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Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor
(serpin) superfamily with antiprotease activity, is the main physiological inhibitor of
tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PAs). Apart from
being crucially involved in fibrinolysis and wound healing, PAI-1 plays a pivotal role
in various acute and chronic pathophysiological processes, including cardiovascular
disease, tissue fibrosis, cancer, and age-related diseases. In the prospect of treating the
broad range of PAI-1-related pathologies, many efforts have been devoted to developing
PAI-1 inhibitors. The use of these inhibitors, including low molecular weight molecules,
peptides, antibodies, and antibody fragments, in various animal disease models has
provided ample evidence of their beneficial effect in vivo and moved forward some of
these inhibitors in clinical trials. However, none of these inhibitors is currently approved
for therapeutic use in humans, mainly due to selectivity and toxicity issues. Furthermore,
the conformational plasticity of PAI-1, which is unique among serpins, poses a real
challenge in the identification and development of PAI-1 inhibitors. This review will provide
an overview of the structural insights into PAI-1 functionality and modulation thereof and
will highlight diverse approaches to inhibit PAI-1 activity.

Keywords: plasminogen activator inhibitor 1 (PAI-1), PAI-1 inhibitors, serpin (serine proteinase inhibitor),
fibrinolyisis, cardiovascular disease

INTRODUCTION

Hemostasis is an essential physiological process that preserves the integrity of the vascular
system and secures sufficient blood flow throughout the circulatory system. The balance between
clot formation (coagulation) and clot dissolution (fibrinolysis) is very tightly regulated in a
spatiotemporal manner and requires a dynamic interplay with other systems involved, such as the
vascular system and platelets (1). Briefly, upon vascular injury, a sequence of cellular and molecular
events is triggered that can be characterized by three distinct but overlapping phases of initiation,
amplification, and propagation (coagulation) (2, 3). The end result of the coagulation cascade is
the conversion of fibrinogen, a soluble plasma protein, into an insoluble fibrin meshwork that
constitutes blood clots. To limit the coagulatory response to the site of injury and prevent vascular
occlusion, the prothrombotic response is balanced by the fibrinolytic system. Fibrinolysis revolves
around the enzymatic activation of plasminogen into the key fibrinolytic enzyme plasmin through
tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PAs) (4). Tissue-type PA is
produced by vascular endothelial cells and released in response to thrombin and venous occlusion.
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It is primarily involved in the activation of plasminogen that
is required for fibrin dissolution in the circulation (5, 6). In
contrast, uPA is expressed by a variety of cells, including
renal epithelial cells, inflammatory cells, and cancer cells. It is
considered more important in pericellular proteolysis during
tissue remodeling and cell migration through the activation of
cell-bound plasminogen (7, 8). Plasminogen activator inhibitor-
1, a member of the serpin superfamily, is a key component of the
plasminogen/plasmin system as it is the primary inhibitor of tPA
and uPA.

SYNTHESIS, DISTRIBUTION, AND
BIOCHEMICAL PROPERTIES OF PAI-1

PAI-1 was first detected almost four decades ago as an
inhibitor of the fibrinolytic system associated with cultured
bovine endothelial cells (9). Not much later, several research
groups demonstrated its presence in human plasma (10–12),
as well as various other cell types throughout the body,
including the spleen, liver, kidney, lung, and adipocytes,
albeit at different concentrations and with variable functional
activities (13, 14). Furthermore, PAI-1 expression and release
are strongly regulated by various factors, including growth
factors (e.g., transforming growth factor-β, epidermal growth
factor), inflammatory cytokines (e.g., tumor necrosis factor-
α and interleukin-1β), hormones (e.g., insulin, glucocorticoid,
and angiotensin II), glucose, and endotoxin of Gram-negative
bacteria (15, 16). In the blood, PAI-1 occurs in two distinct
pools, free in plasma or retained in platelets (17). Plasma PAI-
1 circulates mainly in the active conformation at relatively
low levels (5–50 ng/mL) (17) showing a large interpersonal
variability caused by factors including race/ethnicity (18), gender
(19), and body composition (20). In contrast, platelet PAI-1
serves as the main blood pool of PAI-1 with concentrations
up to ∼300 ng/mL (17). Initially, several studies showed that
platelet-derived PAI-1 is less active compared to plasma PAI-
1, considered being only 2–5% functionally active (21, 22).
However, the pre-analytical methods used in these studies, such
as sonication or freeze-thawing, may have reduced the activity
of platelet-derived PAI-1 since more recent studies were able to
demonstrate a substantially higher activity for PAI-1 (23, 24).
Even though platelets do not contain a nucleus, they retain the
ability for de novo PAI-1 synthesis through translationally active
PAI-1 messenger RNA, of which the synthesis rate is importantly
increased by platelet activation (23). As a result, at least 50%
of platelet-derived PAI-1 was shown to be in the biologically
active form and capable of forming an irreversible PAI-1/tPA
complex. Importantly, platelet-derived PAI-1 has a substantial
role in conferring thrombolysis resistance to the clot through
local accumulation caused by its release from activated platelets
and subsequent partial retention of functional PAI-1 on the
platelet membrane (24–26).

The 12.3 kb human PAI-1 gene (SERPINE1) was mapped
to chromosome 7 (7q21.3-q22) and contains nine exons and
eight introns (27, 28). The exons encode for a 23 amino acid

long signal peptide and the 379 amino acid long mature PAI-
1 protein (29). Additionally, a mature form comprising 381
amino acids, including two extra amino-terminal (N-terminal)
residues, has been identified and is most likely the result of
cleavage at an alternative cleavage site for signal peptidases (30).
Native PAI-1 is a 45-kDa single-chain glycoprotein that lacks
cysteines. Based on the amino acid sequence, three potential sites
for N-linked glycosylation were identified of which Asn209 and
Asn165 display a heterogeneous tissue-type specific glycosylation
pattern while Asn329 is not utilized in vivo (31, 32). Even
though glycosylation often has a critical role in determining
protein structure, function, and stability for many proteins,
glycosylation of PAI-1 is not a prerequisite for its ability to
inactivate PAs or to interact with its cofactor vitronectin (33).
In contrast, several studies demonstrated that glycosylation can
have a tremendous effect on the neutralizing activity of PAI-1
inhibitors and therefore emphasizes the significance of the source
of PAI-1 used in the development of PAI-1 inhibitors (31, 34, 35).

STRUCTURAL AND FUNCTIONAL
PROPERTIES

PAI-1 Is an Inhibitory Serpin
The serpin superfamily comprises over 1,500 inhibitory and non-
inhibitory proteins that are broadly distributed among several
species, including humans, animals, viruses, bacteria, and plants
(36). Despite their profound structural similarity, serpins are
functionally very diverse.Whereas, their biological function often
requires inhibition of proteases, some non-inhibitory serpins
function as, for example, hormone transporters (37), tumor
repressors (38), or molecular chaperones (39). Based on their
evolutionary relatedness, eukaryotic serpins have been divided
into 16 clades (termed A-P), with clades A-I representing human
serpins. PAI-1 is categorized as a clade E serpin and is considered
to be the main physiological inhibitor of tPA and uPA. However,
other serpins with inhibitory activity toward PAs have been
identified and include plasminogen activator inhibitor-2 (clade
B), protease nexin I (clade E), and neuroserpin (clade I) (40).

PAI-1 displays the well-conserved structure of serpins
(Figure 1), characterized by three β-sheets [termed A–C, with
strand numbers indicated as s(#)A, s(#)B, and s(#)C] and nine
α-helices (termed hA-hI) (42, 43). As the primary inhibitor of
PAs, PAI-1 rapidly inactivates both tPA and uPA with second-
order rate constants between 106 and 107 M−1 s−1 following the
basic mechanism applied to all serpin/serine proteinase reactions
(43, 44). The key to this reaction is that the PA recognizes
PAI-1 as a (pseudo)substrate. Therefore, PAI-1 carries a flexible
surface-exposed reactive center loop (RCL) of 26 residues
long (331-SGTVASSSTAVIVSARMAPEEIIMDR-356, designated
P16-P10′) that presents a substrate-mimicking peptide sequence
(Arg346-Met347, designated as P1-P1′). PAI-1 is synthesized in
a metastable active conformation, i.e., with the RCL protruding
from the top of the molecule, which is essential for the kinetic
trapping of PAs in a thermodynamically favorable complex.
Several regions–the hinge region (P15-P9 of the RCL), the breach
region (the top of β-sheet A), the shutter domain (the central part
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of s3A and s5A and the N-terminal part of hB), the gate region
(s3C and s4C), and the flexible joint region (hD, hE, hF, and s1A)–
have been shown to be important in controlling and modulating
PAI-1 functionality through conformational changes (Figure 1).

Mechanism of Protease Inhibition
The PAI-1/PA reaction is initiated by the formation of a non-
covalent 1:1 stoichiometric Michaelis complex (EI) between PAI-
1 (inhibitor, I) and the PA (enzyme, E) (Figure 2). Initially,
PAs bind to PAI-1 through several exosite interactions, defined
as secondary interactions between regions outside of the PA
active site and the PAI-1 P1-P1′ reactive center (47, 53). The
nature of this Michaelis complex is now well-understood from
the X-ray structure determination of PAI-1 in complex with
active-site mutants of tPA (tPA-S478A) and uPA (uPA-S195A)
(47, 53). Through flexible loops on their surface, PAs contact
several exosites adjacent to the RCL to facilitate the initial
docking step and, in addition to P1 and nearby residues in the
RCL, confer proteinase specificity. By forming tight interactions,
exosites stabilize the Michaelis complex and lock the PA into
a particular orientation to warrant optimal positioning of the
P1 residue in the active site of the PA. Furthermore, these
additional interactions slow down the dissociation of the PA from
its initial docking site, allowing the PA active site serine to attack
the P1-P1′ bond to form a tetrahedral intermediate with PAI-
1 (54). Successful cleavage of this bond yields the acyl-enzyme
intermediate (E∼I) in which the PA is covalently linked to the
main chain carbonyl of the P1 residue in PAI-1. Following a
branched pathway mechanism, the PAI-1/PA reaction is directed
either into the inhibitory or into the substrate pathway.

