming units (PFU), with or without the presence of K22 (50 mM)

and fixed with 4% PFA 48 h p.i. Staining was performed with the

mouse monoclonal antibody directed against dsRNA (J2) and goat

polyclonal anti-ZO1 (tight junctions; ab99462, Abcam) as primary

antibodies. Dylight 488-labeled donkey anti-mouse IgG (H+L),

Dylight 546-labeled donkey anti-goat IgG (H+L) (Jackson Im-

munoresearch) were applied as secondary antibodies, followed by

two separate incubation steps with Alexa Fluor647-conjugated

rabbit monoclonal anti-beta-Tubulin antibody (ciliated cells; 9F3,

Cell Signal) and DAPI (Invitrogen). Images were acquired using

EC-plan Neofluar 20x/50 M27 or EC Plan-Neofluar 40x/1.30

Oil DIC M27 objectives on a Zeiss LSM 710 confocal microscope.

Image capture, analysis and processing were performed using the

ZEN 2010 (Zeiss) and Imaris (Bitplane Scientific Software)

software packages.

Anti-coronavirus compound screening assay
The screening assay was performed as described previously for

respiratory syncytial virus [71]. Briefly, MRC-5 cells were seeded

in 384 well plates (CLS-3701; Costar-Corning, NY, USA) to

become ,70–90% confluent after one day of culture. The growth

medium was removed, and the cells supplemented consecutively

with 25 ml of EMEM-FP medium, 1 ml volumes of library

compounds at 1 mM concentration, and ,350 PFU of HCoV-

229E in 25 ml of EMEM-FP. The last two columns of the 384 well

plate received either virus or EMEM-FP medium to serve as

controls. The cells were observed under the microscope for their

protection from the virus-induced cytopathic effect after 3 and 6

days of incubation at 37uC.

Antiviral assays
Plaque reduction assay to determine the antiviral effect of K22

on HCoV-229E was done as follows. MRC-5 cells were seeded in

12-well plates to become nearly confluent after one day of culture.

Serial fivefold dilution of K22 (0–100 mM) and 100 PFU of

HCoV-229E virus in 0.5 ml of EMEM-FP medium were added to

and incubated with cells for 3 h at 37uC, 5% CO2. Subsequently,

the virus-compound mixtures were removed from cells, and 1.5 ml

volumes of 1% methylcellulose (MC) solution in EMEM-FP

medium supplemented with the same concentration of K22 were

added. The plates with cells were further incubated at 37uC, 5%

CO2 for 2–3 days, and then stained with 0.2% solution of crystal

violet to visualize the viral plaques.

Viral yield reduction assays were done to determine the antiviral

effect of K22 on HCoV-229E-Ren, recFCoV-RL, MHV-Gluc,

SARS-CoV, IBV, MERS-CoV, and poliovirus replication. Briefly,

K22 or its DMSO solvent in medium was added at the indicated

concentrations to nearly confluent monolayers of corresponding

cell lines or to HAE cultures at the basolateral side and incubated

for 4 h at 37uC, 5% CO2. The cells were then inoculated with

recFCoV-RL (moi = 0.1 on FCWF-4 cells), MHV-Gluc

(moi = 0.001 on L929 cells), SARS-CoV (moi = 0.001 on Vero

cells), IBV (moi = 1 on Vero cells), HCoV-229E-Ren (46103 PFU

on HAE cultures apically), MERS-CoV (46103 PFU on HAE

cultures apically) or poliovirus (moi = 0.001 on GMK AH1 cells).

After 2 h the viral inoculum was removed, cells were rinsed three

times with PBS, and fresh medium containing the same

concentrations of K22 or DMSO was added. Coronavirus

replication was assessed from cell culture supernatant by

determining titer as TCID50 (tissue culture infectious dose that

will produce pathological change in 50% of cell cultures

inoculated) for IBV or poliovirus at 48 h p.i., by determining the

amount of viral genome RNA produced by qRT-PCR specific for

SARS-CoV and MERS-CoV at 48 h p.i. as described previously

[51], or by determining the level of Renilla expression at 48 h p.i.

(HCoV-229E-Ren) or 72 h p.i. (recFCoV-RL) using Renilla

Luciferase Assay System (Promega, E2820), or Gaussia luciferase

expression (MHV-Gluc) at 24 h p.i. using the BioLux Gaussia

Luciferase Assay Kit (NEB,E3300), respectively.

