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The immune system has many sophisticated mechanisms to balance an extensive 
immune response. Distinct immunosuppressive cells could protect from excessive 
tissue damage and autoimmune disorders. Tumor cells take an advantage of those 
immunosuppressive mechanisms and establish a strongly immunosuppressive tumor 
microenvironment (TME), which inhibits antitumor immune responses, supporting the 
disease progression. Myeloid-derived suppressor cells (MDSC) play a crucial role in this 
immunosuppressive TME. Those cells represent a heterogeneous population of imma-
ture myeloid cells with a strong immunosuppressive potential. They inhibit an antitumor 
reactivity of T  cells and NK  cells. Furthermore, they promote angiogenesis, establish 
pre-metastatic niches, and recruit other immunosuppressive cells such as regulatory 
T  cells. Accumulating evidences demonstrated that the enrichment and activation of 
MDSC correlated with tumor progression, recurrence, and negative clinical outcome.  
In the last few years, various preclinical studies and clinical trials targeting MDSC showed 
promising results. In this review, we discuss different therapeutic approaches on MDSC 
targeting to overcome immunosuppressive TME and enhance the efficiency of current 
tumor immunotherapies.

Keywords: myeloid-derived suppressor cells, immunosuppression, cancer immunotherapy, tumor 
microenvironment, therapeutic targeting

iNTRODUCTiON

Immunosuppression is a hallmark of most cancer entities and is pivotal for cancer growth and 
progression (1, 2). In recent years, accumulating data highlighted myeloid-derived suppressor 
cells (MDSC) as one of the main driver of an immunosuppressive tumor microenvironment 
(TME) (3). Their accumulation and activation correlated with tumor progression, metastasis, and 
recurrence of many types of tumors. In addition, the efficacy of immunotherapy was negatively 

Abbreviations: ARG1, arginase-1; ATRA, all-trans retinoic acid; bFGF, basic fibroblast growth factor; CD, cluster of differentia-
tion; CCL, C-C motif chemokine ligand; CCR, C-C motif receptor; COX, cyclooxygenase; CXCL, C-X-C motif ligand; CXCR, 
C-X-C motif receptor; DC, dendritic cell; ERK, extracellular-signal regulated kinase; EV, extracellular vesicles; HSP, heat shock 
protein; IDO, indoleamine 2,3-dioxygenase; IFN, interferon; IL, interleukin; iNOS, inducible nitric oxide synthase; LLC, Lewis 
lung carcinoma; LOX, lectin-type oxidized low-density lipoprotein receptor; IMC, immature myeloid cells; M, monocytic; 
MCP, monocyte chemoattractant protein; MDSC, myeloid-derived suppressor cells; MMP, matrix metalloproteinases; NO, 
nitric oxide; NSCLC, non-small cell lung cancer; PD-1, programmed death receptor; PD-L1, programmed death ligand 1; 
PMN, polymorphonuclear; ROS, reactive oxygen species; STAT, signal transducer and activator of transcription; TCR, T cell 
receptor; TGF, transforming growth factor; TLR, toll-like receptor; TME, tumor microenvironment; TNF, tumor necrosis 
factor; Treg, regulatory T cells; VEGF, vascular endothelial growth factor.
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FiGURe 1 | Myeloid-derived suppressor cells (MDSC) recruitment and activation during tumor progression. Tumor and immune cells constantly release inflammatory 
mediators, leading to the dysregulation of normal myelopoiesis and to the conversion of immature myeloid cells (IMC) into MDSC in the bone marrow. The latter cells 
expand and migrate to the tumor site through the interaction between CCR and respective chemokines (CCL). In the tumor microenvironment, MDSC are activated 
and strongly inhibit an antitumor reactivity of T cells via various mechanisms.
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correlated with an increased MDSC frequency and activity (4, 
5). Therefore, targeting MDSC becomes a promising treatment 
approach to overcome tumor progression and tumor-mediated 
immunosuppression.

