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Abstract: Metabolic reprogramming represents a hallmark of tumorigenesis to sustain survival in
harsh conditions, rapid growth and metastasis in order to resist to cancer therapies. These metabolic
alterations involve glucose metabolism, known as the Warburg effect, increased glutaminolysis
and enhanced amino acid and lipid metabolism, especially the cholesterol biosynthesis pathway
known as the mevalonate pathway and these are upregulated in several cancer types, including
acute myeloid leukemia (AML). In particular, it was demonstrated that the mevalonate pathway has
a pivotal role in cellular transformation. Therefore, targeting this biochemical process with drugs
such as statins represents a promising therapeutic strategy to be combined with other anticancer
treatments. In the last decade, several studies have revealed that amino-bisphosphonates (BP),
primarily used for bone fragility disorders, also exhibit potential anti-cancer activity in leukemic cells,
as well as in patients with symptomatic multiple myeloma. Indeed, these compounds inhibit the
farnesyl pyrophosphate synthase, a key enzyme in the mevalonate pathway, reducing isoprenoid
formation of farnesyl pyrophosphate and geranylgeranyl pyrophosphate. This, in turn, inhibits
the prenylation of small Guanosine Triphosphate-binding proteins, such as Ras, Rho, Rac, Rab,
which are essential for regulating cell survival membrane ruffling and trafficking, interfering with
cancer key signaling events involved in clonal expansion and maturation block of progenitor cells
in myeloid hematological malignancies. Thus, in this review, we discuss the recent advancements
about bisphosphonates’ effects, especially zoledronate, analyzing the biochemical mechanisms and
anti-tumor effects on AML model systems. Future studies will be oriented to investigate the clinical
relevance and significance of BP treatment in AML, representing an attractive therapeutic strategy
that could be integrated into chemotherapy.

Keywords: mevalonate pathway; AML; bisphosphonates; small GTPases; protein isoprenylation

1. Introduction

In the last few decades, it has become more evident that tumorigenesis is associated
with metabolic alterations. Via metabolic reprogramming, cancer cells acquire nutrients to
maintain viability and grow in a hypoxic and nutrient deprived environment [1].

At the beginning of the last century, Warburg observed that cancer cells used glucose
to generate lactate in vitro, even when there was sufficient oxygen for proper mitochon-
drial respiration. This phenomenon, termed aerobic glycolysis or the Warburg effect, is
considered today to be a key metabolic feature in carcinogenesis [2].

The injury to respiration in cancer cells can be caused by altered growth factors sig-
naling, the activation of HIF-1α-gene transcription in hypoxic or normoxic conditions,
genetic alterations activating proto-oncogenes or inducing the loss-of-function of suppres-
sor genes. These genetic impairments increase the expression of glucose transporters and
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key glycolytic enzymes, accelerating the glycolytic flux [3]. Cancer cells prefer to produce
energy through a high conversion rate of glucose to lactate in order to produce ATP faster.
However, the lactate produced via fermentation reduces extracellular pH, contributing to
microenvironment acidosis, which in turn synergistically enhances tumor invasion and
metastasis, and confers resistance to antitumor treatments [4].

Although the Warburg effect plays a central role in cancer progression, cholesterol
metabolism has also emerged as a hallmark of cancer development and tumor formation [5]
(Figure 1).
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Figure 1. Metabolic reprogramming in cancer involves glucose and cholesterol metabolism alter-
ations. The energy production from fats has the same weight as alterations in glucose metabolism in
supporting the viability of cancer cells.

Functionally, cholesterol homeostasis is required for normal growth and development
of eukaryotic cells [6]. Cholesterol is critical for the synthesis of biological membranes
and the modulation of their fluidity and is a plasma lipoprotein constituent, serving as
a form of energy storage in animals [7,8]. It is involved in many other functions, such as
synthesizing bile acid, producing hormones and is a precursor of Vitamin D [9]. In addition,
it is involved in sperm development and immune system defense, as well as in the neural
circuit development and functioning in the brain [10–12].

Altered cholesterol metabolism has received increasing attention due its role in carcino-
genesis [13]. The crystallization of cholesterine from living cells, as well as the alteration in
blood cholesterol levels, is a critical phenomenon associated to malignancy, as evidenced
from the early 1900s [14,15].

