
Oncotarget7610www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 7
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ABSTRACT

Radiotherapy represents an important therapeutic strategy in the treatment 

of cancer cells. However, it often fails to eliminate all tumor cells because of the 

intrinsic or acquired treatment resistance, which is the most common cause of 

tumor recurrence. Emerging evidences suggest that the Notch signaling pathway 

is an important pathway mediating radiation resistance in tumor cells. Successful 

targeting of Notch signaling requires a thorough understanding of Notch regulation 

and the context-dependent interactions between Notch and other therapeutically 

relevant pathways. Understanding these interactions will increase our ability to design 

rational combination regimens that are more likely to be safe and effective. Here we 
summarize the role of Notch in mediating resistance to radiotherapy, the different 
strategies to block Notch in cancer cells and how treatment scheduling can improve 

tumor response. Finally, we discuss a need for reliable Notch related biomarkers in 

specific tumors to measure pathway activity and to allow identification of a subset of 
patients who are likely to benefit from Notch targeted therapies.

INTRODUCTION

Cancer is one of the major causes of mortality 

worldwide. More than half of all cancer patients receive 

radiation therapy as part of a curative or palliative 

treatment often in combination with surgery or 

chemotherapy. While most tumors initially respond to 

treatment, they often acquire resistance to therapy and 

eventually recur. The varied clinical responses observed 

between and within patients are in part the result of tumor 

heterogeneity and both acquired and intrinsic treatment 

resistance often caused by deregulation of signaling 

pathways that control normal cell renewal in adult tissues. 

The Notch signaling pathway is one of these frequently 

altered pathways in many tumors. 

The involvement of ionizing radiation in the 

majority of cancer treatments, the pivotal role of Notch 

signaling in many fundamental processes such as self-

renewal and differentiation, together with the fact that 

Notch signaling is often deregulated in cancer, suggest 

that targeting the Notch pathway may be beneficial for 
many cancer patients. Here, we review the opportunities 

and challenges of targeting Notch signaling to improve 

treatment response to radiation therapy.

RADIATION RESISTANCE OF CANCER 

CELLS

Resistance to radiation is a common phenomenon 

and a major obstacle in cancer therapy [1]. Intrinsic 

determinants of radiation resistance include pathways 

regulating survival and apoptosis, cell cycle status as 

well as DNA repair capability. Extrinsic factors including 

extracellular matrix molecules, cytokines, hypoxia and 

angiogenesis also influence radiosensitivity. 
Additionally, biological heterogeneity within the 

tumor population leads to differential radiation response. 

Pre-clinical models as well as clinical observations have 

demonstrated substantial genotypic and phenotypic 

heterogeneity between (inter-tumor) and within (intra-

tumor) tumors [2]. This tumor heterogeneity poses a 

challenge to both cancer diagnostics and therapy. First 

because small tumor biopsies are unlikely to capture 

the complete genomic landscape of a patient’s tumor 

and thereby fail to identify (all) treatment-resistant 

cancer genotypes [3]. Second, while the sensitive tumor 

population will shrink, treatment-resistant tumor cells 

invariably will take over and tumors recur. Understanding 

factors underlying this heterogeneous treatment response 
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will help to overcome treatment resistance. 

Heterogenic treatment response may arise 

from influences of the microenvironment and genetic 
instability generating (epi)genetic changes. Malignant 

cell populations may alternatively (or complementary) 

consist of a developmentally defined hierarchy of 
heterogeneous phenotypes derived from a small subset 

of so-called cancer stem cells (CSC) [4]. Such cells have 

been best characterized in hematological [5], breast [6-7] 

and CNS malignancies [8]. Mounting evidence indicates 

that CSC populations in solid tumors are resistant to 

radiation. Mechanisms to explain this intrinsic resistance 

include efficient repair of DNA damage, lower numbers 
of DNA breaks, redistribution of cells in the cell cycle, 

repopulation, and reoxygenation of hypoxic tumor areas. 

These studies have been extensively reviewed elsewhere 

[9-10]. If these CSC rely on specific pathways for their 
survival after treatment, identification of such pathways 
would provide opportunities for the targeted and selective 

killing of treatment resistant cancer cells [11]. One of the 

promising candidates in this context is Notch signaling, 

a pathway active in many developmental as well as adult 

stem cell pathways and frequently altered in human 

cancers [12-13] 

Here, we will discuss the role of Notch signaling 

in the radiation response of human tumors and highlight 

the opportunities to exploit inactivation of Notch using 

pharmacological inhibitors in conjunction with radiation 

therapy.

NOTCH SIGNALING AND RADIATION 

RESISTANCE

Notch proteins are short-range cell-cell signaling 

receptors that have key roles during development and in 

adult tissue self-renewal, proliferation and differentiation. 

In mammals, the Notch pathway consists of 4 Notch 

receptors (Notch1-4) that are present in signal receiving 

cells and 5 ligands on adjacent signal sending cells. 

In the canonical pathway, Notch receptor activation 

via ligand interaction leads to a consecutive series of 

proteolytic cleavages finally resulting in the release of 
the Notch intracellular domain (NICD) that translocates 

to the nucleus to act as transcription regulator. The list 

of target genes regulated by Notch is cell type dependent 

and includes genes involved in cell cycle regulation [14], 

cellular differentiation [15] and stem cell maintenance 

[16]. 