In the inhibitory pathway (Figure 2), the formation of the acyl-
enzyme intermediate is coupled to a rapid and full insertion of
the N-terminal part of the RCL (P16-P1) as strand 4 into the
central β-sheet A (s4A) (54). This major conformational change
coincides with a 70 Å translocation of the bound PA to the
opposite side of the PAI-1 molecule. There, a large part of the
PA, including the active site, is deformed by compression against
the body of PAI-1. As a result, hydrolysis of the acyl-enzyme
intermediate is prevented and the PA remains trapped as a stable
PAI-1/PA inhibitory complex (E-I) (49, 55). This mechanism of
inhibition was demonstrated by the crystallographic structure
of the α1-antitrypsin/trypsin complex (49), which is in line
with the results from studies that investigated serpin exosite
distortion by using nuclear magnetic resonance (56, 57) and
circular dichroism (58) studies. In this serpin-protease complex
(49), trypsin shows a high degree of conformational disorder
as compared to its native form, i.e., a loss of structure for
∼37% of the protease. Furthermore, the active site of trypsin is
disrupted as Ser195 of the catalytic triad is moved away from
its catalytic partners. Several regions in PAI-1 are crucial for the
orchestration of loop insertion and are furthermore involved in
the energetical coupling of this favorable conformational change
to the energy-demanding process of PA distortion (Figure 1)
(43). Upon cleavage of the P1-P1′ bond, the PA dissociates from
its initial docking site on PAI-1 while releasing the distal P′ side
of the cleaved RCL from the PA active site cleft. Simultaneously,
the breach region at the top and the shutter region near the

center of β-sheet A open up to accommodate the RCL as
s4A. The hinge region that contains a conserved series of
small hydrophobic residues (P15-P9) initially inserts into the
breach region and is a prerequisite for rapid loop insertion.
Whereas, the surface-exposed RCL only makes a few contacts
with the serpin body, it now becomes an integral part of the
central β-sheet A. Further insertion of the RCL, however, is
obstructed by a steric clash with hF that is located across β-
sheet A. Experimental data favor the hypothesis that hF plays
an essential role in PA inhibition by (I) being actively displaced
until the loop is fully inserted and the PA has passed to the
very end of β-sheet A and (II) by temporarily storing the energy
derived from loop insertion in order to distort the PA upon
return of hF to its original position, ultimately leading to the
formation of the irreversible inhibitory complex (59). Through
basic residues in hD and hE in the flexible joint region of
PAI-1, these PAI-1/PA complexes bind certain receptors of the
low-density lipoprotein receptor (LDLR) family, including low-
density lipoprotein receptor-related protein-1 (LRP1), leading to
endocytosis and degradation of the complex (60, 61).

In the substrate pathway (Figure 2), the acyl-enzyme
intermediate is hydrolyzed prior to PA distortion, resulting in
the release of regenerated PA (E) from cleaved RCL-inserted
PAI-1 (I∗) (48, 62). This substrate behavior has been associated
with the pre-existence of a conformational distinct substrate-like
subset of PAI-1 (63, 64), or results from a change in the kinetic
parameters that define the partitioning between both branches of
the PAI-1/PA reaction (65, 66).

Factors Influencing the PAI-1/PA Reaction
Several factors have been established that determine target
proteinase specificity or influence the partitioning between
the inhibitory and substrate branch of the PAI-1/PA reaction
pathway. The first region to determine target specificity of
PAI-1, and serpins in general, consists of residue at the P1
position and the immediately adjacent residues in the RCL.
Indeed, by replacing residues P3-P3′ of the PAI-1 RCL with
the corresponding residues of another serpin antithrombin III,
this PAI-1 mutant acquired thrombin inhibitory properties (67).
Interestingly, vitronectin was shown to alter PAI-1 specificity
by also enhancing PAI-1 reactivity toward thrombin in a dose-
dependent manner (66, 67). Importantly, studies using PAI-
1/serpin chimeras, in which the RCL was replaced with that
of other serpins, showed that all chimeras were still effective
inhibitors of both PAs, and thus strongly suggested a major
contribution of regions outside of the RCL to differences
in specificity (68). Based on the crystal structure of the
PAI-1/PA Michaelis complexes, interactions between several
complementary electrostatic surfaces on PAI-1 and the PAs,
referred to as exosites, have been identified (47, 53). One
particular region of PAs has been shown to make strong and
extensive interactions with PAI-1. The positively charged 37-
loop of PAs contacts (I) a negatively charged patch comprising
residues in s1B, s2B, and the s3B-hG loop, and (II) the P4′

(Glu350) and P2′ (Ala348) residues in the RCL. This 37-
loop/exosite interaction has been proven necessary to ensure the
rapid and high-affinity association between PAI-1 and PAs in
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FIGURE 1 | Cartoon representation of the crystal structure of the active form of plasminogen activator inhibitor-1 (PAI-1) [PDB ID 6ZRV (41)] and the amino acid
sequence of native PAI-1. PAI-1 shows the evolutionarily conserved topology of serpins, consisting of three β-sheets (A–C) and nine α-helices (hA-hI). β-sheet A, B,
and C are shown in blue, magenta, and yellow, respectively, with numbers labeling the individual strands. The α-helices are indicated in the figure. The reactive center
loop (RCL) of PAI-1 connects strand 5 of β-sheet A (s5A) to strand 4 of β-sheet B (s4B) and comprises strand 1 of β-sheet C (s1C). The RCL is shown in red, with the
reactive center Arg346 (P1) and Met347 (P1′) represented by a magenta and cyan sphere, respectively. Other important domains that control and modulate PAI-1
conformational changes (the gate, hinge, breach, shutter, and flexible joint regions) are also indicated. Residues missing in the crystal structure are indicated by a
dashed line. The amino acid sequence is presented and secondary structures (α-helices and β-strands) are indicated in the colors corresponding to the cartoon
representation.
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FIGURE 2 | Schematic overview of the PAI-1 (I) conformations as well as its interactions with plasminogen activators (PAs, E) and cofactor vitronectin. Following the
formation of a non-covalent PAI-1/PA Michaelis complex (EI), the P1-P1′ bond is cleaved to generate an acyl-enzyme intermediate (E∼I). From here on, the reaction
proceeds through a branched pathway, resulting in either the formation of an irreversible inhibitory complex (E-I) or the generation of cleaved PAI-1 (I*) due to the
hydrolysis of the acyl-enzyme intermediate. PAI-1 is shown in white; the central β-sheet A of the PAI-1 molecule in blue; the flexible reactive center loop (RCL) in red,
and Arg346 and Met347 (P1-P1′) of the reactive center are indicated by magenta and cyan spheres, respectively. The PA is shown in green. Vitronectin is shown in
orange. PDB structures 1DVN (45), 1DB2 (46), 5BRR (47), 3EOX (48), 1EZX (49), 1H4W (50), and 1OC0 (51) were used to generate this figure. Figure adapted from
Sillen et al. (52).

studies using 37-loop mutants or antibodies specifically binding
to this region on the PA molecule (69–71). Furthermore, the
residues in the 37-loop of tPA that are responsible for the direct
interaction with PAI-1 are less charged in the 37-loop of uPA,
resulting in a stronger exosite interaction of PAI-1 to tPA (72).
These stronger exosite interactions result in a twice as large
contact area of tPA with PAI-1 when compared to uPA, and
provide a rationale for the difference in second-order inhibitory
rate constants between the two PAs (47, 53).

As mentioned, the importance of several regions within the
PAI-1 molecule for RCL insertion as well as for its interaction
with the target PAs has been extensively studied. Ample evidence
suggested that the nature of the amino acids and the flexibility
of these segments are crucial for PAI-1 functionality and that
changes made within these regions result in an altered reaction
mechanism. Mutations within the hinge region of the RCL
(residues P14-P8) altered the specificity toward tPA or uPA and
moreover caused PAI-1 to behave predominantly as a substrate
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toward PAs (65, 73, 74). Stable substrate behavior without any
detectable inhibitory activity was also conferred upon a PAI-
1 deletion mutant lacking hF and the hF-s3A loop (75). Since
both regions are involved in RCL insertion, i.e., the hinge region
is initially inserted and hF coordinates the final insertion step,
mutations in these regions may change the initial conformation
of PAI-1 or impair the kinetics of RCL insertion. Therefore,
these changes may ultimately result in the hydrolysis of the acyl-
enzyme intermediate (76). Apart from these PAI-1 mutants, the
behavior of PAI-1 as an inhibitor or as a substrate has also been
reported to be influenced by external conditions, such as low
temperature and non-ionic detergents, and ligands (77–79).