Biochemical and molecular studies have recently reported high cholesterol content in
many malignancies including breast, thyroid, uterine, ovarian and renal tumor tissues [16–18].

Cancer cells rapidly proliferate in a cholesterol-rich environment and continue to
take up and metabolize cholesterol and/or to up-regulate cholesterol biosynthesis for
their energy requirements [13]. Feedback loop mechanisms for controlling plasma and
intracellular cholesterol homeostasis, as well as cholesterol uptake through the low-density
lipoprotein receptor (LDLR) pathway, are dysregulated in many cancer cells compared to
normal cells/tissues [19].

Elevated LDLR protein expression accelerates LDL cholesterol-uptake in some highly
proliferative cancer cells, suggesting that this more energy-saving process is preferable to
cholesterol biosynthesis [9]. LDLR overexpression enhances LDL cholesterol uptake by
cells that are actively undergoing growth and proliferation, processes which, in turn, also
increase the demand for cholesterol and other lipids for energy [20,21].

Conversely, the downregulation/inhibition of LDLR efficiently blocks cholesterol
uptake, improving the chemotherapy efficacy [22].

In many cancers, the mechanisms promoting deregulation of cholesterol homeostasis
can be severely altered and induce tumor initiation and progression [23].

For example, the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of
rapamycin (mTOR) axis alters cancer enhancing tumor cell demand for cholesterol [24].
Additionally, cholesterol biosynthesis regulation is affected byTP53 gene mutations [25,26].
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Additionally, the downregulation/inhibition of lipid droplets (LDS) efficiently blocks
cholesterol biosynthesis, improving the radiotherapy efficacy [27].

The significance of dysregulation in cholesterol metabolic pathways associated with
malignant progression has become attractive to target cancer cells. Drug combinations are,
therefore, used to target cholesterol biosynthesis and cholesterol uptake by sensitizing can-
cer cells to therapy. Several drugs target the cholesterol synthesis or mevalonate pathway
at different levels [28].

For example, statins display anticancer properties with varying sensitivity based on
the type of tumor and are drugs widely used in lowering serum cholesterol by inhibiting
HMGCR enzyme activity, which catalyzes the rate-limiting step in cholesterol synthesis [29].

Statins have been shown to inhibit proliferation and survival of various cancer cells,
as well as reduce metastasis in vivo alone or in combination with other drugs [30].

Moreover, similar to statins, amino-bisphosphonates have shown potential anti-cancer
activity in different cancer cell lines including ovarian, colon and hepatic cells [9].

Bisphosphonates block enzymes along the mevalonate pathway, causing prenylation
inhibition of small GTP-binding proteins, such as Ras, Rho, Rac, Rab, which are involved
in regulating cell survival, membrane ruffling and trafficking [31].

In the last few decades, bisphosphonates have been revealed to be active in leukemic
cell lines, as well as in patients with symptomatic multiple myeloma (MM) and against a
variety of human tumors [32–35]. In this review, we discuss the recent advancements in the
research about the antileukemic potential of bisphosphonates, especially zoledronic acid
(ZOL), in acute myeloid leukemia (AML).

2. Biochemistry of the Mevalonate Cascade and Its Regulation in
Cholesterol Metabolism

The mevalonate (MVA) cascade is a core metabolic pathway that plays a central role
in multiple cellular processes by synthesizing sterols and isoprenoids that are essential
for cell-signaling, cell membrane integrity, protein synthesis, and cellular respiration [36]
(Figure 2).

Isoprenoids biosynthesis is a sequence of cellular reactions leading to the production
of two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate
(GGPP). Post-translational modification of various proteins, including small GTPases, by
FPP and GGPP stimulated interest in their potential involvement with cancer, cardiovascu-
lar and neurodegenerative diseases [37,38].

In the first committed step of the mevalonate pathway, acetyl-Coenzyme A (CoA)
acetyltransferase (AACT), also called thiolase II, catalyzes the biological Claisen condensa-
tion of two acetyl-CoA molecules (derived from the TCA cycle) to give acetoacetyl-CoA. In
a second condensation, catalyzed by HMG Co-A synthase, another acetyl CoA group is
added to acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), which is
further reduced into MVA by 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) [39].