Consistent with its fundamental role in many 

aspects of vertebrate development, deregulation of the 

Notch pathway is implicated in various developmental 

syndromes. In adult tissues, deregulation or mutation 

of NOTCH proteins is observed in many cancer types 

and has been shown to contribute to carcinogenesis and 

treatment resistance [13]. Notch inhibitors have been 

under pre-clinical investigation for over a decade and 

shown strong responses in many cancer models. Several 

clinical trials of Notch pathway inhibitors in patients with 

leukemia have been reported and several are ongoing in 

solid cancers [17]. Here, we focus specifically on the role 
of Notch in resistance to radiotherapy and the different 

intrinsic and extrinsic mechanisms involved. 

Intrinsic resistance

a) Targeting DNA repair

It has recently been demonstrated that Notch has a 

direct role in DNA damage response (DDR). The activity 

of Notch1 and ataxia-telengiectasia mutated kinase (ATM, 

the primary DNA sensor kinase in DDR) were shown to 

be inversely correlated in C.elegans and in human cell 

lines. ATM is activated specifically upon double strand 
(ds) DNA breaks induced by ionizing radiation. Notch1 

directly binds to ATM thereby inactivating its kinase 

activity. Importantly, inactivation of ATM via Notch 

activation contribute to the survival of Notch driven human 

leukemia (T-ALL). Blocking Notch using a γ-secretase 
inhibitor (GSI) in the presence of DNA damage leads 

to increased radiation sensitivity in an ATM-dependent 

manner [18]. Activated Notch1 and pATM levels were 

also significantly inversely correlated in human primary 
breast cancer, validated by immunohistochemistry and in 

expression microarray datasets [18]. This result suggests 

that cancer cells treated with DNA-damaging agents 

such as radiation may undergo more robust cell death if 

treated with a Notch inhibitor. Another very recent and 

interesting observation came from a study by Deng et al. 

[19] in which they show that inactivation of homologous 

recombination in human Notch-driven cancer results in 

significant radiosensitization. This provides a basis for 
Notch-directed cancer therapy via blocking of homology-

directed dsDNA break repair.

b) Targeting cancer stem cells (CSC)

There is increasing evidence supporting the role 

of Notch in maintenance and self-renewal of CSC in 

T-ALL [20-22], brain [23-24], breast [11, 25], lung [26] 

and colon tumors [27]. In glioma, it has been reported 

that blocking Notch using GSI depleted CD133+ glioma 

CSCs, attenuated neurosphere formation and lowered 

tumorigenicity [28]. In line with this, Notch inhibition 

selectively impaired clonogenic survival of the glioma 

CD133+ CSCs sub-population thereby enhancing its 

radiation sensitivity. The intrinsic radioresistance may be 

caused by alteration of DNA damage checkpoints [8] or 

through up-regulation of the pro-survival factors Akt and 

Mcl-1 in CSCs [29]. Hovinga et al. reported that Notch 

inhibition enhances the response to radiation by reducing 

proliferation and self-renewal of CSCs in tumor explants 

only when endothelial cells were present, suggesting a 

critical role for Notch not only in tumor cells but within 
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the entire microenvironment [28]. Consistently, the use of 

Notch inhibitors in an orthotopic glioma model slowed 

tumor growth and prolonged survival by decreasing the 

number of the CD133+ CSCs [30-31]. 

Also in breast cancer, inhibition of Notch decreased 

breast CSCs (ESA+/CD44+/CD24low) activity and 

reduced tumor initiation in vivo [32]. Notch inhibition 

after radiotherapy prevented up-regulation of radiation-

induced expression of Notch2, Notch3, Dll1, Dll3, Jag1 

and was associated with a reduction in breast CSCs 

[33]. Radiation resistance in breast CSC has also been 

associated with lower levels of DNA damaging reactive 

oxygen species (ROS) due to increased production of free 

radical scavengers such as of glutathione [34]. Although 

a role for Notch signaling in regulating ROS in CSCs has 

not yet been reported, Notch inhibition in endothelial cells 

has been shown to increase ROS generation, proliferation, 

migration and adhesion, suggesting that increased ROS 

production upon Notch inhibition after radiotherapy 

could also reduce the number of breast CSCs in a non-cell 

autonomous manner. Also, in airway basal stem cells ROS 

regulates self-renewal in a Notch dependent manner [35], 

yet a direct relationship with the response to radiation and 

Notch has not been established.

In non-small cell lung cancer (NSCLC), cells 

with stem cell properties have also been shown to be 

dependent on Notch activity. These cells are more 

treatment resistant and tumorigenic in vivo, whereas 

GSI-treated xenografts failed to regenerate tumors upon 

re-implantation in suitable hosts [26]. A similar role for 

Notch in the maintenance and renewal of colon cancer 

initiating cells has been described [27]. Although in these 

studies, the direct role of Notch in response to radiation 

has not been investigated, the data suggest that Notch 

inhibition in these malignancies may result in improved 

tumor radiation sensitivity by inhibiting the viability of the 

cancer initiating cells.

c) Cross-talk with other signaling pathways

Cancers are driven by the interaction of multiple 

signaling pathways. Inhibiting an individual pathway 

will thus almost never be sufficient to cure cancer. Even 
in tumors that are “oncogene addicted” (referring to the 

dependency of some cancers on one or few genes for 

proliferation and survival) [36], targeting the specific 
genes that are critical for maintenance of the malignant 

phenotype will eventually result in tumor recurrence due 

to emergence of therapy-resistance [37]. The effect of 

Notch signaling on radiation response most likely also 

occurs through cross-talk with other signaling pathways. 

