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Abstract: The occurrence of litter in natural areas is nowadays one of the major environmental
challenges. The uncontrolled dumping of solid waste in nature not only threatens wildlife on land
and in water, but also constitutes a serious threat to human health. The detection and monitoring of
areas affected by litter pollution is thus of utmost importance, as it allows for the cleaning of these
areas and guides public authorities in defining mitigation measures. Among the methods used to
spot littered areas, aerial surveillance stands out as a valuable alternative as it allows for the detection
of relatively small such regions while covering a relatively large area in a short timeframe. In this
study, remotely piloted aircraft systems equipped with multispectral cameras are deployed over
littered areas with the ultimate goal of obtaining classification maps based on spectral characteristics.
Our approach employs classification algorithms based on random forest approaches in order to
distinguish between four classes of natural land cover types and five litter classes. The obtained
results show that the detection of various litter types is feasible in the proposed scenario and the
employed machine learning algorithms achieve accuracies superior to 85% for all classes in test data.
The study further explores sources of errors, the effect of spatial resolution on the retrieved maps and
the applicability of the designed algorithm to floating litter detection.

Keywords: litter detection; plastic pollution; multispectral data; remotely piloted aircraft systems;
machine learning; multiclass classification; airborne imagery

1. Introduction

Littered areas can be found all over the globe, directly damaging the ecological balance,
threatening endangered species and affecting the health of the human population. Among
all the waste generated by the world population, the plastic materials are of utmost concern
in terms of both quantity and environmental threats. In [1], it has been estimated that in
2016, 242 million tons of plastic waste were generated at global level, accounting for 12% of
the total municipal solid waste. In the same study it is shown that the limited capacities
for collecting and recycling these residuals in many parts of the world, coupled with
educational and economical challenges, call for improved policies as the waste generation
is projected to outpace the population growth by more than double by 2050.

The plastic residuals pose a serious threat to natural ecosystems and human popula-
tion. Although the plastics are designed to be resistant for long periods of time, it is not
uncommon that they are used in single use products, such as grocery packages. The most
worrisome characteristic of these materials is that they can last for hundreds or even thou-
sands of years [2], and can break into pieces of smaller size until they spread in the form of
nano-plastics which are extremely harmful to humans as they are far more toxicologically
active than micro- and macro- plastics. The nano-plastics have the potential to directly
interact with human cells due to their size and to produce severe reactions ranging from
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physical stress and damage to immune responses [3]. Some chemical compounds found
in plastic, such as bisphenol A and phthalates, are part of a group of substances called
endocrine-disrupting chemicals that can trigger metabolic, reproductive and degenerative
disease and certain types of cancer [4]. The majority of nano-plastic particles enter the
human body by ingestion and inhalation, thus they are mobile, carried by the wind, water
or products, and cannot be treated as localized issues occurring at the dumping sites.

At a larger scale, micro- and macro-plastic waste is also affecting the environment
once it enters natural circuits. Plastics dumped on land are often carried by river streams
and end up in lakes, seas and oceans [5]. The mobility of plastic residuals is so high that
micro-plastics have even been found in wild or rarely explored places on earth, e.g., polar
regions [6], Mariana Trench [7] and Mount Everest [8]. Numerous reports document the
direct, harmful effect of plastics on wildlife [9–13].

Following these alarming reports, a variety of mitigating measures have been pro-
posed by legal regulators across the world, including the banning of single-use plastics,
reinforcement of educational programs, raising citizen awareness and improved recycling
procedures, among others [14–21].

To inform effective mitigation strategies, urgent monitoring action is needed to better
understand sources, pathways, and the spatial and temporal distribution of plastic litter. It
is also important to precisely locate plastic litter discarded in nature in a view to remove
it as soon as possible, such that the course of pollution is interrupted before it reaches
an uncontrollable stage—distribution in nature under the action of natural elements and
breaking into small pieces, which is virtually impossible to spot and collect. Among the
detection and monitoring techniques, the use of remote sensing imagery stands out as an
excellent option due to the coverage of relatively large areas in a short period of time. The
methods applied to achieve a high accuracy of plastic detection based on optical sensors
cover a wide range of methods and data types. In [22], semantic segmentation is employed
to detect beach litter in images freely taken by a human observer. Beach litter monitoring
based on data acquired from unmanned aerial vehicles has also been studied in [23–25].
Deep learning methods have also been employed in aerial imagery, in combination with
digital models of the surface, to estimate the volume of litter in such environments [26].
White and grey dunes, where vegetation with varying levels of abundance exists, are also
affected by litter, which is often entangled with the green plants, as it is the case in beach-
dune systems. This type of ecosystem has been also studied in recent works based on aerial
imagery [27–29]. Aiming at quantifying the abundance of litter in aerial images, the authors
in [30] employ various object-oriented machine learning methods and conclude that a
Random Forest approach performs better than other tested approaches. A vast amount of
research has also been devoted to monitoring plastic-covered crops (greenhouses) [31–36].
The remote sensing detection and monitoring of floating marine debris is now a very
active field of research with several funding agencies promoting efforts in this research
area (see [37–39] and the research initiatives therein). When targeting a global overview of
debris pollution over water areas, satellite images are exploited in a wide range of methods,
mostly targeting spectral classification approaches [40–42] for which novel indices have
been developed to be used in conjunction with already known metrics and the reflectance
values acquired at the respective pixel [43–47].

Despite the intense efforts to advance knowledge in the area of litter detection and
classification, a series of challenges remain. First, the detection from satellite imagery is
hampered by the relatively low spatial resolution of the sensors, while the signal-to-noise
ratio (SNR) of operational sensors might also be of concern for this type of application,
considering the limited coverage of plastic per pixel occurring in most of the cases [48].
The lack of training samples has also been signaled as a limitation, and efforts are being
made for the production of such data [49,50]. The object-based detection methods retrieve
possible areas of plastic contamination, however multiple technologies (from optics to
microwaves), e.g., Synthetic Aperture Radar (SAR) [51], might be needed to perform
reliable discrimination of accumulations containing plastic. Furthermore, many methods
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developed for plastic litter monitoring at a large or global scale make use of features
computed from both the visible and near-infrared (VIS-NIR) and the short-wave infrared
(SWIR) regions of the electromagnetic spectrum, while many airborne multispectral sensors
do not have such extended spectral ranges, which makes these methods difficult to apply
when regional/local studies are performed, e.g., with planes and drones. These studies
are needed as the data can be acquired at higher spatial resolution, thus offering a more
detailed monitoring of the pollution and also a chance to remove the local litter, e.g., from
beaches and river-banks. While it is possible to employ airborne hyperspectral sensors
covering the full electromagnetic spectrum, the data acquisition campaigns are more costly,
and might involve additional legal procedures such as obtaining flight permits from civil
and military aviation when piloted aircrafts are used, and the data processing is more
resource-intensive in comparison to multispectral imagery. This is specifically the research
problem tackled in this study: estimating the capabilities of off-the-shelf multispectral
cameras having sensors with limited spectral range, in a two-fold goal. First, the main
scope is to obtain a high performance related to plastic detection and estimation. Second,
the study explores further the potential and limitations to discriminate between other types
of litter.