Mevalonate kinase (MK) is the most critical enzyme for the isoprenoid/cholesterol
biosynthesis pathway after HMGR, catalyzing the ATP-Mg2+ mediated phosphate transfer
of mevalonate to produce mevalonate 5-phosphate [40].

MK has been defined as a bottleneck of the MVA pathway, and it is negatively con-
trolled by a feedback loop from geranyl (GPP) and farnesylpyrophosphate (FPP), two
crucial downstream intermediates in the final steps of the mevalonate pathway [41].

Next, phosphomevalonate kinase catalyzes another phosphorylation reaction to con-
vert mevalonate 5-phosphate and ATP to mevalonate 5-diphosphate and ADP [42].

In the next step of isoprenoid/sterol biosynthesis, diphosphomevalonate decarboxylase
(MDDs) catalyzes the ATP-dependent Mg2+ decarboxylation of mevalonate 5-diphosphate to
isopentenyl diphosphate (IPP), which is the universal precursor of isoprenoids. IPP can be
isomerized to form dimethylallyl pyrophosphate (DMAPP) by IPP isomerase [43,44].
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Figure 2. Schematic overview of the mevalonate pathway, isoprenoid/sterol biosynthesis and
prenylation of proteins. Statins block HMGCR activity. Nitrogen-containing bisphosphonates (N-BPs)
inhibit FDPS activity. Farnesyl transferase inhibitors (FTIs) and geranylgeranyl transferase inhibitors
I/II (GGTIs I/II) inhibit protein farnesylation and geranylgeranylation, respectively.

Farnesyl pyrophosphate synthase (FPPS, also known as Farnesyl diphosphate synthase
FDPS), a key branchpoint of the mevalonate pathway, catalyzes two sequential condensa-
tion reactions of isopentenyl pyrophosphate (IPP), the first with DMAPP, resulting in the
production of geranyl pyrophosphate (GPP) and the second with geranyl pyrophosphate
(GPP) to produce the C15 farnesyl pyrophosphate (FPP). This product can be processed
by geranylgeranyl pyrophosphate synthase (GGPPS), which produces the C20 isoprenoid
geranylgeranyl pyrophosphate (GGPP) or exposed to a reductive dimerization reaction
by squalene synthase (SQS), which catalyzes the condensation of two identical farnesyl
pyrophosphate (FPP) molecules to form C30 squalene [28].

Isoprenoids are required for the production of a variety of compounds, such as er-
gosterols, dolichols and ubiquinone, as well as for the prenylation of proteins, a key
post-translational reaction that is essential for the bioactivity of the proteins. During the
post-transcriptional lipid modification of proteins, farnesyl protein transferase (FPTase),
geranylgeranyl protein transferase I (GGPTase I) or geranylgeranyl protein transferase II
(GGPTase II) enzymes catalyze the addition of a farnesyl or geranylgeranyl lipid group
onto a cysteine residue in a characteristic carboxy-terminal motif (e.g., CAAX), producing
farnesylated and geranylgeranylated proteins [45–47].
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Several small GTPases, including members of the Ras and Rho subfamilies, require
prenylation to regulate a variety of cell processes that play a crucial role especially in
membrane ruffling, membrane targeting and signal transduction [48,49].

In the final steps of cholesterol biosynthesis, squalene monoxygenase (SM) catalyzes
the first oxygenation of squalene to (S)-squalene-2,3-epoxide, which is in turn cyclized to
lanosterol by an oxidosqualene cyclase (OSC) enzyme. Lanosterol is ultimately converted
to cholesterol in numerous oxidations reactions [50].

HMG-CoA reductase and FDPS are two key nodes in MVA pathway regulation with a
role in carcinogenesis [36].

In normal cells, cholesterol biosynthesis decreases in the presence of high blood
cholesterol levels when dietary intake of cholesterol is abundant and viceversa [51].

When the intracellular cholesterol concentration is very high, both HMG-CoA reduc-
tase and the LDL receptor are subject to feedback inhibition through the inactivation of the
sterol regulatory element-binding protein 2 (SREBP 2) pathway [52].

Statins are HMG-CoA reductase inhibitors that are widely used in the treatment of
patients with hypercholesterolemia by blocking cholesterol biosynthesis [53].

