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The novel coronavirus 2019 (COVID-19) caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) has made a wide range of manifestations. In this regard,

growing evidence is focusing on COVID-19 neurological associations; however, there is a

lack of established pathophysiological mechanisms and related treatments. Accordingly, a

comprehensive review was conducted, using electronic databases, including PubMed,

Scopus, Web of Science, and Cochrane, along with the author’s expertize in COVID-19

associated neuronal signaling pathways. Besides, potential phytochemicals have been

provided against neurological signs of COVID-19. Considering a high homology among

SARS-CoV, Middle East Respiratory Syndrome and SARS-CoV-2, revealing their precise

pathophysiological mechanisms seems to pave the road for the treatment of COVID-19

neural manifestations. There is a complex pathophysiological mechanism behind central

manifestations of COVID-19, including pain, hypo/anosmia, delirium, impaired

consciousness, pyramidal signs, and ischemic stroke. Among those dysregulated

neuronal mechanisms, neuroinflammation, angiotensin-converting enzyme 2 (ACE2)/

spike proteins, RNA-dependent RNA polymerase and protease are of special

attention. So, employing multi-target therapeutic agents with considerable safety and

efficacy seems to show a bright future in fighting COVID-19 neurological manifestations.

Nowadays, natural secondary metabolites are highlighted as potential multi-target

phytochemicals in combating several complications of COVID-19. In this review,

central pathophysiological mechanisms and therapeutic targets of SARS-CoV-2 has

been provided. Besides, in terms of pharmacological mechanisms, phytochemicals

have been introduced as potential multi-target agents in combating COVID-19 central

nervous system complications.
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INTRODUCTION

Phylogenetic studies on the genomic structure, introduced

various types of coronaviruses (CoVs), including NL63, 229E,
OC43, HKU1, middle east respiratory syndrome (MERS)-CoV,
severe acute respiratory syndrome coronavirus (SARS-CoV), and
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
(Gurung et al., 2020a; Vellingiri et al., 2020), divided into four
groups of alpha (229E and NL63), beta (OC43 and HKU1),
gamma and delta coronaviruses. Among coronaviruses, alpha
and beta groups cause respiratory manifestations in human
(Gurung et al., 2020b; Gurung et al., 2020c; Rasool et al.,
2020). Recently, a new strain of coronaviruses, namely SARS-
CoV-2 has been found, belonging to a distinct class of beta

coronaviruses (Divani et al., 2020). SARS-CoV-2 made a
deadly disease, termed coronavirus disease 2019 (COVID-19)
with devastating manifestation all over the world (Fitriani et al.,
2020; Nemoto et al., 2020). The large and positive sense RNA
genome with a size of 27–32 kb, as well as an envelope with spike
(S1 and S2)/conjugated proteins (Holmes and Lai, 1996;
Davidson et al., 2020) are associated with COVID-19
symptoms over a period of 2–14 days. Studies have revealed
that when viruses enter to the lung tissue cells and proliferate,
cause alveolar and interstitial inflammatory secretion and edema
that leads to alveolar gas exchange impairment and hypoxia in the

central nervous system (CNS), thereby increases anaerobic
metabolism in the mitochondria of brain cells (Wu et al.,
2020c). Besides, SARS-CoV enters the nasal passage and
triggers neural inflammatory responses through dysregulation
of the immune system. The entry factors for SARS-CoV-2 are
highly expressed in nasal epithelial cells (Sungnak et al., 2020). As
a consequence, CoVs enters the brain via the olfactory tract in the
early stages of nasal vaccination or infection (Mori, 2015; Wu
et al., 2020c; Desforges et al., 2020). Accordingly, this virus is not
limited to the respiratory system but invades peripheral nerves
and enters the CNS then causes/aggravates neurodegenerative

disorders (Matsuda et al., 2004; Vellingiri et al., 2020). Research
has shown the presence of SARS-CoV in cortex, hippocampus,
spinal cord, brain stem, cerebellum, striatum, colliculus superior,
and hypothalamus (Jacomy and Talbot, 2003). Consequently,
COVID-19 patients have shown neurological symptoms,
including headache, dizziness, hypogeusia, nausea, vomiting,
and anosmia (Ahmad and Rathore, 2020; Vellingiri et al., 2020).

From the pathophysiological point of view, the spike protein in
the morphology of COVID-19 bind to angiotensin-converting
enzyme (ACE)-receptors on alveolar epithelial cell type 2 (AT2),
primed by transmembrane protease serine 2 (TMPRSS2) to allow
coronavirus entry (Marchetti et al., 2018; Li et al., 2019b; Wang

et al., 2020b; Vallamkondu et al., 2020). Experimental evidence
indicated that COVID-19 enters the lung via the respiratory tract
and invades AT2 cells to generate a surfactant regarding declining
related tension within alveoli to alleviate collapsing pressure.
Also, ACE2 is presented in kidney, heart, enterocytes,
pancreas, endothelial cells and widely distributed in brain to
facilitate the SARS-CoV-2 entry into the cells (Li et al., 2003; Diao
et al., 2020). The neural distribution of ACE2 was controversial at
first. While a quantitative real-time RT-PCR study showed low

levels of ACE2 mRNA in the human brain (Harmer et al., 2002),
immunohistochemistry results indicated that ACE2 protein
expression was restricted to arterial and endothelial smooth
muscle cells (Hamming et al., 2004). Additionally, the

predominant expression of ACE2 in glial cells was shown in
brain primary cell cultures (Gallagher et al., 2006).
Complementary evidence showed the widespread presence of
ACE2 mRNA and protein throughout the brain (Doobay et al.,
2007) or brainstem (Lin et al., 2008). Finding SARS-CoV in
brains of infected patients also confirmed related distribution of
ACE2 (Ding et al., 2004; Gu et al., 2005; Xu et al., 2005; Xia and
Lazartigues, 2008).

As a critical sign of COVID-19, neuroinflammation occurs
through elevated levels of neuronal interleukin (IL)-1β, IL-2, IL-4,
IL-6, IL-8, IL-10, IL-12, tumor necrosis factor-α (TNF-α),

interferon-gamma (IFN-γ), granulocyte colony-stimulating
factor (GMCSF), IFN-γ-induced protein 10 (IP-10), monocyte
chemoattractant protein-1 (MCP1), macrophage inflammatory
protein 1α (MIP1α), and T cell expression (Xu et al., 2005;
Yarmohammadi et al., 2020). The coronaviruses release
inflammatory mediators to stimulate macrophages. These
macrophages activate IL-1, IL-6, TNF-α, C-X-C motif
chemokine ligand 10 (CXCL10) and chemokine ligand 2
(CCL2). Prevailing evidence is showing that CoVs reach the
neurons, astrocytes, and/or microglia in CNS. Consequently,
microglia and astrocytes play major roles in

neuroinflammation and released inflammatory mediators
(Murta et al., 2020). These cytokines and chemokines causes
vasodilation and also increased capillary penetrance that causes
declined surfactant stage in AP-2 cells which in turn lead to
alveolar collapse and perturbation in gaseous exchange (Zaki
et al., 2012; Wu et al., 2020a; Guan et al., 2020; Yang et al., 2020).
In the other level of disease there is an increased level of
inflammatory mediators via CD4+ and also increased
generation of neutrophils and macrophages using IL-17, IL-21,
and IL-22 that causes difficulties in breathing, hypoxemia, and
cough (de Wit et al., 2016; Gao et al., 2020; Wan et al., 2020). In

addition to the elevation of neuronal inflammatory mediators in
CNS and related neuronal associations, ACE2/spike proteins and
downstream mediators, RNA-dependent RNA polymerase
(RdRP)/proteases, seem to be golden targets in stopping
related neuronal signs.

Unfortunately, up to now there is no antiviral drug or vaccine
for the treatment of coronaviruses infection, although candidate
phytochemicals can be promising factors with antiviral potentials
for the treatment of infection (Liu and Du, 2012; Gurung et al.,
2020b). Some previous research has indicated neurological
manifestations in coronaviruses (Ahmed et al., 2020;

Yavarpour-Bali and Ghasemi-Kasman, 2020). Besides, limited
studies suggested natural products and candidate phytochemicals
as helpful agents for the prevention and treatment of
coronaviruses (Hasan et al., 2020; Majnooni et al., 2020; Zhou
and Huang, 2020). In this study, an extensive review was
performed on neurological manifestations of coronaviruses, as
well as the effects of candidate phytochemicals on the
aforementioned signaling pathways. Additionally, this is the
first review on highlighting phytochemicals with antiviral and
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neuroprotective effects, which targets the neural pathogenic
pathways of CoVs (termed candidate phytochemicals)
regarding the prevention and treatment of COVID-19
neuronal signs.