Myeloid-derived suppressor cells represent a heterogeneous 
population of immature myeloid cells (IMC) that fail to termi-
nally differentiate and exhibit a strong capacity to suppress the 
functions of T and NK  cells (6–9). Under healthy conditions, 
IMC differentiate into macrophages, dendritic cells (DCs), or 
granulocytes. During an acute inflammation, IMC expand and 
differentiate mainly into monocytes and activated neutrophils 
(7). This process, known as myelopoiesis, is essential to protect 
the host from pathological conditions. In contrast to acute inflam-
mation, chronic inflammation and cancer are characterized by a 
persistent release of signals of low stimulatory intensity (10–12). 
Although these stimuli still activate myelopoiesis, the accumulat-
ing IMC fail to completely differentiate into activated neutrophils 
and monocytes. Instead, the long-term inflammatory signals 
create conditions for the expansion and activation of MDSC  
(13, 14). They migrate to the site of inflammation, lymphoid 
organs, and pre-metastatic niches and promote tumor progres-
sion by immunological and non-immunological mechanisms 

(15). Figure  1 illustrates the biology and functions of MDSC 
during tumor progression.

PHeNOTYPe OF MDSC

Myeloid-derived suppressor cells consist of two major subpopu-
lations, which are traditionally described by their phenotypical 
and morphological characteristics. The first population is called 
monocytic MDSC (M-MDSC), whereas the second is polymor-
phonuclear MDSC (PMN-MDSC) (8), which was previously 
known as granulocytic MDSC (6). Both MDSC subsets can be 
found under pathological conditions in the bone marrow, spleen, 
lung, peripheral blood, and tumor tissue; in most cancer enti-
ties, PMN-MDSC represent more than 80% of all MDSC (16).  
In mice, M-MDSC are defined as CD11b+Ly6G−Ly6Chigh and share 
phenotypical and morphological characteristics with mono-
cytes. PMN-MDSC are described as CD11b+Ly6GhighLy6Clow 
cells and resemble neutrophils (16, 17). In human, M-MDSC 
are defined as CD11b+CD14+CD15−HLA-DRlow/− cells. Due 
to the low or absence of the HLA-DR expression, M-MDSC 
they can be distinguished from monocytes. Human PMN-
MDSC are characterized as CD11b+CD14−CD15+HLA-DR− or 
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CD11b+CD14−CD66b+ (17, 18). In addition, a subset of more 
immature human MDSC characterized as Lin− (including CD3, 
CD14, CD15, CD19, CD56) HLA-DR−CD33+ cells was defined 
as early-stage MDSC (eMDSC) (17). At the moment, the mouse 
equivalent of eMDSC is not clearly determined. Recently, a new 
marker for human PMN-MDSC has been proposed; they were 
found to express lectin-type oxidized LDL receptor-1 (LOX-1) 
that can discriminate them from neutrophils (19).

CONveRSiON OF iMC iNTO MDSC BY 
TUMOR-DeRiveD eXTRACeLLULAR 
veSiCLeS (ev)

Expansion and activation of MDSC could be stimulated 
by many soluble factors, which are predominately released 
within the TME by tumor and immune cells (20). Specifically, 
granulocyte-macrophage colony-stimulating factor (GM-CSF), 
granulocyte CSF, macrophage CSF, stem cell factor, transform-
ing growth factor (TGF)-β, tumor necrosis factor (TNF)-α, 
vascular endothelial growth factor (VEGF), prostaglandin E2, 
cyclooxygenase 2, S100A9, S100A8, interleukin (IL)-1β, IL-6, 
and IL-10 are considered to be crucial for MDSC expansion  
(6, 8, 21–23). Furthermore, tumor cells can stimulate the secre-
tion of these inflammatory mediators by cancer-associated 
fibroblasts and vice  versa leading to an autocrine loop,  
which promotes tumor growth by converting myeloid cells into 
MDSC (20).

In addition to soluble inflammatory factors, tumor-derived 
EV could contribute to the generation of MDSC. EV consist of 
microvesicles that are created by the outward budding of the 
plasma membrane and exosomes, which are generated through 
the endosomal system (24). Due to their phospholipid bilayer, 
EV are stable vehicles to carry biological active molecules 
(25). It was shown that tumor-derived EV are predominately 
taken up by MDSC (26). After the uptake of EV derived from 
a Lewis lung carcinoma (LLC) and glioma, MDSC displayed an 
increased expression of immunosuppressive molecules like argi-
nase-1 (ARG1) and programmed death ligand 1 (PD-L1) (26). 
Filipazzi et  al. (27) demonstrated that CD14+ monocytes lost 
the expression of HLA-DR and acquired an immunosuppressive 
activity upon EV uptake. In contract, EV from healthy donors 
were not able to convert monocytes into MDSC-like cells (27). 
Several studies showed that EV trigger toll-like receptor (TLR) 
signaling in myeloid cells. THP-1 monocytic cell line showed 
increased production of inflammatory molecules like IL-1β, 
IL-6, and TNF-α upon the EV treatment, which was due to TLR2 
and TLR4 signaling (28, 29). Chalmin et al. (30) demonstrated 
that tumor-derived EV triggered the expansion and activa-
tion of murine and human MDSC via HSP72 that stimulated 
TLR2 signaling. Furthermore, by using the B16 transplantable 
melanoma model, it was shown that tumor EV could facilitate 
formation of metastasis through the transfer of the Met receptor 
tyrosine kinase to bone marrow cells (31). As the bone marrow 
cells were not further characterized, it is conceivable that such 
melanoma-derived EV converted bone marrow-derived IMC 
into potent MDSC.

