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Abstract

A large body of evidence indicates that mitochondrial dysfunction has a major role in the
pathogenesis of multiple cardiovascular disorders. Over the past 2 decades, extraordinary efforts
have been focused on the development of agents that specifically target mitochondria for the
treatment of cardiovascular disease. Despite such an intensive wave of investigation, no drugs
specifically conceived to modulate mitochondrial functions are currently available for the clinical
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management of cardiovascular disease. In this Review, we discuss the therapeutic potential of
targeting mitochondria in patients with cardiovascular disease, examine the obstacles that have
restrained the development of mitochondria-targeting agents thus far, and identify strategies that
might empower the full clinical potential of this approach.

Mitochondria occupy a central position in the biology of most eukaryotic cells, including all
the cells of the cardiovascular system, because mitochondria have a major role in catabolic
and anabolic metabolism, regulation of intracellular Ca?* homeostasis, initiation of
inflammatory reactions, and control of multiple pathways culminating in regulated cell death
(RCD)!. In line with this notion, the mitochondrial network is constantly subjected to a
tight qualitycontrol system that segregates dysfunctional mitochondria and delivers them to
lysosomes for degradation’-©. Such a mechanism, commonly known as mitophagy, involves
not only the core molecular machinery for autophagy’ but also a set of dedicated proteins
that are required for the optimal recognition of damaged mitochondria8-10,

A tight control on mitochondrial fitness is paramount for the preservation of cardiovascular
homeostasis for at least four reasons!!. First, cardiomyocytes heavily rely on fatty acid-
driven oxidative phosphorylation for ATP production, at least in physiological settings!2.
Thus, a decrease in the bioenergetic efficiency of the mitochondrial network can have a
direct detrimental effect on the contractile capacity of cardiomyocytes. Second, Ca* fluxes
are at the core of overall cardiac activity!. Therefore, defects in the capacity of the
mitochondrial network (in conjunction with the endoplasmic reticulum) to regulate Ca*
homeostasis can alter cardiac functions such as electrical conduction. Third, physiological
inflammatory homeostasis is particularly important not only for normal cardiac functions!?
but also for the preservation of vascular compartments'4. Thus, damaged mitochondria
accumulating in the cytosol of cardiomyocytes or endothelial cells can drive pathogenic
inflammatory responses. Finally, the integrity of the cardiovascular system is crucial for
optimal contractile and circulatory functions!d. Severe mitochondrial dysfunction and/or the
accumulation of permeabilized mitochondria (beyond a thresh old that depends on multiple
parameters) can initiate several variants of RCD that culminate in pathological tissue loss

(Fig. 1).

In line with these observations, mitochondrial defects have been involved, at least to some
extent, in the pathogenesis of a variety of cardiovascular disorders, including (but not limited
to) myocardial infarction (MI), cardiomyopathies of different aetiology, some forms of
arrhythmia, hypertension, atherosclerosis, and other vascular conditions !, Starting in the
late 1990s, the identification of mitochondrial dysfunction as a central aetiological
determinant of cardiovascular disease (CVD) drove an intensive wave of preclinical and
clinical investigation aimed at the development of novel targeted therapies!®. Thus far, the
results of such an effort have been disappointing, as no molecules specifically conceived to
target mitochondria are currently available for use against CVD in clinical settings!®. In this
Review, we discuss the rationale for using mitochondria targeting agents (MTAs) in the
treatment of CVD, dissect the obstacles that have limited their development over the past 2
decades, and put forward strategies that might unleash the full potential of these promising
— but hitherto unrealized — therapeutic tools.
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Therapeutic potential of MTAs

Targeting mitochondria from multiple angles has been associated with beneficial effects in a
variety of experimental CVD models (TABLES 1,2). However, limited benefits have been
documented in clinical trials investigating the safety and efficacy of MTAs for the treatment
of CVD, as discussed below.

Mitochondrial metabolism.

Healthy cardiomyocytes satisfy their elevated energy needs by catabolizing fatty acids (via
B-oxidation), branchedchain amino acids, and, to a lesser extent, ketone bodies (via
ketolysis) to fuel the tricarboxylic acid (TCA) cycle and drive ATP production via the
mitochondrial respiratory chain (box 1). By comparison, pyruvate derived from glycolysis
contributes minimally to ATP synthesis in the healthy heart!!. Such a predominantly
mitochondrial metabolic profile shifts in the course of numerous cardiac pathologies. Heart
failure (HF) is accompanied by a gradual decline in the bioenergetic reserve capacity of the
myocardium, which — beyond a specific threshold — can no longer be compensated for by
endogenous mechanisms2Y. In multiple variants of cardiomyopathy culminating with HF,
cardiomyocytes undergo metabolic reprogramming involving decreased foxidation and
branchedchain amino acid metabolism coupled with intracellular lipid deposition and
increased glucose utilization?!-24, The TCA cycle intermediate succinate accumulates in the
ischaemic myocardium, and such an accumulation is mechanistically linked to oxidative
damage at reperfusion? (see below). Along similar lines, TCA cycle activity is impaired 6
weeks after MIZ®, potentially representing an early maladaptive phase of the surviving
tissue.

The molecular mechanisms underlying metabolic reprogramming in the diseased
myocardium remain to be fully elucidated, although a role for specific transcription factors
has been postulated. For instance, nuclear receptor subfamily 2, group F, member 2 (NR2F2;
also known as COUPTF2) is upregulated in patients with HF, and transgenedriven Nr2f2
over expression in mice favours dilated cardiomyopathy accompanied by pathological
metabolic remodelling?’. Similarly, hypoxiainducible factor 1a. (HIF1a) initiates a
transcriptional programme involving peroxisome proliferatoractivated receptory (PPARYy)
that leads to increased glucose uptake and consequent lipid accumulation, apoptotic cell
death, and contractile dysfunction?!. Corroborating an aetiological role for this
transcriptional module, ventricularspecific deletion of Hifla prevents pressureoverload-
induced cardiomyopathy in mice?!.

Additional metabolic functions ensured (at least in part) by mitochondria are relevant for
CVD, including the folate cycle. An efficient folate cycle is indeed required for the optimal
conversion of homocysteine into methionine, and defects in this pathway, including genetic
variants in MTHFR (which encodes methyl enetetrahydrofolate reductase) are associated
with an increased incidence of vascular disorders (such as thrombosis and atherosclerosis)
secondary to, or at least paralleled by, homocysteine accumulation?8. Of note, several
mutations in mitochondrial or nuclear genes coding for components of the mitochondrial
respiratory chain have been associated with familial cardiomyopathies in humans2?.
Moreover, experimental interventions inducing respiratory defects in myocardial cells, such
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as the tissuespecific deletion of Aifm/ (which encodes apoptosis inducing factor
mitochondria associated 1)30 or 772m (which encodes mitochondrial transcription factor A;
TFAM)3!, result in spontaneous, earlyonset cardiomyopathy. Taken together, these
observations exemplify the involvement of mitochondrial metabolic dysfunction in CVD.

Early clinical trials testing Icarnitine supplementation, which (among other effects) favours
the mitochondrial uptake of cytosolic fatty acids, in patients recovering from acute MI
documented some degree of efficacy in reducing the incidence or severity of HF, left
ventricular enlargement, arrhythmias, and cardiac death3233, However, subsequent studies
did not conclusively confirm these observations3*3>, Moreover, oral Icarnitine can be
metabolized by the gut microbiota into trimethylamine Noxide (TMAO), a proatherogenic
molecule3®. Accordingly, individuals with high lcarnitine levels and concurrently high
TMAO levels in the blood are at increased risk of CVD and major adverse cardiac events0.
Thus, the clinical development of Icarnitine for the treatment of CVD seems to be at an

impasse.

The Boxidation inhibitor etomoxir has also been investigated in patients with congestive HF,
with inconclusive results’-38, Conversely, perhexiline and trimetazidine — which resemble
etomoxir in their capacity to inhibit Boxidation (although to different degrees) — are
currently approved in multiple countries (including Australia and Canada) as antianginal
agents3?. The therapeutic efficacy of perhexiline and trimetazidine has been proposed not to
reflect a switch from fatty aciddriven to glucosedriven catabolism*® but instead to entail an
entire rebalancing of carbon and nucleotide phosphate fluxes*! linked to autophagy
activation*? (see below). Perhexiline is also effective (at least to some extent) in a subset of
patients with cardiomyopathy#?#3, but not in patients with left ventricular hypertrophy
undergoing cardiac surgery***>. Trimetazidine has been tested in multiple cohorts of
patients with distinct cardiovascular disorders beyond angina, with variable degrees of
efficacy*®~49. Nonetheless, in the USA (but not in other countries), the clinical development
of perhexiline and trimetazidine has been discontinued, presumably owing to a fairly narrow

therapeutic index3°.

5Aminoimidazole4carboxamide ribonucleotide (AICAR; also known as acadesine) is an
intermediate in the synthesis of inosine monophosphate that potently activates 5" AMP-
activated protein kinase (AMPK), a metabolic sensor regulating mitochondrial biogenesis,

51,52 the clinical

dynamics, and metabolism>. Despite some promising preliminary results
development of acadesine as a cardioprotective intervention in patients undergoing CABG
surgery has been abandoned, at least in part owing to the lack of longterm efficacy>3. In
summary, despite a robust rationale to target mitochondrial metabolism for the prevention or

treatment of CVD, this therapeutic strategy remains largely unrealized.