The data used in this paper are multispectral images acquired by a MicaSense Red-
Edge (https://support.micasense.com/hc/en-us, accessed on 15 November 2022) camera.
We employ machine learning algorithms based on Random Forest (RF) approaches to
train a fully supervised multi-class classifier for a total of nine classes, out of which four
are natural materials and five correspond to litter materials. The algorithms perform per-
pixel classification based on optimal features derived from a large initial pool of spectral
metrics (indices). Training and validation datasets were acquired in two different data
acquisition campaigns. Our experiments show that plastic litter can be found with high
accuracy based on this approach (>88% in test and validation data). The study further
shows that class confusions between litter types occur due to data errors and spectral
similarities, highlighting shadows as a strong source of inaccuracy in the classification
maps and exploring post-processing techniques to alleviate these limitations. Finally, we
analyze the influence of spatial resolution on the quality of the retrieved maps and the
limitations of the designed algorithm when applied over water areas.

2. Materials and Methods
2.1. Available Data

In this study, multispectral images acquired with a multispectral MicaSense RedEdge-
M camera are employed. The sensor benefits from five spectral bands centered at 475
nm (blue—B), 560 nm (green—G), 668 nm (red—R), 717 nm (red-edge—RE) and 840 nm
(near-infrared—NIR) and having bandwidths (FWHM) of 20 nm, 20 nm, 10 nm, 10 nm
and 40 nm, respectively. The data are processed using VITO’s MAPEO water workflow,
operational in Amazon Web Services (AWS). The application of the calibration parameters
of the camera transforms the digital numbers into radiance. To calculate reflectance out of
radiance, the irradiance should be taken into account. This can be done using a calibrated
reflectance panel or an irradiance sensor. Under varying cloud conditions, the latter could
better take into account the changing light conditions. For measurements above water, an
additional sky glint correction is applied using iCOR4drones, based on VITO’s atmospheric
correction toolbox iCOR. Pixels that are saturated are masked out of the end product.

Two data acquisition campaigns have been performed in two different days and at
two different sites in the vicinity of Mol, Belgium.

The first campaign (Campaign1) took place on 1 June 2021, with the MicaSense camera
mounted on a Remotely Piloted Aircraft System (RPAS), as shown in Figure 1a. Plastic
accumulation areas have been simulated by placing a variety of plastics and other types of
litter (cans, wood residuals) in the field of view of the camera, as illustrated in Figure 1b.
The litter contains weathered plastic objects originating from the port of Antwerp, Scheldt
River (Belgium) and Vietnamese coastal sites. In total, 335 individual images were acquired
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during the flight. In some of the images, the plastic accumulations are not present as they
were outside the field of view of the camera.
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Figure 1. RPAS carrying a multispectral camera during Campaign1 (a) and plastic accumulation (b).

The second campaign (Campaign2) took place on 8 March 2022, when the MicaSense
camera was mounted on a bridge over the canal Bocholt-Herentals near the VITO facilities
(Mol, Belgium). The camera is attached in a fixed way to the pedestrian railing, at a height
of 7 m above ground. A plastic accumulation area has been simulated on land similarly to
Campaign1. Figure 2a illustrates the setup used for data acquisition during Campaign2.
Note that the plastics used during the two campaigns were different. For Campaign2,
virgin plastics (placemats, plastic bottles, pure plastic samples) have also been used, next
to weathered plastics previously collected from the port of Antwerp. The positions of
the different plastic samples are changed during the image acquisition. A total number
of 135 images are captured from this setup. In the following, this set of images will be
denoted by the term “Campaign2-Land” (see Figure 2b). Once the data acquisition over
land was concluded, the MicaSense camera was moved to the middle of the bridge in order
to observe only the water (no land in image footprint). Floating materials were thrown
on water such that they entered the field of view of the camera (Figure 2c). The field crew
recollected these materials using a net maneuvered from a boat. This part of the campaign
(“Campaign2-Water”) contains 143 images. The data from Campaign2-Water are only used
to observe the transferability of designed algorithms from land to water areas later in
the paper.

2.2. Classes of Interest and Training Data

This work targets a multi-class classification scenario, justified by the fact that a binary
classification of litter and non-litter classes is not suitable to distinguishing different litter
materials, nor different classes of natural materials. While the main scope remains to spot
plastic litter, a total of nine classes of interest have been identified, out of which four are
natural materials: grass, tree, soil and water, and five are litter classes: cement, painted
surface, oxidated metal, plastic and processed wood. While the classes were defined by
observing the materials present in the available images, a few observations can be made:

- The wood class is considered litter in our approach, i.e., processed wood, how-
ever wood items can have a purely natural origin (e.g., branches, dead trees fallen
into rivers);

- The difference between plastic and painted surfaces is only related to the origin of the
training pixels: plastic pixels are extracted from plastic materials, while the painted
surfaces correspond to areas such as cars, boats and reflectance tarps; however, most
of the plastics can embed pigments to provide colors or can be superficially painted in
practice, thus confusions between these two classes are tolerated as long as the pixels
are correctly identified as plastic/painted litter;
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- Confusions between vegetation pixels (tree and grass) are largely tolerated and
the algorithms were not tuned to obtain the best possible discrimination between
these classes;

- The natural materials could all be gathered in one single class as the corresponding
pixels do not serve in monitoring litter pollution status nor they call for interventions
(cleaning) in the area; however, it was preferred to make the distinction as it offers
better insights on common class confusions between litter and non-litter materials.
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It is important to note that the training/testing pixels were extracted from Campaign1
and the validation pixels were mostly extracted from Campaign2-Land. However, the
images from Campaign2-Land did not contain ground-truth pixels for three classes: cement,
tree and oxidated metal, thus images from Campaign1 were added to the validation set,
but none of them from the set of images that served as sources of training/testing pixels.
This ensures the separability of training/testing and validation data.