Functional Stability of PAI-1
PAI-1 Spontaneously Converts Into an Unreactive

Latent Form
Unlike other serpins, PAI-1 has the unique ability to
spontaneously convert into a thermodynamically stable
latent form with a half-life of ∼2 h at 37 ◦C in vitro. This
active-to-latent transition occurs by slowly self-inserting the
N-terminal part of the RCL into the core of the protein, thereby
making the P1-P1′ bond inaccessible for PAs (80). Spontaneous
latency transition is rather exceptional and is reported in only a
few other serpins (81–83). Several lines of evidence indicate that
latency transition in PAI-1 is evolutionarily conserved (84, 85).
Therefore, it suggests an important role in auto-regulation
of PAI-1 activity to reduce the risk of thrombosis due to the
otherwise prolonged antifibrinolytic action of PAI-1. Based
on the structures of active and latent PAI-1, the dynamical
mechanisms involved in the active-to-latent transition were
simulated using a computational approach, and could later be
supported by experimental evidence (72, 86, 87). In a concerted
manner, strand 1 (s1C) is peeled away from β-sheet C and allows
the RCL to move around the gate region while it partially inserts
up to P11 (Ser336) in the central β-sheet A that opened up at the
breach and shutter region to form s4A. To reach this prelatent
state, for which experimental evidence indicates that it co-exists
with active PAI-1 in solution (88–91), a change in the bend in
hA is required. After being held for an extended period in the
prelatent form, full insertion of the final P6-P4 residues of the
RCL is blocked by steric clashes between the RCL and the hF-s3A
loop that overlies β-sheet A, posing a high-energy barrier. Similar
to the conformational changes required for PA translocation, the
favorable energy that is released upon partial insertion of the
RCL is temporarily stored by an outward movement or unfolding
of hF to enable full RCL insertion. Finally, hF returns to its native
position across β-sheet A and irreversibly locks PAI-1 in its
unreactive latent state. Whereas, during the inhibitory reaction
with PAs energy can be recovered to distort the active site of
the PA, latency transition is an energetically silent process.
Therefore, it has been hypothesized that the energy gain from the
favorable insertion of the RCL is used to extract s1C from β-sheet
C and to position it alongside the PAI-1 molecule (92). Even
though this transition is generally considered to be irreversible,
limited reactivation by an unknown mechanism may occur in
vivo (93). In vitro, the inhibitory properties can be restored by
treating latent PAI-1 with denaturants followed by refolding (94).

In vivo Stabilization
In vivo, the active form of PAI-1 is stabilized at least 2-fold by the
high-affinity association (KD ∼ 0.1–1 nM) with the glycoprotein
vitronectin that is abundant in plasma and the extracellular
matrix (Figure 2) (95–99). The interaction between PAI-1 and
vitronectin has been extensively characterized by mutagenesis
and competition experiments using monoclonal antibodies, PAI-
1/PAI-2 chimeras, and (synthetic) peptides (100–108). Based on
these results, the N-terminal somatomedin B (SMB) domain
within vitronectin and the flexible joint region, defined by hE,
hF, and s1A, within PAI-1 were identified as the primary regions
to engage in the interaction. Later, the crystal structure of PAI-
1 in complex with the SMB domain of vitronectin (PDB ID
1OC0) provided additional details on the interaction interface,
restricting their respective binding sites to the central region
of the SMB domain (residues 10–30) and residues in the hE-
s2A loop (Arg101), in hE (Pro111 and Phe114), hF (Asp138,
Ile135, and Trp139) and s1A (Thr120, Lys122, Gln123, Val124,
and Asp125) of PAI-1 (51). Through allosteric modulation of
several regions remote from the SMB binding site, vitronectin
causes a strong and widespread stabilization of the lower half
of the PAI-1 molecule, including hB, hC, hD, hI, and the hI-
s5A loop, and induces conformational changes in the RCL
without compromising the ability of PAI-1 to associate with PAs
(99, 109, 110). By reducing the structural flexibility, binding of
vitronectin interferes with the sliding movement that is required
to open up the shutter region, and consequently decreases the
rate of RCL insertion that ultimately slows down the transition
to latent PAI-1. Alternatively, expansion of β-sheet A due to
loop insertion during latency transition or during the interaction
with PAs results in the dissociation of vitronectin from inactive
PAI-1 (95, 111, 112). Apart from the primary high-affinity PAI-1
binding site in the SMB domain, there is experimental evidence
for additional PAI-1 binding sites in vitronectin. These sites,
comprising a cluster of basic amino acids (residues 348–370 of
vitronectin) in the C-terminal region of vitronectin (111–115) as
well as the region connecting the SMB domain to the remainder
of the vitronectin molecule (residues 111–121 of vitronectin)
(116), have been shown to bind PAI-1 with a lower affinity
and promote the assembly of higher-order PAI-1/vitronectin
complexes (114, 115, 117).

One of the major acute-phase proteins, α1-acid glycoprotein,
has also been shown to bind and stabilize the active form of PAI-
1. Extensive binding studies allowed to identify a binding region
that is distinct from that of vitronectin. This α1-acid glycoprotein
binding region resides in the hI-s5A loop, comprising residues
Arg300–Asp305 located at the bottom of PAI-1 β-sheet A (118).
Even though this interaction occurs at a slower rate and is less
stable as compared to the interaction with vitronectin, it might
contribute to the PAI-1-mediated effects during inflammation or
acute phase reactions (119).

PAI-1 Mutants With Increased Stability
Since its discovery, a vast amount of PAI-1 variants has been
generated by both site-directed and random mutagenesis (120).
These mutants have been employed in order to gain insights
into the structure/function relationship in PAI-1, to identify
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regions that are important for its biological interactions, and
to investigate its pleiotropic functions in various pathological
processes. Due to its conformational flexibility, structural studies
have benefited in particular from the generation of PAI-1
variants of which the functionally active form is stabilized. While
single substitutions cause only a moderate stabilization of PAI-
1, the combination of multiple mutations often results in a
markedly enhanced stability with half-lives up to 450 h (85).
Alternatively, the active conformation can also be maintained by
introducing Cys-residues to crosslink flexible regions in PAI-1
that are crucially involved in latency transition (121, 122). This
way, PAI-1 variants have been generated in which hD of the
flexible joint region is connected to the N-terminal part of hA
(engineered disulfide bridge between Val8Cys and Ala74Cys),
in which s3A and s5A in the shutter region are covalently
linked (Gln169Cys–Gly324Cys), in which the N-terminal part
of the RCL is connected to the top of s3A in the breach region
(Gln174Cys–Gly332Cys), or in which a combination is used.
However, the introduction of only one single disulfide bond
at the breach region is sufficient to most effectively preclude
latency transition (very long half-life PAI-1, t1/2 > 700 h) without
affecting its structure (122).

As mentioned, several crystal structures of PAI-1 in its
alternative conformations (active, latent, and cleaved PAI-1) or of
PAI-1 in complex with biological ligands have been determined
by employing these stabilized active mutants (Figure 2 and
Table 1). The first stable mutants to be successfully crystallized
in the active conformation were the quadruple mutant PAI-1-
N150H-K154T-Q319L-M354I, commonly referred to as PAI-1
14-1B (t1/2 ∼ 145 h) (123, 133) and a variant harboring a fifth
mutation, PAI-1-N150H-K154T-Q301P-Q319L-M354I, referred
to as PAI-1-stab (46, 134). Later, the structure of active PAI-
1-W175F (t1/2 ∼ 7 h) was resolved as well (124). Apart from
its prolonged half-life, PAI-1-W175F behaves similarly to wild-
type PAI-1 and is therefore a more valid representative of wild-
type PAI-1. Comparison of the available PAI-1 14-1B and PAI-1-
W175F structures revealed numerous structural differences, with
the most prominent one located in the region containing hF and
the hF-s3A loop. Three of the mutations in PAI-1 14-1B and PAI-
1-stab are clustered in and below the hF-s3A loop (Asn150His,
Lys154Thr, and Gln319Leu) and induce a 310-like helix covering
residues 151–157 that connects hF to the underlying β-sheet A
through a hydrogen-bonding network. As a consequence, the
energy barrier for hF displacement during the final step in RCL
insertion is raised, explaining both the stabilization of the active
conformation as well as the increased substrate behavior upon
interaction with PAs that is observed for PAI-1 14-1B and PAI-
1-stab. In contrast, the stabilization caused by the single amino
acid substitution of the conserved tryptophan in PAI-1-W175F
appears to be the result of local effects in the breach region that
restrict initial loop insertion (124, 135).