Sirtuins are a family of NAD*dependent deacetylases and deacylases that control multiple
aspects of cellular metabolism, including mitochondrial function and redox balance®*. The
mammalian genome encodes seven different sirtuins, three of which (SIRT3, SIRT4, and
SIRTS) are localized to mitochondria>*. Pharmacological sirtuin activation mediates lifespan-

55-57

extending functions in multiple experimental models , and defects in both mitochondrial
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and extramitochondrial sirtuins have been associated with a variety of cardiovascular
disorders®®. Sirt/~~ mice are viable but have considerable developmental heart defects>. In
Sirt]*/~ hearts, ischaemic preconditioning does not preserve cardiac function after
ischaemia— reperfusion injury, potentially linked to hyperacetylation of cytosolic proteins
and consequent inhibition of autophagy®®-!, whereas myocardial .Sirt/ overexpression has
cardioprotective effects along with deacetylation of cytoplasmic proteins®-62, Sirt3~~ mice
show signs of cardiac hypertrophy and interstitial fibrosis at 8 weeks of age, spontaneously
develop agerelated cardiomyopathy, and are more sensitive than their wildtype littermates to
hypertrophic stimuli, including aortic constriction®3-%4. Such a susceptibility to cardiac
hypertrophy reflects, at least in part, an increased propensity of the Sirt3~~ myocardium to
undergo regulated necrosis upon mitochondrial permeability transition (MPT) as a
consequence of cyclophilin D (CypD; also known as PPIF) hyperacetylation®3:64 (see
below). Conversely, transgenic Sirt3 overexpression has robust cardioprotective effects in
mice®3. Similar results to those observed in Sirz3~~ mice have been obtained with Sirr2~~,
Sirt5™~, Sirt6~~, and Sirt7”~ mice, and as shown with Sirt3 overexpression, overexpression

of Sirt2 specifically in the myocardium had cardioprotective effects®3—68

. By contrast,
Sirt4~~ mice seem to be less susceptible to angiotensinllinduced cardiac hypertrophy than
their wildtype counterparts, whereas cardiomyocytespecific overexpression of Sirt4
reportedly mediates detrimental effects in this model®®. However, these findings have not yet
been confirmed. At least in part, the cardioprotective effects of sirtuin activation originate
from an antioxidant transcriptional programme orchestrated by forkhead box protein O3A
(FOXO3A; also known as FOX03)%3, proficient autophagic responses’, and potentially the
inhibition of MPTdriven regulated necrosis®*’! (see below). Thus, sirtuins support cardiac

fitness by affecting mitochondrial functions.

Sirtuins are activated by caloric restriction, which is also a potent inducer of autophagy, and
a vast amount of literature is available on the multipronged beneficial effects of caloric
restriction on cardiovascular health in humans, at least part of which are thought to depend
mechanistically on sirtuins’2. Additional sirtuin activators include the rather nonspecific

17374 a5 well as

natural polyphenols butein, honokiol, piceatannol, quercetin, and resveratro
several synthetic sirtuinactivating compounds, including SRT1720, SRT2104, and SRT3025
(REF.57). All these molecules have been shown to mediate beneficial effects in rodent
models of CVD, and both SRT1720 and SRT2104 extend mouse lifespan’#~77. Similarly,
dietary supplementation with nicotinamide mononucleotide (NMN; a precursor of NAD)
mediates potent cardioprotective effects in mouse models of cardiomyopathy and
ischaemia—reperfusion injury via a SIRT 1dependent or SIRT3dependent mechanism’8-80,
The capacity of dietary resveratrol to limit the incidence or severity of various
cardiovascular disorders (mostly in the context of type 2 diabetes mellitus) has been
investigated in multiple clinical trials3!~83, with inconclusive findings (often due to
problematic study design). Still, no fewer than 20 nonclosed (status: not terminated,
suspended, or withdrawn) clinical trials are currently registered at clinicaltrials.gov to
investigate dietary supplementation with resveratrol in individuals with ageassociated
morbidities (mostly type 2 diabetes) and cardiovascular conditions including nonischaemic
cardiomyopathy (NCT01914081), hypertension (NCT01842399), atherosclerosis

(NCT02998918), and endothelial dysfunction (NCT02256540). Results from a small
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randomized clinical trial including 40 patients with psoriasis (NCT01154101) suggest that
SRT2104 is well tolerated*. The safety of SRT3025 has been investigated in healthy
volunteers (NCT01340911), but to the best of our knowledge the results of this study have
not been disseminated. Finally, the effects of dietary NMN supplementation on
cardiometabolic functions are currently being formally investigated (NCT03151239). Taken
together, these observations suggest that, although multiple dietary interventions that activate
sirtuins, including caloric restriction, resveratrol, and NMN (both ofwhich are available over
the counter), might mediate robust cardioprotective effects, additional clinical testing is
required for the establishment of official treatment protocols enabling the use of these agents
for the treatment of CVD.

Mitochondrial dynamics.

The mitochondrial network constantly undergoes remodelling owing to the mutually
antagonistic activity of multiple proteins that promote fission, such as mitochondrial fission
factor (MFF), mitochondrial fission 1 protein (FIS1), and dynaminl like protein (DNM1L),
and fusion, such as mitofusin 1 (MEN1), MEN2, and optic atrophy protein 1 (OPA1)33 (Fig.
2). This process is paramount for the preservation of optimal mitochondrial functions in both
physiological and pathological conditions, at least in part because fission enables the
mitophagic disposal of dysfunctional mitochondria®. Accordingly, multiple genetic defects
impairing mitochondrial dynamics have been linked to CVD in experimental models.

The myocardium of Opal*~ mice has clustered mitochondria with disorganized cristae and
reduced mitochondrial DNA (mtDNA) content, and Opal*~ mice are more susceptible to
cardiac hypertrophy induced by transverse aortic constriction than their wildtype
counterparts®’. Cardiomyocytespecific deletion of Yme//l accelerates cardiac OPA1
proteolysis, thereby favouring mitochondrial hyperfragmentation and metabolic impairment,
leading to HF8®, Interestingly, angiotensinIlinduced cardiomyopathy leads to OPA1
acetylation and consequent mitochondrial fragmentation, a detrimental process that is
inhibited by SIRT3 (REF.8). The codeletion of Mfi and Mfn2 from adult cardiomyocytes
imposes a robust defect in mitochondrial fusion that drives cardiac dysfunction associated
with rapidly progressive (and ultimately lethal) dilated cardiomyopathy”. Such a
detrimental phenotype cannot be fully rescued by the concomitant deletion of Dnm /1, but
the cardiomyopathy manifesting in Mfnl/~~Mitn2~~Dnm1l~~ hearts progresses with
different kinetics than in Mfi/~~Mifn2~~ hearts and mostly reflects a mitophagic
blockage®!. However, Mfi11~~Mfn2~~ hearts have reduced sensitivity to ischaemia—
reperfusion injury compared with their wildtype counterparts, potentially as a consequence
of mitigated CaZ* overload®? (see below).

Transgenic expression of DNMI1LCA452F (a hyperactive DNMI1L variant) also drives dilated
cardiomyopathy accompanied by a considerable mitophagic defect3. Similarly, mouse
M2~ hearts spontaneously develop dilated cardiomyopathy accompanied by
mitochondrial hyperfragmentation, impaired contractile performance, and insensitivity to -
adrenergic stimulation®*%. Further corroborating the importance of mitochondrial fusion
for the preservation of cardiovascular homeostasis, adenovirusmediated delivery of MfnZ2to
the mouse myocardium inhibits angiotensinII induced cardiomyopathy”®. Interestingly,
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transgenedriven overexpression of a nonphosphorylatable MFN2 variant (MFN2AA) in the
myocardium of newborn (but not adult) mice prevents normal mitochondrial maturation,
accompanied by a switch from glucosedriven to fatty aciddriven metabolism, and leads to
premature lethality, most probably as a consequence of impaired mitophagy®” (see below).
Of note, physiological DNM1Ldependent mitochondrial fragmentation is critical for cardiac
adaptation to increased energy demands®®. Moreover, conditional deletion of one copy of
Dnm11from the myocardium exacerbates pressureoverloadinduced cardiomyopathy as well
as ischaemia—reperfusion injury in mice as a consequence of mitophagy impairment®®-190,
Altogether, these observations suggest that a balanced interplay between fission and fusion
is paramount for cardiovascular health as it preserves mitochondrial fitness in both
physiological and pathological conditions. Further corroborating this notion, the levels of
various factors involved in the regulation of mitochondrial dynamics, including FIS1,
MFEN?2, and OPA1, are altered in the course of CVD!01-103_ Of note, MFN2 is also
aetiologically involved in the proliferative arrest and death of vascular smooth muscle cells
elicited by oxidative stress in rats!%4. In line with this notion, transgenedriven Mfn2
overexpression reportedly prevents vascular smooth muscle cell proliferation and restenosis
in rat models of arterial injury induced by balloon denudation of the left common carotid
artery 9%, However, these effects seem to be independent of the role of MEN2 in the

regulation of mitochondrial dynamics!04,

The chemical DNMI1L inhibitor mdivil mediates cardioprotective effects in rodent models

106-108 and cardiomyopathy!9%-110 but the

of cardiac ischaemia—reperfusion injury
specificity of mdivil has been questioned!!!. Nonetheless, similar observations have been
made with other DNM 1L inhibitors such as P110 (REFs!!2:113) and dynasore!14. A cell-
permeant peptide enabling MFN2dependent mitochondrial fusion has also been
developed!!?, but its biological activity in the cardiovascular system remains to be
investigated. To the best of our knowledge, none of these agents has been tested in clinical

settings thus far.