Once the targeted classes have been defined, a fully supervised classification approach
is targeted. Specifically, a total number of 22.678 training pixels were manually extracted
from 32 source images from Campaign1. As the flight has been performed at variable
altitudes (between 10 m and 100 m), the spatial resolution of the images varied between
0.69 and 7 cm. The four natural classes benefit from the highest number of training points,
followed by the “plastic” class. Figure 3 shows a bar plot of the available number of training
pixels corresponding to each class. In this figure, the natural classes are signaled by blue
color, while red color is used for the litter classes. Note that the “cement” and the “oxidated
metal” classes have the lowest number of training points, which is not surprising as they
are less present in the acquired images than the other materials.
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High heterogeneity of the extracted pixels inside most of the nine classes has been
observed, as shown in Figure 4, where the spectra from each class, boxplots for all spectral
bands and the median spectrum of each material are plotted. The range of the y-axis in
all plots is common (covering the interval [0, 1]) in order to better observe the difference
in amplitude and heterogeneity of the considered materials. The different colors of the
spectral signatures correspond to the color coding that will be used in the remainder of
the paper to identify distinct materials. This coding is also resumed in Figure 4j. Note,
in Figure 4h, that the plastic class exhibits high heterogeneity in terms of both spectral
shape and spectral amplitude, which suggests that it is a difficult class to distinguish from
other classes.

2.3. Classification Algorithm
2.3.1. Overall Approach

The designed classification scheme is a machine learning algorithm based on Random
Forest approaches [52]. The Random Forest classifiers belong to the class of ensemble
learning methods, in which multiple decision trees run separately and the outputs of
the individual trees jointly contribute to a final result (label) for each input sample. The
algorithm has been developed in the Python3 programming language using the Random
Forest Classifier module of the Scikit-Learn machine learning library [53]. The classifier
has been tuned in a two-step approach. First, a large number of spectral metrics have been
derived from the reflectance values of the training points and an intermediate classifier
has been tuned for optimal performance based on the complete set of features, including
the original values of the spectral bands and the derived spectral metrics. A grid search
approach, in which a large number of combinations of parameters was employed to
evaluate the performances of the corresponding classifier architectures, has been used for
this purpose. The goal in this step was to obtain a ranking of the input metrics w.r.t. their
importance in the classification performance. Second, the 30 most informative spectral
features of the best performing classifier in terms of overall accuracy were kept as input
metrics in order to train a final classifier.
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2.3.2. Metrics Selection

In multispectral data, the classification performance when solely the band reflectance
values are considered, is limited due to various factors. Even if the number of spectral bands
is low, they might still exhibit a certain degree of correlation. Furthermore, the reflectance
values still embed the influence of external factors such as atmospheric scattering, variations
in scene illumination and topographic relief. The low number of bands further limits
the performance when the number of classes in the scene is large. These limitations
can be alleviated when derived parameters are used. These parameters, denoted by the
terms “metrics”, “spectral indices” or simply “indices” in the following, are obtained by
combinations of reflectance values from distinct spectral bands.

In our study, spectral indices available in the literature have been inventoried and all
the ones that were applicable to the spectral bands of the MicaSense multispectral camera
were retained. A number of 76 indices were found this way. Second, another set of spectral
indices has been defined by computing band differences, band ratios and normalized band
ratios applied to the five available spectral bands. This second set of indices contains 30
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indices and the reflectance values for the five spectral bands of the MicaSense camera
were also included, thus a total of 111 indices have been employed in the first step of
algorithm development. All the indices considered in this initial database are listed in the
Appendix A jointly with their formulas (applied to MicaSense spectral bands) and their
corresponding reference works. Note that spectral indices specifically designed for plastic
detection [45–47] based on SWIR reflectance values cannot be applied to the MicaSense
sensor due to the limited spectral range.

For illustration purposes, Figure 5 shows the median spectra of the considered training
pixels for all the classes (Figure 5a) and radar plots of the indices computed from these
spectra after shifting all the values to the positive quadrant and performing peak-to-
peak normalization (Figure 5b–i). Each axis of a radar plot corresponds to a specific
spectral index.

The 111 indices were computed for all pixels available in the training set and the best
intermediary classification algorithm has been selected after the grid search was performed.
For all the tested variants of the algorithm, the training database was further split in
training and testing samples on the basis of a ratio of 70%/30% split performed on the
source images, such that the sets do not contain points originating from common images.

The 30 most relevant metrics for the best performing intermediate classifier (marked in
bold letters in the Appendix A) are: Near-Infrared reflectance (NIR), Browning Reflectance
Index (BRI), Ashburn Vegetation Index (AVI), Differenced Vegetation Index MSS (DVIMSS),
Inverse Reflectance 717 (IR717), Tasseled Cap—Non Such Index MSS (NSIMSS), RedEdge
reflectance (RE), normalized Blue-NIR index (nBNIR), ratio Blue-RedEdge (rBRE), Plant
Senescence Reflectance Index (PSRI), normalized Blue-Green (nBG), Adjusted Transformed
Soil-Adjusted Vegetation Index (ATSAVI), ratio Blue-Green (rBG), normalized ratio Green-
Red (nGR), normalized green reflectance (NormG), Coloration Index (CI), ratio Green-Red
(rGR), Blue-Wide Dynamic Range Vegetation Index (BWDRVI), Chlorophyll Vegetation
Index (CVI), Tasseled Cap—Soil Brightness Index MSS (SBIMSS), Anthocyanin Reflectance
Index (ARI), Normalized Green-Red Difference Index (NGRDI), Difference Blue-Red (dBR),
Normalized Blue-Red ratio (nBR), ratio Blue-Red (rBR), Red-Edge 2 (Rededge2), Pan
Normalized Difference Vegetation Index (PNDVI), Structure Intensive Pigment Index
(SIPI), difference Blue-RedEdge (dBRE) and Green Leaf Index (GLI).
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2.3.3. Final Configuration

The 30 selected metrics were used in the training of the final classifier. The grid search
approach has been once again employed. At the end, the parameters of the final classifier are
as follows (see their significance in the online documentation of the scikit-learn implemen-
tation [54]): ‘bootstrap’: True, ‘ccp_alpha’: 0.0, ‘class_weight’: None, ‘criterion’: ‘gini’, ‘max_depth’:
125, ‘max_features’: auto’, ‘max_leaf_nodes’: None, ‘max_samples’: None, ‘min_impurity_decrease’:
0.0, min_samples_leaf’: 1, ‘min_samples_split’: 3, ‘min_weight_fraction_leaf’: 0.0, ‘n_estimators’:
25, ‘n_jobs’: None, ‘oob_score’: False, ‘random_state’: None, ‘verbose’: 0, ‘warm_start’: False.