iMMUNOSUPPReSSiON iNDUCeD  
BY MDSC

Myeloid-derived suppressor cells use a broad range of suppres-
sive molecules to inhibit antitumor reactivity of immune cells, 
supporting thereby tumor growth and metastasis. By inhibiting 
the activity of tumor-infiltrating lymphocytes, MDSC show 
their extraordinary potential of silencing the immune response 
(6–11, 16–18, 32, 33). One of the main immunosuppressive 
mediators is ARG1, which is an essential enzyme for the urea 
cycle (34, 35). It converts l-arginine into l-ornithine and urea, 
leading to the depletion of l-arginine. The lack of l-arginine 
causes a translational blockade in infiltrating T  cells leading 
to cell cycle arrest in G0-G1 (36). Furthermore, T cells become 
anergic due to the downregulation of the T cell receptor (TCR) 
ζ-chain, which is essential for TCR signaling (37). Besides 
ARG1, MDSC express also of inducible nitric oxide synthase 
(iNOS), which also catabolize l-arginine. The main product 
of the reaction is nitric oxide (NO) that could induce T  cell 
anergy (16) and nitrosylate important mediators of the IL-2 
pathway (38). MDSC express also elevated levels of indoleam-
ine 2,3-dioxygenase (IDO) that degrade l-tryptophan into 
N-formylkynurenine. The lack of tryptophan results in the 
cell cycle arrest in T cells and induces anergy (39). Moreover, 
tryptophan starvation is known to drive the differentiation of 
CD4+ T cells into immunosuppressive regulatory T cells (Treg) 
(40). Kynurenine and 3-hydroxykynurenine, the products of 
IDO activity, exert also immunosuppressive functions, inhibit-
ing effector T cell survival and proliferation (41). In addition, 
kynurenine drives the differentiation of CD4+ T cells into Treg 
and induces apoptosis in thymocytes (42, 43). Kynurenine was 
also reported to dampen NK cell function and proliferation (44). 
Furthermore, reactive oxygen species (ROS) produced by MDSC 
in high concentrations were shown to induce T cell apoptosis  
(9, 11, 16) In addition, ROS was demonstrated to downregulate 
the expression of TCR ζ-chain, leading to impaired TCR signal-
ing (10, 16, 17). Reacting with NO, ROS form peroxynitrite, 
which nitrosylates the TCR, resulting in T  cell anergy (45). 
MDSC also secrete immunosuppressive cytokines and growth 
factors such as TGF-β and IL-10 that reduce antitumor activity 
of effector T cells and recruit Treg (46, 47).

It has been recently described that MDSC could exert their 
immunosuppressive effects via upregulation of PD-L1 (48, 49). 
Upon the binding of PD-L1 to the PD-1 receptor expressed 
on T cells, they become anergic, losing their ability to produce 
interferon (IFN)-γ and IL-2 (48). Moreover, MDSC were shown 
to express the death receptor CD95 and induce T cell apoptosis 
via CD95 ligand expressed on activated T cells (50).