For the virucidal assay, 200 ml of HCoV-229E suspension

(,36104 PFU) in EMEM-FP medium was mixed with 50 mM

K22 and incubated for 15 min at 37uC. In the control sample,

virus was incubated with the DMSO solvent at a final

concentration corresponding to that present in the test compound.

Then, both mixtures were diluted serially tenfold in EMEM-FP

medium and the residual virus infectivity determined by the viral

plaque assay.

Cell toxicity and proliferation assays
The toxicity of K22 or its solvent (DMSO) for MRC-5 cells was

evaluated using the tetrazolium-based CellTiter 96 AQueous One

Solution cytotoxicity assay (Promega; G3580). The effect of K22

or its solvent on proliferation of MRC-5 cells was studied as

follows. The cells were seeded in 48 well plates to become ,50%

confluent after one day of culture. The growth medium was

removed, and cells incubated with specific concentrations of K22

or its solvent in EMEM-FP medium for 72 h at 37uC. The cells

were then dissociated with trypsin/EDTA solution and counted.

The effect of K22 or DMSO on viability of Vero, L929, and

FCFW-4 cells was assessed using the CytoTox-Glo Cytotoxicity

Assay kit (Promega, G9291) while the toxicity of test compound for

differentiated HAE cultures was evaluated with CellTiter-Glo

Luminescent Cell Viability Assay kit (Promega, G7571).

Time-of-addition assay
MRC-5 cells growing in 12 well plates were precooled for

15 min at room temperature and for another 15 min at 4uC. The

cells were rinsed once with 500 ml of cold EMEM-FP and

inoculated with HCoV-229E at moi of 0.05. Following virus

adsorption to cells for 45 min at 4uC, the cells were rinsed twice

with 500 ml of cold EMEM-FP, and 990 ml of warm EMEM-FP

medium was added. Subsequently 10 ml of 1 mM K22 was added

at specific time points relative to the end of the virus adsorption

period, and the infectious cell culture medium and cells harvested

at the time point 24 h. The cell culture supernatant medium was

clarified by centrifugation at 10006g for 5 min while the pelleted

cells were suspended in RNase-free water and stored at 280uC

until quantification in RT-PCR assay. To study the effect of K22

on early virus-cell interaction the ‘‘time-of-addition’’ assay was

modified as follows. MRC-5 cells were rinsed once with 1 ml of

EMEM-FP and 500 ml of EMEM-FP supplemented with 4 mM

K22 was added. The compound was incubated with cells for 2 h at

37uC either prior to, during or after a 2 h period of infection of

cells with ,100 PFU of 229E virus in 500 ml of EMEM-FP. The

cells were washed once with 1 ml of EMEM-FP after each 2 h

period of their incubation with compound and/or virus. Finally,

the cells were overlaid with the MC solution, and after incubation

for 2 days at 37uC stained with crystal violet to visualize the viral

plaques.

RT-PCR
The RT TaqMan PCR was carried out as described by Brittain-

Long et al. [72]. Briefly, the extraction of RNA was conducted in

the Magnapure LC robot using the MagNA Pure LC Total

Nucleic Acid Isolation Kit (Roche Applied Science, Mannheim,

Germany), and amplification was performed using a TaqMan
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7300 Real Time PCR system (Applied Biosystems, Foster

City, CA), with a pair of forward 59-CAGTCAAATGGGCT-

GATGCA-39 and reverse 59-AAAGGGCTATAAAGAGAA-

TAAGGTATTCT-39 primers as well as a probe 39CCCTGAC-

GACCACGTTGTGGTTCA 59 specific for HCoV-229E genome

fragment coding for nucleocapsid protein [73]. The number of

HCoV-229E RNA copies was determined by relating the detected

cycle threshold values to a standard curve prepared based on five

tenfold dilutions of the specific plasmid (pUC57) comprising a

94 bp insert from the nucleocapsid sequence of HCoV-229E.

qRT-PCR assays to quantify SARS-CoV and MERS-CoV

genomic RNA have been described previously [51].

Preparation of drug-resistant variants of HCoV-229E and
sequencing analysis
A procedure described previously for respiratory syncytial virus

[71] was used. Briefly, plaque purified HCoV-229E was subjected

to 10–13 consecutive passages in MRC-5 cells in the presence of

increasing concentrations (2–16 mM) of K22. For control purpos-

es, the same virus was also passaged in MRC-5 cells in the absence

of inhibitor. The virus was then subjected to two rounds of plaque

purification in the presence of inhibitor, and its relative drug-

resistance tested using the viral plaque reduction assay. Genomic

RNA of original, mock-passaged, and the K22-resistant virus from

passage 10–13 was extracted from extracellular fluid of the 229E-

infected MRC-5 cells using the QIAamp viral RNA purification

kit (Qiagen). Overlapping DNA fragments covering the entire

coding sequence were produced by reverse transcription PCR and

subjected to nucleotide sequencing using the ABI PRISM Big Dye

Terminator v3.1 Cycle Sequencing Ready Reaction kit (Applied

Biosystems). Nucleotide sequence analysis was performed using

Sequencher 4.9 software (Gene Codes Corporation).