Mitophagy constitutes a pillar in the maintenance of mitochondrial homeostasis in both the
healthy and diseased cardiovascular system>-0. Accordingly, multiple defects in the
molecular apparatus underlying proficient mitophagic responses have been associated with
spontaneous CVD in experimental models!”. Pink/~~ mice (lacking a kinase involved in the
recognition of depolarized mitochondria) develop left ventricular dysfunction and cardiac
hypertrophy by 2 months of age!16. Deletion of Park2 (also known as Prkn; encoding parkin
RBR E3 ubiquitin protein ligase, a functional mitochondrial interactor of serine/threonine
protein kinase PINK1, which is required for multiple variants of mitophagy) from the
myocardium of adult mice causes a very mild cardiac phenotype in unstressed animals!'!7.
Conversely, Park2 ablation from the myocardium of neonate mice causes premature and
rapidly lethal cardiomyopathy associated with failed mitochondria maturation (strikingly
similar to the phenotype associated with MEN2AA expression)?”. Similarly, knockout of
park (the fly orthologue of Park2) in Drosophila melanogaster causes dilated
cardiomyopathy that can be rescued by cardiomyocytespecific reexpression of park?>-118,
Bnip3I”~ mice lack a core component of the molecular apparatus for mitophagy and
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spontaneously develop cardiomegaly and contractile depression by 60 weeks of age, a
pathological phenotype that is further accelerated by the concomitant deletion of Bnip3
(coding for yet another protein involved in mitophagy)!!®. Genetic defects affecting
autophagy also compromise cardiovascular homeostasis owing to the accumulation of
dysfunctional mitochondria. This observation holds true for: cardiomyocytespecific deletion
of Atg5in adult mice, which causes lethal cardiac hypertrophy accompanied by
disorganized sarcomere structure as well as mitochondrial misalignment and
aggregation!20-121; wholebody deletion of Fbxo32in mice, which is associated with
premature death owing to cardiac degeneration associated with deficient autophagic
responses!?2; and the Lamp2~~ genotype, which causes a major lysosomal dysfunction that,
in mice, drives a vacuolar myopathy that affects cardiac and skeletal muscles, resembling
Danon disease!23. Of note, multiple genetic and pharmacological interventions that impair
mitochondrial dynamics impose at least some degree of mitophagic incompetence®0. These
two processes are so intimately interconnected that mechanistically ascribing the phenotype
to either of the alterations is difficult. Additional genetic alterations that trigger CVD in
rodents, such as cardiac deletion of 77rc (coding for the transferrin receptor)124, are
associated with mitophagic defects. Moreover, genetic defects that improve mitophagic
proficiency, such as wholebody absence of 7rp53 (also known as 7p53; coding for a master
regulator of cellular biology that inhibits autophagy in physiological settings), decelerate
spontaneous cardiac ageing!23. Taken together, these observations exemplify the critical role
of mitophagy in the preservation of physiological cardiovascular homeostasis. That said,
Park2 deletion seems to rescue, at least in part, the lethal phenotype of Dnm ] deletion in the
adult myocardium!17, suggesting a role for uncontrolled mitophagy in the detrimental
phenotype imposed by defects in mitochondrial fission (see above).

Multiple genetic defects impairing mitophagic proficiency aggravate disease severity in
experimental models of CVD'7. Bnip3/~~Bnip3~~ hearts are highly sensitive to
decompensation induced by pressure overload!!°. Homozygous or heterozygous deletion of
Atg5 from the mouse myocardium exacerbates cardiomyopathy driven by pressure
overload!?0 and angiotensin II administration!26. Similarly, mice bearing Azg5~~ monocytes
are more susceptible to develop atherosclerotic lesions in response to a highfat diet or Ldir
deletion than mice with wildtype monocytes'27-128. Mice engineered to overexpress Rheb,
which encodes the endogenous autophagy inhibitor RAS homologue enriched in brain
(RHEB), in the myocardium are more susceptible to cardiac ischaemia—reperfusion injury
than wildtype mice, a detrimental phenotype that can be partially rescued by administration
of the pharmacological autophagy activator rapamycin!2%-130, Dpase2a~~ mice, which lack

a lysosomal nuclease (deoxyribonuclease 2a.) that is involved in the autophagic degradation
of mtDNA released upon mitochondrial damage, are extremely sensitive to pressureoverload-
induced cardiomyopathy, at least in part owing to exaggerated inflammatory responses in the
myocardium!3! (see below). Interestingly, cathelicidin antimicrobial peptide (CAMP) can
bind mtDNA to limit its degradation by DNase 2a (DNASE2a), which has been associated
with exacerbated atherosclerosis in Apoe™~ mice!32.

Whole body overexpression of Azg7 (encoding a core component of the autophagic
machinery) restrains cardiac hypertrophy and extends survival in a mouse model of desmin-
related cardiomyopathy!33. The 7rp53~~ genotype limits both ischaemia—reperfusion injury
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and doxorubicin cardiotoxicity in mice, potentially owing to reduced myocardial
susceptibility to RCD (see RCD section below), and improved mitophagy!2>-134, Multiple
other genetic alterations that mediate beneficial effects in experimental models of CVD are
associated with superior mitophagic responses (although precise mechanistic links are
missing), including the Stk4~~ genotype, which limits cardiac ischaemia—reperfusion
injury!33, and the wholebody deletion of Lc/at/, which mitigates hypertrophic
cardiomyopathy induced by thyroid hyperstimulation!3¢. Moreover, multiple
cardioprotective interventions including hypothermia and the administration of glucagonlike
peptide 1 receptor (GLP1R) agonists have been shown to promote autophagy (at least in
some cell types), correlating with reduced amounts of RCD!37-138_ Conversely, Pgam5~/~
mice are more susceptible to cardiac ischaemia—reperfusion injury than their wildtype
littermates along with a wholebody defect in mitophagy, potentially linked to the capacity of
phosphoglycerate mutase family member 5 (PGAMS) to regulate DNM1L dependent
fission!39. Similarly, mice with an endothelial cellspecific deletion of Pdcd10 spontaneously
develop a syndrome resembling cerebral cavernous malformations, accompanied by robust
autophagic defects'49. Thus, the optimal elimination of damaged mitochondria by
mitophagy is fundamental for the cardiovascular system to control potentially pathogenic
challenges.

Interestingly, the role of beclin 1 (BECN1), a core component of the autophagic machinery
that participates in multiple instances of mitophagy’, in the preservation of cardiovascular
homeostasis in pathological settings is rather controversial. Indeed, whereas BECNI1 has
been attributed a cardioprotective role in some models of CVD?%141, Becn/*/~ rodents
consistently exhibited low sensitivity to potentially cardiotoxic challenges!42-144, Although
the reasons for this apparent discrepancy remain to be formally elucidated, linking them to
emerging autophagyindependent functions of BECN1 in RCD regulation is tempting 43
Further corroborating the critical role of mitophagy in cardiovascular homeostasis,
ischaemic preconditioning has been associated with the translocation of PARK2 to
depolarized mitochondria and consequent initiation of their autophagic disposal'4®.
Moreover, the expression levels of components of the mitophagic apparatus such as PINK1
decrease in patients with CVD!16, and HF is more frequent in individuals with mitophagy
defects (as in patients with Parkinson disease)!47.

Sirtuin activators such as caloric restriction and resveratrol are potent activators of
autophagy, adding to multiple lines of evidence intimately linking the sirtuin system and
autophagic responses. Additional pharmacological agents that promote mitophagy or
autophagy have been shown to mediate beneficial effects in rodent models of CVD!7. These
include the natural polyamine spermidine, an inhibitor of the acetyltransferase E1A-
associated protein p300 (EP300)!48-130 and the natural macrolide rapamycin (also known
as sirolimus), which inhibits the master suppressor of autophagy mechanistic target of
rapamycin (mTOR)!31-154_ Conversely, systemic administration of nonspecific inhibitors of
autophagy such as 3methyladenine, which targets multiple variants of phosphatidylinositol 3-
kinase (PI3K), and bafilomycin A1, which suppresses lysosomal functions, generally
increases disease severity in rodent models of CVD, including ischaemia— reperfusion
injury133:135.156 Interestingly, sirolimus is largely employed in drugeluting stents to prevent
restenosis after percutaneous coronary intervention!>’. Although this use originated from the
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158 it cannot be excluded

potent antiproliferative and antiinflammatory activity of sirolimus
that the therapeutic benefits of this strategy involve, at least in part, the induction of
autophagy, which reportedly stimulates the degradation of oxidized LDL!? and might also
favour the clearance of macrophages from the atherosclerotic plaque!0%-161, Moreover,
multiple FDAapproved agents that mediate beneficial effects on the cardiovascular system,

)162, statins

including aspirin (which is widely used as an antiinflammatory and anticoagulant
(which are currently used to lower circulating levels of cholesterol and triglycerides)!63, and
suberanilohydroxamic acid (SAHA; a histone deacetylase inhibitor used for the treatment of
cutaneous T cell lymphoma)!64165_ trigger proficient autophagic responses in the

myocardium.

Despite the robust links between mitophagy and/or autophagy activation and improved
cardiovascular homeostasis in health and disease, targeting the underlying molecular
apparatus with specific pharmacological intervention has proved to be challenging!3°.
Accordingly, no clinical trials are currently investigating the therapeutic potential of
mitophagy and/or autophagy modulators beyond calorie restriction and sirolimus in patients
with CVD.

Ca2* homeostasis.

In cardiomyocytes, mitochondria participate (to some extent) in the buffering of cytosolic
Ca2* ions. Depolarization of the plasma membrane activates voltagedependent Ltype Ca2*
channels, and CaZ* enters into the cytosol, which causes CaZ*induced Ca2* release from the
sarcoplasmic reticulum via ryanodine receptor 2 (RYR2); Ca2* is removed from the cytosol
predominantly by members of the sarcoplasmic/endoplasmic reticulum calcium ATPase
(SERCA) family and by solute carrier family 8 member A1 (SLC8AT1; also known as
NCX1)166, In physiological conditions, mitochondrial Ca?* uptake is mediated by calcium
uniporter protein, mitochondrial (MCU)!67-168 Conversely, Ca2* efflux from the
mitochondrial matrix relies primarily on the Na+/Ca%* antiporter SLC8B1 (also known as
NCLX)!69. Although mild, transient elevations of mitochondrial CaZ* levels support
oxidative phosphorylation and ATP synthesis!’, persistent Ca2* overload favours MPT!7!,
In line with this notion, the transgenedriven overexpression of a leaky variant of RYR2 in the
mouse myocardium exacerbates the cardiotoxic effects of ischaemia—reperfusion injury and
causes mitochondrial CaZ* overload in cardiomyocytes!72. Moreover, in multiple cell types,
including cardiomyocytes, MCU deficiency confers resistance to MPT driven by
mitochondrial CaZ* overload!73:174, and the conditional deletion of Mcu from adult
cardiomyocytes mediates cardioprotective effects against ischaemia—reperfusion injury in
vivo!74175 However, the hearts from Mcu~"~ mice, as well as mouse hearts expressing a
dominantnegative variant of MCU, are as susceptible to ischaemia—reperfusion injury ex
vivo as their wildtype counterparts!73:176 The reasons underlying this apparent discrepancy
remain to be elucidated. As a possibility, the contribution of mitochondrial Ca%* overload to
MPT might be limited when ischaemia— reperfusion injury is imposed ex vivo. Irrespective
of this conundrum, MCU seems to be required for optimal cardiac responses to acute
physical demands!'7*173. Importantly, deletion of S/c8bh/ from adult mouse cardiomyocytes
provokes sudden death as a consequence of mitochondrial Ca?* overload leading to
widespread MPTdriven necrosis of the myocardium!7?. Conversely, S/c8b1 overexpression
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mediates robust cardioprotection in mouse models of cardiac ischaemia—reperfusion
injury!7’. These observations exemplify the importance of mitochondrial Ca* fluxes for
cardiovascular homeostasis in health and disease.