External Conditions Affecting PAI-1 Stability
Apart from being stabilized through interactions with its
physiological ligands, several external conditions have been
shown to affect the rate of latency transition in PAI-1 in
vitro. During the search for the optimal purification conditions

of recombinant PAI-1, a low temperature (4◦C), a low pH
(∼5.5), and a high salt concentration (1M NaCl) contributed
to increased PAI-1 stability (98). Since a decrease in pH causes
protonation of imidazole groups, it was suggested that one or
more histidine residues might be directly responsible for the pH-
dependent stability of PAI-1. It was first speculated that His143,
localized at the top of hF, might be responsible for this effect
(136). However, site-directed mutagenesis studies could only
demonstrate a direct role for His364, situated on the C-terminal
end of s4B in close vicinity to hD in the flexible joint region
and to the W86-loop (137). The salt stabilization was further
investigated based on the observation of an anion-binding site
in a crystal structure of PAI-1 14-1B in the active conformation
(45). It was suggested that by forming close interactions with
partially positive nitrogen residues on each side of the anion-
binding site, i.e., with Lys323 and Lys325 in β-sheet A and Ser149
and His150 in the hF-s3A loop, chloride binding increases the
energy barrier of the final stage in latency transition. Also, a
more pronounced stabilization was correlated with an increased
electronegativity of the anion (F− ≥ Cl− > Br− > I−), resulting
in tighter interactions. Notably, the proposed anion-binding site
is located in the hF-s3A loop that is structurally different in PAI-1
14-1B as compared to “wild-type” PAI-1-W175F. Indeed, anion-
binding could not be observed within this region in the more
recent structure of active PAI-1-W175F (124) and is thus likely to
be an artifact resulting from the induced conformational changes
in the hF-s3A loop region in PAI-1 14-1B. However, a previously
unknown chloride-binding site centered in the gate region could
be unambiguously identified. This led to a revised hypothesis
of the salt stabilizing effect on PAI-1 inhibitory activity, i.e.,
delaying latency transition by blocking the gate through bridging
of several structural elements located between the s3C/s4C loop
and the hG-s3B loop. Also, the preferential stabilization of
other halide salts could not be extended to PAI-1-W175F or
wild-type PAI-1, which were most dramatically stabilized by
sodium chloride yielding half-lives well above 30 h at a 1M salt
concentration (124). Interestingly, two zinc-binding sites could
clearly be identified within the same crystal structure of PAI-
1-W175F. Since the metals appeared at the interface between
two PAI-1 molecules inside the crystal, it remained debatable
whether one or both binding sites are physiologically relevant.
However, one zinc ion was strongly coordinated by N-terminal
His2 and His3 (124). Almost simultaneously it was shown that
type I metal ions (calcium, magnesium, and manganese) have
modest stabilizing effects on PAI-1 activity, whereas type II
metals (cobalt, copper, and nickel) had a more pronounced
effect, either destabilizing PAI-1 in the absence of vitronectin
or adding up onto the stabilization caused by simultaneous
binding of vitronectin (138). Even though competitive binding
experiments suggested that these effects were mediated through
a single metal-binding site (139), a copper-binding site involving
N-terminal His2 and His3 was identified that only accounted
for the stabilizing, and not the destabilizing, effect of copper
(140). The existence of a second copper-binding site has been
further confirmed by the observation that copper facilitates
an early step in PAI-1 latency transition by increasing protein
dynamics in the flexible joint region and the helices underlying
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TABLE 1 | List of X-ray crystallographic structures containing human PAI-1 available in the Protein Data Bank (PDB).

Form PDB ID PAI-1 variant Ligand Resolution (Å) References

Active 1B3K PAI-1 14-1Ba NA 2.99 (123)

1DB2 PAI-1-stabb NA 2.70 (46)

1DVM PAI-1 14-1B NA 2.40 (45)

3Q02 PAI-1-W175F NA 2.30 (124)

3R4L VLHL-PAI-1c NA 2.70 (122)

Latent 1C5G PAI-1-wtd NA 2.60 (125)

1DVN PAI-1 14-1B NA 2.10 (45)

1LJ5 PAI-1-wt NA 1.80 –

3Q03 PAI-1-W175F NA 2.64 (124)

Cleaved 9PAI PAI-1-A335P NA 2.70 (62)

3CVM PAI-1 14-1B NA 2.03 (126)

3EOX PAI-1-stab NA 2.60 (48)

+ Ligand 1OC0 PAI-1 14-1B SMB domain of vitronectin 2.28 (51)

3PB1 PAI-1 14-1B Catalytic site mutant of uPA, uPA-S195A 2.30 (53)

5BRR PAI-1 14-1B Catalytic site mutant of tPA, tPA-S195A 3.16 (47)

+ Inhibitor 1A7C PAI-1-A335E RCL-derived inhibitory peptide P14-P10 1.95 (127)

4AQH Latent PAI-1 14-1B AZ3976 2.40 (128)

3UT3 PAI-1 14-1B Embelin 2.42 (129)

4IC0 PAI-1 14-1B Gallate 2.32 (130)

4G8O PAI-1 14-1B CDE-096 2.71 (131)

4G8R PAI-1 14-1B CDE-096 2.19 (131)

6I8S PAI-1 14-1B Fabe fragment of MEDI-579 2.90 (132)

5ZLZ PAI-1 14-1B PAItrap 2 3.58 –

6GWN PAI-1-W175F Nanobody Nb42 and Nb64 2.03 (52)

6GWP PAI-1-stab Nanobody Nb42 and Nb64 2.28 (52)

6GWQ PAI-1-stab Nanobody Nb42 2.32 (52)

6ZRV PAI-1-W175F Nanobody Nb93 1.88 (41)

aPAI-1-N150H-K154T-Q319L-M354I.
bPAI-1-N150H-K154T-Q301P-Q319L-M354I.
cVery long half-life PAI-1, PAI-1-Q174C-G332C.
dWild-type PAI-1.
eAntigen-binding fragment.

NA, not applicable.

the shutter region, which could also be observed when copper
bound to a mutant lacking His2 and His3 (141). Apart from salts
and metals, high concentrations of arginine have been shown
to elute subendothelial matrix-bound PAI-1 and to specifically
stabilize the PAI-1 active conformation (142, 143). Since arginine
residues are clustered in the stretch of basic residues in the C-
terminal region of vitronectin, free arginine might contribute to
an enhanced PAI-1 stability in a similar way as the arginine-rich
C-terminal region of vitronectin.

(PATHO)PHYSIOLOGICAL ROLES OF PAI-1

As the major physiological inhibitor of plasminogen activators
tPA and uPA, PAI-1 plays a regulatory role in the fibrinolytic
system by controlling plasmin formation. Not only is the
plasminogen activator/plasmin system involved in fibrinolysis,

it has also a profound role in multiple physiological processes,
including the degradation of extracellular matrix (ECM),
tissue remodeling, wound healing, angiogenesis, cell migration,
and inflammation (144). Upon uPA-mediated activation of
plasminogen, either by two-chain uPA or single-chain uPA
bound to the uPA receptor (uPAR), plasmin can degrade several
ECM components either directly or indirectly through the
activation of matrix metalloproteases (MMPs). Degradation of
the ECM may then facilitate cell invasion into the surrounding
tissue. Furthermore, by increasing the availability of growth
factors, such as vascular endothelial growth factor, fibroblast
growth factor, and transforming growth factor-β, the role
of plasmin further extends to the control of angiogenesis,
cell growth, and cell differentiation. Importantly, independent
of its effect on plasmin formation, PAI-1 directly interacts
with specific matrix components, including vitronectin, LRP1,
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and the uPA/uPAR complex to affect cell migration and
intracellular signaling.

The (patho)physiological role of PAI-1 has been extensively
studied by comparing the phenotype observed in human PAI-1
deficiency with that of mice engineered to be completely PAI-1
deficient by gene targeting (PAI-1−/− mice). In humans, PAI-
1 deficiency is an uncommon disorder that can be caused by
mutations in the SERPINE1 gene leading to the production of
non-functional PAI-1 protein (145) or by a complete absence
of PAI-1 plasma antigen (146–148). Typically, this disorder is
characterized by mild to moderate bleeding in response to injury,
trauma, or surgery. In women, PAI-1 deficiency may cause
severe blood loss during menstruation and pregnancy-related
complications, such as prepartum bleeding, preterm labor, or
miscarriage (149–151). PAI-1−/− mice were shown to be viable,
fertile, and developed normally (152). Furthermore, disruption
of the PAI-1 gene did not appear to impair hemostasis, but
was associated with increased resistance to thrombosis and with
a milder hyperfibrinolytic state as compared to humans (153).
In contrast to PAI-1 deficient mice, several lines of transgenic
mice overexpressing native or stabilized PAI-1 of human and
murine origin have been established. These lines have been
generated to explore the effects of elevated PAI-1 levels on, e.g.,
the progress of thrombosis (154, 155), pulmonary fibrosis (156),
and obesity (157). Furthermore, these transgenic mice often
display hair loss and skin abnormalities. Importantly, transgenic
mice expressing a reactive site inactive PAI-1 mutant exhibit
complete phenotypic rescue, while transgenic mice expressing
PAI-1 with reduced affinity for vitronectin manifest all of
the phenotypic abnormalities, underscoring the fact that PAI-
1 affects physiological processes by acting through multiple
pathways (158). In humans, two variations in the promoter
region of the PAI-1 gene occur frequently and have been shown to
affect PAI-1 levels (159–161). Firstly, the 4G/5G polymorphism
refers to a single guanosine insertion/deletion at position 675
upstream of the transcription site (159). It has been suggested
that the 4G allele is associated with higher PAI-1 activity since the
5G allele harbors an additional binding site for a transcriptional
repressor. Secondly, the G/A polymorphism is characterized by a
single nucleotide substitution of guanine for adenine at position
844 upstream of the transcription site, generating a consensus
binding sequence for transcription factor Ets-1 which increases
the transcription rate (161). Taken together, the association of
these PAI-1 gene polymorphisms and/or elevated PAI-1 levels
with several pathologies have been extensively studied in both
humans and in PAI-1 deficient or transgenic mice.