NON-iMMUNOLOGiCAL wAYS OF 
PROMOTiNG TUMOR PROGReSSiON

In addition to the establishment of an immunosuppressive 
TME, MDSC could promote tumor progression by non-
immunological mechanisms (51). In particular, MDSC produce 
large amounts of matrix metalloproteinases (MMP), especially 
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MMP9, which process the extracellular matrix and basal mem-
brane and enable the tumor to leave the tissue, to enter the 
blood stream, and migrate to the site of later metastasis (52). 
It was shown that the pre-metastatic niche is performed before 
the tumor cells enter the blood stream (53). This process is still 
not fully understood but studies have confirmed that MDSC 
play an essential role (9, 54). It was found that MDSC accumu-
lated in pre-metastatic niches with the help of monocyte che-
moattractant protein-1 that dampens the activity of NK cells, 
which are also preferably found in the pre-metastatic niche 
(55). In addition, it was reported that MDSC produce MMP9 
within the pre-metastatic niche, facilitating the penetration of 
metastatic cells (56). A further hallmark of tumor progression 
is angiogenesis that is crucial for the nutrition, vasculature, and 
dissemination of the tumor (57). MDSC promote angiogenesis 
by secreting elevated levels of VEGF and basic fibroblast growth 
factor (bFGF) (58). It was reported that blocking of angiogenesis 
resulted in the inhibition of tumor migration and formation of 
metastasis (59).

CORReLATiON BeTweeN TUMOR 
BURDeN, ReSiSTANCe TO 
iMMUNOTHeRAPY, AND MDSC

The expansion of MDSC has been demonstrated in many types 
of human tumors (6, 7). Moreover, elevated levels of MDSC were 
found not only in solid tumors but also in blood of non-Hodgkin 
lymphoma and multiple myeloma patients (18). Importantly, 
the frequency of circulating MDSC was found to correlate with 
the disease stage. It was reported that patients with stage III and 
IV hepatocellular carcinoma, melanoma, non-small cell lung 
cancer, pancreatic, esophageal, gastric, and bladder cancer had 
higher frequencies of MDSC in the peripheral blood as compared 
to stage I and II patients (60–63). In addition, an association 
between MDSC numbers and clinical response to radio-, chemo-, 
and immunotherapy was reported (64). Several recent studies 
described that in melanoma patients treated with the immune 
checkpoint inhibitor, ipilimumab, decreased amounts and 
immunosuppressive functionality of both M- and PMN-MDSC 
correlated with beneficial therapeutic effects (65–68). Altogether, 
these studies show that MDSC could be not only promising bio-
markers for the survival of patients and the treatment efficacy but 
also could serve as a valuable target in combined immunotherapy 
of cancer patients.

MDSC TARGeTiNG iN CANCeR

In recent years, increasing numbers of preclinical and clinical 
studies were performed to target MDSC with beneficial effects, 
resulting in the tumor growth inhibition and the survival pro-
longation. The MDSC modulation was achieved by (i) the inhi-
bition of their immunosuppressive activity; (ii) the blockade of 
MDSC recruitment to the tumor site; and (iii) the regulation of 
myelopoiesis and/or depletion of MDSC in the tumor-bearing 
hosts (Figure  2). Ongoing clinical trials are summarized  
in Table 1.

iNHiBiTiON OF MDSC-MeDiATeD 
iMMUNOSUPPReSSiON

In preclinical mouse models, it has been demonstrated that 
inhibitors of phosphodiesterase-5, sildenafil, and tadalafil signifi-
cantly inhibited the MDSC functions by the downregulation of 
iNOS and ARG1 activities, leading to the activation of antitumor 
immunity and the prolongation of survival of tumor-bearing mice 
(69–71). Recent clinical trials with tadalafil in patients with head 
and neck squamous cell carcinoma and melanoma confirmed 
this positive effect (72–74). It was shown that decreased amounts 
of MDSC and their immunosuppressive pattern correlated with 
an increased T cell reactivity and improved clinical outcome of 
advanced cancer patients.

A class I histone deacetylase inhibitor, entinostat, has been 
recently evaluated in several preclinical tumor models for its abil-
ity to affect MDSC functions (75, 76). The authors demonstrated 
that entinostat reduced the expression of ARG1, iNOS, and 
COX2 in both M- and PMN-MDSC subsets. In addition, they 
observed a strong reduction of tumor-infiltrating macrophages, 
suggesting a strong effect of this drug on the innate immunity. 
Interestingly, the combination of entinostat with anti-PD-1 
antibodies significantly increased survival and delayed tumor 
growth in mice with LLC and renal cell carcinoma as compared 
to the treatment with anti-PD-1 antibodies alone. A combined 
therapy with nivolumab and entinostat in renal cell carcinoma 
patients is now planned.