STUDY DESIGN

We used electronic databases (e.g., Scopus, PubMed, Medline,
and Web of Science) and related articles in other sources, to
conduct a comprehensive review on the neurological manifests of
coronaviruses, as well as the phytochemicals effects. The

keywords (“Severe Acute Respiratory Syndrome” OR “SARS”
OR “Middle East Respiratory Syndrome” OR “MERS” OR
“Coronavirus disease 2019” OR “COVID-19” OR “SARS-CoV”
OR “SARS-CoV-2”) AND (“neurological sign” OR “neurological
manifestation” OR “neuron” OR “nerve” OR “central nervous
system”OR “CNS”OR “brain”OR “neurology”OR “neuropathy”
OR “stroke” OR “multiple sclerosis” OR “encephalitis” OR
“encephalopathy”) [title/abstract/keywords] were used. All the
phytochemicals possessing both the antiviral and neuroprotective
activities with the keywords (“phytochemical” OR “secondary
metabolite” OR “plant” OR “polyphenol” OR “phenolic

compound” OR “flavonoid” OR “alkaloid” OR “terpen” OR
“terpenoid” OR “quinone”) were also searched in the whole
text. Overall, the phytochemicals with reported antiviral and
neuroprotective effects possessing the potential of modulating
coronaviruses pathophysiological mechanisms were included.
Data were collected without language and date restrictions
until October 2020. The screening of retrieved articles was also
done. on the reference lists/citation. Regarding completing review
on the electronic databases, hand searching also was done relying
on the authors’ expertize on the SARS-CoVs pathophysiological
mechanisms in CNS and candidate phytochemicals.

NEURONAL MANIFESTATIONS OF
CORONAVIRUSES

Experimental evidence showed two types of neurological
manifestations referring to the CNS and peripheral nervous
system (PNS). Of the PNS, there are various neurological
associations such as hypogeusia, hyposmia, impaired eye

movement, trigeminal neuropathy, Miller-Fisher syndrome,
polyneuritis cranialis, rhabdomyolysis, Guillain-Barré
Syndrome, and olfactory dysfunction (Ahmad and Rathore,
2020; de Freitas Ferreira et al., 2020; Mochan and Modi, 2020;
Nordvig et al., 2020; Pascual-Goñi et al., 2020; Yavarpour-Bali
and Ghasemi-Kasman, 2020). COVID-19 also causes CNS
impairment such as cerebrovascular disorders, acute ischemic
stroke (1–3%), intracranial haemorrhage (0.5%), encephalitis
(brain inflammation), demyelination, meningitis, polyneuritis
cranialis, vasculitis, and skeletal muscular damage (Li et al.,
2016; Dorche et al., 2020; Filatov et al., 2020; Mao et al., 2020;

Moriguchi et al., 2020; Zhou et al., 2020). It has been shown that
229E and OC43 coronavirus strains invade to neuroblastoma,
neuroglioma, astrocytoma, microglial, and oligodendrocytic cell

cultures (Cheng et al., 2020b) toward revealing neuronal
complications. Werner and co-workers have indicated
additional symptoms of several cases, such as acute necrotizing
encephalopathy, neck stiffness, bilateral ankle clonus, positive

Brudzinski, left Babinski, and right Chaddock signs (Werner
et al., 2020). Other neuronal symptoms of COVID-19 are
ataxia, refractory status epilepticus (Xu et al., 2005), neuron
denaturation/necrosis, broad gliocytes hyperplasia with
gliosome formation (Yassin et al., 2020), myalgia, dyspnea
(Prakash et al., 2020), taste and smell dysfunctions, acute
cerebrovascular and oculomotor nerve palsy (Nepal et al.,
2020). Mao et al. indicated that elevated creatine
phosphokinase (CPK), C-reactive protein (CRP), D-dimer,
necrotizing myopathy, thick filament myopathy, critical illness
myopathy (nonspecific), and acute quadriplegic myopathy are

other neural manifestation of COVID-19 (Mao et al., 2020; Suri
et al., 2020; Warner, 2020). Reports have also shown other
neurological manifestations such as Bickerstaff’s encephalitis,
critical illness myopathy, severe lymphopenia,
thrombocytopenia and uremia, facial diplegia, and toxin
associated myopathy and neuropathy (Wu et al., 2017; Gulati
et al., 2020; Zheng et al., 2020). Of the clinical behavioral signs,
headache, syncope, agitation, delirium, dysgeusia, fatigue,
dizziness, acute confusion, sleep disorders, changed the level of
consciousness, and altered mental status, have been observed in
COVID-19 patients (Stewart et al., 1992; Dessau et al., 2001; Lau

et al., 2004; Wang et al., 2020a; Wang et al., 2020c; Wu et al.,
2020c; Dorche et al., 2020; Helms et al., 2020; Mochan and Modi,
2020; Nalleballe et al., 2020). The aforementioned neurological
signs are being manifested in 84% of patients with COVID-19
(Wang et al., 2020c; Helms et al., 2020).

Severe respiratory syndrome as one of the critical impairment
of COVID-19 may result in systemic hypoxia, hypercarbia, and
anaerobic metabolism resulting in neuronal swelling and brain
edema/damage (Suri et al., 2020). SARS-CoV-2 also invades to
the spinal cord and causes acute inflammation of gray and white
matter in the spinal cord (myelitis), which was recognized by the

acute flaccid myelitis of lower limbs, urinary and bowel
incontinence (Zhao et al., 2020). Evidence has shown a close
relationship between COVID-19 and Parkinson disease,
increased motor symptoms (e.g., tremor), freezing of gait or
dyskinesias, and declined the efficacy of dopaminergic
medication (Macht et al., 2007; Zach et al., 2017; Ehgoetz
Martens et al., 2018). Interestingly, it seems to be a near
linkage between dopamine synthesis pathway and COVID-19
pathophysiology. In this line, dopa decarboxylase, as a regulatory
enzyme in dopamine pathway is meaningfully co-expressed with
ACE2 receptor. On the other hand, SARS-COV virus

downregulates ACE2 in consistent with dopamine synthesis
alteration (Kuba et al., 2005). Besides, as dopamine is
expressed in the alveolar epithelial cells, it also contributes in
lung immunity, as well as what ACE2 does (Bone et al., 2017).
Accordingly, considering the critical role of dopamine deficiency
in Parkinson’s disease, the SARS-CoV-2 virus may cause such
sporadic signs COVID-19 patients (Rietdijk et al., 2017).

Additionally, evidence indicated that CoVs may play an
essential function in the pathogenesis of multiple sclerosis
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(Saleki et al., 2020). The CoVs isolated from multiple sclerosis
patients were neutralized using the patients’ serum. This revealed
the destructive role of CoVs in the pathogenesis of multiple
sclerosis (Burks et al., 1980). Growing studies are evaluating the

use of immunomodulatory/disease-modifying agents in multiple
sclerosis patients with COVID-19. Results declared an increased
risk of COVID-19 complications in those treated patients
(Baysal-Kirac and Uysal, 2020; Ramanathan et al., 2020).
Decision on continuing/stopping the immunotherapy in these
patients is closely dependent on disease severity and activity
(Giovannoni et al., 2020).

Orsucci and co-others have revealed that there are olfactory
and gustatory function impairments as common neural disorders
in patients of COVID-19 (Orsucci et al., 2020). It has shown in
CNS-CoV disease, there is a lower level of lymphocytes,

eosinophils and a higher level of neutrophils as well as
monocyte (Saleki et al., 2020). Also, Toscano et al. observed
Guillain–Barré syndrome, lower limb weakness and paresthesia,
facial diplegia followed by ataxia and paresthesia, flaccid
tetraparesis or tetraplegia in COVID-19 (Toscano et al., 2020).
Researchers in several cases observed tonic-clonic seizure,
anxiety, psychotic symptoms, meningeal irritation signs,
extensor plantar response, encephalitis, dysphagia, dysarthria,
bulbar impairment and massive hemorrhagic conversion
(Wang et al., 2020a).

THE PATHOPHYSIOLOGICAL
MECHANISTIC PATHWAYS OF
CORONAVIRUSES IN CENTRAL NERVOUS
SYSTEM

Experimental evidence has indicated that coronaviruses invade to
neurons and glial cells to induce an unfolded protein response
(UPR) regarding necroptosis in neuronal cells (Meessen-Pinard
et al., 2017). As previously mentioned, coronaviruses caused
neuronal damages and death along with related
neuroinflammatory responses (Morfopoulou et al., 2016).
There are multiple mechanisms by which SARS-CoV-2 enters
the CNS and causes associated complications. Those mechanisms

are blood-mediated contamination (hematogenous), neuronal-
mediated infection (neurogenic), immunodeficient related
damage, direct respiratory infection, and hypoxic injury
(Ahmed et al., 2020) which are described as following. During
the hematogenous manner, CoVs crossed the blood-brain barrier
(BBB) and entered the brain. This occurs via two mechanisms, by
direct penetration of the virus particle crossing the BBB or by
hijacking peripheral blood cells (Bohmwald et al., 2018). In the
latter way of invasion, Human coronavirus OC43 (HCoV-OC43)
accesses the CNS via the neurogenic way to be appeared in the cell
bodies and dendrites of olfactory neurons, then spread in

hippocampus, cortex and spinal cord (Niu et al., 2020a).
During the viremia phase of illness, BBB disruption causes a
direct virus entrance to the brain. Spreading/disseminating of
SARS-CoV-2 from the cribriform bone in nearby proximity to the
olfactory bulb, and brain causes in seven days (Baig et al., 2020).