Although the benefits of statins are primarily attributed to their lipid-lowering effects,
accumulating evidence suggests their efficacy in a variety of tumor cells, including acute
myelogenous leukemia [9,54,55].

FDPS is a second key regulatory point of the targeted MVA pathway; small molecules
targeting the FDPS signaling pathway have emerged as a promising therapeutic approach
for numerous cancers [53,56].

FDPS behaves in a similar way to an allosteric enzyme being negatively modulated
by FPP accumulation. This allosteric mechanism is involved in the dynamic regulation of
biological prenyl pyrophosphate levels in vivo, as well as in the control of the mevalonate
pathway; based on the large implication for cellular activities, human FDPS shows high
pharmacological relevance [57].

For example, the nitrogen-containing bisphosphonates (N-BPs) commonly used as anti-
bone resorption drugs are potent inhibitors of FDPS. In recent years, there has been growing
interest in studying the anticancer effects of bisphosphonates, especially in leukemia
treatment [58,59].

The function of oncogenic GTPases depends upon their post-translational prenylation
or farnesylation; therefore, bisphosphonates can be used as an indirect strategy to inhibit
FDPS activity in tumor cells. Inhibition of FDPS also promotes the accumulation of IPP,
which in turn exhibits anticancer effects by activating γδ7 T lymphocytes [60]. Current
N-BP drugs are attractive and promising FDPS inhibitors in cancer treatment.

3. Regulation of Small GTPase Prenylation in AML

Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by the
clonal expansion and accumulation of immature blood-forming cells in the BM, peripheral
blood, and other tissues [61].

Clonal myeloid progenitor cells lose their ability to differentiate into mature blood
cells, leading to multilineage cytopenias [62].

One of the molecular hallmarks of AML is the high degree of heterogeneity, since its
onset involves a variety of structural chromosomal rearrangements, gene mutations and
changes in the expression of multiple genes and microRNAs [63,64].

Many studies have reported that the constitutive activation of FDFT1 in the MAV
pathway is also a key factor involved in metabolic dysregulations in acute myeloid leukemia.
The high expression of FDFT1 induces the continuous prenylation of Ras proteins, driving
tumor progression and invasion [65].

Ras proteins are small guanosine triphosphatases (GTPase) that regulate cell prolifer-
ation and differentiation, membrane organization, nucleocytoplasmic transport and cell
death. RAS signal pathway disorders are frequently found in myeloid leukemias. The Ras
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superfamily consists of 167 members, which have been classified into 5 subfamilies (Ras,
Rho, Rab, Arf, and Ran), with Ras serving as the founding member [66].

Prenylation is one of the most frequent small GTPase post-translational modifications.
In this reaction, a prenyltransferase catalyzes the covalent attachment of a farnesyl or
geranylgeranyl lipid to the cysteine within the C-terminal CAAX motif (CAAX box: C is a
cysteine residue, A an aliphatic residue, and X is any residue).

Following prenylation, the prenyl-CAAX motif is cleaved by a CAAX prenyl protease 1
(also known as Ste24p) that removes the AAX, resulting in a prenylcysteine as the new C
terminus [67,68].

The free carboxyl group of the prenyl cysteine moiety is then recognized by a prenyl-
cysteine carboxyl methyltransferase (pcCMT) that catalyzes the methylesterification of the
α carboxyl group [69].

When Ras is prenylated, it associates with the cell membrane, activating signal trans-
duction and cycling between an inactive GDP-bound (Ras-GDP) state and an active GTP-
bound conformation (Ras-GTP).

The hydrolysis of GTP to GDP is promoted by GTPase-activated proteins (GAPs),
while the conversion from GDP to GTP is catalyzed by guanine nucleotide exchange factors
(GEFs) [70].

Guanine nucleotide dissociation inhibitors (GDIs) exert regulatory functions, pre-
venting GEF-mediated nucleotide exchange and preserving the GTPase in an inactive
state. Conversely, in the GTP-bound state, GDIs inhibit GTPase activity, blocking GDP
dissociation and maintaining the small-GTPase at the membrane.

Additionally, GDI can also mask isoprenoid lipid modification at the C-terminus of
the small GTPase, thus, hindering the association of the small GTPase with the membranes.