Further corroborating the crucial role for intracellular Ca2* homeostasis in cardiac
physiology, genetic defects in plasma membrane Ltype Ca2* channels are known to impair
cardiac signal conduction, potentially favouring the development of arrhythmial78.
Moreover, hyperactivation of the cytosolic Ca2*responsive enzyme calcium/calmodulin-
dependent protein kinase II (CaMKII) has been aetiologically linked to a variety of
cardiovascular disorders, often reflecting the ability of CaMKII to regulate mitochondrial
functions. Mice engineered to overexpress an endogenous inhibitor of CaMKII in

179 presumably

cardiomyocytes areprotectedfromischaemia— reperfusion injury in vivo
reflecting the capacity of CaMKII to trigger MCUdependent mitochondrial Ca2* overload,
blunt antioxidant defences, and trigger DNM1Ldependent mitochondrial
fragmentation!79-182 Deletion of Camk2d (encoding one of the CaMKII subunits)
attenuates pathological maladaptation in a genetic mouse model of decompensating cardiac
hypertrophy!82. Moreover, CaMKII seems to participate in the pathogenesis of
atherosclerotic plaques!®3, although the underlying molecular mechanisms remain to be

unveiled.

Although pharmacological regulators of cellular Ca** homeostasis are commonly available
for the treatment of some cardiovascular disorders (for example, verapamil, a blocker of
plasma membrane CaZ* channels used virtually worldwide for the treatment of arrhythmia
and some forms of hypertension)!84, mitochondrial Ca2* fluxes have been rather elusive
drug targets. NCLX inhibitors such as CGP37157, KBR7943, and SEA0400 mediate
promising cardioprotective effects in animal models of HF!6%:185_ These results are at odds
with the findings obtained with NcZx~~ mice!?”, most likely reflecting the capacity of
chemical NCLX inhibitors such as CGP37157 to preserve redox homeostasis!%”. That said,
NCLX inhibitors never entered clinical development, presumably owing to specificity
issues, because these compounds also inhibit the plasma membrane Na+/Ca%* antiporter
SLC8A1'80, Chemical inhibitors of MCU including DS16570511 have also been
identified'®7, but whether MCU inhibition constitutes a valid therapeutic objective for the
treatment of CVD remains controversial. Supporting caution over this approach, the
anticancer agent mitoxantrone, which is associated with robust cardiotoxic effects in some
patients, potently inhibits MCU (potentially contributing the adverse effects of this
chemotherapeutic)!88. The necroptosis inhibitor Necrox5 has also been suggested to mediate
beneficial effects via MCU inhibition!3%, but the specificity of this molecule remains to be
determined. Finally, a panel of CaMKII inhibitors is available for investigational purposes,
including competitive and noncompetitive inhibitors of ATP or substrate binding, agents that
disrupt calmodulin binding, and agents that mimic endogenous CaMKII blockers!??.
Although many of these agents mediate consistent beneficial effects in animal models of

CVD (reviewed previously)!?%, none of them has entered clinical development.
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Oxidative stress.

Mitochondria generate reactive oxygen species (ROS) as a normal byproduct of oxidative
phosphorylation, and physiological ROS levels regulate multiple cardiovascular processes,
including (but not limited to) metabolic functions in the myocardium and endothelial
permeability in vessels!?1. However, mitochondrial dysfunction is generally associated with
massive ROS overgeneration (box 2), which (especially when cellular antioxidant defences
are lowered) causes oxidative damage to macromolecules, thereby favouring the
establishment of local inflammation? and initiating multiple variants of RCD including MPT-
driven regulated necrosis and ferroptosis!’!192, The human failing myocardium reportedly
has more than twofold higher levels of superoxide anion than the healthy myocardium!%3.
Similar observations have been made in the context of diabetic and hypertensive

196 hucleic

cardiomyopathy!94195 Moreover, markers of oxidative damage to lipids
acids'%7, and proteins!?® have been documented in the circulation or in the myocardial tissue
of patients with MI or HF (and in animal models of these conditions)!??. Finally, myocardial
mitochondria exhibit increased oxidative damage in aged versus young rats2%0, and the
mitochondrial network of rat endothelial cells produces increased levels of H O with
ageingZ0!. These observations suggest that oxidative stress is involved in multiple forms of
CVD, including ageingassociated cardiovascular disorders. Corroborating an aetiological
role for ROS overproduction in at least some variants of CVD, the absence of one copy of
Sod?2 (which encodes a mitochondrial superoxide dismutase) aggravates atherosclerosis
progression in Apoe™~ mice?02, Placing mice under progressive respiratory hypoxia after
ischaemia—reperfusion limits ROS production because hypoxia induces a robust regenerative
response with decreased myocardial fibrosis and improvement of left ventricular systolic
functionZ03. Moreover, cardiomyocytespecific deletion of Txnrd2 (which encodes
thioredoxin reductase 2) from mouse embryos leads to fatal dilated cardiomyopathy24.
Interestingly, imposing the same genetic defect on adult mice generates a much milder
cardiac phenotype resembling accelerated cardiac ageing?%3. This finding suggests that the
embryonic and neonatal myocardium and its adult counterpart have different sensitivity to

oxidative stress.

The possibility to use antioxidants (including molecules available over the counter as dietary
supplements) for the treatment of CVD drove an intense wave of preclinical and clinical
investigation spanning the past 2 decades. Coenzyme Qj(, atocopherol (vitamin E), ascorbic
acid (vitamin C), and Bcarotene (the precursor of vitamin A) have all been clinically tested
for the treatment or prophylaxis of HF200-207 highrisk heart surgery208, acute M1209-214,
and atherosclerosis213-216, The majority of these studies confirmed that active levels of
antioxidants can be achieved in the circulation of patients with CVD, although most often
this is not associated with measurable clinical benefits, perhaps with the exception of
coenzyme Qo supplementation for the treatment of moderatetosevere HF20, Some clinical
trials are ongoing to test the clinical activity of coenzyme Qg or its reduced counterpart
(ubiquinol) in patients with HF (NCT03133793, NCT01925937, NCT02779634, and
NCT02847585), cardiac arrest (NCT02934555), and atherothrombosis (NCT02218476) as
well as the capacity of ascorbic acid to prevent atrial fibrillation after CABG surgery
(NCT03123107).
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Promising preclinical results have been obtained with mitochondriatargeted antioxidants,
including elamipretide (also known as Bendavia, MPT131, and SS31), mitoQ, and mito-
TEMPO, in animal models of MI?!7, hypertensive cardiomyopathy!9>-218-220 HF221,
ischaemia—reperfusion injury?22-224, pathological tissue remodelling after MI?23, and
atherosclerosis?29, fostering the initiation of multiple clinical trials. Both the EVOLVE
(NCT01755858) and the EMBRACE STEMI (NCT01572909) studies, evaluating the
capacity of elamipretide to limit restenosis after angioplasty of the renal or coronary artery,
respectively, did not report clinical benefits?27-228 Conversely, highdose elami pretide
decreased left ventricular enddiastolic volume and endsystolic volume in HF218:221 with
reduced ejection fraction, pointing to (at least some degree of) clinical efficacy?2°.
Elamipretide is still being investigated in Europe for its therapeutic effects in patients with
HF (NCT02914665 and NCT02788747), whereas in the USA, increased attention is being
dedicated to the possibility of using elamipretide for the treatment of mitochondrial
disorders (such as myopathies and retinopathies). Along similar lines, mitoQ is mostly being
investigated in clinical settings other than CVD.

Inflammation.

The major role of mitochondria in the establishment of innate inflammatory responses that
contribute to the pathogenesis of CVD is now clear23%, This observation reflects the key
contribution of mitochondrial metabolism and ROS production to multiple immune
functions (which is beyond the scope of this Review)?3!, and the fact that mitochondria
contain a large amount of endogenous molecules that can act as damage-associated
molecular patterns (DAMPs) upon release?32-233, These molecules include (but potentially
are not limited to) ROS, mtDNA, ATP, and cardiolipin233. Both ROS and mtDNA (alone or
complexed with TFAM) can stimulate inflammatory responses from the cytosol, owing to
their capacity to stimulate the release of IL1, IL18, and type I interferon upon activation of
the inflammasome and the stimulator of interferon genes protein (STING; also known as
TMEM173)234235_ Moreover, extracellular mtDNA can drive granulocyte degranulation
upon binding to Toll like receptor 9 (TLR9)230. Extracellular ATP released in the course of
RCD operates both as a chemoattractant and as an immunostimulant for myeloid cells23”.
Finally, cardiolipin can favour the activation of y& T lymphocytes via a CD1Ddependent
mechanism?38. Although not all these processes have been implicated in the
pathophysiology of CVD, these observations exemplify well how mitochondrial dysfunction
in the cardiovascular system, especially in the presence of a mitophagic defect, can drive
detrimental inflammatory responses.

In line with this notion, mice lacking the cytosolic DNA sensor cyclic GMPAMP synthase
(CGAS)?3? have improved early survival after MI along with reduced cardiac immune
infiltration and consequent pathological tissue remodelling2*0. Cgas™~ mice, Irf3~~ mice
(lacking an effector of CGAS signalling), and Zfiar/~~ mice (lacking one of the subunits of
the type I interferon receptor)2*! are protected against MI compared with wildtype mice, a
cardioprotective phenotype that is accompanied by decreased cardiac expression of
inflammatory cytokines and chemokines and decreased inflammatory cell infiltration in the
myocardium?#2. Similar cardioprotective effects have been documented with hearts from
NIrp3~~ mice (which lack a core component of the inflammasome) subjected to ischaemia—

Nat Rev Cardiol. Author manuscript; available in PMC 2020 January 01.



1duosnuepy Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuepy Joyiny

Bonora et al.