Besides, peripheral invasion of nerve terminals by CoVs through
the connected synapse leads to the virus entry to the CNS
(Ahmad and Rathore, 2020). Additionally, systemic hypoxia
resulted from severe pneumonia causes vasodilatation,

anaerobic metabolism, hypoxia and accumulation of toxic
compounds lead to brain damage (Tu et al., 2020).

One of the most widely accepted neuropathological
mechanisms of SARS-CoV-2 is hyper-inflammatory state
(Yavarpour-Bali and Ghasemi-Kasman, 2020). Accordingly,
the immune-mediated damage is resulted from cytokine
storms, as well as the activation of T lymphocytes, endothelial
cells, and macrophages which leads into vascular leakage,
coagulation, and end-organ damage (Mehta et al., 2020;
Tveito, 2020). It was shown that coronavirus triggers innate
immunity associated with the release of microglial-induced

INF-α/β (Savarin et al., 2018). In this regard, several cytokines
and chemokines are released by microglia and astrocytes such as
IL-1α, IL-1β, IL-6, IFN-γ, TNF-α, and CXCL10 (Joseph et al.,
1993). Li et al. indicated the increased levels of many
inflammatory mediators in the cerebrospinal fluid, including
IL-6, IL-8, MCP-1, and granulocyte-macrophage colony-
stimulating factor (GM-CSF) in COVID-19 patients (Li et al.,
2016). During early stage of CoV neuroinfection, CXCL10 and
CXCL9 are present in the peripheral blood of patient affected by
IFN-γ (Jiang et al., 2005). Experiment has shown that CoVs play a
destructive role in acute disseminated encephalomyelitis

(ADEM) correlated with increased inflammatory mediators
such as IL-6, IFN-γ, TNF-α, CXCL9, and CXCL10 (Kothur
et al., 2016). It has been demonstrated that there is a direct
correlation between the levels of IL-1β, IL-6, IL-8, TNF-α, IL-10
and COVID-19 central inflammatory complications such as
neuromyelitis optica (also known as Devic’s disease),
transverse myelitis, acute disseminated encephalomyelitis,
amyotrophic lateral sclerosis, herpes simplex encephalitis,
Parkinson’s disease, traumatic brain injury, epilepsy, and
stroke (Vezzani et al., 2002; Rodney et al., 2018; Vezzani et al.,
2019;West et al., 2019). In this line, it has shown that IL-2 and IL-

2 receptors (IL-2R) have important signals for T cell activation via
Janus kinase/signal transducer and activator of transcription
(JAK/STAT) signaling pathway (Fu et al., 2018; Shi et al.,
2020). The transcription factor nuclear factor-κB (NF-κB) is
another essential regulator in immune system, which is
activated in lung inflammatory immunopathology-induced by
SARS-CoV (DeDiego et al., 2014; Catanzaro et al., 2020).

As previously mentioned, studies have suggested several
mechanisms for entering the SARS-CoV-2 to the nervous
system, although the exact mechanism is not clear
(Yavarpour-Bali and Ghasemi-Kasman, 2020). Scientists have

suggested that coronaviruses enter the olfactory bulb/
epithelium, then penetrates to CNS. So, make the anosmia or
hyposmia as the neural manifestation of COVID-19. Recently
additional studies have suggested different mechanisms for
anosmia in COVID-19, such as olfactory cleft syndrome,
mucosal obstruction, direct damage of olfactory sensory
neurons, impairment of the olfactory perception center and
cytokine storm in the brain (Yazdanpanah et al., 2020).
Released inflammatory factors altered the penetrance of the
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BBB and increased inflammatory cascade (Singhi, 2011).
Studies have also shown that deficiency in neuronal
endoplasmic reticulum (ER) leads to the activation of
UPR-induced by SARS-CoV (Chan et al., 2006; Ron and

Walter, 2007). Until now, some related signaling pathways
have shown functional roles in the UPR processing, such as
ATF6, phospho-extracellular signal-regulated kinase
(p-ERK)/eIF2-alpha and IRE1/XBP1 (Ron and Walter,
2007). Favreau et al. indicated that HCoV-OC43 induced
UPR and causes neuronal death by caspase-3 activation and
nuclear fragmentation (Favreau et al., 2009). From another
mechanistic point, studies suggested that SARS-CoV-2
induces severe inflammation that leads to thrombosis.
SARS-CoV-2 also binds to toll-like receptors (TLR) and
causes the synthesis and liberation of IL-1. As a matter of

fact, TLRs activate biochemical cascade by inflammasome
activation as well as type I interferon (IFN) which is released
as an important player against viral infection (Marchetti
et al., 2018; Conti et al., 2020; Vaninov, 2020).

ROLE OF RENIN-ANGIOTENSIN SYSTEM
IN THE NEURONAL MANIFESTATIONS OF
CORONAVIRUSES

It has been shown that SARS-CoV-2 mainly enters the CNS
via the ACE2 or TMPRSS2 receptors. These receptors are
expressed in the glial cells of brain/spinal cord and thereby
facilitates the invasion of coronavirus to the spinal cord,
which is essential for the host cell entry of SARS-CoV-2 and
also plasma membrane fusion (El Tabaa and El Tabaa, 2020;
Nemoto et al., 2020). Also, it has been indicated that when
coronavirus enters the cells, ACE2 will break and shed by
ADAM Metallopeptidase Domain 17 (ADAM17) into the
membrane space (Li and De Clercq, 2020). Studies

suggested that phosphorylation of ACE2 at Ser680 inhibits
ubiquitination of ACE2 and also increase related membrane
expression (Amraei and Rahimi, 2020). It has been indicated
that renin-angiotensin system (RAS), including angiotensin
II (Ang II), ACE, ACE2, angiotensin type-1 receptor (AT1R),
angiotensin type-2 receptor (AT2R), and Mas receptor
(MAS), plays critical physiological functions. Research
suggested that Ang II prevents COVID-19 infection
through binding to ATR1 and activating ACE2
internalization, then declining ERK1/2 and p38 mitogen-
activated protein kinase (MAPK) pathway (Koka et al.,

2008; Fernandes et al., 2011; Divani et al., 2020). Recent
reports indicated that Ang II act via two G protein-coupled
receptors (GPCR) such as AT1R, angiotensin type-2 receptor
(AT2R) which expressed in human lung tissue. Besides, the
activations of Ang II can be mediated by AT1R through
enhancing several signaling pathways such as MAPK/ERK,
IP3/diacylglycerol, tyrosine kinases, and NF-κB (Balakumar
and Jagadeesh, 2014; El Tabaa and El Tabaa, 2020). In a
parallel way, AT1 stimulates monocytes, macrophages and
vascular smooth muscle cells to generate TNF-α and IL-6
(Balakumar and Jagadeesh, 2014). Additionally, Ang II

promotes vasoconstriction, released pro-inflammatory
cytokine, vascular endothelial dysfunction, and platelet
aggregation (Nakashima et al., 2006; Shatanawi et al.,
2011). There is also a relationship between Ang II and

endothelin-1 (ET-1). Indeed ET-1 has an important
function in Ang II-induced endothelial dysfunction and
platelet activation through inducing IL-6 release (Touyz
and Schiffrin, 1993; Browatzki et al., 2000). In order to
reduce SARS-CoV-2 entry and related side effects, ACE2
activity should be declined. It has been found that ACE2 is
a critical enzyme in the RAS, which has a critical function role
in the human body. In this pathway, renin generated in the
kidneys cleaves angiotensinogen from the liver, producing
Ang I and then is cleaved by ACE into Ang-II (the substrate of
ACE2). Ang I binds to the AT1R and AT2R as well as the RAS

system has an important function in SARS-CoV-2 infection
(Battagello et al., 2020).

In addition to the critical role of blood, hypoxia, ACE2,
neuroinflammation in the neuronal pathogenesis of COVID-
19, modulating RdRP/3-chymotrypsin-like protease
(3CLpro) and papain-like protease (PLpro), as critical
enzymes involved in the replication of SARS-CoV-2, is of
great importance. There are also several receptors, namely
CD209L (L-SIGN), CD209 (DC-SIGN), neuropilin receptors
(NRPs), and CD147/Basigin, which facilitate SARS-CoV-2
entry (Amraei and Rahimi, 2020). As described, there is a

close interconnection between the aforementioned
dysregulated signaling pathways. In this line, providing
multi-target agents capable of a simultaneous modulation
of the aforementioned targets could pave the road against
COVID-19 neurological manifestations.