In glioma, Notch activity increased the radiation resistance 

of glioma CSCs by activating the Akt pathway. Notch 

blockade prior to irradiation was shown to inhibit Akt 

activation, an effect that was rescued by ectopic expression 

of the active form of Notch1 and Notch2 [29]. Likewise, 

in glioma spheres, Notch inhibition significantly decreased 

Akt and STAT3 phosphorylation and reduced survival of 

glioma CSCs [23]. These studies suggest that Notch can 

promote radiation resistance by activating Akt signaling. 

In NSCLC, one of the most important overexpressed 

cellular targets is epidermal growth factor receptor 

(EGFR). Increased EGFR expression has been associated 

with radiation resistance [38] and combination of radiation 

with EGFR inhibition have yielded in relatively small 

but statistically significant radiosensitizing effects [39]. 
Others have shown that pharmacological inhibition 

of EGFR using erlotinib increased the stem like-cells 

(ALDH+) in EGFR-mutated NSCLC cell lines and that 

Notch transcriptional activity was increased in these 

cells. Strikingly, Notch inhibition eliminated the ALDH+ 

population, an effect attributed specifically to Notch3-
dependent signaling [40]. As stem-like cells have been 

shown to contribute to radioresistance [41], combined 

EGFR/Notch targeting in lung cancer cells bearing 

activating mutations in EGFR could offer a very powerful 

approach to reduce the radiation resistant populations. 

K-RAS is one of the most commonly mutated 

oncogenes in human cancer. Activated RAS oncogene was 

shown to increase radiation resistance in human cells [45]. 

Notch has been demonstrated to cooperate with the RAS 

pathway to promote carcinogenesis in various tumor types. 

For example, Notch1 activity was shown to be upregulated 

in RAS-transformed cells. Genetic or pharmacological 

down-regulation of Notch signaling was sufficient to 
abolish the RAS-induced neoplastic phenotype including 

proliferation and anchorage-independent growth in vitro 

and in vivo [46]. Taking into account the role of oncogenic 

K-RAS in radiation resistance, these data support a rational 

for targeting both pathways. However, caution should be 

taken and application of such an approach not generalized. 

Indeed, in a K-RAS driven NSCLC mouse model 

opposing tumorigenic functions of Notch1 and Notch2 

were reported. In these mice, Notch1 ablation resulted in 

decreased levels of the Notch target gene expression and 

of pERK1/2, resulting in reduced tumor formation, while 

Notch2 ablation showed an increase in HES1 expression 

and resulted in increased carcinogenesis [47]. 

Several reports describe a direct effect of Notch 

signaling on the cell cycle. This may be exploited 

in the context of fractionated radiation, as it is well 

established that cells in different phases of the cell cycle 

exhibit different radiation sensitivity. Notch can directly 

induce cyclin D1 and cyclin-dependent kinase2 activity 

[48-49] and in breast epithelial cells Notch promotes 

transformation by inducing cyclin D1 [50]. c-Myc, an 

oncogene and potent driver of cell cycle entry, is a direct 

target of Notch and essential for cell cycle progression in 

T-ALL [51-52] and mouse mammary tumors [53]. 

d) Regulating EMT

There is mounting evidence showing that Notch 

signaling contributes to the acquisition of the EMT 



Oncotarget7613www.impactjournals.com/oncotarget

phenotype, for instance by up-regulating Snail and Slug, 

both transcriptional repressors of E-cadherin [54-55]. 

During EMT, epithelial cells undergo a morphological 

change resulting in increased motility, invasion and 

stemness [56] a process associated with chemo- and 

radiation therapy resistance [57-60]. For example, 

radioresistant NSCLC have been shown to share many 

phenotypical properties with cells that have undergone 

EMT [61]. Notch1 signaling was shown to enhance the 

EMT process in EGFR inhibitor resistant lung cancer cells 

[62]. In lung adenocarcinoma, a population of metastasis-

prone cells with significantly enriched expression of Notch 
receptors and ligands that drive EMT were identified [63]. 
While the majority of the metastatic lung cancer cells were 

shown to be radioresistant [64], Notch targeting suggests a 

role in increasing radiation sensitivity by inhibiting genes 

involved in the EMT process. 

In NSCLC, c-MET amplification is shown to direct 
invasion and metastasis [65]. Others have shown that 

co-expression of c-MET and Notch1 induces EMT in 

NSCLC patients and promotes invasion [66], likely due 

to their interaction by cross-talk. Given the role of Notch 

and c-MET expression in poor radiation response [67] 

as well as direct interaction between c-MET and Notch 

[68], Notch blocking in combination with c-MET targeted 

therapy could be critical to inhibit the aggressive behavior 

of NSCLCs and increase the radiation sensitivity.

The association between EMT and radioresistance 

and the prominent role of Notch signaling as driving force 

in the EMT process, suggest that Notch inhibition will 

result in radiosensitization of tumors that underwent EMT. 