HCoV-229E replication kinetics
MRC-5 cells growing in 12 well plates were precooled for

15 min at room temperature and for another 15 min at 4uC. The

cells were rinsed once with 500 ml of cold EMEM-FP and

inoculated with concentrated preparation (see the Cells and

Viruses section) of HCoV-229E (moi = 0.05). Following virus

adsorption to cells for 1 h at 4uC, the cells were rinsed thrice with

500 ml of cold EMEM-FP, and 500 ml of warm EMEM-FP

medium was added. The supernatant fluid and infected cells were

harvested at specific time points relative to the end of the virus

adsorption period, and processed for determination of viral RNA

and infectivity as described under the ‘‘time-of-addition’’ assay.

Ribonuclease treatment of HCoV-229E
The infectious culture medium comprising HCoV-229E or

recombinant nsp6 mutant HCoV-229E M159V were clarified by

centrifugation at 10006g for 5 min, and then 100 ml volumes of

the supernatant were supplemented with 2 ml (20 mg) of ribonu-

clease A (Thermo Fisher Scientific; EN0531) or its solvent. All

samples were spiked with ,7 mg of RNA purified from human

respiratory syncytial virus (RSV) to serve as an internal control of

ribonuclease activity. Following incubation of the virus-enzyme

mixture for 30 min at 37uC, the coronaviral and RSV RNA were

quantified by RT TaqMan PCR as described by Brittain-Long et

al. [72] while coronavirus infectivity was determined by plaque

titration.

Autophagy
To assess the time-frame where autophagy vesicle formation

occurs we seeded Huh-7 cells (100.000 cells) on glass bottom

12-well cluster plates (MatTek). Forty-eight hours prior to

stimulation cells were transfected with LC3B-GFP plasmid [74]

using lipofectamine2000 (Invitrogen), according to manufactures

protocol. Hereafter cells were exposed to 100 nM of rapamycin

(Invivogen) alone or in presence of either 20 mM of K22 or an

equal volume of DMSO for the duration of 18 hours at 37uC.

Fluorescent and differential interference contrast (DIC) images

were acquired with 30 minute interval using EC Plan Neo-fluar

40x/1.30 Oil DIC M27 objective on a Zeiss LSM 710 confocal

microscope. Image capture, analysis and processing were per-

formed using the ZEN 2010 (Zeiss). To determine whether K22

inhibits endogenous autophagy vesicle formation we stimulated

Huh-7 cells (40.000 cells) with 100 nM of rapamycin alone or in

presence of either 20 mM of K22 or an equal volume of DMSO

for duration of six hours at 37uC. Unstimulated cells were used as

mock control. Cells were fixed and immunostained as previously

described [69]. Rabbit polyclonal anit-LC3B (L7543, Sigma

Aldrich) was applied as primary antibody for the detection of

autophagy vesicles. Goat derived, Cy3 labeled, anti-rabbit IgG

(H+L; Jackson ImmunoResearch) was applied as secondary

antibody. Thereafter cells were counterstained with DAPI

(Invitrogen). Fluorescent images were acquired using a PLAPON

60xO/1.42 objective on an Olympus FV-1000 confocal micro-

scope. Image capture, analysis and processing were performed

using the Olympus Fluoview software.

Electron microscopy
MRC-5 cells growing on a Melinex polyester film (Agar

Scientific Ltd., Stansted, U.K.) in 24 well cluster plates were

infected with HCoV-229E (moi = 0.04) in the presence of 10 mM

of K22. After 18 h of infection at 37uC, the culture medium was

removed, the cells rinsed twice with Eagle’s medium, and a fresh

Eagle’s medium supplemented with 2.5% glutaraldehyde was

added and incubated for 45 min at 37uC. The cells were washed

twice with 0.05 M Tris-HCl buffer (pH 7.4) supplemented with

2 mM CaCl2, and further processed for electron microscopy as

described [75]. Experiments with recombinant nsp6 mutant

viruses and original virus were carried out in a similar manner

except that the cells were inoculated at a moi of ,0.25 and

incubated with or without the presence of 4 mM K22.