IMPORTANCE OF NATURAL PRODUCTS IN
COMBATING COVID-19 GENERAL
MANIFESTATIONS

The widespread pandemic of COVID-19 disease, by infecting
millions of people, and thousands of killing around the world,
has triggered researchers to make a diligent effort regarding
finding potential drugs or vaccines against SARS-CoV-2.
However, these efforts have not yet reached credible drugs
due to the inherent complexity of the SARS-CoV-2
pathogenicity/complications (Sharma et al., 2020). Due to
their simultaneous effects on multi-therapeutic targets and
low side effects, phytochemicals including alkaloids,

flavonoids, polyphenols, quinones, and terpenoids are of
the most promising options for finding effective treatment
against SARS-CoV-2 (Efferth and Koch, 2011; Mani et al.,
2020).

Recent studies showed that three main targets, including
main proteases, as well as S protein interaction with ACE2,
have attracted the most attention of researchers to discover
effective drugs against SARS-CoV-2 from phytochemicals.
Additionally, phytochemicals potentially target
neuroinflammation to combat related neuronal signs in
COVID-19.
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POTENTIAL OF PHYTOCHEMICALS
AGAINST COVID-19 NEUROLOGICAL
ASSOCIATIONS

Recently, no drug or vaccine has been developed for the
treatment/prevention of SARS-CoV-2. Phytochemicals

have shown to play critical antiviral biological activities
and health benefits in CNS (Kähkönen et al., 1999). As
previously mentioned, there are several major targets for
phytochemicals against coronavirus such as ACE2, spike

protein, TMPRSS2, 3CLpro, RdRp and PLpro, which
among them ACE2 plays an important role regarding the
initial stage of SARS-CoV-2 invasion into the cells/neurons
(Huang et al., 2020b). Also, 3CLpro and PLpro play vital roles
in SARS-CoV-2 maturation and replication (Xue et al., 2008;
Ryu et al., 2010a).

The potential of phytochemicals in suppressing
neuroinflammation induced by SARS-CoV-2 has also made
them promising agents in combating neuronal signs of
COVID-19.

FIGURE 1 | Chemical structures of selected polyphenols/flavonoids with the potential of being used against COVID-19 neurological manifestations.
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Phytochemicals Inhibit Neuroinflammation
and Neural Manifestations in COVID-19

As previously mentioned, hyper-inflammation is one of the
critical neuropathological mechanisms of SARS-CoV-2 in line
with the release of IL-2, IL-6, IL-7, IL-10 and TNF-α (Yang et al.,
2020). Studies also suggested elevated levels of IL-8, MCP-1, IFN-
γ, CXCL9, CXCL10 and GM-CSF in COVID-19 patients (Li et al.,
2016; Marchetti et al., 2018; Conti et al., 2020; Vaninov, 2020)
regarding triggering the neuronal manifestations. Systemic

inflammation following the leukocyte activation prior to its
BBB migrating is another major mechanism toward viral
neurological complications (Campbell et al., 2014). The
released inflammatory agents change the BBB permeability,
triggers the neuroinflammatory flows and drive neuronal
hyper-excitability through the activation of glutamate
receptors, leading to acute seizure (Libbey et al., 2011;
Yavarpour-Bali and Ghasemi-Kasman, 2020). Considering the
crucial role of inflammation in the neuropathogenesis of COVID-
19, phytochemicals with neuronal anti-inflammatory effects
could pave the road in combating related neuronal

manifestations. Recent reports also have declared the critical
role of phytochemicals in health care through their antiviral
(Fitriani et al., 2020) and the inhibition of neuroinflammatory-
interconnected pathways (Abbaszadeh et al., 2020).
Phytochemicals with potential antioxidant and anti-
inflammatory effects (e.g., carotenoids and polyphenols)
interact with major transcription factors such as Nrf2 and NF-
κB (Iddir et al., 2020).

Naringin (Figure 1) is a phenolic phytochemical belonging to
the flavonoid class, possessing anti-neuroinflammatory (Chen
et al., 2016; Chtourou et al., 2016; Ngwa et al., 2020), and antiviral

(Ng et al., 1996) effects with the potential of being used in the
prevention/treatment of COVID-19 (Dabaghian et al., 2020).
Naringin also inhibits the expression level of cyclooxygenase
(COX)-2, inducible nitric oxide synthase (iNOS), IL-1β and
IL-6 via suppressing high mobility group box 1 (HMGB1) in
COVID-19 (Park et al., 2003; Huang et al., 2020a). It also declined
the expression level of p38MAPK to inhibit HMGB1 generation
of inflammatory mediators and associated lung injury (Gil et al.,
2016; Kim et al., 2019b). According to the critical destructive role
of inflammatory mediators in the neurological signs of COVID-
19, naringin seems to be a hopeful anti-inflammatory/antiviral

candidate in combating related neuronal manifestations. As an
aglycone form of naringin, naringenin has similarly shown anti-
neuroinflammatory (Nouri et al., 2019; Alberca et al., 2020), and
antiviral effects with the potential of being used against COVID-
19 (Tutunchi et al., 2020). We have previously shown the
neuroprotective potential of naringenin through modulation of
inflammatory mediators (NF-κB, TNF-α, IL-1β, etc) and
microglia activation in the CNS (Nouri et al., 2019), thereby it
could mitigate the neuronal signs of COVID-19 mediated by the
inflammatory mediators. As another phenolic compound,
resveratrol has shown promising beneficial effects against

COVID-19, through the activation of ERK1/2 and SIR1
signaling pathways related to survival, DNA protection (Levy
et al., 2020; Ma and Li, 2020), and anti-neuroinflammatory

responses (Bastianetto et al., 2015). It also inhibits
neuroapoptosis by reducing FGF-2 and suppressing NF-κB
(Xu et al., 2018). Considering the critical role of the
aforementioned inflammatory mediators in COVID-19

(Yarmohammadi et al., 2020), resveratrol could potentially
decline neuroinflammatory signs of COVID-19 patients (Chen
et al., 2005). As a major natural derivative of resveratrol,
polydatin potentially decline the neural levels of NF-κB, TNF-
α, IL-1β, IL-6, IL-8, prostaglandin E2 (PGE2), NO, COX-2, iNOS,
matrix metalloproteinase (MMP)-3 and MMP-9, thereby could
be a novel agents in combating neuronal inflammatory
manifestation in COVID-19 (Lo Muzio et al., 2020). A recent
study by Bonucci et al., has also introduced polydatin as a
protective phytochemical against COVID-19 (Bonucci et al.,
2020). So, focusing on their ameliorating effects against

neuroinflammation, as well as related antiviral properties,
resveratrol and plydatin derivative could be of candidate
phytochemicals in combating neuronal signs of COVID-19.

Consistently, evidence has shown that epigallocatechin gallate
(EGCG), as a natural polyphenolic compound, plays important
functions such as antitumorigenic, anti-inflammatory,
antibacterial, antioxidative, and antiproliferative effects
(Chacko et al., 2010; Ge et al., 2018; Mhatre et al., 2020). The
anti-neuroinflammatory effects through inhibiting microglia
activation, and suppressing inflammatory mediators
(Abbaszadeh et al., 2020), as well as antiviral effects of EGCG

(Steinmann et al., 2013) make it a potential polyphenol for the
treatment of neurological symptom in COVID-19. Green tea with
the prominent phytochemicals of such polyphenols, including
EGCG, epicatechin gallate, epicatechin and catechin plays both
the antiviral (Chojnacka et al., 2020), anti-SARS-CoV-2 (Ghosh
et al., 2020) and anti-neuroinflammatory activities (Calis et al.,
2020), thereby could play promising role in combating COVID-
19 neural complications. EGCG has employed several other
mechanisms to suppress SARS-CoV-2 in different steps of
virus life cycle (Jang et al., 2020).