CROSS-TALK WITH MICRORNAS

Increasing evidence implicates microRNAs 

(miRNA) in the regulation of drug and radiation 

resistance [69-73]. The most extensively studied miRNA 

in the context of Notch signaling and cancer is the tumor 

suppressive miR-34. In glioma, miR-34 was shown to 

inhibit tumor growth in vivo by down-regulating Notch1 

and Notch2 expression [73]. Similarly, in colorectal 

cancer, high miR-34a levels inhibited colon CSCs self-

renewal in vitro as well as xenograft tumor formation by 

suppressing Notch signaling whereas low miR-34a levels 

up-regulated Notch and promoted a CSC phenotype [74]. 

Also in NSCLC the expression of miR-34 was reported 

to be low [75] and its ectopic expression enhanced the 

radiation sensitivity of lung cancer cells [76]. Kang 

et al. showed that this effect is Notch1-dependent and 

demonstrated that miR-34 induced Notch1 downregulation 

thereby promoting apoptosis resulting in a radiosensitizing 

effect [77]. Similarly, in P53-deficient gastric and 
pancreatic cancer cells, restoration of miR-34 reduced 

the expression of Notch pathway members and was 

associated with reduced in vivo tumor formation as well 

as increased treatment sensitization [78-79]. Overall, these 

studies provide insight on the role of miR-34 in radiation 

resistance, partly mediated via regulation of Notch.

Extrinsic resistance

a) Angiogenesis

Notch signaling is important in pro-angiogenic role 

in tumor vasculature. Endothelial cells (ECs) express 

several Notch receptors (Notch1, 4) and ligands (Delta-like 

1, 4 and Jagged1). VEGF acts as a proliferative driver of 

angiogenesis, while Dll4/Notch signaling helps to control 

vessel sprouting and branching [80-81]. Tumor vasculature 

is abnormal, and the endothelial cells of tumor blood 

vessels are different from those of normal vasculature [82]. 

Consequently, increased tumor angiogenesis, as indicated 

by increased microvessel density or by increased VEGF 

expression, does not necessarily correlate with increased 

blood flow and oxygen availability. This situation, together 
with the existence of heterogeneous hypoxic regions 

within tumors results into reduced response to radiation 

therapy. Based on the crucial role of Dll4/Notch signaling 

in the vascular sprouting and tumor angiogenesis, 

pharmacological targeting of the Dll4/Notch has been 

shown to be effective as a novel anti-angiogenic therapy 

by blocking non-productive vessel growth and tumor 

collapse [83-85]. Adding chemotherapeutic agents to the 

Dll4 cocktail inhibited the induction of anti-apoptotic 

genes and resulted in further additive anti-tumor activity 

by decreasing the CSC population. Also when combined 

with ionizing radiation, Dll4 blockade impaired the tumor 

growth by promoting non-functional tumor angiogenesis 

[86]. As it is the case for all anti-angiogenic treatment, 

the temporal relationship with radiation is crucial [87] and 

therefore the optimal order and timing for administration 

of the radiation/anti-Dll4 combination in the context of 

vascular normalization requires careful attention (see 

below).

b) Hypoxia

Hypoxia is a common feature of human tumors and 

is associated with increased malignancy and resistance 

to chemo- and radiotherapy [88]. Hypoxic cells are 2-3 

fold less sensitive to the effects of radiation because they 

lack the oxygen radicals that contribute to irreversible 

DNA damage [89]. Pre-treatment oxygenation of tumors 

is prognostic and predictive for radiotherapy response 

in head and neck squamous carcinoma and many other 

tumors [90-91]. Previously, we have shown that NSCLC 

xenografts expressing a constitutively active Notch1 were 

more resistant to single dose radiation therapy. Tumors 

with high constitutive Notch activity proliferated faster 

and consistently had a higher hypoxic fraction [92]. This 

was accompanied by increased vessel density while the 

total number of perfused vessels remained similar to 

control tumor cells pointing towards an increase in non-
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functional vasculature (unpublished data). These data 

suggest that Notch signaling may increase the survival 

of hypoxic cells and thereby influence the response to 
radiotherapy.

The link between hypoxia and Notch signaling 

has been described in various studies. Notch has been 

reported to activate the hypoxia response pathway 

through HES1-induced STAT3 phosphorylation resulting 

in transcriptional up-regulation of HIF1-α and its target 
genes [93]. Interestingly, hypoxia in turn also elevates 

Notch activity [94-95] both via HIF1-α dependent [94] 
and HIF1-α independent pathways [96]. Especially the 
latter is intriguing, as it was shown that hypoxia-induced 

Notch signaling contributed to increased proliferation, 

maintenance of stem cell properties and suppression 

of senescence via a metabolic shift to glycolysis [96]. 

Glycolysis would not only provide a growth advantage for 

the fast proliferating cells but is also involved in cellular 

immortalization via reduction of intrinsic ROS [97-99]. As 

such, the metabolic effects of Notch on glycolysis may be 

indirectly responsible for increasing survival and radiation 

resistance by suppressing ROS. 

Although many of these oncogenic pathways 

are found to cross-talk with Notch at some level, these 

interactions are cell type and context dependent. Thus, the 

direct effect of Notch blockade on cancer cells may vary.

STRATEGIES TO TARGET NOTCH AND 

ITS POTENTIAL RISKS

In most cases, deregulation of Notch has oncogenic 

effects. The first evidence for the involvement of Notch 
in cancer was the detection of a rearrangement between 

the intracellular part of Notch1 (NICD1) and the T-cell 

receptor beta (TRB) leading to high-level expression 

of truncated and constitutively active Notch1 in T-ALL 

[100-101]. Mutations and chromosomal rearrangements 

have also been reported in splenic marginal zone B-cell 

lymphoma [102-103] and in triple-negative breast cancer 

cells [104]. Notch has also been shown to act as oncogene 

in lung [26, 92], colon [105], melanoma [106], pancreatic 

[107], glioma [31, 108], head and neck [109] and many 

other cancer types. 