The interaction between Ras-GTP and its specific downstream effectors, such as Rafs
and PI3K, stimulate signaling cascades that regulate proliferation, differentiation, and
malignant transformation [71–74] (Figure 3).

Isoprenylation of altered Ras proteins is critical in a large fraction of human tumors,
including myeloid leukemias, contributing to the reduction in apoptosis, increase in cellular
proliferation and/or survival and adverse outcomes [75,76].

Reducing GGPP and FPP levels by specific inhibitors might affect tumor cell survival
as emerged from MAV molecular pathway dissection.

For example, 5-Aza-CdR induced the downregulation of farnesyl diphosphate syn-
thase (FDPS) and farnesyl diphosphate farnesyltransferase, blocking cholesterol biosynthesis.

When acute and chronic myeloid leukemia cells (K562 and HL-60) were exposed to
5-Aza-CdR, this reduced their cellular cholesterol content and showed growth inhibition.
This effect was rescued by externally added cholesterol [77].

Additionally, the biological and clinical activity of FTIs, such as tipifarnib, lonafarnib
and BMS-214662, have been investigated in hematologic malignancies [78].

In some clinical settings, FTIs have displayed a cytotoxic effect on primary sorted
CD34+ AML cells, while no survival advantage for untreated AML ≥70 years old was
shown [55].

Similarly, GGTI-298 can inhibit cell survival and induce apoptotic cell death in human
leukemic cells [79].

The growth in knowledge of the dysregulation in cholesterol metabolism has led to
remarkable interest in the anti-cancer properties of bisphosphonates, especially in AMLs.

Bisphosphonates act by targeting FDPS and are usually used to treat bone disease [80].
They could represent an attractive direction for emerging therapies in AML; however,

other molecular and clinical investigations are required.
Subsequently, these proteins can be converted from an inactive GDP-bound (small

GTPase-GDP) state to an active GTP-bound conformation (small GTPase-GTP) by guanine
nucleotide exchange factors (GEFs), which catalyze the conversion from GDP to GTP, to
promote interactions between GTP-bound protein and effector molecules, inducing cellular
responses of survival and proliferation.
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proteins. Prenyltransferases attach farnesyl or geranylgeranyl lipids, derived from isoprenoid/sterol
biosynthesis, to the cysteine within the C-terminal CAAX motif of small GTPase proteins, such as
Ras. Nitrogen-containing bisphosphonates (N-BPs) are used to inhibit the prenyltransferases activity.
The prenylated proteins undergo further modification on the cytosolic surface of the ER, by intrinsic
ER membrane proteins. In particular, Ras CAAX prenyl protease 1 (RCE1) cleaves the AAX, and the
resulting free carboxyl group of the prenyl cysteine moiety is methylesterificated by isoprenylcysteine
carboxyl methyltransferase (ICMT), in order to target prenylated proteins to cell membrane. ER:
Endoplasmic Reticulum; PM: Phospholipid Membrane.

4. Bisphosphonates and AML: A Journey through Time

In the last half century, the study of the molecular biology of AMLs allowed the
development of chemotherapy and molecular targeted therapy, as well as hematopoietic
stem cell transplantation procedures. Despite the availability of many effective treatments,
certain patients will relapse following remission. Different factors are associated with the
risk of relapse; the minimal residual disease and multiple drug resistance are two key
factors. In this context, the molecular target therapy by bisphosphonates is becoming an
area of great interest [81].

Bisphosphonates (BP) are a class of calcium-binding drugs commonly used to treat
and prevent bone disorders that are characterized by excessive osteoclastic bone resorption,
such as osteoporosis and metastatic bone disease [82].

Bisphosphonates are chemical compound analogues of endogenous inorganic py-
rophosphate (PPi), in which two phosphonate groups are linked by stable phosphoether
bonds to a central (geminal) carbon atom instead of an oxygen atom [83] (Figure 4A).

In the P-C-P backbone structure, two side chains, R1 and R2, are attached to the
geminal carbon. The first R group is usually a hydroxyl (-OH) or primary amino (NH2)
group, acting as powerful tridentate ligands for calcium (bone hook), while R2 is more
varied and is involved in determining the antiresorptive potency of the bisphosphonates,
as well as the differences in affinity for hydroxyapatite [84].