2.3.4. Validation Data

Targeting an independent validation, ground-truth maps have been manually gener-
ated based on five validation images from Campaign2-Land. Areas (polygons) containing
different materials have been digitized and assigned the corresponding labels. Only areas
visually homogeneous were considered. Figure 6 shows the RGB representation of the
validation images and the corresponding ground-truth maps. In this figure, the color
scheme from Figure 4j applies to all ground-truth maps.
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Some observations should be made before further proceeding with the results analysis.
First, due to a very low or null number of validation pixels in Campaign2 for cement,
oxidated metal, tree and wood classes, images from Campaign1 were also used to define
validation pixels, while ensuring no overlap with the training/testing images occurred.
Second, despite the fact that the data from Campaign2 were acquired by the MicaSense
camera mounted on a bridge, the data processing and camera settings were not different



Remote Sens. 2022, 14, 5820 11 of 31

from the ones set during Campaign1, thus the images from Campaign2 have the same
spectral characteristics as the ones from Campaign1 and the obtained results are valid
for aerial imagery. Third, the classification algorithm is not trained to act on shadowed
pixels, thus the shadowed areas will be removed from both the ground-truth maps and the
inferred maps. To this end, a threshold T = 0.11 has been empirically imposed on the pixel
brightness (simply computed by the sum of the reflectance values in the R, G and B bands)
to separate shadowed and non-shadowed areas. More insights on the issues induced by
the presence of shadows in the imagery are given further in the discussion section. The
number of independent validation points per class is shown in Table 1.

Table 1. Number of independent validation points, per class.

Class Grass Soil Tree Water Cement Painted Oxidated Plastic Wood

Number of validation points 254,543 66,351 431,151 238,269 7559 6575 17,373 399,545 9543

3. Results

In this section, we analyze the performance achieved by the designed classifier and
provide interpretations of the observed strengths and weaknesses.

3.1. Algorithm Performance

Figure 7 shows the confusion matrix (relative values) obtained for the nine classes
over the test data and in Table 2 the following performance metrics are listed next to the
number of corresponding supporting points:

- Precision (P): P = TP/(TP + FP)
- Recall (R): R = TP/(TP + FN)
- F1-score: F1-score = (2·P·R)/(P + R)
- Accuracy: Accuracy = (TP + TN)/(TP + FN + TN + FP),

where TP = True Positives, FP = False Positives, TN = True Negatives and FN = False Negatives.
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Table 2. Accuracy metrics for the designed classifier, computed in test data.

Precision Recall F1-Score Support

Grass 0.93 0.88 0.91 1074

Soil 0.91 0.95 0.93 1281

Tree 0.91 0.95 0.93 1244

Water 1.00 1.00 1.00 1109

Cement 0.88 0.88 0.88 153

Painted surface 0.90 0.88 0.89 528

Oxidated metal 0.91 0.95 0.93 215

Plastic 0.94 0.90 0.92 1363

Wood 0.86 0.87 0.86 690

Accuracy 0.93 7657

From Table 2, it can be seen that all metrics are higher than 0.9 for plastic. Figure 7
shows that plastic pixels are most often confused with painted materials. The lowest
values of the computed performance metrics are obtained for wood, however they are all
above 0.85 which indicates a good performance. In test data, all water pixels are correctly
identified. The highest confusion occurs between grass and trees, which is tolerable, as
explained before. Another relatively high confusion is observed for wood and soil, which
is explainable by the fact that their median spectra are very similar in terms of both shape
and amplitude, as shown in Figure 4.

3.2. Validation Performance

In Figure 8, the confusion matrix computed for the validation data points (relative
values) is displayed.
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In Figure 8, it can be observed that most of the classes exhibit lower accuracies in
validation data than in the test data, as expected. However, most of the classes still attain a
relatively high accuracy, except for the grass and the wood classes, which are very low in
comparison to the training performance. Another class with a relatively high drop (more
than 10%) in accuracy is the painted surface class. On the one hand, the confusion matrix
suggests that the high drop in accuracy for the grass class is mainly originating in the
strong confusion between this class and the tree class. This is not a worrisome issue, as both
classes are green natural materials and tuning the classification for this type of materials
is out of the scope of our application. The same logic applies to the confusion between
painted surfaces and plastic surfaces—this confusion is embedded in the class definition.
On the other hand, the wood class exhibits high confusion with the soil class, but the drop
in accuracy is also partly due to the confusion with the plastic class. In order to better
investigate the observed confusions, Figure 9 plots the ground-truth classification polygons
defined in Figure 6 next to their counterpart classification maps retrieved by the designed
classifier. In the retrieved maps, the shadowed areas were masked by enforcing a threshold
T = 0.11 on the pixel intensity, computed as the sum of reflectance in the B, G and R bands.
The threshold has been applied to all pixels classified as litter.
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validation images.

Figure 9 confirms the behavior suggested by the confusion matrix. Each of the images
1 and 2 contain one plastic region that was classified as paint, which explains the observed
confusion. In Image 3, the confusion between grass and tree classes is obvious. The errors
are mainly observed on the grass class, for which many pixels are classified as tree. The
tree class is classified with high accuracy, as illustrated by the classification maps of Image
4. The wood class suffers from confusions with more classes: in Image 1 all three wood
polygons are mostly confused with soil and plastic; in Image 2, one polygon labeled as
plastic is largely masked by the shadow removal approach as it is a dark material, but some
pixels are also classified as wood; in Image 3, some cement pixels are classified as wood; in
Image 5, wood pixels are sometimes masked by the shadow removal criterion or they are
classified as soil. This shows that the wood class is difficult to correctly identify and the
reasons for this behavior will be further analyzed in the discussions section.

The main class of interest, plastic, is identified with relatively high accuracy in all
validation images. The confusion with painted surfaces, which is the most obvious error
occurring in the retrieved maps (see Images 1 and 2) is tolerated, as explained earlier.
However, the importance of distinguishing between the two materials cannot be denied
as many materials can be painted without containing necessarily plastic, e.g., car bodies
and roofs. It is likely that higher wavelengths are needed in order to be able to achieve this
distinction with higher accuracy. The camera used in our study has the advantage of being
easily accessible at a relatively low cost and easy to operate, but it does not benefit from
SWIR measurement channels. From the point of view of the image pre-processing, another
advantage of this camera is that it includes an irradiance sensor, which allows for the
conversion of the raw data into reflectance even in the absence of a spectralon in the field.
The plastic materials are shown to be identifiable from the considered data, however further
distinctions, e.g., between different types of plastics, might require extended spectral range
and higher spectral resolution.
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4. Discussion

In this chapter we take a journey through the retrieved results and observe strengths,
weaknesses, and possible improvements of the proposed approach, and we identify direc-
tions for future work.