In other cases, Notch functions as a tumor 

suppressor as shown in skin tumors [110-111], bladder 

cancer [112], squamous cell lung carcinoma [113], 

Figure 1: Notch signaling pathway and potential drug intervention sites (see text for details). 1) Furin cleavage at S1 

site can be inhibited. 2) Notch antibodies targeting Notch receptors 3) or ligands would target individual receptor pathway 4) Targeting 

the interaction of Notch receptor with ligand after receptor maturation abrogates the pathway activity 5) Cleavage by a disintegrin and 

metalloproteinase Adam10 at S2 site and 6) γ-secretase complex at S3 site can be inhibited to limit Notch signaling. 7) Interfering with 
NICD/CSL interaction using small peptides disrupts the canonical Notch pathway signaling. 8) Inhibition of endosomal Notch trafficking 
could potentially reduce Notch signaling activity regardless of ligand activity. The Notch receptor is comprised of a Notch extracellular 

domain (NECD) and Notch intracellular domain (NICD). EGFR: epidermal growth factor repeats; HD: heterodimerization domain; NRR: 

negative regulatory region; LNR: cysteine-rich LNR repeats; RAM: RAM domain; NLS: nuclear localization signals; ANK: ankyrin repeat 

domain; NCR: cysteine response region; TAD: transactivation domain; PEST: region rich in proline (P), glutamine (E), serine (S) and 

threonine (T) residues.
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squamous cell carcinoma in cutaneous and head-and-neck 

tumors [114-117] and potentially also in small cell lung 

carcinoma (SCLC), which is a neuroendocrine subtype of 

lung cancer [118]. 

This indicates that the outcome for aberrant Notch 

activity is highly context-dependent. Notch inhibitors 

are being investigated in clinical studies to treat these 

malignancies where Notch acts as an oncogene whereas 

methodologies activating the Notch pathway may have 

therapeutic potential in those cancers where Notch 

suppresses tumor growth, although any experimental 

evidence for the latter is still lacking.

We will first provide an overview of the different 
possibilities to inhibit the Notch pathway (Figure 1) 

and discuss how these may interact with radiation in a 

subsequent section. In canonical Notch signaling, Notch 

receptors are subjected to a series of sequential proteolytic 

cleavages. The site1 (S1) cleavage is controlled by a Furin 

convertase and is responsible for the receptor maturation. 

Therefore, it is possible to interfere with Notch maturation 

in Golgi by using Furin inhibitors [119-120]. After 

receptor maturation, the receptor is transported to the 

cell’s surface, a process that can be blocked by using an 

inhibitor of calcium transporter Atp2a3/SERCA [121]. 

Following surface expression, receptor activation is 

mediated by binding to ligand on adjacent cells. Notch-

ligand interactions can be blocked using soluble versions 

of the receptor that function as decoy [122-123] or by 

blocking the ligand-induced conformational changes 

in the Notch receptor [124-126]. Upon receptor-ligand 

interaction, mammalian Notch receptors are cleaved by the 

disintegrin metalloprotease ADAM10 at site 2 (S2) [127-

128] leading to shedding of the large Notch ectodomain 

(NECD). This cleavage is followed by a S3-cleavage 

caused by a γ-secretase complex and results in the release 
of the cytoplasmic NICD, which subsequently translocates 

to the nucleus where it binds to the DNA binding protein 

CSL (CBF1/Suppressor of Hairless/Lag-1; also known 

as Rbp-j) and the co-activator Mastermind-like (MAML) 

to induce expression of target genes [128-129]. The S2 

cleavage can be inhibited by blocking ADAM proteases 

[128, 130-132] and S3 cleavage by γ-secretase inhibitors 
(GSI). 

A detailed overview of ways to intervene with Notch 

signaling in various disease has been described elsewhere 

[17]. Here, we focus on different strategies to target Notch 

specifically in cancer.
1- GSIs: GSIs are pan-Notch inhibitors used in both 

pre-clinical and clinical settings. They target γ-secretase 
cleavage of NOTCH by presenilin, a rate-limiting step 

in the Notch activation cascade. Use of GSI is however 

hampered by the dose-limiting toxicity in the gut as 

Notch inhibitors promote goblet cell metaplasia leading 

to severe diarrhea in animals and humans [133-135]. 

Intermittent dosing schedules [136-138], glucocorticoid 

administration or anti-estrogen therapy [139] have been 

shown to mitigate the adverse effects while maintaining 

GSI’s anti-tumor efficacy [140-141]. Obviously, most 
drugs used in oncology, including targeted agents and 

immunotherapeutics have significant acute and chronic 
toxicities, and in every situation the ratio between 

risks and benefits must be carefully weighted. Cyclical 
(intermittent) dosing, dose adjustments and patient 

stratification are therefore important to minimize the 
toxicities of chemo- and radiation therapy [139, 142-146].