Page 14

reperfusion injury ex vivo?43. Moreover, mtDNA escaping mitophagic degradation as a
consequence of DnaseZ deletion aggravates disease symptoms and progression in a mouse
model of pressureoverloadinduced cardiomyopathy, a detrimental phenotype that can be
partially rescued by 77r9 codeletion or administration of TLR9inhibiting
oligodeoxynucleotides!3!. NLRP3, CGAS, and STING have also been aetiologically
involved in the endothelial inflammatory response driven by dietinduced obesity and in
some models of atherogenesis23>244, Moreover, atherogenesis caused by a highfat diet is
inhibited in Apoe™~I11r1~~ mice (which lack both apolipoprotein E and the receptor for IL-
1B, IL1R1) compared with Apoe™~ mice?*>. By contrast, deletion of Z//rn (encoding an
endogenous inhibitor of ILIR1) aggravates considerably the disease pathogenesis in Apoe™~
mice, whereas Apoe™~ mice engineered to overexpress ///rn are largely protected from high-
fatdietinduced atherogenesis24¢. Finally, a common lossoffunction variant in P2RX7 (coding
for one of the receptors for extracellular ATP) is associated with reduced risk of
cardiovascular events in smokers24’. These studies are only a few examples of how genetic
defects in the proinflammatory signalling pathways elicited by mitochondrial DAMPs
reduce disease incidence, severity, or progression in rodent models of CVD as a
consequence of quenched inflammatory responses.

In line with this notion, pharmacological inhibitors of the signal transduction cascades
activated by mitochondrial DAMPs provided beneficial effects in multiple experimental
models of CVD. For instance, administration of a type I interferonneutralizing antibody
protected mice against MI to a similar extent as the absence of Irf3 or Ifnarl (REF.242),
Similarly, wildtype mice subjected to ischaemia—reperfusion while receiving a
pharmacological inhibitor of NLRP3 (16673340) had a significant reduction in infarct size
afterwards compared with their control counterparts248-249 Some degree of cardioprotection
has also been observed with the P2RX7 inhibitor Brilliant Blue in rat hearts subjected to
ischaemia—reperfusion ex vivo2>? as well as with the TLROtargeting oligodeoxynucleotide
ODN 2088 in rats with spontaneous hypertension?!. Interestingly, elamipretide binds to and
prevents the peroxidation of cardiolipin?>2, and blocking y8 T lymphocytes with a
monoclonal antibody specific for killer cell lectinlike receptor subfamily K member 1
(KLRK1) reportedly attenuates ischaemia— reperfusion injury in a cardiac transplantation
model in rats233. However, whether elamipretide influences the capacity of cardiolipin to
activate yd T lymphocytes remains to be elucidated. Although multiple antiinflammatory
agents are currently available for the treatment of CVD, they all operate by either inhibiting
immune cell activation (as in the case of corticosteroids) or by blocking the production of
proinflammatory eicosanoids (as in the case of NSAIDs)234:235_ To the best of our
knowledge, no therapeutic agent designed to intercept DAMP emission from mitochondria
or specifically block the downstream signalling cascades has reached clinical development.

Regulated cell death.

A prominent aetiological component of multiple cardiovascular disorders, including HF, MI,
and atherosclerosis, is the demise of cells damaged beyond recovery!, generally occurring
via multiple, highly interconnected signalling cascades* (box 3). Widespread and
irreversible mitochondrial dysfunction culminating with the permeabilization of
mitochondrial membranes has a central role in apoptosis, MPTdriven regulated necrosis, and
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parthanatos29, de facto contributing to pathological tissue loss in the context of CVD!3. In
line with this notion, mice bearing genetic alterations of the molecular apparatus for RCD
are protected (at least to some degree) against multiple cardiovascular pathologies. For
instance, Bbc3~~ mice lack one of the upstream activators of intrinsic apoptosis and have
increased resistance to ischaemia—reperfusion injury compared with their wildtype
littermates2>’. Similarly, mice overexpressing Bcl2, encoding the apoptosis regulator BCL2,
have mitigated MI upon ischaemia—reperfusion injury28. Ppif~ mice, which lack the
crucial component for MPTdriven regulated necrosis CypD, are protected against cardiac

261 and

ischaemia—reperfusion injury23%-260 angiotensinllinduced cardiomyopathy
arrhythmia (in this last case, perhaps also linked to preserved Ca2* fluxes)262. The deletion
of Parpl, which encodes poly(ADPribose) polymerase 1 (a nuclear DNA repair enzyme that
is required for parthanatos), mediates beneficial effects in mouse models of ischaemia—
reperfusion injury263-264 and atherogenesis2>. Moreover, both Ripk3~~ mice (which lack a
critical regulator of necroptosis) and mice engineered to overexpress dominantnegative
CaMKII in the heart are protected against ischaemia—reperfusion injury and the cardiotoxic
effects of doxorubicin?°®, These findings link the molecular machinery for necroptosis,
which normally proceeds independently of mitochondria?>®, to mitochondrial dysfunction

and consequent MPTdriven necrosis.

Extraordinary efforts have also been dedicated to the development of clinically useful
inhibitors of RCD for cardioprotective purposesZ®’, with rather dismal results. Indeed,
although dozens of compounds targeting distinct modules of the molecular machinery for
RCD have been successfully synthesized and demonstrated to mediate beneficial effects in
experimental models of CVD2%7, none of these agents is currently approved for clinical use.
Among other approaches, promising preclinical results in animal models of CVD have been
obtained with caspase inhibitors, including: the pancaspase blockers ZVADFMK?268 and
MX1013 (REF.2%%); inhibitors of the core activator of intrinsic apoptosis, apoptosis regulator
BAX (BAX), including a cellpermeant peptide derived from the endogenous BAX inhibitor
BCL2like protein 1 (BCL2L1)279, as well as the two small molecules Bcil and Bci2
(although these compounds were tested only in rodent models of brain ischaemia)?”!;
inhibitors of serine protease HTRA?2, mitochondrial (HTRAZ2), such as the small molecule
UCF101 (REFs%72-273); molecules that preserve the integrity of the respiratory chain in the
course of RCD, including multiple 2sulfonylpyrimidinyl derivatives (although these
compounds have been investigated only in rodent models of neurodegeneration)2’4273;
PARP1 inhibitors such as 3amin0benzamide263; and inhibitors of MPTdriven necrosis,
including TRO40303 (a small molecule specific for translocator protein (TSPO)276),
cinnamic anilides (the precise molecular target of which remains to be determined?’”), and
the CypDtargeting compounds cyclosporine A, Debio025, NIM811, and sanglifehrin A
(REFE.278). Most of these molecules never reached clinical development, often owing to
specificity or bioavailability issues2’. Conversely, both TRO40303 and cyclosporine A have
been investigated for their clinical benefits in patients undergoing percutaneous coronary
intervention for acute MI279-280_ However, despite considerable enthusiasm elicited by the
release of efficacy data from the first randomized clinical trial to test cyclosporine A for this
indication?80, subsequent studies did not document clinical benefits?81:282, Similarly,
TRO40303 seems to be well tolerated but devoid of clinical efficacy?83-284, To the best of
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our knowledge, the clinical development of TRO40303 has been discontinued. By contrast, a
large number of clinical trials are ongoing to test the therapeutic effects of cyclosporine A.
The vast majority of these studies, however, are aimed at investigating the activity of
cyclosporine A as an immunosuppressant rather than as an MPT inhibitor. Indeed,
cyclosporine A is approved by the FDA to prevent and treat graftversushost disease after
bone marrow transplantation, the rejection of kidney, heart, and liver transplantation, and a
panel of autoimmune disorders283-286_ Of note, the vasodilator nicorandil, which is approved
in several countries for the treatment of angina, reportedly potentiates ischaemic
preconditioning, at least in some experimental models, by inhibiting MPT287_ Clinical data
from a few studies indicate that nicorandil (which was not conceived as an MTA) might
confer cardioprotection after MI288-290_ 3 possibility that remains under scrutiny.

Mitochondrial microRNAs.

Most (if not all) aspects of mitochondrial biology are now known to be subjected to
epigenetic regulation by microRNAs (miRNAs)2?1. Importantly, this process occurs not only
in the nucleus but also in the mitochondrial matrix, where all the components of the

292, Both nuclear

molecular apparatus for miRNAdependent gene silencing are presen
miRNAs and mitochondrial miRNAs (also known as mitomiRs) have been implicated in the
pathogenesis of multiple cardiovascular disorders2°!. The codeletion of the sequences
encoding miR181c and miR181d mediated cardioprotective effects in a mouse model of
ischaemia-reperfusion injury, potentially linked to preserved levels of the mitochondrially
encoded cytochrome ¢ oxidase subunit 1 (MTCO1) and ameliorated respiratory functions%3.
Overexpression of miR30b in mouse cardiomyocytes decreases infarct size after ischaemia—
reperfusion injury, reflecting the ability of miR30b to downregulate CypD levels and thereby
impair MPT2%4, Similarly, miR2861 knockdown protects the mouse heart from ischaemia—
reperfusion injury in vivo, a beneficial phenotype potentially linked to upregulation of solute
carrier family 25 member 4 (SLC25A4)%%3. Codeletion of the genes encoding miR212 and
miR 132 provides cardioprotection against pressureoverloadinduced cardiomyopathy along
with the activation of FOXO3Adependent autophagy2°®. Consistently, cardiomyocyte-
specific overexpression of miR132, miR199a, miR212, or miR421 in rodents triggers or
aggravates CVD along with the induction of mitophagic defects226-298, Nanoparticlebased
delivery of a miR181c coding vector also leads to cardiac dysfunction by provoking
mitochondrial impairment?%?, as does the deletion of mir-150and the codeletion of
miR-181a and miR-1815*93300_ Altogether, these observations exemplify the intimate links
between the epigenetic regulation of gene expression at both mitochondrial and nuclear

levels, mitochondrial biology, and CVD.