PAI-1 in Cardiovascular Disease
Elevated levels of PAI-1 downregulate tPA and uPA activity
and create a prothrombotic or hypofibrinolytic state that was
suggested to contribute to the pathogenesis of cardiovascular
diseases (CVD) (162). As mentioned, several lines of transgenic
mice that overexpress PAI-1 have been developed and support
a contribution of elevated PAI-1 levels to thrombosis and
CVD. The first line of transgenic PAI-1 mice overexpressed
native human PAI-1 and was shown to develop transient
venous thrombosis in the tail and hind limbs and subcutaneous

hemorrhage (154). Later, human PAI-1-stab mice were generated
that displayed age-dependent coronary arterial thrombosis and
myocardial infarction (155). In contrast, spontaneous thrombosis
could not be observed in transgenic mice that overexpress
stabilized murine PAI-1 (163). However, it should be noted that
(I) the choice of the promoter that drives PAI-1 expression,
(II) the nature of the stable variant, and (III) a cross-species
difference in PAI-1 function may have contributed to the
observed phenotypic differences. In humans, many studies have
suggested that PAI-1 gene polymorphisms, possibly leading to
higher PAI-1 levels, are an independent risk factor for major
adverse cardiovascular events (MACE) including myocardial
infarction (MI) (164–167) and ischemic stroke (168), as well as
coronary heart disease (CHD) (169), venous thrombosis (170–
172), and atherosclerosis (173). However, despite the observed
link in these studies, these findings are in contradiction with
other available data (174–178). Similarly, independent of the
contribution from PAI-1 gene polymorphisms, ample evidence
has been provided of a link between elevated PAI-1 levels
and MI or stroke (179–181), CHD (182), venous thrombosis
(183), and atherosclerosis (184, 185). In a recent systematic
review of all studies published between 1991 and 2016 that
examined the association of PAI-1 with MACE (defined as
death, MI, and stroke) or restenosis (the recurrence of treated
coronary artery stenosis), Jung et al. substantiated a link between
elevated plasma PAI-1 antigen levels, but not PAI-1 activity levels,
and MACE in both incident and secondary event populations
(181). MI is most often a result of CHD and is caused by
the disruption of an atherosclerotic plaque, thereby exposing
a procoagulatory surface of the coronary vessel that gives rise
to occlusive thrombus formation (186). Several studies have
reported elevated PAI-1 levels in several cell types associated with
atherosclerotic plaques in human coronary arteries, including
endothelial cells, vascular smooth muscle cells (SMCs), and
macrophages (184, 187, 188). In mice, PAI-1 deficiency has
been shown to be protective (189) or promoting (190) in the
development of atherosclerosis, however, no effect of PAI-1
on atherosclerosis has been observed as well (191). Indeed,
overproduction of PAI-1 in a diseased vessel wall may contribute
to the progression of atherosclerosis by reducing local plasmin
production which is physiologically required for the removal
of fibrin, ECM remodeling, and SMC proliferation. However,
when the controlling effect of PAI-1 on plasmin formation is
abolished, it may contribute to the atherogenic role of plasmin, as
plasmin is also involved in lipoprotein modification, macrophage
cholesterol accumulation, inflammation, and foam cell formation
(192, 193). Furthermore, PAI-1 has been shown to have an
ambiguous role in neointima formation (194–198). In this
respect, in the same systematic review by Jung et al., low PAI-
1 antigen and activity levels were associated with increased
restenosis, highlighting the complex role of PAI-1 in vascular
remodeling (181). Despite the links provided between PAI-1 and
CVD, certain studies could not confirm these associations or
the significance was lost after adjustment for other risk factors
(199–201). A positive correlation has been demonstrated for
plasma PAI-1 levels and known risk factors for developing CVD,
including age, sex, obesity, hyperlipidemia, insulin resistance,
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and diabetes (162, 181, 202, 203). Age is an important risk factor
for most chronic diseases including cardiovascular disease, type
2 diabetes, and metabolic syndrome. Furthermore, PAI-1 levels
have been reported to increase with age in various tissues. More
recently, PAI-1 has been identified not only as a marker but also
as a mediator of cellular senescence associated with aging and
aging-related pathologies (204).

DIVERSE APPROACHES TO INHIBIT PAI-1

As PAI-1 is considered a risk factor in various pathological
conditions, many efforts have been devoted to the development of
PAI-1 inhibitors, including small molecules, synthetic peptides,
RNA aptamers, monoclonal antibodies (mAbs), and antibody
derivatives. Whereas, some marketed drugs have been shown
to attenuate PAI-1 synthesis or secretion (205), the majority of
PAI-1 inhibitors currently in development can influence PAI-
1 functionality in at least three possible ways: (I) by directly
blocking the initial formation of the Michaelis complex between
PAI-1 and PAs, (II) by preventing the formation of the final
inhibitory complex, resulting in substrate behavior of PAI-1, or
(III) by accelerating the active-to-latent transition of the PAI-
1 molecule or an otherwise inert form. Despite extensive in
vitro and in vivo characterization, no PAI-1 inhibitor is currently
approved for therapeutic use in humans. This is mainly due to
affinity and specificity issues, which are especially observed for
small molecules. Furthermore, the structural plasticity of PAI-1
and the possible counteraction of PAI-1 binding partners, such
as vitronectin, pose a real challenge to develop PAI-1 inhibitors
that retain their capacity to modulate PAI-1 activity in vivo. To
improve their properties or to guide the rational design of novel
PAI-1 inhibitors it is essential to get a deeper understanding
of PAI-1 inhibition at the molecular level. In addition to the
several crystal structures of PAI-1 in active, latent, or cleaved
conformation (45, 48, 124), a handful of structures containing
PAI-1 in complex with inhibitory peptides, small molecules, and
antibody fragments have been described (Table 1). Furthermore,
by using a broad range of biophysical and biochemical methods,
including competitive binding experiments, mutagenesis, and
computational docking, the presumptive binding regions of the
majority of PAI-1 inhibitors have been mapped and can be
related to the mechanisms by which they interfere with PAI-
1 functionality.

Synthetic Peptides
RCL-Mimicking Peptides
Insertion of the RCL into the central β-sheet A is a crucial step in
the inhibitory mechanism of serpins in order to translocate and
irreversibly trap the target proteinase. In this regard, synthetic
peptides derived from the RCL-sequences of antithrombin III
and α1-antitrypsin were shown to convert the respective serpins
from an inhibitor to a substrate. By binding between s3A and
s5A in β-sheet A and thus becoming s4A, these peptides prevent
endogenous RCL insertion upon interaction with the target
proteinase, resulting in cleavage of the serpin and release of
regenerated proteinase (206). Taking a similar approach, several

peptides that mimic different fragments of the RCL of PAI-
1, such as P14-P1 (207), P14-P10 (127), P14-P9 (208), P14-P7
(136), and P8-P3 (208), were designed and evaluated for their
PAI-1 modulating properties. The first peptide, corresponding
to residues P14-P1 of the RCL, was shown to rapidly inhibit
PAI-1 activity by accelerating the conversion to a non-reactive
PAI-1 form and effectively enhanced in vitro fibrinolysis in both
platelet-poor and platelet-rich clots (207). However, when PAI-
1 was bound to its biological cofactor vitronectin, the PAI-1
neutralizing effects of this peptide were considerably reduced. A
comparable mechanism was observed for the P8-P3 peptide that
mimics the C-terminal part of the RCL that inserts at the bottom
of the β-sheet A in latent PAI-1. Unlike peptides P14-P1 and P8-
P3, peptides P14-P7, P14-P10, or P14-P9 that correspond to the
N-terminal part of the RCL converted PAI-1 from an inhibitor to
a substrate for tPA (127, 136, 208). By showing that binding of
P14-P7 and the formation of latent PAI-1 are competitive events,
the first evidence was provided for a binding site in the central
β-sheet A cleft (136). The high-resolution crystal structure of
PAI-1 mutant PAI-1-Ala335Glu in complex with two P14-P10
peptides (PDB ID 1A7C) further confirmed this presumption
(127). The structure revealed that both peptide molecules bound
inside the cleft between s3A and s5A, with the first molecule
occupying the same space as RCL residues P14-P10 in latent and
cleaved PAI-1, and the second one occupying the same space
as residues P6-P2 in cleaved PAI-1. Since the different effects of
RCL-derived peptides on the outcome of the PAI-1/PA reaction,
i.e., conversion to either inert or substrate PAI-1, did not seem
compatible with one common binding position inside the β-
sheet A cleft, it was finally suggested that peptides mimicking
the C-terminal part of the RCL (P8-P3) act by accelerating the
irreversible transition to an inert form of PAI-1, whereas peptides
that mimic the N-terminal part of the RCL (P14-P9) primarily
induce PAI-1 substrate behavior (208).

Other Peptides
A few other peptides have been isolated from a phage-display
peptide library including paionin-1 (209), which does not impair
PAI-1 activity, and paionin-4 (210), which accelerates the active-
to-latent conversion of PAI-1. In silico docking of paionin-
1 into the crystal structure of PAI-1 suggested a binding
site in the flexible joint region that was supported by site-
directedmutagenesis and competitive binding of other molecules
targeting the same region, such as XR-5118 and bis-ANS. As
paionin-1 is able to prevent binding of the PAI-1/uPA complex
to LRP1, paionin-1 or other compounds binding in the same
regionmay be of benefit in cases where disruption of the signaling
function of uPA/uPAR/LRP1 is desired. Paionin-4 presumably
binds PAI-1 at the loop between hD and s2A and is suggested
to induce a conformational change that facilitates loop insertion.