While GSI’s are potent inhibitors of the Notch 

signaling pathway, they are not designed to be receptor-

specific and they target all four Notch isoforms that within 
the same cell type can have either tumor promoting or 

tumor suppressive roles. Thus, there is a need for receptor 

specific antagonists. 
2- Notch receptor specific targeting: Monoclonal 

antibodies have been developed that target the negative 

regulatory region (NRR) of Notch1, Notch2 [125] and 

Notch2/3 [126, 147] and act by keeping the receptor in 

an unresponsive “closed” confirmation or by blocking 
receptor-ligand interactions through hindering EGF 

repeats required for binding [148]. These antibodies are 

able to target cancers by inhibiting simultaneously cancer 

cell growth and by disrupting tumor angiogenesis that 

depends on DLL4/Notch1 signaling. 

3- Notch ligand targeting: To interfere with tumor 

angiogenesis, Notch ligands are important targets. Along 

this line, Dll4 blocking antibodies have been used to 

suppress tumor vascularization and tumor growth [83, 

149]. Data from a Phase1 clinical trial showed that 

Demsizumab (anti-Dll4) suppressed tumor vascularization, 

was well tolerated and resulted in reduced tumor size [150-

151]. In animals, the long-term use of these antibodies, 

however caused marked histopathological changes in liver 

endothelial cells and induced vascular tumors [152]. While 

Dll4 mainly has a function in the vasculature, Jagged1 is 

important in immunosuppressive T regulatory cells and 

promotes the maintenance or expansion of hematopoietic 

precursor cells [153] as well as tumor/stem cells [154-

155]. Targeting Jagged1 in stroma and tumor cells can thus 

result in synergistic effects as demonstrated in ovarian 

cancer [54, 156]. 

Alternatively, activating Notch signaling could be a 

way to inhibit angiogenesis. While overexpression of Dll4 

was shown to promote tumor growth, overexpression of 

a soluble DSL domain of Dll1 resulted in reduced tumor 

growth by attenuating vascularization [157]. Therefore, it 

is important to further explore the differential activities of 

the Notch ligands on both stroma and tumor cells.

Recent work has shown that the Notch pathway can 

also be used non-canonically [158] and that Notch proteins 

can become activated in a DSL-independent manner as 

shown in various cancers including melanoma [159] and 

T-ALL [160]. Breast cancer stem cell expansion has also 

been shown to be dependent on a ligand-independent 

Notch activation mechanism [161]. Taking into account 
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the radioresistant phenotype of breast CSC, targeting 

Notch ligands in such case may be suboptimal, and other 

strategies to target Notch cleavage or downstream events 

may be more effective.

4- Alternatives: Cleavage of Notch proteins by 

ADAM metalloproteases is a rate-limiting step preceding 

γ-secretase cleavage. Specifically, metalloproteases 
ADAM 10 and 17 have been implicated in ligand 

dependent and independent signaling, respectively [127, 

162-163]. ADAM metalloproteases bind many signaling 

molecules and receptors, including TNFα and EGF 
receptors and thus unless specifically targeted to tumors 

are likely to yield dose-limiting toxicities in normal 

tissues. Moreover, we reported Notch cleavage and 

transcriptional activity of oncogenic Notch1 signaling in 

cells treated with both broad-spectrum metalloprotease 

inhibitors as well as specific ADAM17/10 hydroxamate 
inhibitors [128], suggesting the involvement of unknown 

proteases engaged in the activation of oncogenic Notch1. 

While this hypothesis requires further validation, it may 

open the possibility of targeting disease-specific Notch 
proteases while leaving normal Notch signaling intact. 

The main components of the γ-secretase complex 
are presenilin, APH-1, Pen-2, and Nicastrin. Currently 

Table 1: Possible sites to intervene in Notch pathway

Intervening  Notch at 
various sites

Mechanism of action Pre-clinical studies Clinical studies

S1 cleavage
- Inhibition of Furin and block 
receptor maturation

- Not reported 
(experimental studies 
available)

- Not Reported

Receptor

-Anti Notch1,Notch2,
Notch3

-Anti-Notch4

- Unresponsive receptor to  
ligand  binding by targeting 
NRR in case of Notch1,2 and 
3
- Blocking receptor–ligand 
interactions by hindering EGF 
repeats required for binding

- Anti-Notch1, Notch2 
[125, 202]
- Anti-Notch3 [147]

- Anti-Notch4 [203]

- Anti-Notch2, Notch3 
[138]
- Anti-Notch1 [204]

Ligand

-Anti-Dll4

-Anti-Jagged1

- Non-functional vasculature

- Abrogation of angiogenesis, 
targeting CSCs, targeting 
EMT and inhibiting the 
immunosuppressive  T- 
regulatory cells

- [83]

- [156, 205]

- [151]

- Not reported

Receptor-Ligand Interaction

-Notch1 receptor decoy
-Dll1 and Jag1 ligand decoy

- Ligand dependent Notch 
antagonist

- [122] - Not reported

S2 cleavage
 (Adam metalloproteases)

- Targeting both Adam 
metalloprotease 10/17 and 
block ectodomain shedding

- [131] - [206-207]

S3 cleavage 
(γ-secretase complex)

- Inhibition of different 
subunits of γ-secretase 
complex and block NICD 
release

- [208] - [209]

NICD-CSL interaction

- Suppressing transcriptional 
activation by preventing 
binding of MAML1 to the 
ICN–CSL complex

- [174, 210] - Not reported

Endosomal activation
- Disrupting  γ-secretase 
cleavage in acidic endosome
- Inhibition of V-ATPase

- [211]

- [173]

- Not Reported
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used GSIs inhibit the catalytic activity of presenilin and 

lead to off-target effects on the wide range of γ-secretase 
complex substrates. [164]. Targeting Nicastrin as the key 

component of the γ-secretase complex using neutralizing 
antibodies reduced proliferation of cancer cells [165] 

and resulted in anti-tumor and anti-metastatic effects in a 

model of triple negative breast cancer [166]. 