A further promising way to target MDSC is the blockade of 
the activation of STAT3, which is a main transcription factor for 
immunosuppressive activity in myeloid cells (77). In the past, a 
number of clinical trials have been performed to target STAT3 
with small molecular inhibitors with a limited efficacy and broad 
side effects (78). Recently, a new possibility to target STAT3 has 
been tested, in which STAT3 siRNA or decoy oligonucleotides 
were used to interfere with STAT3 mRNA (78). At the moment, 
several STAT3 oligonucleotide inhibitors, in particular AZD9150, 
were applied in the combination with immune checkpoint 
inhibitors in the frame of the phase I/II clinical trial (Table 1). In 
another approach, STAT3 siRNA or decoy oligonucleotides were 
coupled to CpG oligonucleotides, which are well-known agonists 
of TLR9 (79, 80). By this technique, a selective delivery of the 
drugs to TLR9-positive cells was ensured. Upon the treatment, 
TLR9-expressing myeloid cells (in particular, PMN-MDSC) 
displayed a decreased immunosuppressive activity, whereas 
TLR9-positive tumor cells lost the resistance to apoptosis via the 
STAT3 signaling (79, 80).

A further possibility to target MDSC is the modulation their 
metabolic pathways (81, 82). It was shown that tumor-infiltrating 
MDSC displayed an upregulation of the fatty acid translocase, 
CD36, which resulted in an increased uptake and oxidation of 
fatty acids. Accumulated lipids were reported to further increase 
an immunosuppressive capacity of MDSC in a STAT3- and 
STAT5-dependent manner (83). Pharmacological inhibition of 
the fatty acid oxidation decreased the immunosuppressive capac-
ity of MDSC and in combination with low-dose chemotherapy 
and adoptive cellular therapy resulted in antitumor effect in LLC 
and colon adenocarcinoma mouse models (81).
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FiGURe 2 | Strategies for myeloid-derived suppressor cells (MDSC) targeting. The MDSC modulation could be achieved by the inhibition of their 
immunosuppressive activity (blue box), by the blockade of MDSC recruitment to the tumor site (green box), and by the regulation of myelopoiesis  
and/or depletion of MDSC (red box). Examples for each therapeutic approach are shown.
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BLOCKiNG MDSC TRAFFiCKiNG

Myeloid-derived suppressor cells exhibit their main immunosup-
pressive activity within the TME. Therefore, intensive investigations 
were performed to block the migration of MDSC to the tumor site. 
Chemokine receptors are a key driving force for the migration of 
immune cells (84). Myeloid cells (in particular, MDSC) express 
C-X-C motif chemokine receptor (CXCR) 2 (85). The main 
ligands for CXCR2 are C-C motif chemokine ligand (CCL)2 
and CCL5, which are elevated in the TME (86, 87). To block the 
CXCR2-CCL2 interaction, tumor-bearing mice were treated with 
the chemotherapeutic drug docetaxel combination with a CXCR2 
antagonist, showing a significant therapeutic effect (88).

Another chemokine receptor CCR5, which is expressed on a 
broad spectrum of immune cells (84), interacts with its ligands 
CCL3, CCL4, and CCL5 (89). Interestingly, the patients with 
a mutated CCR5 variant were reported to be resistant to the 
prostate cancer development (90). Furthermore, CCR5 has a 
critical role in tumor progression since it has been shown that 
the CCR5–CCL5 axis supported tumor growth, invasion, and 
migration of MDSC to the tumor site (87, 91). By targeting the 

CCR5-CCR5 ligand interaction, tumor growth and invasiveness 
could be suppressed in pancreatic, colorectal, prostate, and breast 
cancer (92–94).

In a spontaneous Ret transgenic mouse melanoma model, we 
have demonstrated that the tumor progression correlated with 
the accumulation of CCR5+ MDSC in the TME that displayed 
significantly stronger immunosuppressive capacity than their 
CCR5− counterpart (87). By blocking the CCR5–CCR5 ligand 
interaction with a mCCR5-Ig fusion protein, the survival of 
melanoma bearing mice was significantly improved as com-
pared to the control group. Importantly, it was also shown that 
the frequency of CCR5+ M-MDSC and CCR5+ PMN-MDSC 
was increased in the peripheral blood of melanoma patients 
and that CCR5+ M-MDSC accumulated in melanoma lesions 
(87). Similar to the situation in melanoma bearing mice, CCR5+ 
MDSC from melanoma patients displayed an increased immu-
nosuppressive pattern compared to the CCR5− MDSC subset. 
Taken together, targeting CCR5 on MDSC could be applied not 
only to prevent the MDSC migration and accumulation in the 
TME but also to reduce MDSC immunosuppressive functions in 
cancer patients (87, 91).
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TABLe 1 | Ongoing clinical trials to target myeloid-derived suppressor cells (MDSC) in cancer patients.