RNA Aptamers
RNA-aptamers are 8–15 kDa single-stranded nucleic acid ligands
that tend to bind to highly positive regions on proteins and
block protein-protein interactions. In this respect, a few RNA
aptamers have been developed in order to interfere with the
interactions between PAI-1 and its binding partners. WT-15 and
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SM-20 are able to disrupt the functional interaction between
vitronectin and PAI-1 without compromising the PA-inhibitory
function of PAI-1 (211). Expression of these aptamers in human
breast cancer cells decreased cell migration and invasion and
additionally decreased PAI-1 and uPA levels while increasing
the stable PAI-1/uPA complex (212). Other aptamers, R10-4 and
R10-2, were able to interfere with the formation of the stable PAI-
1/tPA complex but not with the PAI-1/uPA complex, suggesting
a binding site not directly involved in PAI-1/PA interactions,
without disrupting the PAI-1/vitronectin interaction (213).

Small Molecules
Since the mid-90s, several low molecular weight (LMW)
inhibitors possessing a large structural diversity have been
described and grouped based on their chemical composition
[extensively reviewed by Fortenberry (214) and Rouch et al.
(215)]. Lead molecules have been discovered using various
approaches, including through isolation from bacterial biomass
or a library of natural products, by high-throughput screening
(HTS) of synthetic libraries, and by structure-based virtual
screening. Subsequently, many of these compounds have been
modified based on structure-activity relationship (SAR) studies
in order to improve their selectivity and specificity and their
inhibitory and physicochemical properties. Even though only
a few structures of PAI-1 complexed with small molecules
were determined, they provided evidence for a common
compound-binding pocket within the flexible joint area of PAI-1
(Figure 3).

The first published crystal structure of a PAI-1/inhibitor
complex involved compound AZ3976 (PDB ID 4AQH)
(Figure 3C) (128). AZ3976 was identified by HTS of the
AstraZeneca compound collection and shown to inhibit PAI-1
activity in in vitro chromogenic and clot lysis assays. Titration
of PAI-1 with AZ3976 revealed that the compound was only
bound to 30% of the total PAI-1 present, corresponding to the
non-reactive subpopulation (latent or cleaved) in the preparation
of active PAI-1. This was confirmed by affinity data, showing a
high binding affinity toward latent PAI-1 whereas no binding
was observed toward the active form. Based on the structure
of latent PAI-1 complexed with AZ3976, a deep ligand-binding
pocket within the flexible joint region was identified with the
entry located between hD and s2A. Importantly, this binding
site appeared to be more accessible in latent PAI-1, however,
tight binding of AZ3976 requires small conformational changes.
Since AZ3976 has been shown to accelerate the active to latent
transition of PAI-1, it was therefore suggested to bind to a latent-
like prelatent form from which latent PAI-1 is then generated
more rapidly.

Not much later, a second crystal structure of PAI-1 containing
a small molecule inhibitor, embelin, was published (PDB ID
3UT3) (Figure 3F) (129). Embelin was identified as a PAI-1
antagonist by screening a library of natural products. Structural
and site-directed mutagenesis results have shown that embelin
binds to a small and charged groove aligned by hD, hF, s2A,
and the hE-s1A loop in active PAI-1 (129), located adjacent to
the larger and deeper pocket in (pre)latent PAI-1 that can be
occupied by AZ3976 (128). It was proposed that embelin fixes

s2A to the neighboring hD and hE, and thereby interferes with
the slidingmovement of s2A and s3A into the flexible joint region
in order to accommodate RCL insertion. Indeed, consistent
with this theory, embelin has been shown to act by a two-step
mechanism including a fast reversible step of inducing PAI-1
substrate behavior, followed by a slow irreversible induction of
an inactive form. Despite the ability of AZ3976 and embelin
to inhibit PAI-1 activity in vitro, the presence of vitronectin
abolished the capacity of both compounds to bind and modulate
PAI-1 activity. Since the binding sites for AZ9376 and embelin
partially overlap with the binding site for vitronectin in active
PAI-1, the protective effects of vitronectin might be caused by
sterically blocking their binding sites or, in the case of AZ3976,
by preventing the formation of the prelatent structural state to
which AZ3976 preferably binds. Importantly, the binding pocket
within the flexible joint region, which has been observed in the
crystal structures of PAI-1 complexed with AZ3976 and embelin,
is consistent with the binding sites for other small molecules
that were determined mainly through competitive binding
studies, mutagenesis studies, and molecular modeling. Several
negatively [AR-H029953XX (216), ANS, Bis-ANS] and positively
[XR5118 (217, 218)] charged amphipathic inhibitors have been
shown to bind overlapping but non-identical binding sites
within this hydrophobic pocket, resulting in variable induced
molecular changes in PAI-1 and in a differential susceptibility
to vitronectin-bound PAI-1 (219). First, it was demonstrated
that both groups inhibit PAI-1 via a two-step mechanism,
involving a rapid reversible conversion into a PAI-1 form
exhibiting substrate behavior, followed by a slower irreversible
conversion into a non-reactive form. However, a different study
showed that both AR-H029953XX and XR5118 induce a direct
conversion of PAI-1 into a non-reactive form, possibly due to
the differences in compound concentrations that were used to
conduct experiments. A concentration-dependent effect could
also be observed for tiplaxtinin (PAI-039), which induces PAI-
1 substrate behavior at lower concentrations and converts PAI-1
to a non-reactive form at high concentrations (88). Interestingly,
several studies reported that PAI-1 polymerization could
be induced by negatively charged organochemical inhibitors
following conversion to a non-reactive form (219–221).

Apart from this common compound-binding pocket, a third
crystal structure of the cocrystallized PAI-1/CDE-096 complex
(PDB ID 4G8O) elucidated the binding mode of CDE-096
which is, in contrast to the aforementioned compounds, active
against both free and vitronectin-bound PAI-1 (Figure 3D)
(131). CDE-096 was synthesized based on a SAR study of a high-
affinity polyphenolic PAI-1 inhibitor (222). Structural studies,
substantiated with site-directed mutagenesis results, revealed a
binding site at the interface composed of residues from the
s3A/s4C loop, β-sheets B and C, and hH, referred to as the
sB/sC pocket. Using a combination of biochemical experiments,
a mechanism of action was proposed that involves reversible
allosteric modulation of RCL conformation to block initial PAI-
1/PAMichaelis complex formation. Furthermore, althoughCDE-
096 and vitronectin reduce PAI-1’s affinity for one another, their
binding is not strictly mutually exclusive, suggesting allosteric
modulation through reciprocal communication between the
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FIGURE 3 | X-ray crystallographic structures of small molecule inhibitors bound to PAI-1. (A) Structure of latent PAI-1 in complex with AZ3976 (128). (B)
Superimposition of the structures of active PAI-1 in complex with embelin (129) and CDE-096 (131). PAI-1 is colored white with the central β-sheet A colored blue and
the RCL colored red. Secondary structure elements involved in binding to the compounds are indicated. AZ3976 is colored yellow, and embelin is colored green.
CDE-096 in the structures obtained by cocrystallization or crystal soaking is colored orange or cyan, respectively. (C) AZ3976 bound to a deep pocket aligned by hD
and s2A in latent PAI-1 [PDB ID 4AQH (128)]. (D) CDE-096 bound to active PAI-1 obtained by cocrystallization [PDB ID 4G8O (131)]. (E) Detail of the structure of
CDE-096 bound to active PAI-1 obtained by crystal soaking [PDB ID 4G8R (131)]. (F) Detail of the structure of embelin bound a groove aligned by hD, hF, s2A, and
the hE-s1A loop in active PAI-1 [PDB ID 3UT3 (129)].

high-affinity compound- and vitronectin-binding sites. In crystal
soaking studies that require high concentrations of CDE-096
to be incubated with preformed PAI-1 14-1B crystals, a second
possible binding site was observed and shows overlap with
the binding site for AZ3976 in latent PAI-1 (PDB ID 4G8R)
(Figure 3E). However, based on the mutagenesis results and the
capacity of CDE-096 to bind both active and latent PAI-1 with

similar affinity, it was argued to be an artifact induced by the high
concentrations used for crystal soaking.

Another class of small molecules was discovered by virtual
screening of a library of commercially available chemicals.
To address the lack of efficacy when translated into in vivo
settings often encountered in high-throughput screening of large
compound libraries, two filters were applied representing (I) the
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general drug-likeliness based on clinically used drug molecules,
and (II) the specific lead-likeliness based on the RCL peptide
P14-P10 as well as reference inhibitors that bind in the region
of the vitronectin binding site in PAI-1 (219, 223). Next, docking
simulations for the remaining compounds focused on the cleft in
β-sheet A that is occupied by the RCL following loop insertion.
TM5007, the most effective compound, exhibited high specificity
for the PAI-1/PA system and was furthermore effective in in
vivo models of thrombosis and fibrosis (223). SAR studies on
TM5007 resulted in the selection of TM5275 with an improved
inhibitory profile and better oral bioavailability (224). A similar
docking simulation suggested that TM5275 binds within the cleft
between the strands of β-sheet A, albeit at a different position
compared to its precursor TM5007. Whereas, TM5007 docked
into the space occupied by P8-P3 in the latent form, TM5275
docked at the P14-P9 position. The differences in their presumed
binding sites within the cleft also seemed to correlate with
their mechanisms of action, i.e., by either preventing PAI-1/PA
complex formation (TM5007) or inducing substrate behavior
of PAI-1 (TM5275) (223, 224). Further structure-optimization
by substituting the lipophilic moiety and varying the acyl-type
linker length led to the discovery of smaller derivatives, including
TM5441 and TM5484 (225). Although these compounds have
originally been designed to bind the central β-sheet A cleft, there
is no experimental evidence that confirms their binding site or
their mechanism of action.