4.1. Influence of Shadows

In shadowed areas, the classification proves to be unreliable, this issue stemming from
a two-fold reason: (1) the shadowed areas suffer from distorted spectra due to the low
level of radiation hitting the surface, and (2) naturally, training pixels are not selected from
shadowed areas. The algorithms are thus generally not trained to deal with shadowed areas.
In high resolution images such as the ones used in this work, shadows can be observed next
to the tall objects, but even at a satellite level it is common to derive shadow masks from the
remote sensing imagery such that caution is taken when dealing with the corresponding
flagged pixels.

In this work, a simple shadow filtering method has been applied, based on the pixel
intensity. As mentioned in Section 3.2, a threshold T = 0.11 has been set on the sum of
reflectances in the R, G and B bands in order to separate shadowed from non-shadowed
pixels. This threshold has been empirically set by finding an equilibrium between the
quantity of pixels marked as shadows and the amount of useful pixels remaining in the
image. Figure 10 illustrates the effect of four different threshold values on the retrieved
classification map for Image 1. In this figure, it can be observed that the raw classification
map is strongly affected by the occurrence of shadowed pixels. Specifically, at the transition
between land and water areas a large part of the pixels is incorrectly marked as plastic,
while many shadowed pixels along this transition area are classified as oxidated metal.
By masking the shadowed pixels, the classification maps improve substantially. Higher
thresholds lead to a more shadow-free conservative masking. However, the removal of
false positives should always be in harmony with the preservation of true positives, thus
the choosing of an illumination threshold should be done with caution, as dark littered
pixels might also be removed. For example, the threshold applied in Figure 10f is too
high as some plastic areas, correctly classified in the raw map, are masked out jointly with
the true shadowed pixels. It is also likely that the shadow thresholds need tuning when
different spatial scales are used, as in low resolution pixels the shadowed areas are mixed
with bright areas, resulting in an intermediate brightness between the two pixel types.
Efficient and accurate shadow removal approaches are needed for the post-processing of
the classification maps and will be further investigated in future works.
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4.2. Plastic Quantification and Representation

Once the classification map is produced, it is straightforward to estimate the area of
plastic litter in the image, starting from the spatial resolution of the input imagery. Once
more, the post-processing strategies play an important role in the accuracy. In Table 3, the
ground-truth plastic area is listed next to the estimated plastic areas for the filtered maps
illustrated in Figure 10b–f, respectively. For the considered image, the spatial resolution
is 0.48 cm, thus each pixel occupies an area of 2.3 × 10−5 m2. Note that the true plastic
area is slightly underestimated in Table 3, as very small plastic objects and transition areas
between materials were not taken into account, in order to avoid contributions from mixed
pixels. Furthermore, it is expected that pixels incorrectly classified as plastic are still present
in the classification map after the shadow filtering. However, the table confirms without
doubt that the raw classification map suffers from a strong over-estimation of plastic area,
due to the shadowed pixels incorrectly classified as plastic, as previously explained. The
shadow filtering significantly contributes to a better estimation of the plastic area for all
considered thresholds.

Table 3. Estimation of area covered by plastic w.r.t. the threshold employed for shadow removal.

Threshold None (Ground-Truth Map) None (Raw
Map) T = 0.05 T = 0.1 T = 0.15 T = 0.2

Quantification of plastics
Pixels 147,009 275,464 196,400 178,580 172,292 153,482

Area [m2] 3.387 6.346 4.525 4.114 3.969 3.536

The approach above provides an estimation of the total area occupied by plastic pixels
in the considered image. However, for policy makers, another type of characterization
might be relevant: the number of plastic objects (separate areas littered with plastic), their
size and their location, among others. This type of detail requires an additional spatial post-
processing approach. In Figure 11, we illustrate the results of a straightforward strategy
to achieve this goal, applied to the plastic map extracted from Figure 10e: first, plastic
regions are delimited to create spatial blobs by thresholding the smoothed classification
map obtained after applying a spatial Gaussian kernel (Figure 11b—each color represents
one blob or plastic region); second, these blobs are visualized as a pie chart w.r.t. to their
sizes (measured in pixels; Figure 11c); third, the blobs are converted to circular regions
having equal areas to the original blobs and represented on the map for easier visualization
(Figure 11d—the colors mirror the ones in Figure 11b). In case the analyzed images are
georeferenced, geographic coordinates can be assigned to the plastic regions to support
the planning of cleaning activities. Depending on the scope, small blobs can be neglected,
e.g., if the main targets are the large accumulations or if avoiding false positives is of
utmost importance.

4.3. Sources of Classification Errors

Apart from the issues identified over shadowed areas, the quality of the retrieved
classification map might be influenced by other factors, such as data quality, inter-class
correlations and spatial resolution.

4.3.1. Data Quality

In order to evaluate the quality of input data, reference spectra have been acquired during
Campaign2-Land using an ASD FieldSpec spectrometer (https://www.malvernpanalytical.com/en/
products/product-range/asd-range/fieldspec-range/fieldspec-4-standard-res-spectroradiometer,
accessed on 15 November 2022) over various targets. This spectrometer covers the spectral
range 350–2500 nm with a spectral resolution of 1 nm, resulting in 2151 spectral bands
across VNIR and SWIR regions. In total, twelve different materials were scanned and for
each material three spectra were acquired. The reference (hyperspectral) spectrum of one
material is considered as the median spectrum of the individual measurements. The refer-
ence spectra were then convolved with the spectral response functions of the MicaSense

https://www.malvernpanalytical.com/en/products/product-range/asd-range/fieldspec-range/fieldspec-4-standard-res-spectroradiometer
https://www.malvernpanalytical.com/en/products/product-range/asd-range/fieldspec-range/fieldspec-4-standard-res-spectroradiometer
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camera in order to derive ground-truth multispectral signatures of all samples. Pictures
of the eleven material samples are shown in Figure 12a–l and the reference (simulated,
ground-truth) MicaSense spectra are shown in Figure 12m.
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In order to inspect the quality of the fitting between the reference spectra and the
acquired spectra, actual spectra were extracted from polygons drawn on the corresponding
regions from one image. Then, saturated pixels (e.g., the ones having reflectance larger than
1 in at least one band) and possibly shadowed pixels (based on a soft shadow threshold:
T = 0.05) were excluded. Based on the remaining pixels we plot, in Figure 13, for all the
considered samples, the following data: boxplots of reflectance values extracted from the
actual imagery, median spectrum retrieved from the actual imagery (blue) and reference
spectrum simulated from the ASD measurements by convolution with the MicaSense
response functions (green).