No. Title Disease or conditions interventions Trial number

1 MDSC and chronic myeloid leukemia Chronic myeloid leukemia Imatinib NCT03214718

2 Depletion of MDSC to enhance  
anti-PD-1 therapy

Non-small cell lung cancer 
(NSCLC), stage IIIB

Nivolumab NCT03302247
Nivolumab + Gemcitabine

3 MDSC and checkpoint immune regulators’  
expression in allogeneic SCT Using Flu-Bu-ATG

Leukemia, myelodysplastic 
syndromes

Fludarabine, Busulfan NCT02916979
Methotrexate

4 MDSC control by signal regulatory protein-alpha:  
investigation in hepatocellular carcinoma

Hepatocellular carcinoma Therapy-independent  
collection of human samples

NCT02868255

5 Myeloid-derived suppressor cells clinical assay  
in finding kidney cancer

Metastatic and recurrent  
renal cell cancer

Computed tomography, cytology specimen 
collection, laboratory biomarker analysis, 
magnetic resonance imaging

NCT02664883

6 Capecitabine + bevacizumab in patients  
with recurrent glioblastoma

Glioblastoma Capecitabine
Bevacizumab

NCT02669173

7 Dendritic cell (DC) vaccine with or without gemcitabine.  
pre-treatment for adults and children with sarcoma

Sarcoma Gemcitabine NCT01803152
Soft tissue sarcoma
Bone sarcoma DCs vaccine

8 SX-682 treatment in subjects with metastatic melanoma  
concurrently treated with pembrolizumab

Melanoma stage III SX-682 NCT03161431
Melanoma stage IV Pembrolizumab

9 PDE5 inhibition via tadalafil to enhance antitumor  
Mucin 1 vaccine efficacy in patients with HNSCC

Head and neck squamous  
cell carcinoma

Tadalafil NCT02544880
Anti-MUC1 vaccine
Anti-influenza vaccine

10 Phase II trial of EP4 receptor antagonist, AAT-007  
(RQ-07; CJ-023,423) in advanced solid tumors

Prostate cancer RQ-00000007 NCT02538432
NSCLC

Breast cancer Gemcitabine

11 MDSC clinical assay in finding and monitoring cancer  
cells in blood and urine samples from patients with  
or without localized or metastatic bladder cancer

Stage II bladder cancer Cytology specimen collection procedure, 
laboratory biomarker analysis

NCT02735512
Stage III bladder cancer

12 RTA 408 capsules in patients with melanoma—REVEAL Melanoma Omaveloxolone NCT02259231
Unresectable (stage III) melanoma Ipilimumab
Metastatic (stage IV) Nivolumab

13 PDL-1 expression on circulating tumor cells in NSCLC Lung cancer Blood sample collection for  
CTC and MDSC analysis

NCT02827344

14 Effect of Astragalus-based formula: Qingshu-Yiqi-Tang  
on modulating immune alterations in lung cancer patients

Non-small-cell lung carcinoma Astagalus-based formula: 
Qingshu-Yiqi-Tang

NCT01802021

16 A phase II trial of tadalafil in patients with squamous  
cell carcinoma of the upper aero-digestive tract

Head and neck squamous  
cell carcinoma

Tadalafil NCT01697800

17 Relevance of peripheral cells in the pathophysiology  
of chronic myelomonocytic leukemia

Chronic myelomonocytic  
leukemia

Clinical data collection NCT03280888

18 Histamine receptor 2 antagonists as enhancers  
of antitumor immunity

Cancer Ranitidine NCT03145012

19 Preoperative nutrition with immune enhancing  
nutritional supplement (immunomodulation)

Pancreatic adenocarcinoma Dietary supplement: Nestle IMPACT 
advanced recovery and Nestle Boost high 
protein drink

NCT02838966

20 A study of RGX-104 in patients with advanced  
solid malignancies and lymphoma

Malignant neoplasms RGX-104 NCT02922764

21 Determination of immune phenotype in  
glioblastoma patients

Glioblastoma multiforme Surgery NCT02751138

22 Academia Sinica Investigator Award 2010 Breast cancer Unknown NCT01287468

23 The “Fuzzing” therapy of TCM to improve the survival  
quality of early-stage NSCLC by intervening the CTCs

NSCLC JinFuKang NCT02603003
Cisplatin
Pemetrexed

24 Antibody DS-8273a administered in combination with  
nivolumab in subjects with advanced colorectal cancer

Colorectal neoplasm DS-8273a + nivolumab NCT02991196

25 Study to assess safety and immune response of stage IIB-IV 
 resected melanoma after treatment with MAGE-A3 ASCI

Melanoma recMAGE-A3 + AS15 ASCI NCT01425749

(Continued )
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No. Title Disease or conditions interventions Trial number