Several miRNAtargeting strategies have been shown to mediate beneficial effects in
preclinical models of CVD. The mitochondrial pool of miR378 increases in the course of
diabetic cardiomyopathy in mice, and intraperitoneal administration of a miR378 antagonist
mediates cardioprotection, linked with the preservation of mitochondrially encoded ATP
synthase subunit a (MTATP6) synthesis3°!. The mitochondrial levels of mitochondrially
encoded cytochrome 5 (MTCYB) are significantly lower in hearts from rats with
spontaneous hypertension than in control hearts from Wistar rats, associated with an
upregulation in the mitochondrial pool of miR21 (which promotes Cyzb translation)3%2. In
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line with the hypothesis that miR21 upregulation constitutes a compensatory response to
decreased MTCYB levels and consequent ROS overgeneration, intravenous delivery of an
adenoviral vector for the overexpression of miR-21 in rats with spontaneous hypertension
mediates shortterm beneficial effects on systolic blood pressure and longterm
cardioprotection3?2. miR 106a is robustly upregulated in the hypertrophic myocardium, along
with a profound downregulation of MFN2, and data from cultured cardiomyocytes exposed
to miR106a mimics or antagonists suggest that antagonizing miR106a might contribute to
the restoration of MEN2 levels and conse quent rescue of mitochondrial functions3%3. miR-
3245p and miR761 are negative regulators of mitochondrial fission, and intravenous delivery
of a miR3245p or miR761 mimic limits apoptotic RCD and tissue damage in the
myocardium of mice exposed to ischaemia— reperfusion3%4-305 Similarly, administration of
a miR499 antagonist (which also inhibits mitochondrial fission) exacerbates infarct size in
mice exposed to ischaemia—reperfusion3%®. Expression of miR33a and miR33b is markedly
increased in human carotid atherosclerotic plaques compared with normal arteries, and
treatment of Apoe™~ mice with miR33 antagonists reduces arterial atherosclerotic lesions
along with the normalization of mitochondrial functions3?7. Additional progress is required

for miRNAtargeting agents to enter clinical development308.

in the development of MTAs

Despite an extraordinary experimental effort spanning over the past 3 decades, virtually no
MTAs are currently approved for use in patients with CVD. We surmise that such a dismal
situation is linked (at least in part) to pharmacodynamic and pharmacokinetic issues, a
hitherto fragmentary knowledge of the molecular mechanisms behind mitochondrial
processes, and a rather simplistic appreciation of the pathophysiology of some
cardiovascular disorders.

Pharmacological issues.

Multiple MTAs have limited pharmacological specificity for their mitochondrial targets.
Cyclosporine A and other CypDtargeting agents are perhaps the most representative
examples of this problem. Cyclosporine A and sanglifehrin A potently inhibit MPT by
binding to CypD, de facto mediating robust cytoprotective effects in rodent models of CVD
and other pathologies associated with MPTdependent tissue loss2’®. However, both
cyclosporine A and sanglifehrin A also enable the binding of peptidylprolyl cistrans
isomerase A (PPIA) to the heterodimeric phosphatase calcineurin, resulting in potent
calcineurin inhibition and consequent complete blockage of T cell activation3%°. With
systemic administration, the immunosuppressive effect of cyclosporine A and sanglifehrin A
are prominent, as demonstrated by the fact that cyclosporine A is approved for use in various
clinical settings as an immunosuppressant28>-286_ Novel CypD inhibitors that lack
immunosuppressive activity such as Debio025 and NIMS811 are currently being
developed?’8. In addition, attention is being focused on strategies for the targeted delivery of
cyclosporine A to the myocardium. In this setting, promising results have been obtained with
poly(lacticcoglycolic acid) (PLGA) nanoparticles incorporating cyclosporine A, which were
more potent than cyclosporine A at limiting ischaemia—reperfusion injury in mice in the

absence of alterations in the myocardial recruitment of inflammatory monocytes>!0.
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Untargeted antioxidants also have specificity issues because, on entering the cell,
antioxidants can quench ROS from multiple (not necessarily mitochondrial) sources, which
limits the purely mitochondrial activity of these compounds. Multiple strategies have been
successfully used to target antioxidants specifically to mitochondria, most of which harness
the capacity of cationic molecules to accumulate spontaneously within the mitochondrial
matrix mediated by the mitochondrial transmembrane potential (Ay,)3'1-312. One of the
major issues with this approach, potentially decreasing its therapeutic value, is that
dysfunctional mitochondria often have decreased Ay, and, consequently, are unable to
accumulate cationic molecules3!3. Alternative techniques for mitochondrial delivery,
including the use of lipophilic cationic peptides3!4, also rely on the Ay, and, therefore,
cannot circumvent this issue. Similarly, mitochondrial proteins encoded by the nuclear
genome enter the mitochondrial matrix by a Ay ,dependent mechanism3!3. Thus, devising a
strategy for the targeted delivery of molecules to dysfunctional mitochondria will be
important. The surface properties of permeabilized mitochondria (including PINK1 and
PARK?2 accumulation, as well as extensive ubiquitylation)® could be useful but remain

unexplored in this context.

Another pharmacological obstacle in the development of clinically useful MTAs relates to
pharmacokinetics and biodistribution. In the absence of a tissuetargeting strategy,
systemically administered MTAs are confronted by large numbers of mitochondria outside
the cardiovascular system, which operate (at least to some degree) as a sink to limit
bioavailability at diseased sites. Cardiomyocytes contain more mitochondria than many
other cell types31©, which could potentially favour MTA accumulation, but so do myocytes
and neurons, and the skeletal muscle largely exceeds the myocardium in terms of mass.
These considerations suggest that some MTAs delivered systemically at safe doses cannot
reach bioactive levels at the mitochondrial compartment of diseased cells from the
cardiovascular system. Strategies to target MTAs to specific cells of the cardiovascular
system, such as PLGA nanoparticles310, might (at least partially) circumvent this obstacle.

Lack of precise mechanistic knowledge.

Despite considerable advances in the understanding of many mitochondrial processes
involved in the pathogenesis of CVD, precise mechanistic knowledge is often lacking.
Perhaps the best example of our lack of knowledge of mitochondrial processes comes from
MPT317. The concept that MPT results from the activity of a supramolecular entity
assembled at the interface between the inner and outer mitochondrial membranes, generally
referred to as the permeability transition pore complex (PTPC), is widely accepted!’!.
However, the precise molecular composition of the PTPC remains obscure, and multiple
other aspects of the PTPC biology (including its potential links with the F{F, ATP synthase)
are still a matter of intense debate, despite >2 decades of experimental work on this
topic317-318 This lack of precise mechanistic knowledge of mitochondrial processes reflects
an intrinsic complexity of the system and the lack of good indicators of mitochondrial
(dys)function for use in vivo.

Several mitochondrial proteins are strictly required for embryonic development or adult
survival, generally owing to their essential bioenergetic functions. One notable example is
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cytochrome ¢, somatic (CYCS), which functions as an electron shuttle of the respiratory
chain?!®. Because Cycs™~ mice die in utero, investigating the role of CYCS in RCD in vivo
called for the development of refined genetic models320. Similar models have not yet been
generated for the vast majority of mitochondrial proteins with a prominent vital function319.
Another large group of mitochondrial proteins exists in multiple isoforms that have a large
degree of genetic redundancy3!”. For instance, the mouse genome encodes at least three
distinct variants of the PTPC component adenosine nucleotide translocase (S/c25a4,
Slc25a5, and Slc25a31) and of the ATP synthase F, complex subunit C (AtpSgl, Atp5g2,
and Ap35g3)321:322, This genetic redundancy complicates considerably the generation of
functional knockout models for in vivo studies, although it also presumably reflects the
critical requirement for mitochondrial ATP synthesis for life (implying that complete
knockout models might not be viable). In addition, some mitochondrial proteins have
functional redundancy, meaning that they can substitute for each other in a specific activity.
This functional redundancy seems to be the case for multiple components of the PTPC, at
least in some experimental models317. These observations exemplify the intrinsic complexity

of multiple mitochondrial processes.

Despite the existence of a variety of probes for in vitro use, monitoring mitochondrial
function in vivo thus far has proved challenging. Carbonylation of circulating proteins or
lipoproteins has been used to monitor oxidative stress in the context of CVD323. However,
this technique per se does not enable the identification of the tissue experiencing oxidative
damage, nor the precise source of ROS. Measuring the carbonylation of cardiac proteins,
such as myosinbinding protein C, cardiactype (MYBPC), might constitute an improved
alternative, although this approach also does not enable the identification of the ROS source
and it can be performed only postmortem324. Massspectrometrybased profiling of energy
metabolites in blood has been proposed as a surrogate biomarker of mitochondrial
dysfunction in the context of HF32>, but the wide applicability of these findings remains
untested. One promising approach to monitor mitochondrial dysfunction in preclinical
models of CVD is provided by the socalled MitoTimer mouse, a mouse strain engineered to
express a mitochondriatargeted mutant of the DsRed fluorescent protein (which shifts to red
fluorescence when oxidized) under the control of a cardiomyocytespecific promoter326-327,
MitoTimer enables the study of mitochondrial structure, redox state, and mitophagic
disposal by fluorescence microscopy on fixed tissue320-327, Finally, multiple radioactive
tracers are being developed to monitor mitochondrial functions in real time in the setting of
CVD20-328 These molecules, some of which are already approved for use in humans (for
different applications), might constitute preferential tools to study the links between
mitochondrial dysfunction and multiple forms of CVD in patients.

Limited appreciation of the multifactorial nature of CVD.

All cardiovascular disorders are complex pathological entities that develop in the context of
multiple cellular, histological, and systemic processes including (but not limited to): an
initial attempt of cells to cope with potentially detrimental perturbations of their micro-
environment for the restoration of cellular homeostasis; the failure of such an adaptive
mechanism, culminating with the initiation of RCD coupled to inflammatory responses; the
establishment of acute local inflammation after the recruitment of immune cells, at least
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partly linked to the disposal of dead cells and cell remnants; and the initiation of repair
processes, either culminating with resolved inflammation and fibrosis (if the initial
perturbation of homeostasis is relieved) or proceeding chronically along with a continuous
wave of RCD and lowdegree inflammation (if the initial perturbation of homeostasis
persists).