As another polyphenol, formononetin declined

neuroinflammation by decreasing the levels of TNF-α, IL-6,
IL-1β, PGE2, iNOS, and COX-2. Evidence indicated that
formononetin inhibited neuroinflammation through
suppressing NF-κB signaling pathway, thereby could be a
novel drug for the neurological manifestation of COVID-19
(El-Bakoush and Olajide, 2018; An et al., 2020). Formononetin
was shown to modulate MAPK, ERK, p38, JNK pathway and
downstream mediators to play antiviral effects and inhibit
infection-induced inflammation (Wang et al., 2015; Lalani and
Poh, 2020). Recent reports also have considered the
formononetin as one of major plant-derived secondary

metabolites with acceptable effectiveness against COVID-19
(Mirzaie et al., 2020). Consistently, theaflavins are other
phenolic compounds with antiviral, anti-inflammatory,
antioxidative, and antibacterial effects (Higdon and Frei, 2003;
Lambert and Yang, 2003). Theaflavins also suppressed the levels
of inflammatory mediators such as COX-2, TNF-α, intercellular
adhesionmolecule 1 (ICAM-1), and NF-κBmRNA (Mhatre et al.,
2020). The aforementioned effects of theaflavins, as well as its
antiviral potentials (Zu et al., 2012), could introduce it as a useful
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treatment against the neurological sign of COVID-19, via
modulation of neuronal IL-1β, IL-6, TNF-α, IL-10, glial
fibrillary acidic protein and Bax. As well as related interaction
with ACE2/spike proteins, and main proteases. Based on

molecular dynamic analysis Kumar et al. indicated that some
other phenolic compounds play important roles in the inhibition
of SARS-CoV-2 such as rosmarinic acid, ferulic acid, ursonic acid,
piperine, gingerol, curcumin, and silymarin (Kumar et al., 2020).
Previously the neuroprotective effects of such plant-derived
secondary metabolites have been reported through inhibiting
the inflammatory-interconnected mediators (Abbaszadeh et al.,
2020; Fakhri et al., 2020b). Among the aforementioned
phytochemicals, ferulic acid, silymarin and curcumin possess
particular anti-neuroinflammatory effects, in addition to
related antiviral effects (Dutta et al., 2009; Borah et al., 2013;

Ghosh et al., 2017). The anti-neuroinflammatory effects of
curcumin is applied through suppressing microglia cells
(Ghasemi et al., 2019). Other flavonoids like luteoloside and
baicalein also possess potential modulatory effects against
neuroinflammation, toward antiviral effects (Nagai et al., 1995;
Cao et al., 2016; Li et al., 2019a; Welcome, 2020).

Among other classes of phytochemical compounds,
phytosterols also have shown potential anti-inflammatory
effects (Dash et al., 2020). Of those compounds, stigmasterol
and β-sitosterol reduced the expression of COX-2, TNF-α, iNOS,
IL-6, IL-1β, PGE2 and NF-κB (Philip et al., 2018). Consequently,

Krupanidhi et al. indicated the antiviral effects of stigmasterol
and β-sitosterol against the SARS-CoV-2 by computational
studies. So, considering the antiviral and anti-inflammatory
potential of stigmasterol and β-sitosterol, they could be
potential agents in combating COVID-19 neurological signs
(Krupanidhi et al., 2020).

Additionally, several lines of evidence indicated that
asiaticoside (a saponin), borneol (a terpene), catalpol (an
iridoid) as other phytochemicals declined the neuronal levels
of TNF-α, IL-6, TLR4, NF-κB, IL-β and IL-8, thus may be hopeful
agents against neurological symptoms in COVID-19 (Welcome,

2020). In fact, since inflammation triggers several cascades of
CNS pathogenesis in COVID-19, suppressing related mediators
could potentially ameliorate related symptoms. Among other
phytochemicals, some alkaloids also show promising anti-
inflammatory and antiviral effects (Chen et al., 2015; Powers
and Setzer, 2016), with the potential of being used against
COVID-19 (Bleasel and Peterson, 2020). This effect of
alkaloids was also confirmed by a recent in silico study by
Garg and Roy. In their study, two alkaloids of sophaline D
and thalimonine indicated potential antiviral activities by
suppressing main viral proteases (Garg and Roy, 2020) and

inflammatory pathways (Varadinova et al., 1996; Pour et al.,
2019).

Several other phytochemicals play important roles in the
inhibition of SARS-CoV-2 such as sarsasapogenin (a steroidal
sapogenin), novobiocin (a coumarin), and alpha terpinyl acetate
(a terpenoid) (Kumar et al., 2020). Previously the neuroprotective
effects of such plant-derived secondary metabolites have been
reported through inhibiting the inflammatory-interconnected
mediators (Abbaszadeh et al., 2020; Fakhri et al., 2020b).

Cannabinoids also possess critical anti-inflammatory roles in
viral diseases (Walter and Stella, 2004; Rizzo et al., 2020). These
compounds are major constituents of the cannabis plant. The
physiological roles of cannabinoids and cannabis are primarily

mediated by the cannabinoid receptors (CB1R and CB2R),
endocannabinoids, and related metabolic enzymes which are
widely distributed throughout the body, especially CNS. The
mediators of cannabinoid receptors are being considered as
potential targets for numerous disorders, including those
correlated with inflammation and autoimmune dysregulation
(Rizzo et al., 2020). Prevailing evidence are indicating the
pivotal anti-inflammatory and immunoregulatory effects of
cannabis-derived cannabinoids, through suppressing cytokines,
inhibition of immune cell migration/proliferation (Almogi-
Hazan and Or, 2020). Besides, selective cannabinoid agonists

present a novel way regarding the treatment of virus-associated
neuroinflammation. Considering their growing global acceptance
for medicinal uses (Onaivi et al., 2020), cannabinoids seem to be
of potential agents against inflammatory cytokine and related
mortality in COVID-19 (Onaivi and Sharma, 2020).

Overall, phytochemicals with the potential of modulating the
immune system and attributed neuronal cytokine storm could
pave the road in combating COVID-19 neuronal complications.

Phytochemicals Inhibit ACE2, and Spike
Protein Thereby Neural Manifestations in
COVID-19
As previously mentioned, SARS-CoV-2 enters the CNS via the
ACE2 or TMPRSS2 receptors (El Tabaa and El Tabaa, 2020;
Nemoto et al., 2020). In order to decline SARS-CoV-2 entry to
neural cells, ACE2 activity should be declined (Battagello et al.,
2020). Spike (S) glycoprotein as the main SARS-CoV-2 structural
protein with a critical role in binding to the host cell and
protecting the virus against some of the host species
antibodies, is another target of phytochemicals (Schoeman and
Fielding, 2019).

ACE2 is an enzyme found in the outer membrane of the
human cell that acts as a binding site for the S protein. Several
studies have shown that there is a strong interaction between
ACE2 and S protein. So, blocking ACE2 is also another
phytochemical strategy to fight SARS-CoV-2 (Li et al., 2005).

Flavonoids reduce the ACE2 expression through activating
Nrf2, thereby combat SARS-CoV-2 (Mendonca and Soliman,
2020; Muchtaridi et al., 2020). Based on the molecular docking
mutagenesis study and experimental verification results,
hesperidin, chrysin and emodin can be used for COVID-19
treatment (Basu et al., 2020). An in silico study indicated that

kaempferol, quercetin, and fisetin bind to the hACE2-S-protein
complex, near the interface of hACE2 and S protein binding
(Pandey et al., 2020). In a recent study by Rebas et al., 2020 the
neuroprotective effects of the aforementioned compounds have
been shown. So, kaempferol, quercetin and fisetin are of
promising flavonoids against COVID-19 neurological signs.
Two in silico studies showed that quercetin, quercetin 3-
glucuronide-7-glucoside, quercetin 3-vicianoside, absinthin,
glabridin, and gallic acid gave better binding energy (BE) with
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ACE2 (Joshi et al., 2020) toward inhibiting COVID-19 (Joshi
et al., 2020).

Through the samemolecular docking analysis piceatannol also
has shown neuroprotective responses (Zhang et al., 2018; Talebi
et al., 2020) with the potential of binding to ACE2, thereby
playing a critical role in the prevention and treatment of
COVID-19 (Wahedi et al., 2020; Ahmad et al., 2020). The
phytochemicals, baicalin, scutellarin, and hesperetin, also bind
to ACE2, regarding reducing neurological symptoms in COVID-
19 (Cheng et al., 2020a). Several in silico studies showed that the
binding energy of hesperidin with the SARS-CoV-2 spike protein,
andmain proteases are lower than that of ritonavir, lopinavir, and
indinavir. It could introduce hesperidin as an effective antiviral

agent. Hesperidin also has shown to counteract the cell damaging
induced by virus infection, inflammation and free radicals
(Bellavite and Donzelli, 2020). Many of other phenolic
compounds, including naringenin, hesperetin, hesperidin, and
baicalin, showed potential inhibitory effects on ACE2 activity,
thereby showed potential effects on COVID-19 and related neural
manifestations (Muchtaridi et al., 2020). In another study,
stilbene-based compounds especially resveratrol, are promising

candidate phytochemicals acting via disrupting spike protein and
human ACE2 receptor complex (Wahedi et al., 2020).