26 Potentiation of cetuximab by regulatory T cells depletion  
with CSA in advanced head and neck cancer

Head and neck squamous  
cell carcinoma

Cyclophosphamide NCT01581970
Cetuximab

27 IMA970A plus CV8102 in very early, early and intermediate  
stage hepatocellular carcinoma patients

Hepatocellular carcinoma IMA970A, CV8102, Cyclophosphamide NCT03203005

28 Intensive locoregional chemoimmunotherapy for  
recurrent ovarian cancer plus intranodal DC vaccines

Cancer of ovary Cisplatin + celecoxib + DC vaccine, 
cisplatin + CKM + celecoxib + DC vaccine

NCT02432378

29 Trial of SBRT with concurrent ipilimumab  
in metastatic melanoma

Melanoma Stereotactic body  
radiotherapy, ipilimumab

NCT02406183

30 Lenalidomide maintenance therapy for multiple myeloma Multiple myeloma Lenalidomide NCT01675141

31 Ipilimumab and all-trans retinoic acid combination  
treatment of stage IV melanoma

Melanoma All-trans retinoic  
acid ipilimumab

NCT02403778

32 Study evaluating the influence of LV5FU2 bevacizumab  
plus ANAKINRA Association on Metastatic Colorectal Cancer

Metastatic colorectal cancer ANAKINRA NCT02090101

33 A phase I/Ib study of AZD9150 (ISIS-STAT3Rx) in patients  
with advanced/metastatic hepatocellular carcinoma

Advanced adult hepatocellular 
carcinoma

AZD9150 NCT01839604

Hepatocellular carcinoma 
metastatic

34 AZD9150 with MEDI4736 in patients with advanced  
pancreatic, non-small lung and colorectal cancer

Malignant neoplasm of digestive 
organs intestinal tract; primary 
malignant neoplasm of respiratory 
and intrathoracic organ carcinoma

MEDI4736 NCT02983578
AZD9150

35 Study to assess MEDI4736 with either AZD9150 or  
AZD5069 in advanced solid tumors and relapsed  
metastatic squamous cell carcinoma of head and neck

Advanced solid tumors and 
metastatic squamous cell 
carcinoma of the head and neck

MEDI4736 NCT02499328
AZD9150
AZD5069
Tremelimumab

TABLe 1 | Continued
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DePLeTiON OF MDSC

The number of MDSC in tumor-bearing hosts could be reduced 
by (i) the normalization of myelopoiesis, (ii) the inhibition of the 
conversion of IMC into MDSC, and (iii) the differentiation of 
MDSC into mature myeloid cells like DC or macrophages. All-
trans retinoic acid (ATRA) seems to be a very promising agent 
for these approaches. ATRA is a vitamin A derivative binding 
to the retinoic acid receptor. By blocking the retinoic acid signal 
transduction, MDSC could differentiate into DC and mac-
rophages (95). In addition, it was described that administration 
of ATRA led to the downregulation of ROS production in MDSC 
by activating the extracellular-signal regulated kinase (ERK)1/2 
pathway (96). In a completed clinical trial, ATRA was applied in 
metastatic renal carcinoma patients in combination with the IL-2 
administration (97). The frequency of MDSC was significantly 
decreased, and the ratio between DC and MDSC was much 
higher than in the untreated group. In a second clinical trial with 
late stage small cell lung cancer patients, ATRA was used together 
with a DC vaccine against p53 (98). The outcome confirmed the 
inhibitory effect of ATRA on the frequency of circulating MDSC. 
The combination of the DC vaccine and ATRA resulted in the 
development of p53-specific CD8+ T cells. It should be mentioned 
that ATRA was used in many other clinical trials with inhibitory 
effects on tumor progression; however, MDSC were not evalu-
ated in these trials, and the positive effect was linked to other 
mechanisms.