This process is further complicated by at least four additional elements. First, the entire
process involves not only cells from the cardiovascular system (the main target of clinically
available drugs) but also stromal cells and, to a greater extent, immune cells>30. Although
the contribution of immune cells to some forms of CVD such as atherosclerosis was
appreciated long ago!4, the role of innate immune mechanisms such as dysregulated type I
interferon signalling in HF has just begun to emerge?*2. Second, there is a critical, and we
believe often underestimated, time component in the pathogenesis of most, if not all,
cardiovascular disorders. As an example, ischaemia—reperfusion injury is often viewed (and
experimentally modelled) as a rather uniform entity, and potential therapeutic interventions
administered at reperfusion are tested for their capacity to decrease infarct size or improve
survival. Although these models are widely viewed as clinically relevant (patients with acute
MI indeed enter intensive care during the ischaemic phase), they are intrinsically unable to
dissect the sequence of events initiated at reperfusion, many of which have a direct effect on
patient survival. Third, CVD generally develops in elderly individuals, along with a variety
of comorbidities, including (but not limited to) obesity, diabetes, and declining immune
functions32%. These disorders affect not only the natural progression of CVD but also its
sensitivity to treatment32°, However, only a few animal models of CVD that are currently
available recapitulate such comorbidities. Fourth, many cellular processes involved in the
pathogenesis of CVD have a considerable degree of redundancy. For instance, after
mammalian cells commit to RCD, inhibiting one single variant of the process only delays
(rather than prevents) cellular demise, and it has been argued that actual cytoprotection can
be achieved only in the course of adaptive responses to perturbation of homeostasis339. This
concept casts doubts on the hypothesis that pharmacologically blocking RCD in diseased
cardiovascular cells provides clinical benefits (which has been intensively tested with dismal
results) and suggests that improving the ability of healthy cells to cope with perturbations of
homeostasis constitutes a robust prophylactic strategy. Interestingly, an abundant literature
established a robust interconnection between various components of the molecular
machineries for RCD and inflammation33!. This finding opens the intriguing possibility that
modulating RCD pathways in diseased cardiovascular cells might affect the consequent
inflammatory responses, de facto mediating beneficial effects via cellextrinsic circuitries332.
Such a possibility awaits urgent experimental validation. In support of this notion,
cyclosporine A, one of the few MTAs currently approved for use in clinics (although not for
the treatment of CVD), robustly inhibits MPT and mediates potent antiinflammatory effects.

Altogether, these observations indicate that improved pharmacodynamic and
pharmacokinetic properties, a refined mechanistic knowledge of mitochondrial processes,
and a reconsideration of the pathogenesis of (at least some) cardiovascular disorders,
together with a redesigned pharmacological audit trail (Fig. 3), are instrumental for the
development of novel MTAs with clinical use.
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Conclusions

Robust genetic data demonstrated a crucial role for mitochondrial dysfunction in the
pathogenesis of multiple cardiovascular disorders. Nonetheless, the development of MTAs
for use in patients with CVD has been rather dismal. Thus far, great attention has been
focused on modulating a single mitochondrial process in cells from cardiovascular
compartments, and the immunological correlates of RCD and RCDdriven inflammation have
been fairly overlooked. We firmly believe that systematically addressing CVD as a complex
phenomenon that is intimately connected with inflammatory responses will be instrumental
for the development of novel agents with clinical applications. Alongside, endowing MTAs
with superior pharmacological specificity and acquiring additional knowledge on the precise
molecular mechanisms linking mitochondrial dysfunction to CVD pathogenesis, potentially
aiming at strategies that simultaneously modulate multiple aspects of the disease, will be
paramount. In this context, it will be important to evaluate carefully the cardiovascular
effects (or lack thereof) of precise genetic interventions targeting mitochondrial functions on
the basis of the age and sex of the animals and the potential existence of compensatory
pathways, especially based on functional (rather than genetic) redundancy, as well as
evaluate the effects in the context of pathologically relevant comorbidities.

Deleting specific mitochondriarelevant genes from the embryonic myocardium has
consequences that the same intervention does not provoke in the adult®’, which is
particularly relevant for the development of pharmacological interventions. Data
accumulating over the past decade point to considerable differences in the sensitivity of male
versus female rodents to experimental CVD, and epidemiological data in humans support
similar conclusions333-334, but little work has been done with specific reference to
mitochondrial dysfunction333. Moreover, whereas the effect of genetic redundancy on a
specific mitochondrial pathway can be addressed with (relatively complex, but feasible) co-
deletion and/or depletion strategies33-338, identifying (and investigating) functional

redundancy is far more complex. Finally, an unmet need exists for new rodent models that

faithfully recapitulate the comorbidities that normally accompany CVD in humans32°. In

conclusion, although the route to the identification of clinically useful MTAs is long and
tortuous, a large amount of evidence suggests that mitochondrial dysfunction remains a
promising target for the treatment of multiple forms of CVD.
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Regulated cell death

(RCD). A form of cell death that relies on the activation of a genetically encoded
machinery and which, therefore, can be retarded or accelerated with specific
pharmacological or genetic interventions.
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Autophagy

Evolutionarily conserved cellular process that culminates with the lysosomal degradation
of ectopic, supernumerary, dysfunctional, or potentially dangerous cytoplasmic entities
(of endogenous or exogenous derivation).
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B-Oxidation

Biochemical pathway whereby fatty acids are converted into acetyl-CoA, which enters
the TCA cycle, and NADH and FADH2, which fuel oxidative phosphorylation.
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Ketolysis

Biochemical pathway whereby ketone bodies are converted into acetyl-CoA, which
enters the TCA cycle, and NADH, which fuels oxidative phosphorylation.
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Folate cycle

Biochemical pathway catalysing the cyclic conversion of tetrahydrofolate, 10-formyl-
tetrahydrofolate (which feeds into purine synthesis), 5,10-methylenetetra-hydrofolate,
and 5-methyl-tetrahydrofolate (which feeds into methionine metabolism).
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Mitochondrial permeability transition

(MPT). Rapid loss of the ionic barrier function of the inner mitochondrial membrane,
culminating in mitochondrial breakdown and regulated necrosis.
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Iron-binding plasma glycoprotein that controls the level of free iron ions in biological

fluids.

Transferrin
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Cerebral cavernous malformations

Cerebrovascular disease characterized by enlarged and leaky capillaries that predispose to
seizures, focal neurological deficits, and fatal intracerebral haemorrhages.
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Member of a fairly new class of targeted anticancer agents that operate by derepressing
histone acetylation, resulting in the epigenetic reconfiguration of multiple transcriptional

modules.

Histone deacetylase inhibitor
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Necroptosis

Form of RCD that depends on mixed lineage kinase domain-like protein (MLKL),
receptor-interacting serine/ threonine-protein kinase 3 (RiPK3), and, at least in some
settings, the kinase activity of the RIPK3 homologue RIPK1

Nat Rev Cardiol. Author manuscript; available in PMC 2020 January 01.



1duosnuepy Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuepy Joyiny

Bonora et al.

Page 49

Ferroptosis

Iron-dependent form of RCD that obligatorily relies on lipid peroxidation and is tonically
inhibited by glutathione peroxidase 4 (gPx4).
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Damage-associated molecular patterns

(DAMPs). Endogenous molecules that exert potent immunomodulatory functions upon
binding to cellular receptors that evolved to control microbial pathogens.
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Inflammasome

supramolecular complex containing caspase 1 (CAsP1), which, among other functions,
catalyses the proteolytic processing of IL-1 and IL-18, thereby enabling their release in

a bioactive form.
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v8 T lymphocytes

Small subsets of T cells expressing a rather invariant variant of the T cell receptor and
mostly operating at the interface between innate and adaptive immunity.
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Eicosanoids

Large family of arachidonic acid derivatives involved in the regulation of multiple
biological processes, including the recruitment and activation of immune cells.
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Apoptosis

Form of RCD initiated by extracellular or intracellular cues that is precipitated by the
sequential activation of various members of the caspase protein family.
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Parthanatos

Necrotic variant of RCD driven by PARP1 hyperactivation and precipitated by the
consequent bioenergetic catastrophe coupled to enzymatic DNA degradation.
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microRNASs

(miRNAs). small non-coding RNA molecules that regulate the expression of target genes
at the transcriptional or post-transcriptional level.
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Particle of 1-100 nm in size surrounded by an interfacial layer consisting of ions,

Nanoparticle

inorganic molecules, or organic molecules that determines the biological and biophysical

properties of the particle.
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Mitochondrial transmembrane potential

(Ayy). Electrochemical gradient built across the inner mitochondrial membrane by the
respiratory chain. The Ay, drives multiple mitochondrial functions, including ATP
synthesis and protein transport.
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Carbonylation

Term generally referring to the metal-catalysed oxidation (primary carbonylation) or
addition of reactive aldehydes (secondary carbonylation) to amino acid side chains.
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Pharmacological audit trail

Rational framework to guide the development of novel therapeutic agents that involves
assessing the risk of failure at any specific stage.
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Key points

Mitochondrial dysfunction is involved in the pathogenesis of multiple
cardiovascular disorders, including myocardial infarction, cardiomyopathies
of various aetiologies, arrhythmias, hypertension, and atherosclerosis.

Mitochondria are essential for the physiological activity of the cardiovascular
system owing to their crucial role in bioenergetic and anabolic metabolism
and their central position in intracellular Ca2* fluxes.

In addition to losing their physiological functions, damaged mitochondria
actively drive inflammatory responses and waves of regulated cell death that
contribute to the pathogenesis of cardiovascular disease.

An intensive wave of investigation attempted to develop mitochondria-
targeting agents for preventing or treating cardiovascular disorders in patients,
with rather dismal results.