EGCG and theaflavin gallate seem to be of promising
phytochemicals in targeting spike-protein central channel of

SARS-CoV-2 (Maiti and Banerjee, 2020). In a recent study by
Kulkarni et al., 2020 some terpenoids such as carvacrol, geraniol,
anethole, L-4-terpineol,cinnamyl acetate, thymol and pulegone,
and other phenolic as cinnamaldehyde were effective antiviral
agents with potential inhibitory effects on viral spike protein. In
this line, nimbin (a triterpenoid) and curcumin (polyphenol)
showed high binding affinity regarding interacting with ACE2
and the S protein (Maurya et al., 2020). Consistently, Chen and
Due estimated the BE of ACE2 interaction with the flavonoid
glycoside scutellarin and the triterpenoid glycyrrhizin as a -14.9
and -9 kcal/mol, respectively, that were more strong than other

studied phytochemicals including baicalin, hesperetin, and
nicotianamine (Chen and Du, 2020). A study by Vardhan
et al., showed that one hundred fifty-four analogous of
limonoids and triterpenoids showed potential inhibitory effects
on ACE2, 3CLpro, PLpro, spike protein, and RdRp. Another in
silico study also showed that limonin, obacunone, ursolic acid,
glycyrrhizic acid, 7-deacetyl-7-benzoylgedunin, maslinic acid,
and corosolic acid effectively target SARS-CoV-2 proteins
(Vardhan and Sahoo, 2020).

Evaluated by molecular docking analysis, dithymoquinone (a
quinone, Figure 2) showed neuroprotective responses (Zhang

et al., 2018; Talebi et al., 2020) through binding to ACE2, to show
key roles in the prevention and treatment of COVID-19 (Wahedi
et al., 2020; Ahmad et al., 2020). As a potential phytochemical of
Nigella sativa L. (Ranunculaceae), dithymoquinone, with binding
affinity of -8.6 kcal/mol, showed a higher potential of binding at
SARS-CoV-2 ACE2 (Ahmad et al., 2020). According to the
molecular modeling results on SARS-CoV-2, a new indazole
alkaloid from the seeds of N. sativa, nigellidine meaningfully bind
to active sites of SARS-CoV-2 (Maiti et al., 2020).

Parvez and co-workers, in an in silico study, showed that two
chalcones azobechalcone (binding energy [BE], −14.4 kcal/mol)

and isolophirachalcone (BE, −12.8 kcal/mol) as well as two
alkaloids fangchinoline (BE, −12.5 kcal/mol) and tetrandrine
(BE, −12.6 kcal/mol) have shown high binding affinity to S
protein of SARS-CoV-2 (Parvez et al., 2020). Also, three
alkaloids, including cepharanthine, fangchinoline, and
tetrandrine inhibited the S protein of Human-CoV-OC43
expression at 5 µM (Kim et al., 2019a), as previously showed
anti-inflammatory roles in viral diseases. In another study, Ho
and co-workers showed that anthraquinone emodin (IC50,
200 µM) blocked the interaction between ACE2 and S protein
(Okamoto et al., 2001; Ho et al., 2007).

In a survey by Niu et al. glabridin, genistein, chrysoeriol, and
tectorigenin have been introduced as phytochemicals affecting
miRNAs of ACE2 (Niu et al., 2020b). In vitro investigation
showed that rhoifolin, δ-viniferin, myritilin, homoflavone A,
lactucopicrin15-oxalate, nympholide A, afzelin, biorobin,
phyllaemblicin B, cyanidin, baicalin, scutellarin, glycyrrhizin,
tangeretin, pro-cyanidin, nobiletin, brazilein, galangin,
acetoxychavicol acetate (ACA) and delphinidin are among

FIGURE 2 | Chemical structures of selected alkaloids/terpenes/

quinones with the potential of being used against COVID-19 neurological

manifestations.
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TABLE 1 | Selected/candidate phytochemicals with inhibitory effects on ACE2, spike proteins, protease, and RdRP in combating COVID-19 neurological signs.

Phytochemical class Compound Study type References

ACE2 interaction

Alkaloid Nicotianamine In silico (Chen and Du, 2020)

Flavonoid Baicalin In silico (Cheng et al., 2020a; Chen and Du, 2020)

Flavonoid Chrysin In silico (Basu et al., 2020)

Flavonoid Fisetin In silico (Pandey et al., 2020)

Flavonoid Hesperetin In silico (Chen and Du, 2020)

Flavonoid Kaempferol In silico (Pandey et al., 2020)

Flavonoid Naringenin In silico (Muchtaridi et al., 2020)

Flavonoid Quercetin In silico (Joshi et al., 2020; Williamson and Kerimi, 2020)

Flavonoid Scutellarin In silico (Chen and Du, 2020)

Polyphenol Curcumin In silico (Maurya et al., 2020)

Polyphenol Piceatannol In silico (Wahedi et al., 2020)

Polyphenol Resveratrol In silico (Wahedi et al., 2020)

Quinone Dithymoquinone In silico (Ahmad et al., 2020)

Terpenoid Glycyrrhizin In silico (Chen and Du, 2020)

Terpenoid Nimbin In silico (Maurya et al., 2020)

Spike protein interaction

Alkaloid Berberine In silico (Maurya et al., 2020)

Alkaloid Cepharanthine In vitro (Kim et al., 2019a)

Alkaloid Piperine In silico (Rout et al., 2020)

Alkaloid Thebaine In silico (Maurya et al., 2020)

Alkaloid Fangchinoline In silico, In vitro (Kim et al., 2019a; Parvez et al., 2020)

Alkaloid Tetrandrine In silico, In vitro (Kim et al., 2019a; Parvez et al., 2020)

Flavonoid Epigallocatechin gallate In silico (Maiti and Banerjee, 2020)

Flavonoid Fisetin In silico (Pandey et al., 2020)

Flavonoid Isolophirachalcone A In silico (Parvez et al., 2020)

Flavonoid Quercetin In silico (Pandey et al., 2020)

Flavonoid Theaflavin In silico (Maiti and Banerjee, 2020)

Phenolic Cinnamaldehyde In silico (Kulkarni et al., 2020)

Polyphenol Curcumin In silico (Maurya et al., 2020)

Polyphenol Resveratrol In silico (Wahedi et al., 2020)

Quinone Emodin In vitro (Okamoto et al., 2001; Ho et al., 2007; Ho et al., 2007)

Terpenoid Carvacrol In silico (Kulkarni et al., 2020)

Terpenoid Glycyrrhizin In silico (Chen and Du, 2020)

Terpenoid Nimbin In silico (Maurya et al., 2020)

Terpenoid Saikosaponin In silico (Sinha et al., 2020)

RdRP blockers

Alkaloid 6-Acetonyldihydrochelerythrine In silico (Pandeya et al., 2020)

Alkaloid Allocryptopine In silico (Pandeya et al., 2020)

Alkaloid Cepharanthine In silico (Ruan et al., 2020)

Alkaloid Fangchinoline In silico (Parvez et al., 2020)

Alkaloid Protopine In silico (Pandeya et al., 2020)

Alkaloid Tetrandrine In silico (Parvez et al., 2020)

Flavonoid Apigenin In silico (Rameshkumar et al., 2020)

Flavonoid Cyanidin In silico (Rameshkumar et al., 2020)

Flavonoid Delphinidin In silico (Rameshkumar et al., 2020)

Flavonoid Hesperidin In silico (Singh et al., 2020)

Flavonoid Isolophirachalcone A In silico (Parvez et al., 2020)

Flavonoid Myricetin In silico (Singh et al., 2020)

Flavonoid Theaflavin In silico (Lung et al., 2020; Singh et al., 2020)

Polyphenol Epigallocatechin gallate In silico (Singh et al., 2020)

Polyphenol Gallic acid In silico (Abd El-Aziz et al., 2020)

Polyphenol Resveratrol In silico (Abd El-Aziz et al., 2020)

Main protease inhibitors

Alkaloid Berberine In silico (Narkhede et al., 2020)

Alkaloid Fangchinoline In silico (Parvez et al., 2020)

Alkaloid Solanine In silico (Hasan et al., 2020)

Alkaloid Triptanthrine In silico (Narkhede et al., 2020)

Flavonoid Amentoflavone In vitro (Ryu et al., 2010a)

(Continued on following page)
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other phytochemicals which inhibit ACE to suppress COVID-19
(Maroli et al., 2020; Muchtaridi et al., 2020).

Recent reports confirmed that there are several other
phytochemicals, which inhibited ACE2 activity, including
neohesperidin, nobiletin, scutellarin, nicotinamin, and
glycyrinodin (Muchtaridi et al., 2020). As another natural
product with antiviral properties, glycyrrhizic acid binds to
ACE2, thereby could be used for treatment of COVID-19
neurological signs (Pilcher, 2003). Luteolin also inhibited furin

proteins which breakdown the S protein in SARS-CoV. Similarly,
herbacetin inhibited the interaction between S protein and ACE2.
Accordingly, these phytochemicals can be useful for treating/
managing neurological manifestation of COVID-19 by targeting
the ACE2/spike proteins to suppress the penetration/attachment
of SARS-CoV-2 to the CNS cells, what triggers the neurological
signs (Wu et al., 2020b). Overall, evidence has shown berberine,
thebaine, piperine (as alkaloids), withaferin A (steroidal lactone),
nimbin, embelin, cafestol, murrayanine, murrayaquinone-A and
andrographolide are phytochemicals with the potential antiviral
effects for example through binding to spike protein in SARS-

CoV-2, as well as ACE2 receptor (Grover et al., 2011; Boukhatem
and Setzer, 2020; Gupta et al., 2020; Parida et al., 2020).
Consistent docking results showed the same acceptable
inhibitory effects against SARS-CoV-2.