Since tumor-derived EV were reported to induce the conversion  
of non-immunosuppressive IMC into MDSC and further activated 

their immunosuppressive functions (26, 27), the inhibitors of the 
EV release from tumor cells were tested in mice-bearing CT26 
colon carcinoma (30). It was demonstrated that the treatment of 
these mice with dimethyl amiloride or omeprazole reduced EV 
content in serum that was associated with the reduction of MDSC 
expansion and immunosuppressive activity (30).

Clinical trials with tyrosine kinase inhibitors (such as suni-
tinib) revealed that these agents could target MDSC. Since suni-
tinib could block VEGF and c-kit signaling, which are involved 
in the generation of MDSC (99), its effect on MDSC from cancer 
patients was evaluated. Sunitinib treatment of metastatic renal 
cell carcinoma patients was reported to decrease the number 
of circulating MDSC (100, 101). Interestingly, M-MDSC from 
treated patients displayed a reduced STAT3 activation and ARG1 
expression that was accompanied with an elevated activity and 
proliferation of CD8 T cells. However, no significant prolonga-
tion of the overall survival was observed.

Other chemotherapeutics such as gemcitabine and 5-fluoro-
uracil were shown to induce selectively apoptosis of MDSC in 
the spleen and TME in several mouse tumor models (102–104). 
Interestingly, both chemotherapeutic agents displayed no sig-
nificant effect on the frequencies of T cells, NK cells, DC, and 
B cells. It was also shown that gemcitabine reduced the frequency 
MDSC and Treg as well TGF-β1 level in the peripheral blood of 
pancreatic cancer patients (103). Similar to the preclinical obser-
vation, gemcitabine has no effect in effector T cells. In a clinical 
trial, gemcitabine treatment of pancreatic cancer patients resulted 
in a dramatic decrease in PMN-MDSC (103). An application of 
5-fluorouracil in the preclinical mouse model and colorectal 
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cancer patients affected MDSC, leading to the immune recovery 
and tumor regression (104). Administration of another chemo-
therapeutic, docetaxel, induced a decrease of tumor burden in 
a preclinical mouse model of mammary carcinoma (105). This 
beneficial effect was accompanied by the conversion of MDSC 
into a M1-like cells characterized by the upregulation of CCR7 
(105). The effect of doxorubicin on MDSC in mammary cancer 
models was also investigated (106). The treatment of these mice 
with doxorubicin led to the reduction of MDSC frequencies 
in the spleen, peripheral blood, and tumors. Furthermore, the 
immunosuppressive activity of residual MDSC was impaired. The 
depletion of MDSC resulted in the enhancement of granzyme B 
and IFN-γ production by effector T and NK cells (106). Moreover, 
this study demonstrated that MDSC isolated from patients were 
also sensitive to doxorubicin treatment in vitro (106).

Using Ret transgenic melanoma mouse model, we dem-
onstrated that the administration of ultra-low, non-cytotoxic 
doses of paclitaxel induced the reduction of MDSC numbers 
and immunosuppressive functions (107). This effect was associ-
ated with an inhibition of the p38 MAPK pathway as well as 
the production of TNF-α and S100A9 in MDSC. Treated mice 
showed elevated activity of CD8 T cells, which correlated with 
the prolongation of mouse survival (107). In addition, it was 
reported that the treatment of MDSC in  vitro with ultra-low 
concentrations of paclitaxel stimulated their differentiation into 
DC (108).

FUTURe PeRSPeCTiveS

Tumor cells developed multiple mechanisms to evade the 
immune system and to progress. One of the key mechanisms is 
the establishment of an immunosuppressive TME, where MDSC 
play a crucial role. By altering MDSC function and biology, 

various preclinical and clinical studies showed a beneficial effect. 
This suggests that MDSC targeting could be a promising strategy 
to apply together with existing immunotherapeutic strategies 
such as boosting the immune system by vaccination or negative 
immune checkpoint inhibitors. Thus, combining gemcitabine 
with a DNA vaccination induced a strong antitumor immune 
response accompanied by a reduced self-tolerance in a preclini-
cal HER2-expressing mouse tumor model (109). Furthermore, 
another preclinical study showed that the administration of suni-
tinib with an HPV vaccination resulted in a tumor-free survival 
in 75% mice in the HPV-expressing tumor model (110). In addi-
tion, a clinical trial was initiated in stage IV melanoma patients, 
by whom ATRA was applied together with ipilimumab (111). 
This trial and many other starting combinatorial approaches will 
help to develop an efficient strategy for the treatment of cancer 
patients.
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