Even though many small molecules have been shown to
be potent PAI-1 inhibitors in vitro or in vivo, several other
factors, such as the lack of information regarding their exact
inhibitory mechanism and/or binding area in PAI-1, the inability
to modulate the activity of vitronectin-bound PAI-1, and the
possibility to induce PAI-1 polymerization may partially hamper
the future rational design of novel effective small molecules.

Antibodies and Antibody Derivatives
Conventional antibodies are Y-shaped heterotetrameric
glycoproteins (150 kDa) composed of two light and two
heavy chains that are linked together by multiple disulfide bonds
(Figure 4A) (228). Each light chain comprises one variable
(VL) and one constant domain (CL), whereas each heavy chain
comprises one variable domain (VH) and three constant domains
(CH1, CH2, and CH3). The Ig unit can be divided into three
functional components, namely two identical antigen-binding
fragments (Fabs) and one crystallizable fragment (Fc). In each
Fab fragment, the variable fragment (Fv) is responsible for the
recognition of and high-affinity binding to a specific antigen
and is composed of the variable domains of both chains (VL

and VH). The amino acid residues of the V-regions that are in
direct contact with the antigen are referred to as the paratope,
whereas the binding site for the antibody on the surface of the
antigen is referred to as the epitope. By connecting the VH

and VL domain of a conventional antibody through a flexible
polypeptide linker consisting of serines and glycines, a ∼25
kDa single-chain variable fragment (scFv) can be created that
usually retains the antigen-binding capacity of the parental mAb
(Figure 4B). Subsequently, two scFvs can be combined in order
to generate a ∼55 kDa diabody that can either target the same

epitope on another molecule of the same antigen (bivalent),
another epitope on the same antigen (biparatopic), or another
antigen (bispecific) (Figure 4B).

Later it was discovered that, besides conventional antibodies,
the sera of camelids (such as camels and llamas) (229) as
well as cartilaginous fish (such as nurse sharks) (230) naturally
contain functional heavy-chain-only antibodies (HCAbs) (231).
In contrast to conventional antibodies, camel HCAbs (∼90 kDa)
are devoid of the light chains and the heavy chain CH1 domains
that normally serve to anchor the light chains (Figure 4A). The
VHH domain can be isolated from the HCAb and be produced as
such at a large scale in bacterial expression systems, ultimately
yielding a recombinant single-domain antibody referred to as
nanobody (Nb) (Figure 4B). In addition to having high binding
affinities toward antigens in the nano- or even picomolar range,
Nbs express a favorable stable behavior in harsh conditions,
including high temperatures, high protein concentrations, high
pressure, and the presence of detergents or denaturants (232,
233). Furthermore, resistance to pepsin or chymotrypsin can
be conferred upon nanobodies by introducing an additional
disulfide bond, suggesting the possibility of oral administration
(234). Furthermore, their small size makes them good candidates
when it is required to penetrate dense tissues in order to bind
hard to reach targets or to deliver functional molecules to the
cytoplasm. As they can easily be linked, nanobodies can serve
as “building blocks” to construct multispecific, multivalent, or
multiparatopic molecules.

Antibody-Based PAI-1 Inhibitors
Due to the efforts of many research groups, a large panel of
mAbs that interfere with PAI-1 activity is readily available. More
recently, nanobody libraries have been constructed as well (35).
In contrast to inhibitory peptides and small molecules, the
epitopes of antibody-based PAI-1 inhibitors have been mapped
to different regions of the PAI-1 molecule (Figure 5). Antibodies
have been shown to affect PAI-1 functionality at distinct levels
during the PAI-1/PA reaction, i.e., by preventing Michaelis
complex formation, by inducing substrate behavior of PAI-1, or
by accelerating the conversion to latent PAI-1 (243).

Only recently, the first crystal structure of PAI-1 complexed
with an inhibitory antibody fragment belonging to the first class
was reported (Table 1) (132). This structure containing the Fab
fragment of neutralizing antibody MEDI-579 revealed that its
epitope is concentrated around the C-terminal region of the
RCL (residues Ala345–Glu350 or P2–P4′) and the neighboring
exosites for the 37-loop (Tyr210, Glu212, Tyr220, and Tyr241)
and 60-loop (Leu269, Pro270, and Arg271) of PAs (Figure 5A)
(132). As a consequence, by simultaneously interfering with
exosite interactions and shielding the P1-P1′ reactive center,
MEDI-579 prevents the initial interaction between PAI-1 and
PAs. A similar mechanism has been described for nanobody
VHH-s-a93 (Nb93) that binds an epitope slightly overlapping
with that for MEDI-579 (41). The X-ray crystallographic
structure of the PAI-1/Nb93 complex revealed that Nb93 binds
PAI-1 in a PA-like manner through interactions with the almost
full-length RCL and adjacent exosites for PAs other than that
for their 37-loop (Table 1 and Figure 5D) (41). In addition,
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FIGURE 4 | Schematic representation of an antibody structure and different antibody fragment formats. (A) The left panel shows the cartoon and biological surface
representation of the full-size crystal structure of Pembrolizumab, a human anti-PD1 immunoglobulin G4 (IgG4) antibody [PDB ID 5DK3 (226)]. A conventional
antibody is a Y-shaped heterotetrameric glycoprotein consisting of two identical heavy (cyan) and two identical light chains (green). The heavy chain comprises one
variable domain (VH) and three constant domains (CH1, CH2, and CH3), whereas the light chain comprises one variable (VL ) and one constant (CL ) domain. The panel
on the right shows a simplified schematic representation of a conventional antibody and a heavy-chain-only antibody (HCAb). Each arm of the conventional antibody
represents the antigen-binding fragment (Fab) that comprises the constant region (CH1 and CL domains) and the variable fragment (Fv) containing VL and VH. The
stem of the antibody comprises two copies of the CH2-CH3 domains that form the crystallizable fragment (Fc). The HCAb comprises two heavy chains, each
combining one variable VHH domain, referred to as nanobody, and two constant domains (CH2 and CH3). (B) Schematic representation of a selection of antibody
fragments, including Fab, diabody, single-chain variable fragment (scFv), and nanobody. Figure adapted from Rodrigo et al. (227).

Nb93 was shown to selectively bind and stabilize the active
conformation of PAI-1 by anchoring the RCL to the top of
the PAI-1 molecule. Notably, similar binding sites including
the RCL of PAI-1 and/or neighboring exosites for PAs have
been described for other mAbs (Figure 5B), including ESPI-12
(between residues 342–349), MAI-12 (between residues 320–
379), MA-42A2F6 (Lys243 and Glu350), MA-56A7C10 (Glu242,
Lys243, Glu244, Glu350, Asp355, and Arg356), and MA-44E4
(His185, His186, and Arg187), suggesting that they directly
interfere withMichaelis complex formation as well (132, 235, 244,
245). The epitopes of two other nanobodies, VHH-s-a27 (Nb27)
and VHH-2g-42 (Nb42), could not be deduced by mutational
studies (35). However, it was hypothesized that they might
interfere with the PAI-1/PA reaction by directly preventing PAI-
1/PA complex formation as well. Indeed, using a hybrid approach
employing structural and biochemical methods, Nb42 was shown
to destabilize the initial Michaelis complex by binding to the
exosite region for the 37-loop of PAs (Table 1 and Figure 5B)
(52). Interestingly, MA-124K1 that inhibits rat PAI-1 was found
to bind the exosite region for the 37-loop of PAs (Glu212 and
Glu220) and thereby inhibits PAI-1 activity while simultaneously
enhancing the binding of PAI-1 to vitronectin (236).