γ-secretase cleavage and activity not only occurs at 
the cell surface but also in the acidic environment of the 

endosomes and lysosomes [167-168] where the activity 

of vacuolar ATPase (V-ATPase) regulates acidification of 
endocytic compartments necessary for Notch signaling 

activation [23, 169]. Endocytic trafficking is also 
essential for Notch ligand internalization and promoting 

Notch activation [170-171]. Pharmacologic inhibition of 

V-ATPase decreases Notch signaling activity [172] and 

pretreatment with V-ATPase inhibitors can sensitize solid 

human tumors to chemotherapy drugs and might also a be 

a good strategy for radiosensitization [173]. 

Finally, hydrocarbon-stapled peptides that mimic a 

dominant negative fragment of Notch-CSL-mastermind-

like (dnMAML) and that prevent binding of full-length 

MAML to NICD/CSL have been developed. Unlike GSIs, 

these peptides have shown a reduced gastrointestinal 

toxicity in treated animals [174].

Treatment scheduling and personalized treatment

While numerous clinical trials using various Notch 

inhibitors were ongoing, several of these trials have 

stopped due to dose-limiting toxicity and lack of efficacy. 
Combining Notch inhibition with (chemo) radiation can 

only be successful if these hurdles can be overcome. 

Appropriate treatment scheduling and patient selection 

will be key to achieve this goal.

a) Treatment scheduling

One of the most important aspects that have been 

understudied is the scheduling for Notch inhibitors in 

conjunction with other treatments. For example, it has 

been reported that Notch inhibition caused hypersprouting 

of non-functional vasculature resulting in decreased 

tumor growth [175-176]. Impaired angiogenesis has also 

in other studies been shown to reduce tumor growth, yet 

at the same time, these tumors became strongly hypoxic 

[177]. Thus, administration of a Notch inhibitor in patients 

before radiotherapy may induce hypoxia and contribute to 

a more malignant phenotype and radio- and chemotherapy 

resistance [88]. 

It has also been shown that irradiation can induce 

Notch expression and activity and promote stem cell 

like characteristics [7, 33, 178-180]. Therefore, it may 

be critically important to continue Notch inhibition after 

radiotherapy. Significantly enhanced radiation-mediated 
tumor cytotoxicity has indeed been demonstrated 

upon treatment with GSI following irradiation in lung 

xenografts [178]. A similar study in glioma determined 

that Notch inhibition before temozolomide administration 

diminished the efficacy of chemotherapy while Notch 
inhibition after chemotherapy strongly inhibited tumor 

formation [181]. The reason for this could likely be due to 

the induced Notch activity after chemotherapy treatment 

[47]. More data are clearly needed to determine the most 

appropriate treatment schedule and such results will be 

invaluable for translation into the clinic with the aim to 

improve outcome. In colorectal cancer patients, sequence 

of the drug treatment was shown to be more important 

and effective than the drug exposure itself likely due to 

enhancing the subsequent treatment [182]. 

It will also be of utmost importance to determine 

the interaction between Notch inhibition, chemotherapy 

and fractionated radiation. Recovery from radiation injury 

and tumor cell repopulation between fractions reduces 

tumor control, while reoxygenation of hypoxic cells and 

redistribution of cells into a more radiosensitive phase 

increases tumor control [183-184]. In addition, the effect 

on the therapeutic ratio when Notch inhibition will be 

combined with alternative fractionation schedules such 

as accelerated (decreasing the overall treatment time) or 

hypofractionated (lower number of fractions with a higher 

dose per fraction) treatment needs careful attention as 

such alternative fractionation schemes have been shown 

to improve tumor control [185-186]. 

Alternatively, increased radiotherapy effectiveness 

can potentially also be achieved by properly scheduling 

in combination with angiostatic drugs such as anti-Dll4 

antibodies through “vascular normalization”. This concept 

proposes that in order to have an effect when using anti-

angiogenesis drugs, an equilibrium between pro- and 

anti-angiogenic factors in the tumor microenvironment 

rather than complete angiogenesis inhibition is needed. 

Dysfunctional vasculatures become then more normal, 

hence tumor oxygenation and perfusion will be improved 

thereby increasing the efficacy of administered drugs and/
or radiation [187]. Defining the optimal time point during 
radiotherapy at which anti-angiogenesis drugs such as 

Notch inhibitors should be administered will be crucial 

[188].

b) Genetic profile of cancer types and signatures
The different classes of gene expression profiles, 

reflecting the consequences of different sets of oncogenic 
mutations, correlate with different prognoses and different 

responses to therapy. Therefore, cancer cells vary widely 

in their response to radiation therapy [189] as well as 

Notch targeted therapies reflecting their particular genetic 
profile. For example, estrogen receptor negative (ERα-

) breast cancer cells have higher Notch activity and 

respond better to Notch inhibition. In ERα+ cells when 

estrogen is deprived or upon anti-estrogen-treatment, 

breast cancer stem cells are selectively enriched and 

Notch-4 activity increased [190-191]. Combination of a 
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Notch inhibitor with an anti-estrogen could therefore be 

a promising therapeutic strategy in ERα+ breast cancer 

cells. In both ERα- and ERα+ tumors radiosensitivity is 

expected to increase, as Notch inhibition will specifically 
target the more radioresistant stem cell compartment. 