For some materials, a large spread of the acquired reflectance spectra can be observed
from the boxplots (see Materials #3, #6 and #9). Good fitting with the reference spectra is
obtained for four materials (#2, #4, #8, #12). In general terms, the acquired spectra follow the
shape of the reference spectra, however differences are clearly visible, especially in the RE
and NIR bands. It is also interesting to observe that the materials with high amplitude (#6,
#9) exhibit lower amplitude than expected in real data. This type of variability is regularly
encountered in aerial multispectral imagery and it is expected that the performance of
classification algorithms will evolve jointly with the advancements in sensor development
and advanced pre-processing methods for the imagery itself. The use of spectral indices
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instead of absolute reflectance values partially alleviates the issue of erroneous spectra
as long as a good fit is obtained between the reference and actual spectra in terms of
spectral shape.
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4.3.2. Inter-Class Correlations

The performances of classification algorithms are inherently influenced by the number
of spectral bands sampling the electromagnetic spectrum. When the number of spectral
bands decreases, the confusion between different classes also increases as distinctive
features characterizing one specific class might not be captured. In the following, we
analyze the degree of confusion between the nine considered classes in the experiments by
measuring the minimum, maximum and mean Pearson correlation factor (C), in absolute
values, over all pairs of spectra drawn from two different classes. In other words, for a pair
of classes C1-C2, the absolute value of the correlation factor is computed over all possible
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pairs of spectra containing one spectrum from C1 and one spectrum from C2, and the
minimum, maximum and mean values are extracted from the list of computed correlations.
Table 4 resumes the computed inter-class correlations.
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Table 4. Inter-class correlations. For each pair, the minimum, maximum and mean Pearson correla-
tions computed over all pairs of spectra drawn from the two classes. The values below the diagonal
are greyed out due to the fact that they mirror the values above the diagonal.

Grass Soil Tree Water Cement Painted Surface Oxidated Metal Plastic Wood

Grass

min (C) - 0.605 0.520 <0.001 0.094 <0.001 <0.001 <0.001 <0.001

max (C) - >0.999 1 0.953 >0.999 >0.999 0.994 >0.999 >0.999

mean (C) - 0.890 0.985 0.381 0.756 0.633 0.766 0.705 0.911

Soil

min (C) 0.605 - 0.460 <0.001 0.265 <0.001 0.044 <0.001 <0.001

max (C) >0.999 - >0.999 0.933 >0.999 >0.999 >0.999 >0.999 >0.999

mean (C) 0.890 - 0.862 0.430 0.908 0.618 0.877 0.637 0.939

Tree

min (C) 0.520 0.460 - <0.001 0.074 <0.001 <0.001 <0.001 0.012

max (C) 1 >0.999 - 0.983 0.986 >0.999 0.997 >0.999 >0.999

mean (C) 0.985 0.862 - 0.368 0.709 0.634 0.742 0.713 0.888

Water

min (C) <0.001 <0.001 <0.001 - <0.001 <0.001 <0.001 <0.001 <0.001

max (C) 0.953 0.933 0.983 - 0.937 >0.999 0.969 >0.999 >0.999

mean (C) 0.381 0.430 0.368 - 0.381 0.388 0.327 0.432 0.449
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Table 4. Cont.

Grass Soil Tree Water Cement Painted Surface Oxidated Metal Plastic Wood

Cement

min (C) 0.094 0.265 0.074 <0.001 - <0.001 0.103 <0.001 <0.001

max (C) >0.999 >0.999 0.986 0.937 - >0.999 >0.999 >0.999 >0.999

mean (C) 0.756 0.908 0.709 0.381 - 0.585 0.844 0.545 0.861

Painted surface

min (C) <0.001 <0.001 <0.001 <0.001 <0.001 - <0.001 <0.001 <0.001

max (C) >0.999 >0.999 >0.999 >0.999 >0.999 - >0.999 >0.999 >0.999

mean (C) 0.633 0.618 0.634 0.388 0.585 - 0.571 0.571 0.618

Oxidated metal

min (C) <0.001 0.044 <0.001 <0.001 0.103 <0.001 - <0.001 <0.001

max (C) 0.994 0.999 0.997 0.969 >0.999 >0.999 - 0.998 >0.999

mean (C) 0.766 0.877 0.742 0.327 0.844 0.571 - 0.554 0.824

Plastic

min (C) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 - <0.001

max (C) >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 0.998 - >0.999

mean (C) 0.705 0.637 0.713 0.432 0.545 0.571 0.554 - 0.656

Wood

min (C) <0.001 <0.001 0.012 <0.001 <0.001 <0.001 <0.001 <0.001 -

max (C) >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 -

mean (C) 0.911 0.939 0.888 0.449 0.861 0.618 0.824 0.656 -

Table 4 explains why some classes suffer from high confusion with other classes. For
example, the wood class, whose abundance is often over-estimated in the classification
maps, has maximum correlation factors of at least 0.999 with all the other classes. However,
the mean correlation factor of the wood class with the plastic class is the third lowest among
the correlation factors of the former (after the correlation factor with water and painted
surface). This indicates that the wood class is more likely to be confused with other classes
than with plastic, which is positive for the scope of our experiments as it does not lead to
overestimation of plastic areas due to confusion with wood. The water class is the least
correlated with the others, which explains the very high accuracy for this class in both
testing and validation data. The metrics in Table 4 also confirm the large confusion between
grass and tree spectra: these two classes are the only ones in which there exists at least one
pair of spectra that are virtually identical in MicaSense multispectral data, resulting in a
maximum correlation factor of 1.

4.4. Influence of Spatial Resolution

The training pixels in our experiments have been selected from relatively homoge-
neous areas in high-resolution images, such that they can be considered pure spectra of
the materials of interest. The spatial resolution of the acquired imagery can be different if
another sensor (with similar spectral characteristics) is employed or if the flight altitude
of the sensor changes during the data acquisition flight. It is thus natural to question the
abilities of the designed algorithm when, due to a degradation of the spatial resolution, the
target materials jointly occupy mixed pixels.