Molecules with improved pharmacological features, precise mechanistic
insights into mitochondrial processes, and reconsidering the pathogenesis of
some cardiovascular disorders are instrumental for the development of
mitochondria-targeting agents with clinical use.
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Box 1 |
Principles of oxidative phosphorylation

Oxidative phosphorylation is a core bioenergetic process whereby reducing equivalents
present in the mitochondrial matrix are sequentially used by four multiprotein complexes
(generally referred to as respiratory complexes [-IV) and two electron shuttles (namely,
coenzyme Q (CoQ) and cytochrome ¢ (Cyt ¢)) to generate an electrochemical H*
gradient across the inner mitochondrial membrane that is harnessed in a controlled
manner by the F{F, ATP synthase (also known as respiratory complex V) to catalyse the
phosphorylation of ADP into ATP. The main substrates for oxidative phosphorylation are
NADH, which provides electrons to complex I (also known as NADH dehydrogenase),
and succinate, which provides electrons to complex II (also known as succinate
dehydrogenase) via FADH . Accordingly, FADH can also fuel oxidative phosphorylation
at the level of complex II. Both complex I and II deliver electrons to complex III (also
known as CoQ:Cyt ¢ oxidoreductase) via CoQ. However, only complex I transfers
electrons onto complex III while also extruding H* ions from the mitochondrial matrix to
the intermembrane space. Complex III transfers electrons to complex IV (also known as
Cyt c oxidase) via Cyt ¢, culminating with the reduction of O, into H,O. This last step is
the reason why O is critical for oxidative phosphorylation. Both complex III and
complex IV directly contribute to the generation of the mitochondrial transmembrane
potential (Ay ). Finally, the F{F, ATP synthase uses a well-described rotatory
mechanism to dissipate the Ay, in a controlled manner, coupled with phosphorylation of
ADP into ATP. This reaction requires ADP and inorganic phosphate (P;), which are
provided by the permeability transition pore components adenine nucleotide translocator
(ANT) and phosphate carrier (PHC; also known as SLC25A3), respectively (see the
figure; please note that stoichiometry is not respected for the sake of simplification).
Importantly, the reaction catalysed by the F{F, ATP synthase is reversible. This
reversibility implies that in ischaemic conditions the capacity of oxidative
phosphorylation to drive ATP synthesis is impaired, owing to limited oxygen availability,
and that high amounts of ATP are consumed by the F|F, ATP synthase to preserve the
Aym. All metabolic intermediates entering the tricarboxylic acid (TCA) cycle, including
(but not limited to) glucose-derived pyruvate and branched-chain amino acid-derived and
fatty acid-derived acetyl-CoA and succinyl-CoA, can drive the synthesis of NADH and
succinate in the mitochondrial matrix, thereby supporting oxidative phosphorylation.
Fatty acid oxidation also supports oxidative phosphorylation via FADH, synthesis. Of
note, the cellular efficiency of oxidative phosphorylation depends on a variety of
parameters, including the number of mitochondria per cell and their fragmentation state,
the amount of respiratory complexes per mitochondrion, the supramolecular organization
of respiratory complexes, substrate and O, availability, the expression of endogenous

inhibitors, and local redox and pH conditions339-340,
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Box 2 |
Mitochondrial generation of reactive oxygen species

In physiological conditions, an estimated 0.2—-2.0% of molecular O, taken up by
mitochondria is not used as a terminal electron acceptor in the respiratory chain (see box
1) but forms superoxide anion (O, *7) at the level of complex I or complex III (a process
known as electron leak). O, *~ can be rapidly metabolized by mitochondrial and mostly
extramitochondrial variants of superoxide dismutase (SOD2 and SOD1, respectively),
which catalyse the formation of hydrogen peroxide (H,O,) and O,. In turn, HyO, can
have different fates: it can be metabolized by catalase (CAT), resulting in H,O formation;
it can be metabolized by multiple peroxidases (including glutathione peroxidase (GPx)),
coupling the reduction of H,O, to H,O with the oxidation of a nucleophilic species, such
as reduced glutathione (GSH); and it can be converted into the hydroxyl radical (OHe)
and hydroxyl anion (OH") in the presence of Fe?* or Cul* (Fenton reaction) (see figure;
please note that stoichiometry is not respected for the sake of simplification).
Physiological levels of reactive oxygen species (ROS) are involved in the regulation of
several biological processes, including intracellular signalling, adaptation to hypoxia,
autophagy, and both adaptive and innate immunity34!. However, ROS levels that exceed
endogenous antioxidant capacities cause extensive macromolecular damage to DNA,
proteins, and lipids, generally leading to cellular senescence (the permanent proliferative
inactivation of a cell damaged beyond repair) or regulated cell death.

In the hypoxic myocardium, electrons cannot flow normally through the respiratory chain
because O2 availability is limited. This impairment favours the acquisition of a reduced
state by respiratory complexes, which enables electron leak, O, °~ synthesis, and
oxidative damage to the respiratory chain. At tissue reperfusion, restored oxygen
availability drives an abrupt increase in electron flow through damaged respiratory
complexes, which is associated with a burst in O, *~ production. Reperfusion is the phase
at which mitochondria are most sensitive to ROS-mediated mitochondrial permeability
transition because the low pH associated with ischaemia potently inhibits mitochondrial
permeability transition. It has been proposed that uncoupling, the process whereby the
transfer of electrons along the respiratory chain occurs in the absence of net extrusion of
H™ ions from the mitochondrial matrix, leading to decreased mitochondrial
transmembrane potential and therefore to reduced sensitivity of respiratory complexes to
hypoxia-mediated reduction, might have evolved as a physiological barrier against

oxidative damage rather than as a thermogenic process>*2.
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Box 3|
Mechanistic notions on regulated cell death

Mammalian cells exposed to very harsh microenvironmental conditions (such as extreme
temperatures and elevated osmotic pressures) die in a virtually uncontrollable manner,
reflecting the physical breakdown of the plasma membrane. However, this unregulated
cell death is fairly uncommon in the context of human pathophysiology. Instead, human
cells generally succumb to pathological cues in the context of failing adaptation to stress
via regulated cell death (RCD), which ensues the activation of a genetically encoded
machinery that determines the kinetics of the process and its immunological correlates.
Indeed, according to current models, mammalian cell death is not caused by the
activation of specific proteolytic or nucleolytic pathways, as was thought until the early
2010s, but rather by a lethal shortage of ATP coupled to the accumulation of unrepairable
oxidative damage to macromolecules, leading to irreversible loss of plasma membrane
integrity. Therefore, actual cytoprotection (that is, a reduction in the percentage of cells
succumbing to a cytotoxic cue, as opposed to a simple delay in RCD) might not be
achievable after cells are committed to death (that is, when cellular functions are
compromised beyond recovery)*330,

Irrespective of this (rather debated) point and its major therapeutic implications (see main
text), multiple molecular cascades precipitating RCD in mammals have been identified.
These signal transduction cascades rely on a dedicated molecular machinery, meaning
that they can be retarded (or accelerated) by specific pharmacological or genetic
interventions, and include the following:

o Extrinsic and intrinsic variants of apoptosis: a caspase 3-dependent pathway
optionally involving mitochondrial outer membrane permeabilization.

. Mitochondrial permeability transition-driven necrosis: a cyclophilin D-
dependent process elicited at the inner mitochondrial membrane.

U Necroptosis: another form of regulated necrosis culminating with plasma
membrane permeabilization dependent on mixed lineage kinase domain-like
protein (MLKL).

U Ferroptosis: an iron-dependent pathway mediated by uncontrolled lipid
peroxidation.

o Parthanatos: a poly(ADP-ribose) polymerase 1-dependent process resulting in

a lethal bioenergetic crisis coupled to DNA degradation.

. Pyroptosis: an inflammatory variant of RCD linked to plasma membrane
permeabilization by gasdermin protein family members.

U Lysosome-dependent cell death: RCD that is initiated by lysosomal
breakdown and precipitated by lysosomal hydrolases.

o Autophagy-dependent cell death: a form of RCD aetiologically linked to
components of the molecular machinery for autophagy.
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J NETotic cell death: a reactive-oxygen-species-dependent form of RCD
restricted to haematopoietic cells and linked to neutrophil extracellular trap
(NET) production.

J Entotic cell death: referring to the lysosomal degradation of living cells

internalized by other, nonphagocytic cells via an actomyosin-dependent
mechanism (entosis)*330.
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Fig. 1 |. Contribution of mitochondrial dysfunction to cardiovascular disease.
In physiological conditions, healthy mitochondria support the functions of virtually all cells

from the cardiovascular system by ensuring optimal catabolic and anabolic metabolism and
regulating the intracellular trafficking of Ca*. Additionally, an intact mitochondrial network
promotes the preservation of inflammatory homeostasis and tissue integrity by preventing
the activation of signal transduction cascades that lead to the release of pro-inflammatory
factors and regulated cell death. In addition to being accompanied by metabolic
derangements and alterations in intracellular Ca?* fluxes, mitochondrial dysfunction favours
the establishment of an inflammatory milieu and facilitates regulated cell death, which
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culminates with tissue loss. By efficiently eliminating dysfunctional mitochondria that
originate as a consequence of physiological cellular functions or accumulate in the context
of pathological cues, mitophagy has a major role in the preservation of cardiovascular

homeostasis.
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Fig. 2 |. overview of mitochondrial dynamics.
The mitochondrial network is constantly reshaped by the antagonistic activity of proteins

that mediate fission, such as mitochondrial fission factor (MFF), mitochondrial fission 1
protein (FIS1), and dynamin 1-like protein (DNM1L), and proteins that promote fusion,
such as mitofusin 1 (MFN1), MFN2, and optic atrophy protein 1 (OPA1). One of the
essential roles of fission is to segregate dysfunctional mitochondria, thereby enabling their
uptake by the autophagic machinery and consequent degradation in lysosomes. PARK2,
parkin RBR E3 ubiquitin protein ligase; PINK1, PTEN-induced putative kinase protein 1.
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Fig. 3 |. Pharmacological audit trail for the development of novel mitochondria-targeting agents
for clinical applications.

To develop novel, clinically useful mitochondria-targeting agents for the treatment or
prevention of cardiovascular disease, it is paramount to delineate upfront: the therapeutic
paradigms in which mitochondrial dysfunctions cause or aggravate cardiovascular disease;
specific patient subsets in which such alterations might have a predominant role in disease
pathogenesis; the cell populations that are affected by mitochondrial dysfunction (the
diseased cells, which do not necessarily overlap with the cell populations that are commonly
linked to disease pathogenesis); and the nature of mitochondrial dysfunction and how such a
dysfunction affects the biology of diseased and/or other cells from the cardiovascular or
immune system (bystander cells). This analysis will potentially enable the identification of a
mitochondrial target for pharmacological interventions and a candidate drug. Delivery
platforms tailored to the mitochondrial compartment of diseased cells will have to be
developed and characterized in conventional pharmacokinetic and pharmacodynamic
studies, followed by an assessment of mitochondrial, cellular, and microenvironmental
parameters in both the diseased and bystander cell populations. In the absence of biological
efficacy, the choice of molecular target, drug candidate, and/or delivery platforms will have
to be re-evaluated, with particular attention for immunological disease correlates. Otherwise,
a cardiovascular response followed by improved patient survival might emerge. In the
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absence of either or both, the entire therapeutic paradigm and/or patient selection should be
fully reconsidered.
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