Yet, there are currently no valid predictive factors that 

reliably identify patients who would greatly benefit 
from radiation treatment. In triple-negative breast cancer 

(TNBC) patients, approximately 19.5% carry BRCA 

mutations [192]. These mutation carriers are defective 

in DNA repair; therefore, it would be expected that these 

tumors might exhibit sensitivity rather than insensitivity 

to radiation therapy. One possible explanation for this 

response is that these tumors might possess compensatory 

DNA repair mechanisms that are more effective at 

dealing with radiation-induced DNA damage. In this 

regard, identification of a marker in TNBC cells would 
be invaluable in identifying potential radiosensitizing 

agents. Gene expression profiling analysis performed 
on these tumors revealed that oncogenic PEST domain 

mutations in Notch1, 2 and 3 receptors occur in ~13% of 

TNBC cells conferring GSI sensitivity [104] and provides 

a strong rationale for a Notch-driven personalized 

medicine strategy. Notch4, but not Notch1-3 was shown to 

contribute to the induction of proliferation, tumorigenesis 

and invasiveness in TNBC cells and its inhibition was 

shown to suppress tumorigenicity and tumor volume [193-

194]. Furthermore, mutations of Notch receptors resulting 

in an active Notch pathway are frequent in TNBC 

conferring GSI sensitivity [104]. Notch targeting can thus 

be a potential therapeutic target for the radiosensitization 

of TNBC cells.

In skin squamous cell carcinomas (SCCs), 

EGFR signaling plays a significant role in suppressing 
differentiation through negative regulation of Notch1 

gene expression and activity [195]. Especially for large 

skin SCC and at sites where surgery is not an option, 

radiation is often used as first-line treatment. Notch 
blockade counteracts the differentiation-inducing effects 

of EGFR inhibitors, while at the same time, synergizes 

with these compounds in induction of apoptosis. This 

indicates an attractive combination therapy that may 

enhance the potency of EGFR inhibitory agent. This study 

provides a mechanistic explanation for the Notch loss-of-

function mutations found in squamous skin carcinomas 

[113]. Squamous tumors without such mutations may 

thus be sensitive to Notch inhibitors, and treatment 

efficacy enhanced especially for indications involving 
radiotherapy. 

In NSCLC patients, Dll4/Notch1 signaling was 

reported to negatively influence NSCLC growth via PTEN 
up-regulation [97]. This indicates that the therapeutic 

application of a Notch inhibitor could be adversely 

affected in different categories of lung cancer [196]. Notch 

inhibition could be specifically beneficial in lung cancers 
with inactive PTEN [197]. In contrast, in glioma, loss of 

PTEN has been reported as a critical event that leads to 

Notch inhibitor resistance by transferring the “oncogene 

addiction” from the Notch to the PI3K/AKT pathway 

[198], supporting the regulatory link between Notch and 

the PTEN/PI3K/AKT pathway. Therefore, attenuation of 

cell growth using a combination of Notch inhibition and 

PI3K inhibitors in PTEN mutant glioma CSCs may lead 

to increased treatment efficacy [199]. As glioma stem 
cells promote radioresistance by preferential activation 

of the DNA damage response [8] and Notch has been 

shown to enhance radiation resitance in glioma [29], the 

combination of Notch inhibitors with radiation can be 

expected to yield beneficial outcomes in these patients.
These data and similar other data arising from 

genomic, transcriptional and proteomic analysis in glioma 

[31] or breast cancer [200] exemplify how understanding 

the molecular signatures that could predict the therapeutic 

response allow identification of a subset of patients who 
are likely to benefit from the Notch inhibition/radiotherapy 
combination therapies.

Patient selection could also be performed based on 

determination of activated (i.e. cleaved) Notch proteins 

levels or target genes as shown in TNBC [201], indicating 

their potential as prognostic biomarker to identify TNBC 

patients who are most likely to respond to anti-Notch 

based therapeutics. Likewise, adenoid cystic carcinoma 

(ACC) tumor xenografts with activating Notch1 mutations 

responded to Notch inhibition, whereas the tumors 

without Notch1 mutation and low levels of NICD1 were 

resistant [201]. Therefore, establishing an association 

between the drug responses and molecular subclasses of 

the specific cancer type may help to identify potential 
cohorts of patients for targeted therapy and to be treated in 

combination with radiotherapy.

Taken together, while Notch deregulation is 

frequent in cancers, the failure of clinical trials using 

Notch inhibitors may be explained by our incomplete 

understanding of the unique and redundant functions of 

the Notch receptors and our inability to select the correct 

patients and lack of knowledge on the correct timing of 

intervention. However, it appears that Notch signaling 

plays a key role in tumor initiation, progression and 

treatment response and that combining Notch therapeutics 

with radiotherapy may lead to synergistic improvements. 

More basic and translational research is needed to address 

these issues prior to conducting clinical trials. Only 

then can we expect to see therapeutic profit from Notch 
inhibitors on cancer response.
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