In order to illustrate the behavior of the classification scheme for variable spatial
resolution, the high-resolution imagery has been resampled using bilinear interpolation by
binning the observed high-resolution pixels inside spatial windows of 10× 10, 30× 30 and
50× 50 pixels. This simulates the degradation of the spatial resolution by factors of 10, 30
and 50, respectively. The classification algorithm was then applied to the lower resolution
images and the set of obtained raw classification maps for two targets of interest—one
plastic litter area and one car—are inspected in Figure 14. In this figure, F denotes the
degradation factor applied to the original imagery, R represents the spatial resolution
of the respective image measured in centimeters, and for each degradation factor it dis-
plays the RGB representation of the area of interest, the true litter map (drawn manually
over the original image) and the retrieved classification maps after applying the design
classification scheme.
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Figure 14 shows that the discrimination power between litter and natural materials
decreases with the degradation of the spatial resolution, as expected. However, littered
areas can still be spotted even if the image is degraded with a degradation factor of F = 30
in both considered cases. For lower spatial resolution, i.e., when F = 50, the car pixels
are still marked as littered area, while the plastic area is entirely missed. The difference
between the two cases is that the car is a continuous surface while the plastic objects are
mixed with wood residuals and are more sparsely distributed over a natural background
(soil and grass). When the spatial resolution degrades, more spectral mixing occurs in
the area of plastic litter. The issue of mixed pixels can be tackled either by including
mixed spectra in the training database during the training stage or by employing other
techniques relying on pure pixels, such as sparse spectral unmixing, where the collection
of pure spectra act as an external spectral library and the number of materials inside the
pixel is minimized by solving a constrained sparse regression problem [55,56]. Note that
all the post-processing steps (shadow removal, spatial filtering) also need tuning w.r.t.
the employed thresholds when the spatial resolution changes. This results that, while a
common classification framework can be followed for different spatial resolutions, the final
results strongly depend on fine tuning of the employed parameters at each processing step.
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4.5. A Note on Algorithm Transferability to Water Areas

One of the most important questions when referring to litter detection is the ability
to spot problematic areas not only on land, but also over water. Water is a material with
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particular spectral characteristics in the NIR and SWIR spectral regions, i.e., the signals
retrieved by a sensor over water pixels are strongly attenuated given that pure water has
a very low reflectance in the NIR region and entirely absorbs the incoming radiation at
wavelengths larger than 1200 nm. Moreover, litter objects in water areas can be found in
different states of exposure: they can float, they can be partially/entirely submerged, and
they can be dry or wet depending on their own density and weather conditions. Pixels with
distorted spectral shape are also encountered in water datasets due to sun glint, introducing
additional challenges despite the fact that they only contain water in nature. In [57], the au-
thors investigated the spectral properties of various virgin and weathered plastic materials
in a controlled environment in which various suspended sediment concentrations and ma-
terial depths have been used. The resulting dataset (https://data.4tu.nl/articles/dataset/
Hyperspectral_reflectance_of_marine_plastics_in_the_VIS_to_SWIR/12896312/2, accessed
on 15 November 2022) proves a high variability of the observed spectra when these con-
ditions vary. In this subsection, we present a limited experiment intended to investigate
if a classifier designed for land areas, which is the case for the classifier described in
this work, could be successfully applied to detecting litter over water areas, under these
known circumstances.

During the validation campaign (Campaign2), various litter objects have been placed
on the streamflow under the bridge where the camera was mounted. The camera has also
been moved to cover the water area and various images were acquired. After the data
acquisition, all the floating litter objects have been recollected by the VITO field crew by
using a net maneuvered from a boat. The collected images were processed according to
the methodology described in Section 2. Finally, the designed classifier was applied to
these images.

In Figure 15, two RGB representations of images acquired over water are shown jointly
with the corresponding retrieved classification maps.
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In Figure 15, the vast majority of the plastic pixels are correctly classified. The wood
pixels are only partially identified correctly. For these pixels, confusions with soil and
plastic occur. In image 1, two floating dry leaves are mostly classified as wood which is
acceptable given the similarities and taking into account that no dry leaf class has been
defined, while one leaf is mostly classified as plastic. The leaf in image 2 is mostly classified
as oxidated metal, but some of its pixels are also classified as plastic. The background
(water) pixels are generally correctly identified, however the confusion with oxidated metal
is the most frequent, resulting in a salt-and-pepper type of noise in the classification maps.
The fact that the leaf in image 2 is mostly classified as oxidated metal might be due to the
fact that the leaf is partially submerged. Overall, we can observe that all the litter objects
are detected in these images and the plastic objects can be inferred with high accuracy, but
over-detection of plastic is common and the distinction between different types of litter
(wood-soil, wood-plastic etc.) is difficult. This distinction is important as biodegradable
litter is less concerning than the non-biodegradable one. The large number of points
classified as oxidated metal in the background pixels could be avoided by redefining the
litter classes themselves. Cement, soil and oxidated metal are not floating materials, which
means that these classes might be obsolete over water areas, depending on the targeted
area. We can conclude that algorithms designed for land litter detection can only be used
for limited purposes over water (e.g., to detect litter objects), however water and land areas
should benefit from separately trained schemes which take into account the specificity
of light absorption and reflection for each of them and which account for different target
classes in order to maximize the probability of success. Investigations on the differences
between the land/water approaches, inference of the most useful spectral bands in the two
cases, and estimation of detection limits for future sensors tailored to litter detection are all
targeted subjects for our future work.

5. Conclusions

In this paper, machine learning classification algorithms based on Random Forest
approaches have been designed to detect litter in aerial images acquired by affordable, off-
the-shelf multispectral cameras carried by remotely piloted aircraft systems. It was shown
that the main targeted pollutant represented by plastic materials can be spotted with high
accuracy—higher than 0.88 in both test and validation data. The distinction between plastic
and other litter materials has also been achieved with high accuracy. Among the materials
considered as litter, it was shown that wood residuals are more difficult to distinguish
due to their very high spectral similarity to the other classes of materials, especially with
soil. However, wood is a material that does not pose the same critical threats as plastic
to the environment and the human health population. Better discrimination between all
considered classes could be achieved by employing spectral cameras with higher spectral
resolution and extended spectral range. Nevertheless, our study was designed such that a
critical component of operational exploitation of the system was highly valued: the balance
between detection accuracy and operational costs.

The classification algorithm has been designed in a two-step approach: first, a large
pool of spectral metrics have been used in an intermediate scheme to decide on their
importance; second, the most important 30 metrics have been employed in the final classi-
fication scheme. As the classifier was not trained for shadowed areas, in which spectral
distortions are common due to the limited amount of radiation hitting the surface, post-
processing methods have been explored to improve the quality of the retrieved classification
maps. Straightforward quantification and visualization approaches intended to ease the
exploitation of the maps by interested users have also been presented.