Bisphosphonates are usually divided into the following two main categories: nitroge-
nous bisphosphonates and non-nitrogenous bisphosphonates. Today, after more than three
decades of research, BPs can be more specifically classified into three generations according
to the chemical structure of the R2 side chain and their molecular mechanism of action [85].

First-generation BPs comprise non-nitrogen-containing compounds carrying mini-
mally modified side chains (e.g., medronate, clodronate, and etidronate) or a chlorophenyl
group (e.g., tiludronate). As these molecules are able to most closely mimic pyrophosphate,
they can be incorporated into non-hydrolysable analogues of ATP by the class II aminoacyl-
transfer RNA synthetases, inhibiting ATP-dependent intracellular events and resulting in
osteoclast apoptosis after osteoclast-mediated uptake from the bone mineral surface [86,87].
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The second-generation family of bisphosphonates is characterized by the introduction
of an N-atom in the side chain (e.g., pamidronate, alendronate, and ibandronate). For the
presence of a nitrogen or amino group, these chemical compounds are 10 to 100 times more
potent at inhibiting bone resorption in vivo than the simple bisphosphonates [88].

Third-generation BPs are agents that contain a nitrogen atom within a heterocyclic ring
in the side chain (e.g., risedronate and zoledronate). These are several orders of magnitude
more potent than the first-generation drugs [89].

Unlike early bisphosphonates, second- and third-generation bisphosphonates (alen-
dronate, risedronate, ibandronate, pamidronate, and zoledronic acid) inhibit osteoclast
differentiation/function via suppressing the activity of farnesyl pyrophosphate synthase, a
critical enzyme for cholesterol biosynthesis in the mevalonate pathway (Figure 4B). As such,
bisphosphonates prevent post-translational prenylation of small GTPases, such as Rab,
Rac, Rho, which are normally required for many osteoclast cellular activities (including the
assembly of stress fibers, plasma membrane ruffling and survival), leading to osteoclast
apoptosis [90].

Consistent with the farnesyl pyrophosphate requirement in lipid production, farnesyl
pyrophosphate synthase is ubiquitously expressed in mammalian cells; however, nitrogen-
containing bisphosphonates are able to induce apoptosis only in osteoclasts [31]. This is
due to the ability of bisphosphonates to selectively adhere and remain within bone before
endocytosis and within osteoclasts during osteoclast-mediated bone mineral solubilization
and organic bone matrix digestion by acid proteases.

Zoledronic acid, a third-generation nitrogen-containing bisphosphonate, is the current
standard of care for treating bone metastasis from a variety of solid tumors and multiple
myeloma [91–93]. ZOL is known to inhibit [3] the FDPS enzyme, resulting in a block in
prenylation of small GTPase proteins functionally active in leukemic cells [94].

Recent studies indicate that ZOL also has anti-leukemia activity; however, the detailed
underlying mechanism has yet to be elucidated.
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Kuroda et al. for the first time in 2003 showed that zoledronate synergistically aug-
ments the anti-Ph+ leukemia activity of imatinib mesylate, both in vitro and in vivo [95].

Later, ZOL was described as a potent agent in inhibiting the proliferation and clono-
genicity of imatinib-sensitive and -resistant CML cells, becoming an attractive candidate
for overcoming IM resistance in patients with CML [96].

Emerging studies have also evidenced the surprising inhibitory effects for ZOL
on acute myeloid leukemia cells growth in vitro and in vivo, especially when intensive
chemotherapeutic regimens have been revealed to be futile in inducing durable remis-
sions. For example, zoledronic acid (ZOL) offers a novel approach to therapy in juvenile
myelomonocytic leukemia (JMML), a rare and aggressive myelodysplastic and myelopro-
liferative neoplasm of early childhood with a poor prognosis. The constitutive activation of
the Ras signal transduction pathway is crucial in the development of JMML. Zoledronic acid
blocks the abnormal expansion and differentiation of monocytes/macrophages derived
from JMML cells of juvenile myelomonocytic leukemia cells, preventing RAS prenylation
and activation in vitro. Ohtsuka et al. have demonstrated the capacity of ZOL treatment to
reduce the spontaneous colony formation from bone marrow (BM) cells of eight patients
with JMML and five healthy control subjects without and with GM-CSF activation, respec-
tively, in a dose-dependent manner. Although ZOL impaired spontaneous differentiation
along the monocyte/macrophage lineage of JMML BM cells, granulocyte colonies were
formed, suggesting that the constitutively activation of RAS signaling by GM-CSF pref-
erentially stimulates the differentiation of JMML cells along the monocyte/macrophage
lineage [97].