Supporting Information

Figure S1 J15 structure, antiviral activity, and cytotox-

icity. (A) J15 structure. (B) Anti-HCoV-229E activity and

cytotoxicity of J15 in MRC-5 cells. J15 and wild type (WT)

HCoV-229E or nsp6 recombinant HCoV-229EM159V (M159V)

were added to MRC-5 cells, and the number of viral plaques

developed after 48 h were assessed. For cytotoxicity assessment,

MRC-5 cells were incubated with J15 for 48 h at 37uC and the cell

viability determined using tetrazolium-based reagent. Data shown

are means (6SD) of duplicate determinations from two indepen-

dent experiments. PFU, plaque forming unit.

(TIF)

Figure S2 Ribonuclease treatment of HCoV-229E. Infec-

tious culture medium comprising wild type HCoV-229E or

mutant nsp6 recombinant HCoV-229EM159V (M159V) was spiked

with RNA purified from human respiratory syncytial virus (RSV)

and then incubated for 30 min at 37uC in the presence of

ribonuclease A (RNase) or without this enzyme (mock). The

number of copies of coronaviral RNA (A) or control RSV RNA (B)

was determined by qPCR while titer of infectious coronavirus (C)

by viral plaque assay. Data shown are means (6SD) of four

determinations obtained in four independent experiments (qPCR)
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or duplicate determinations from two independent experiments

(infectivity). PFU, plaque forming unit; n.d., not detectable; n.s.,

not significant.

(TIF)

Figure S3 J15 affects formation of double membrane

vesicles (DMVs). MRC-5 cells growing on Melinex polyester

film were infected with wild type HCoV-229E (WT) or with K22-

resistant recombinant nsp6 mutant HCoV-229EM159V (M159V)

and incubated for 18 h at 37uC with or without J15. The cells

were then fixed with glutaraldehyde and processed for electron

microscopy without their scrapping or pelleting. (A) Electron

micrographs of cells infected with WT virus show presence of

clusters of DMVs (arrow) and viral particles (arrowhead), and the

lack of their production upon J15 treatment (4 mM). (B) Electron

micrographs of MRC-5 cells infected with K22-resistant recom-

binant nsp6 mutant M159V showing presence of DMVs and viral

particles irrespective of the addition of J15.

(TIF)

Figure S4 K22 does not inhibit autophagy vesicle

formation. To determine whether K22 inhibits autophagy

vesicle formation Huh-7 cells were stimulated with rapamycin

alone or in presence of either 20 mM of K22 or an equal volume of

DMSO solvent for 6 h at 37uC. Unstimulated cells were used as

mock control. Fixed cells were stained with Anti-LC3B (red) and

DAPI (blue) to annotate autophagy vesicles and cell nucleus,

respectively.

(TIF)

Figure S5 K22 affects replication of diverse coronavi-

ruses including MERS-CoV. (A-D) The antiviral activity (bars)

and cell toxicity (data points above bars) of K22 (black bars) or

DMSO solvent (white bars) during MHV-Gluc (A), FCoV-RL (B),

SARS-CoV (C) and IBV (D) infection on representative

continuous cell lines of murine (L-929 cells; A), feline (FCWF

cells; B), or primate (Vero cells; C-D) origin. Data are shown as

mean (6SD) of a representative experiment, from two indepen-

dent experiments performed in triplicate. (E-F). The antiviral

activity (bars) and cell toxicity (data points above bars) of K22

(black bars) or DMSO solvent (white bars) in HCoV-229E-ren (E)

and MERS-CoV (F) infected differentiated human airway

epithelial (HAE) cultures. Data are shown as mean (6SD) of

three independent experiments performed in triplicate (viral yield),

or mean (6SD) of a representative experiment, from two

independent experiments performed in triplicate (cell viability).

Ns, not significant (P.0.05); * P,0.05; ** P,0.01 (paired t-test).

(TIF)

Figure S6 K22 exhibits little or no activity against

poliovirus 1. GMK AH1 cells were pretreated with K22 (black

bars) or DMSO solvent (white bars) for 4 h at 37uC and then

infected with poliovirus 1 Sabin strain at a moi of 0.001. Following

incubation of infected cells in the presence of K22 or DMSO for

48 h at 37uC, the titer of extracellular infectious virus in culture

medium was determined. The results shown are means of

duplicate determinations from two separate experiments. TCID50,

tissue culture infectious dose.

(TIF)

Table S1 Effect of K22 on proliferation and viability of

cultured cells.

(DOCX)
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