The main phytochemicals with reported inhibitory effects on
ACE2 and spike proteins are presented in Table 1.

Phytochemicals Inhibit RdRp, 3CLpro and
PLpro, Thereby Neural Manifestations in
COVID-19
Ongoing studies are consisting on the key role of RdRp, 3CLpro

and PLpro, in the neuropathogenesis of SARS-CoV-2. Proteases
especially 3CLpro and PLpro, play critical roles in SARS-CoV-2

maturation and replication, and are of the main targets of anti-
SARS-CoV-2 phytochemicals (Xue et al., 2008; Ryu et al., 2010a;
Shamsi et al., 2016). Polyphenols, especially flavonoids, are
among the phytochemicals with anti-SARS effects through
inhibiting proteases (Senthilvel et al., 2013; Shamsi et al., 2016;
Annunziata et al., 2020). Adem and co-workers, in a molecular
docking study on 80 flavonoids showed that 24 of them had
suitable interaction with the main protease of SARS-CoV-2, of
which hesperidin and rutin had the highest interaction (Adem

et al., 2020a). In another in silico report, four hundred fifty-eight
flavonoids were screened, which among them apigenin 7-(6″-
malonylglucoside), cyanidin-3-(p-coumaroyl)-rutinoside-5-
glucoside, delphinidin 3-O-beta-D-glucoside 5-O-(6-
coumaroyl-beta-D-glucoside), albireodelphin, and
(-)-Maackiain-3-O-glucosyl-6″-O-malonate possessed the most
potential in inhibiting SARS-CoV-2. The aforementioned
flavonoids showed the highest binding energy values against
RdRP, and S proteins of SARS-CoV-2 (Rameshkumar et al.,
2020). Another study on twenty-three flavonoids and twenty-
five chalcones compounds, showed that the compounds were

capable of blocking main proteases. In their study, cyanidin
inhibited RNA polymerase and, quercetin blocked the viral
spike. As previously mentioned, RdRp catalyzes SARS-CoV-2
RNA replication and thereby is considered an important target
for antiviral drug design. Molecular docking investigation
revealed that EGCG, theaflavin, theaflavin-3′-O-gallate,
theaflavin-3′-gallate, theaflavin 3,3′-digallate, hesperidin,
quercetagetin, and myricetin bind to the active site of RdRp
(Singh et al., 2020). Overall, flavonoids and indole chalcones
could combat SARS-CoV-2 (Vijayakumar et al., 2020).
Additional evidence confirmed that quercetin and kaempferol
possess beneficial anti-inflammatory, antioxidant, antiviral,

antiallergic effects which potentially inhibits SARS-CoV
3CLpro, PLpro, and S protein (Di Pierro et al., 2020).

TABLE 1 | (Continued) Selected/candidate phytochemicals with inhibitory effects on ACE2, spike proteins, protease, and RdRP in combating COVID-19 neurological signs.

Phytochemical class Compound Study type References

ACE2 interaction

Flavonoid Apigenin In vitro (Ryu et al., 2010a)

Flavonoid Fortunellin In silico (Panagiotopoulos et al., 2020)

Flavonoid Hesperidin In silico (Adem et al., 2020a)

Flavonoid Isolophirachalcone In silico (Parvez et al., 2020)

Flavonoid Luteolin In vitro (Ryu et al., 2010a)

Flavonoid Narcissin In silico (Owis et al., 2020)

Flavonoid Naringenin In silico (Kim et al., 2019b)

Flavonoid Oolonghomobisflavan-A In silico (Bhardwaj et al., 2020)

Flavonoid Papyriflavonol In vitro (Park et al., 2017)

Flavonoid Quercetin In vitro (Ryu et al., 2010a; Nguyen et al., 2012)

Flavonoid Rutin In silico (Adem et al., 2020a)

Iridoid Geniposide In silico (Rahman et al., 2020)

Lignan Savinin In vitro (Wen et al., 2007)

Polyphenol Dieckol In vitro (Park et al., 2013)

Polyphenol Gallocatechin-3-gallate In silico (Ghosh et al., 2020)

Quinone Rhein In silico (Narkhede et al., 2020)

Quinone Tanshinone I In vitro (Park et al., 2012)

Terpenoid 1,8-cineole In silico (Sharma and Kaur, 2020)

Terpenoid Andrographolide In silico (Enmozhi et al., 2020)

Terpenoid Betulinic acid In vitro (Wen et al., 2007)
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Accordingly, docking evidence indicated quercetin and
kaempferol as promising compounds against SARS-CoV-2. So,
these phytochemicals could decline neurological manifestations
in COVID-19 patients (Ryu et al., 2010b). In a recent in silico

report by Gorla et al. (2020) silymarin, and biochanin A were
proposed as bioflavonoids possessing the most acceptable
interaction with ACE2/spike protein of SARS-CoV-2. Also, an
in silico study indicated that naringenin inhibited 3CLpro chains,
thereby may be a promising phytochemical for alleviating
neurological symptoms in COVID-19 patients (Kim et al.,
2019b). Papyriflavonol A as a prenylated flavone inhibited the
PLpro and 3CLpro of SARS-CoV at 3.7 and 103.6 µM,
respectively (Park et al., 2017). Also, Ryu and co-workers
showed that a biflavonoid, amentoflavone, blocked the 3CLpro
at 8.3 µM while apigenin, luteolin, and quercetin inhibited the

enzyme at 280.8, 20.2, and 23.8 µM, respectively (Ryu et al.,
2010a; Yao et al., 2018; Istifli et al., 2020). Oolonghomobisflavan-
A (Bhardwaj et al., 2020), narcissin (Owis et al., 2020),
isolophirachalcone (Parvez et al., 2020), fortunellin
(Panagiotopoulos et al., 2020), dieckol (Park et al., 2013),
gallocatechin-3-gallate (Ghosh et al., 2020) are other
polyphenols with inhibitory effects on SARS-CoV-2 proteases.

Theaflavins, a group of polyphenols formed after the
fermentation of green tea, have a very strong affinity to bind to
RdRp (Lung et al., 2020; Singh et al., 2020). Lung and co-workers
reported that theaflavin had a high affinity for RdRp of SARS-CoV2,

SARS-CoV, and MERS-CoV (Lung et al., 2020). Also, Singh et al.
(2020) showed that theaflavin-3,3′-digallate, theaflavin-3′-gallate,
theaflavin-3′-O-gallate, and theaflavin had the highest affinity for
RdRp with -9.9, -9.6, -9.6, and -9.3 kcal/mol bonding energy,
respectively. EGCG and hesperidin (Singh et al., 2020),
isolophirachalcone A (Parvez et al., 2020), gallic acid and
resveratrol (Abd El-Aziz et al., 2020) are other polyphenols with
anti-SARS-CoV-2 activities through the high binding affinity to RdRp.

Of other classes of phytochemicals, solanine is a steroidal
alkaloid that interacts with two clusters of amino acids of the
C3-like protease. The first cluster consists His163, His164,

Met165, and Pro168 and the latter contains Asp187, Gln189,
and Ala191 (Hasan et al., 2020). There are several other
alkaloid that interact with C3-like protease such as
solasurine, omatidenol, cycloartanol, diosgenin, lupeol and
purpurin (Hasan et al., 2020). Besides, the alkaloids including
cepharanthine (Ruan et al., 2020), fangchinoline and
tetrandrine (Parvez et al., 2020), protopine, 6-
Acetonyldihydrochelerythrine, and allocryptopine
(Pandeya et al., 2020) showed strong binding to SARS-
CoV-2 RdRp in docking studies.

Nsp15 is responsible for protein interference with the

innate immune response, which is essential in the function
of coronavirus. Studies indicated that sarsasapogenin,
ursonic acid, apigenin, curcumin, ajmalicine, novobiocin,
silymarin, alpha amyrin, pomolic acid, carnosol, asiatic
acid, reserpine, betulinic acid, platanic acid, taspine,
alphitolic acid, taxifolin, wogonin, chlorogenic acid,
afromosin, gliotoxin, psoralen, carinatine rhinacanthin,
caffeic acid, coriandrin, scopoletin, cordycepin, ricinoleic
acid, alpha asarone, allicin and aranotin as other

phytochemicals, can bind to Nsp15 protein, thereby could
be useful factors for inhibitors of COVID-19 (Kumar et al.,
2020; Umesh et al., 2020). In a research by Adem et al.,
showed the beneficial effects of caffeic acid derivatives were

shown as inhibitors of SARS-CoV-2, via inhibition of
COVID-19 Nsp15, main proteases, and spike protein
(Adem et al., 2020b).