The second class of mAbs, referred to as “switching
antibodies,” redirect the inhibitory PAI-1/PA reaction toward
the substrate branch. Within the category of substrate-inducing
antibodies, two different subclasses have been identified. Even
though both subclasses ultimately increase the relative fraction
of cleaved PAI-1, each class acts through a distinct mechanism
by binding different epitope regions localized in the lower half
of the PAI-1 molecule (Figure 5B). Several mAbs, including MA-
33H1F7 (Glu130, Arg131, and Lys154), MA-55F4C12 (Glu128,
Val129, Glu130, Arg131, and Lys154), and Mab2 (Arg131,
Arg133, Phe134, Asn137, Asp138, Leu152, and Lys154) were
shown to have overlapping epitopes located in hF and the loop
connecting hF with s3A of the central PAI-1 β-sheet (237,
238). These mAbs have been shown to slow down the rate
of cleaved RCL insertion, possibly by restricting the structural
rearrangements within this region during RCL insertion. A
different epitope was identified for switching antibody MA-
8H9D4 that binds the loop between hI and s5A at the bottom
of the PAI-1 molecule (Arg300, Gln303, and Asp305) and
possibly residues in hC (Glu53) and hI (Arg287, Glu297, and
Asp297) (239). A similar epitope, i.e., comprising residues in
hB, hC, and the hI-s5A loop, was identified for nanobody
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FIGURE 5 | Localization of different epitopes in the structure of active PAI-1. (A) Cartoon representation of the crystal structure of PAI-1 in complex with the Fab
fragment of MEDI-579 (PDB ID 6I8S) (132). The heavy and the light chain of the Fab fragment are colored cyan and green, respectively. The constant and variable
heavy (CH1 and VH ) and light (CL and VL ) domains are indicated in the figure. Residues closer than 4 Å to MEDI-579 are indicated as spheres. Residues located in the
RCL are colored red, residues residing in the exosite regions for the 37-loop and 60-loop of PAs are colored yellow and orange, respectively. (B) Localization of
different epitopes of monoclonal antibodies (mAbs) as determined by mutagenesis studies. The epitopes of mAbs that prevent the interaction between PAI-1 and PAs
are indicated as red (MA-42A2F6, MA-56A7C10, and MA-44E4) (235) and yellow (MA-124K1) (236) spheres. The epitopes of switching mAbs that bind to hF or the
hF-s3A loop (MA-33H1F7, MA-55F4C12, and Mab2) (237, 238) are indicated as magenta spheres. The epitope of switching mAb MA-8H9D4 (239) that binds to the
hI-s5A loop is indicated as green spheres. The epitopes of latency-inducing antibody MA-33B8 (240, 241), MA-H4B3 (90), and MA-159M12 (242) are indicated as
cyan, orange, and brown spheres, respectively. (C) Localization of different epitopes of nanobodies as determined by mutagenesis studies (35). The epitope of
substrate-inducing nanobody Nb98 is indicated by green and magenta spheres, whereas only the magenta spheres indicate the epitope of Nb64. The epitope of
Nb93 that interferes with PAI-1/PA complex formation is indicated as red spheres. (D) Cartoon representation of the superimposed crystal structures of PAI-1 in
complex with Nb42 [PDB ID 6GWN, 6GWP, and 6GWQ (52)], Nb64 [PDB ID 6GWN and 6GWP (52)], and Nb93 [PDB ID 6ZRV (41)]. Nb42, Nb64, and Nb93 are
colored yellow, green, and magenta, respectively. Residues closer than 4 Å to Nb42 are indicated as yellow spheres. Residues closer than 4 Å to Nb64 are indicated
as green spheres. Residues closer than 4 Å to Nb93 are indicated as red and magenta spheres. Red spheres represent residues located in the RCL of PAI-1, whereas
magenta spheres represent residues located in the exosite binding regions for PAs.

VHH-2w-64 (Nb64). The crystallographic structures of the PAI-
1/Nb64 complex later confirmed the crucial involvement of
the latter loop (Table 1) (52). Based on structures of other
serpin/serine proteinase complexes, the binding site of Nb64
in all probability overlaps with the position of the PA in the

final inhibitory complex (Figure 1, Figure 5D). In contrast to
the first subclass binding hF, MA-8H9D4 (246), and Nb64
(52) neither affected the formation of the initial PAI-1/PA
complex, nor the kinetics of RCL insertion for the PAI-1/tPA
reaction. It was therefore suggested that MA-8H9D4 and Nb64
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interfere with the final step of inhibitory complex formation by
hindering the PA to come close enough to the PAI-1 surface
for PA distortion. Furthermore, strong functional additivity
has been observed for the MA-33H1F7/MA-8H9D4 and MA-
55F4C12/MA-8H9D4 antibody pairs which demonstrates that
these mAbs bind structurally distinct epitopes and affect different
steps of the PAI-1/PA reaction (246). Importantly, the effects of
Mab2, MA-8H9D4, and Nb64 are potentiated by simultaneous
binding of vitronectin to the opposite side of hF in PAI-1, which
further increases the rigidity within this region (99). Another
substrate-inducing nanobody VHH-s-a98 (Nb98) was suggested
to bind a cavity aligned by hB and hC (Gln47, Glu53, and Gln55-
Gln56-Gln57), the hF-s3A loop (Glu128-Val129-Glu130-Arg131
and Lys154), hI (Glu291 and Asn292), and the hI-s5A loop
(Gln303 and Asp305). Since this region harbors binding sites for
both subclasses of switching Abs (MA-33H1F7 andMA-55F4C12
vs. MA-8H9D4 and Nb64), the exact mechanism by which Nb98
induces substrate behavior remains unclear.

The third class of mAbs, including MA-35A5, MA-33B8, M5,
and MA-H4B3, have the ability to accelerate the active to latent
transition of PAI-1 and bind epitopes that are spread more across
the PAI-1 surface (Figure 5B). The major determinants of the
MA-33B8 epitope were simultaneously reported by two research
groups, and are comprised in the same region that covers the
turn connecting hD with s2A (Asn87, Lys88, and Asp89), the
top of s3A (Gln174 and Lys176), the loop connecting s2B with
s3B (His229, Gly230, and Thr232), and the loop connecting s5A
with the RCL in the breach region (Asn329 and Ser331) (240,
241). Interestingly, this epitope is relatively less accessible in the
active form of PAI-1 and undergoes a structural rearrangement
to become more compact in the loop-inserted forms of PAI-1.
Furthermore, since the putative epitope contains residues located
on both sides of the RCL insertion site, i.e., on s5A and s3A, and
MA-33B8 promotes loop insertion, the binding must occur to
a prelatent form of PAI-1 in which the RCL is already partially
inserted. Additional evidence for a prelatent form that can be
accelerated into latency transition has been provided by the
binding site and inhibitory mechanisms of M-5 and MA-H4B3.
The dominant epitope residue for M-5 was mapped to Asp181
located directly below the RCL at the loop connecting s3A with
s4C (247). Since this residue was shown to be more accessible
in the latent form, it was hypothesized that M-5 displaces and
forces insertion of the RCL into the central β-sheet A upon
binding. The epitope of MA-H4B3 includes residues on s1B, s2B,
and s3B (Tyr210, Glu212, and Tyr241) as well as s2C (Arg271)
and thus partially overlaps with the epitope for MEDI-579 that
prevents Michaelis complex formation (90). However, since the
epitope of MA-H4B3 was shown to be occluded by s1C in
active PAI-1, it was suggested that the epitope only becomes
available upon s1C detachment during latency transition. Thus,
by binding to a prelatent form that exists in equilibrium with
active PAI-1, MA-H4B3 accelerates the rate of RCL insertion,
resulting in an enhanced latency transition. Another mAb, MA-
159M12, binds to the N-terminal part of hA (Pro2, Leu3, Pro4,
and Glu5) and accelerates the active to latent transition in rat
PAI-1 (242). However, MA-31C9 that targets a similar region in
human PAI-1 (His3, Ser6, Tyr7, and His10) has been shown to

be non-inhibitory. Furthermore, introduction of the epitope of
MA-159M12 in human PAI-1 only caused MA-159M12 to bind
PAI-1 with low affinity. This observation emphasized that two
mAbs generated toward the same region in different orthologs
can display very divergent functional effects, either caused by
subtle structural differences between human and rat PAI-1 or by
subtle differences in the binding mode of these mAbs (35, 235–
238, 248).

Alternatively, single-chain variable fragments have been
derived from several of the aforementioned mAbs (249–251).
Since crystallization attempts with these scFvs and their full-size
mAbs remained unsuccessful thus far, a mutagenesis approach
was used to identify epitope (235, 239) and paratope (251, 252)
residues involved in the interaction between PAI-1 and the scFvs.
Subsequently, this information was used to drive protein-protein
docking in order to predict the structures of the respective PAI-
1/scFv complexes (253). Notably, due to the in vitro and in
vivo potency and cross-reactivity toward rodent PAI-1, one scFv
(scFv-33H1F7) was developed into a bispecific diabody format
together with scFv-TCK26D6 that inhibits the antifibrinolytic
enzyme thrombin activatable fibrinolysis inhibitor (TAFI) (254).
Further in vivo evaluation and comparison with the standard
thrombolytic therapy (tPA) showed that the simultaneous
administration of MA-33H1F7 and MA-TCK26D6 or the use of
diabody Db-TCK26D6x33H1F7 holds a great promise in both
prophylaxis and treatment of thrombotic disease (255, 256).

CONCLUSIONS

Over the last four decades, the role of PAI-1 in various
pathophysiological processes including cardiovascular disease
has been extensively studied (257, 258). As themain physiological
inhibitor of PAs, PAI-1 exerts an antifibrinolytic activity
mainly by attenuating the plasmin-mediated fibrin degradation
and thereby contributes to the pathogenesis of thrombotic
cardiovascular diseases. Apart from being a regulator of
the plasminogen activation system, PAI-1 has a pleiotropic
biological function stemming from its ability to interact with
ligands, such as the extracellular matrix protein vitronectin and
cellular low-density lipoprotein receptors including LRP1. As a
consequence, PAI-1 is also involved in the (patho)physiological
processes associated with tissue remodeling, cell migration,
and inflammation. Even though the precise role of PAI-1
in these diverse pathological processes is not always fully
understood, elevated levels of PAI-1 have been shown to be
related to the incidence, severity, and prognosis of various
diseases. Therefore, significant clinical interest has been tied
to PAI-1 as a putative drug target for the treatment of
PAI-1-related pathologies. A very diverse collection of PAI-
1 inhibitors has already been developed, including peptides,
RNA aptamers, small organochemical molecules, antibodies,
and antibody fragments. Even though several antagonists have
been extensively characterized in vitro and in vivo, no PAI-1
inhibitors were approved to date for therapeutic use in humans.
However, it should be noted that a few PAI-1 antagonists are
currently proceeding through clinical trials, underscoring the
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persistent clinical interest in safe and efficient modulators of PAI-
1 activity. The growing number of available structures fromPAI-1
in complex with biological ligands and inhibitors may provide
access to useful information for guiding the development of the
continuously growing segment of PAI-1 antagonists.
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