In 2012, a clinical trial evidenced the prophylactic use of zoledronic acid to treat and
prevent early bone loss in patients with acute myeloid leukemia undergoing allogeneic stem
cell transplantation. The treatment with 4 mg of zoledronic acid in 17 AML patients before
allo-SCT and for six months after transplantation did not show an increase in the incidence
of GVHD (70% vs. 65%) or mortality (47% vs. 47%), compared to patients with AML who
received allo-SCT during the same time period (but who were not treated with zoledronic
acid). Bone mineral density, measured using dual energy X-ray absorptiometry (DXA) scan-
ning, did not change significantly in any patient over a period of three years (2006–2009),
whereas urinary N-terminal telopeptide (uNTX), considered an important marker of bone
turnover, progressively decreased over time and serum osteocalcin levels stabilized after
six months following transplantation. Importantly, no patient developed osteonecrosis of
the jaw, an adverse effect of nitrogen-containing bisphosphonates [93,98,99].

Nowadays, although cellular immunotherapy is a promising therapeutic strategy
to treat acute myeloid leukemia, often innate lymphocytes, natural killer (NK) cells and
Vg9Vd2 T cells are able to mediate potent graft-versus-leukemia (GvL) effects without
clinical evidence for inducing graft-versus host disease (GvHD). In this context, bisphos-
phonates have immunomodulatory effects that may influence cancer cell progression [100].

As a matter of the fact, N-BP treatment enhances the susceptibility of various cancer
cells including AML cells to Vg9Vd2 T-cell-mediated cytotoxicity, causing the intracellular
accumulation of MVA cascade intermediate metabolites, such as IPP, which are specifically
recognized by Vg9Vd2 T cells [101,102].

Particularly, zoledronate was able to sensitize primary AML cells to Vc9Vd2 T cells, as
demonstrated in a comprehensive analysis of clinical, genetic, metabolic, and immunophe-
notypic features of 19 primary acute myeloid leukemias (AML). N-BP pretreatment en-
hanced, in a dose-dependent manner, the Vg9Vd2 T-cell cytotoxicity in 50% of the AML
samples, whereas 50% of the AML samples were consistently hyporesponsive or refractory
to gd T-cell cytolysis. In addition, the ZOL-responsive AML samples showed significantly
enhanced HMGCR activity induced by phosphorylation, compared with the hyporespon-
sive or primarily ZOL-refractory AML samples. Finally, a strong correlation between
the activity of the MVA pathway and the sensitivity of the primary AML samples with
monocytic or myelomonocytic differentiation to NBP treatment was observed, resulting in
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the increased susceptibility to Vg9Vd2 T-cell-mediated cytotoxicity compared to the AML
samples without monocytic or myelomonocytic differentiation [103].

Recently, some studies evidenced that the treatment of acute myeloid leukemia cells
in vitro with BNPs affected their survival and clonal expansion. ZOL treatment inhibited
the proliferation and colony formation capacity of HL 60 and adriamycin resistant HL
60 (HL 60/A) cells in a dose- and time-dependent manner, by inducing S phase cell
cycle arrest and apoptosis. In this system, ZOL induced apoptosis via the mitochondrial
apoptotic pathway by the downregulation of B-cell lymphoma 2 (Bcl-2), upregulation of
Bcl-2 associated X protein (Bax) and cleaved poly (ADP-ribose) polymerase (PARP). As
ZOL is already available for clinical use, it may be useful as a novel therapeutic agent in
addition to chemotherapeutic strategies for AML therapy [104].

The anti-leukemic effects of ZOL have also been evaluated in CB-MA9 cells, an acute
myeloid leukemia model obtained from hematopoietic cord blood-derived stem cells
transformed with the MA9 fusion gene [105–107]. These cells were particularly sensitive to
ZOL, displaying inhibition in proliferation, clonogenicity and cobblestone-like structure
formation in a dose-dependent manner, compared to normal HSCs and stromal MS-5
cells. The treatment with 20 µM of ZOL inhibited Rap1 prenylation in CB-MA9 cells,
compromising the functional activity of the Rac-GTPases family often deregulated in
leukemic cells [107] (Figure 4C).