In addition to alkaloids and flavonoids, terpenoids and
quinones are other phytochemicals with inhibitory effects on
main proteases of SARS-CoV-2. In an in silico study, some
natural products against SARS-CoV-2 anthraquinones such
as rhein and crysophanic acid as well as the alkaloids such as
indican, indigo, berberine, tryptanthrine and terpenes (e.g.,
bicylogermecrene and glycyrrhizin) showed a strong
interaction with SARS-CoV-2 main protease. In their

study based on the lowest binding energy, rhein (BE,
−8.9 kcal/mol) and tryptanthrine (BE, −8.2 kcal/mol) were
introduced as suitable candidates against SARS-CoV-2
(Narkhede et al., 2020). Andrographolide (Enmozhi et al.,
2020), 1,8-cineole (Sharma and Kaur, 2020), betulinic acid
and savinin (Wen et al., 2007), geniposide (Rahman et al.,
2020), and tanshinone I (Park et al., 2012) are other
phytochemicals with anti-SARS-CoV-2 activities via the
blocking the SARS-CoV-2 proteases. In a similar study,
silibinin, dihydrorobinetin, peonidin, robinetin, 5-
deoxygalangin, scutellarein, purpurin, isorhamnetin,

tricetin, gossypetin, norathyriol, coumestrol,
isosakuranetin, pectolinarigenin, tangeritin, nobiletin,
pratensein, hispidulin, baicalein, morin, urolithin A,
acacetin, pelargonidin, irilone, pinocembrin, malvidin,
dalbergin, butein, biochanin A, fustin, 5-hydroxyflavone,
pinostrobin, pinobanksin, datiscetin, galangin, cyanidin,
daidzein, glycitein, wogonin, phloretin, urolithin B,
angolensin, pinosylvin, formononetin, liquiritigenin,
prunetin, alpinetin, biochanin A, rhapontigenin, equol,
piceatannol, isorhapontigenin, danshensu, eugenin, sinapic
acid, pterostilbene, pyrogallol, resacetophenone, syringic

acid, p-coumaric acid, paeonol, protocatechuic acid,
tyrosol, catechol, 4-ethylphenol and cinnamic acid as
natural product binding to SARS-CoV-2 RdRp (Kurokawa
et al., 2001; Bosch-Barrera et al., 2020; Singh et al., 2020).
Consistently, based on an study of Umesh et al. (2020)
carnosol, rosmanol, and arjunglucoside-I, as natural
phytochemicals have shown potential inhibitory effects on
SARS-CoV main protease using molecular docking approach.
In a recent study by Chojnacka et al., some biologically active
phytochemicals like quercetin, betulinic acid, luteolin,
indigo, aloeemodine, and quinomethyl triterpenoids, or

gallates were of potential key antiviral agents in blocking
viral proteases (Chojnacka et al., 2020). Additional studies
have shown several phytochemicals such as 18-hydroxy-3-
epi-alphayohimbine, vincapusine, alloyohimbine, and
gummadiol, toward the inhibition of SARS-CoV 3CLpro,
SARS-CoV-2 3CLpro, and MERS-CoV 3CLpro toward the
treatment of COVID-19 neuronal associations (Bhardwaj
et al., 2020). Phytochemicals with the potential of
inhibiting RdRP and proteases are also presented in Table 1.
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PHARMACOKINETIC INTERACTION AND
BBB PERMEABILITY OF
PHYTOCHEMICALS: AN APPROACH TO
NOVEL DELIVERY SYSTEMS
However, the neuroprotective effects of such phytochemicals
have been provided in several studies, estimations of the
permeability through the BBB of the phytochemicals were
assessed by the SwissADME program (Daina et al., 2017).

Information on the estimations of permeability through the
BBB, as well as predict absorption, distribution, metabolism,
and excretion (ADME) parameters, pharmacokinetic
properties, druglike nature and medicinal chemistry
friendliness are shown in Supplementary Table S1. Among
the fifty-five phytochemicals, the screening of BBB
permeability gave fifteen compounds with a positive effect.
Among these are the monoterpenoids 1,8-cineole and
carvacrol; the alkaloids 6-acetonyldihydrochelerythrine,
allocryptopine, berberine, piperine, protopine, thebaine, and
triptanthin; the flavonoid chrysin; the quinones

dithymoquinone and tanshinone I; the phenolic compounds
resveratrol and cinnamaldehyde; and the lignan savinin. To
overcome the aforementioned pharmacokinetic drawbacks of
some phytochemicals, novel delivery systems are being applied
regarding increasing their penetration to BBB. Accordingly,
nano-formulations, polymeric micelles, nano-/micro-
emulsions, nano-gels, solid lipid nano-particles, polymer
composites, and liposome/phospholipid have been studied so
far (Abbaszadeh et al., 2020; Fakhri et al., 2020a).

As previously mentioned, inflammatory conditions play
critical roles during the pathogenesis of COVID-19 disease. It
is worth noting that inflammation could increase the BBB
penetration of phytochemicals to facilitate their central
permeation. This pathophysiological condition simplifies the
CNS penetration of those phytochemicals with limitations in
their penetration.

DISCUSSION

COVID-19 pandemic is an important threat to human life. Up
to now, no effective drug or vaccination has been provided to
combat various complications in COVID-19. So, finding
therapeutic agents to combat related manifestations in
COVID-19, is of great importance. Among different
complications of COVID-19 the neurological manifestations
have attracted particular attention. Growing evidence is

highlighting the involvement of multiple dysregulated
mechanisms behind the pathophysiology of COVID-19
neurological manifestations, including hypoxia,
neuroinflammation, ACE2/spike proteins, and related
enzymes in virus proliferation (e.g., RdRP, 3CLpro, and
PLpro). So, providing multi-target agents could pave the road
in combating associated neuronal manifestations in COVID-19.
For many years, the plant kingdom has shown promising
antiviral, and anti-neuroinflammatory results. Accordingly,
the hope regarding identifying new applications for the
candidate phytochemicals has a successful history in

FIGURE 3 | The neurological manifestations in COVID-19, related pathophysiological mechanisms, and promising role of phytochemicals. COVID-19: coronavirus

2019, PLpro: papain-like protease, RdRP: RNA-dependent RNA polymerase, SARS-CoV-2: severe acute respiratory syndrome coronavirus 2, TMPRSS2:

transmembrane protease, serine 2, 3CLpro: 3-chymotrypsin-like cysteine protease.
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complementary/alternative medicine. We previously showed
the antiviral approaches and therapeutic targets of plant-
derived secondary metabolites in various steps of viruses life
cycle, including penetration, uncoating, replication, and release

(Pour et al., 2019). In the present study, potential
phytochemicals with antiviral effects and modulatory
potentials against neuroinflammation, ACE2/spike protein,
and related main proteases in the virus life cycle have been
highlighted regarding inhibiting the penetration/attachment
and replication phases of coronaviruses (Figure 3). Among
the aforementioned phytochemicals, in silico/in vitro results
introduced polyphenols (mainly flavonoids), alkaloids, and
terpenes/terpenoids as potential candidates in counteracting
the neurological signs of COVID-19. Although the BBB
limits the CNS penetration of some phytochemicals, the

disease-related inflammatory conditions as well as novel
delivery systems could potentially overcome the BBB
dynamic and drawback the limitation. As the results,
flavonoids like naringin and it aglycone (naringenin),
theaflavins, silymarin, curcumin, EGCG, polyphenol
resveratrol and its derivative (polydatin), as well as some
phytosterols and cannabinoids showed the most
simultaneous anti-neuroinflammatory and antiviral
potentials in combating SARS-CoV-2 neural complications.
To suppress the viral penetration/attachment the flavonoids
hesperidin, chrysin, kaempferol, quercetin, fisetin, baicalin,

naringenin, EGCG, and theaflavin as well as some terpenes
chalcones, glycyrrhizin, nimbin and alkaloids like berberin,
thebaine, piperine as well as terpenoids have shown a more
potential future in targeting ACE2/spike proteins.
Consequently, regarding targeting the main proteases of
coronaviruses flavonoids apigenin, cyaniding, delphinidin,
EGCG, theaflavin, naringenin, hesperidin, quercetin and

kaempferol, as well as some chalcones, steroidal alkaloid,
terpenoids, and quinones are of potential candidates in
inhibiting the main proteases of coronaviruses. Overall, the
aforementioned phytochemicals have shown growing evidence

to be of potential agents in combating neurological signs of
COVID-19 through attenuation of neuroinflammation, ACE2/
spike proteins, and main proteases.

Such studies could pave the road regarding finding novel
therapeutic agents in combating neurological manifestations in
COVID-19. Further reports are required to reveal the precise
dysregulated pathways responsible for COVID-19 neurological
signs, as well as potential therapeutic phytochemicals.
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