Although the pharmacological action of bisphosphonates lies in the inhibition of bone
resorption mediated by osteoclasts, the evidence discussed here proves that they can affect
cell viability by altering isoprenoid biosynthesis in cancer cells, including in AMLs.

While many of the studies are in their early stages, bisphosphonates are potentially
ideal therapeutic agents to be integrated into conventional chemotherapy regimens for the
treatment of AMLs.

5. Conclusions

In this review, we discuss the current knowledge concerning bisphosphonates in
targeting the mevalonate cascade as a new therapeutic approach in AML, which has not
yet been described in this context.

There is now extensive evidence that statins, a class of lipid-lowering medications,
have anti-inflammatory and anti-neoplastic properties by blocking the HMG-CoA reductase
enzyme in the synthesis of mevalonate.

Although numerous studies over the last two decades have also shown the beneficial
effects of bisphosphonates in cancer patients, their effectiveness is still not completely clear
with regard to hematological neoplasms.

Bisphosphonates represent an interesting class of pharmacological agents that are able
to inhibit bone resorption processes in bone fragility disorders. This effect is of particular
clinical relevance in patients with cancer-induced bone disease resulting from the primary
disease, especially in MM.

In recent years, experiments on cell-based systems of AML have evidenced BPs
as negative modulators of signaling events crucial in promoting clonal expansion and
maturation block of progenitor cells in myeloid hematological malignancies.

Here, we firstly summarized the biochemical mechanisms underlying N-BPs’ effects
in inhibiting the farnesyl pyrophosphate synthase (FDPS), a key branch-point enzyme in
the mevalonate pathway.

Thus, BPs induced a reduction in isoprenoids such as farnesyl pyrophosphate and
geranylgeranyl pyrophosphate, preventing small GTPase prenylation. This translational
modification negatively modulates cancer key signaling events involved in stimulating cell
survival and proliferation.

Next, in this review, we focused on studies that assessed the effects of bisphospho-
nates in AML over the past twenty years. Moreover, zoledronate was the predominant
bisphosphonate evaluated in the majority of research studies on AML model systems.
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Zoledronate showed anti-tumor effects on myeloid cell lines and primary leukemia
stem cells in vitro. This BP exerted its activity by inducing cellular apoptosis and cell cycle
arrest through the perturbation of small GTP-binding proteins activity associated to the
MAV transduction pathway.

Today, only a few studies on this subject are available; further research would be
useful to help clarify the effect sizes and clinical relevance and significance of BP treatment
in AMLs.

In addition, nowadays, few studies have reported the synergistic antitumoral effect
of ZOL and farnesyltransferase inhibitor or MAPK or PI3K inhibitors in solid tumors.
Indeed, it was reported that the combination of ZOL and R115777, a farnesyltransferase
inhibitor (FTI, Washington, DC, USA, Zarnestra), induced apoptosis and growth inhibition
in prostate adenocarcinoma cells, but also promoted tumor growth inhibition in vivo in
prostate cancer xenografts in nude mice, with a significant survival rate [108].

Moreover, Surmeli et al. revealed that the co-treatment ZOL and serine/threonine
phosphatase inhibitors was able to potentiate cytotoxicity and apoptosis in human breast
cancer cells, inhibiting the PI3K/Akt pathway [109].

Furthermore, recent studies have shown the synergistic effect of ZOL and trametinib
(MEK inhibitor) to inhibit growth and colony formation of MDA-MB-231 breast cancer
cells [110], but also potentiate the antitumor activity in KRAS mutant tumors both in vitro
and in vivo [111].

The combined treatment of ZOL and farnesyltransferase, or MAPK or PI3K inhibitors,
still remains an unexplored field in the context of acute myeloid leukemia and further
studies are needed to investigate the potential therapeutic efficacy.

Taken together, these findings support the possibility that third-generation BPs, includ-
ing zoledronate, can represent an attractive option in the development of new therapeutic
approaches for AML treatment and could possibly be integrated into current chemother-
apy protocols.
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