An important part of this paper has been devoted to understanding the factors that
cause classification errors. Based on ground reference targets scanned with a field spec-
trometer, it was shown that data errors are common in multispectral imagery, thus the use
of spectral indices is highly recommended as they mitigate limitations related to spectral
amplitude errors and better embed useful information related to the spectral shape of
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the input signatures. The high inter-class correlations encountered in multispectral data,
inherently induced by the relatively low number of spectral bands, are also sources of
class confusions. In an experiment considering the spatial resolution of the input imagery,
we have shown that the detection of areas polluted with plastic is not only dependent on
the spectral-spatial responses of the scanned pixels, but also on the spatial distribution
of the contained materials. In other words, mixed pixels containing litter in images with
low spatial resolution call for adaptations of the training data or for exploring methods
that analyze sub-pixel compositions, such as spectral unmixing. Finally, it was shown that
classification schemes trained with land pixels are not directly transferable to water areas
due to the particularities of water pixels, e.g., the low signal in the NIR/SWIR spectral re-
gions. When applied to images containing floating objects, the designed classifier was able
to spot non-water areas, however the classification inside these areas suffered from more
confusions than over land. This implies that classification schemes should be designed
separately for land and water targets such that the employed metrics are tailored to the
specific case. The considered classes should also be adapted. For instance, materials that
do not naturally float (soil, oxidated metal, cement) are less concerning when monitoring
water areas. All the above insights will be further exploited in our future research work,
jointly with adaptations of the proposed framework to account for an extended set of
classes and to ensure transferability to images acquired in different geographic areas and
under different environmental conditions.
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Appendix A. Full Set of Spectral Indices

In Table A1, the full set of 111 spectral metrics used in the first training step are
listed. For each metric, the name, acronym, formula and reference works are indicated.
The 30 indices selected for the final classifier are highlighted in bold letters. For compact
representation, indices that are similar in terms of mathematical formula are grouped
together and their formulas are represented as a generic expression. Customized indices,
i.e., the ones built specifically for this work without being found in the literature, are
marked by the letter “C” in the column storing reference works.

Table A1. Full list of spectral indices. The 30 indices marked in bold letters are the ones used by the
final classifier.

Index Number Index Name Index Acronym Index Formula Reference Works

1–5
MicaSense
blue/green/red/red-edge/NIR
band reflectance

B, G, R, RE, NIR - -

6 Adjusted transformed soil-adjusted
vegetation index ATSAVI

ATSAVI = a · NIR − a · R − b
a · NIR + R − a · b + X(1 + a2)

,

where X = 0.08, a = 1.22 and b = 0.03
[58]
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Table A1. Cont.

Index Number Index Name Index Acronym Index Formula Reference Works

7 Anthocyanin reflectance index ARI ARI = 1
G −

1
RE [59]

8 Ashburn vegetation index AVI AVI = 2 · NIR− R [60]

9 Atmospherically resistant
vegetation index ARVI ARVI = NIR − R − y · (R − B)

NIR + R − y · (R − B) , where y = 0.01 [61]

10 Atmospherically resistant vegetation
index 2 ARVI2 ARVI2 = −0.18 + 1.17 · NIR − R

NIR + R [62]

11 Blue-wide dynamic range
vegetation index BWDRVI BWDRVI = 0.1 · NIR − B

0.1 · NIR + B [63]

12 Browning reflectance index BRI
1
G −

1
RE

NIR
[64]

13 Canopy chlorophyll content index CCCI CCCI =
NIR − RE
NIR + RE
NIR − R
NIR + R

[65]

14 Chlorophyll absorption ratio index 2 CARI2
CARI2 = |a · R + R + b|

(a2 + 1)0.5 · RE
R , where

a = (RE− G)/150 and b = G− a · G
[66]

15 Chlorophyll index green CIgreen CIgreen = NIR
G − 1 [67]

16 Chlorophyll index red-edge CIrededge CIrededge = NIR
RE − 1 [67]

17 Chlorophyll vegetation index CVI CVI = NIR · R
G2 [68]

18 Coloration index CI CI = R − B
R [69]

19 Normalized difference
vegetation index NDVI NDVI = NIR − R

NIR + R [61]

20 Corrected transformed
vegetation index CTVI NDVI + 0.5

|NDVI + 0.5| ·
√
|NDVI + 0.5| [70]

21 Datt1 Datt1 Datt1 = NIR − RE
NIR − R [71]

22 Datt4 Datt4 Datt1 = R
G · RE [71]

23 Datt6 Datt6 Datt6 = NIR
G · RE [71]

24 Differenced vegetation index MSS DVIMSS DVIMSS = 2.4 · NIR− R [72]

25 Enhanced vegetation index EVI EVI = 2.5 · NIR − R
NIR + 6 · R − 7.5 · B + 1 [68]

26 Enhanced vegetation index 2 EVI2 EVI2 = 2.4 · NIR − R
NIR + R + 1 [73]

27 Enhanced vegetation index 2 -2 EVI22 EVI22 = 2.5 · NIR − R
NIR + 2.4 · R + 1 [74]

28 EPI EPI EPI = a · R
(G · RE)b

, where a = b = 2 [75]

29 Global environment
monitoring index GEMI GEMI = n · (1− 0.25 · n)− R − 0.125

1 − R [76]

30 Green leaf index GLI GLI = 2 · G − R − B
2 · G + R + B [68]

31 Green normalized difference
vegetation index GNDVI GNDVI = NIR − G

NIR + G [75]

32 Green optimized soil adjusted
vegetation index GOSAVI GOSAVI = NIR − G

NIR + G + Y , where Y = 0.16 [76]

33 Green soil adjusted vegetation index GSAVI GSAVI = NIR − G
NIR + G + L · (1 + L), where L = 0.5 [76]

34 Green-blue NDVI GBNDVI GBDVI = NIR − (G + B)
NIR + (G + B)

[77]

35 Green-red NDVI GRNDVI GRDVI = NIR − (G + R)
NIR + (G + R)

[77]

36 Hue H H = arctan
( 2 · R − G − B

30.5 · (G− B)
)

[78]

37 Infrared percentage vegetation index IPVI IPVI =
NIR

NIR + R
2 · (NDVI + 1) [79]

38 Intensity I I = 1
30.5 · (R + G + B) [69]

30 Inverse reflectance 550 IR550 IR550 = 1/G [59]

40 Inverse reflectance 717 IR717 IR717 = 1/RE C
[59]

41 Leaf Chlorophyll index LCI LCI = NIR − RE
NIR + R [71]

42 Modified chlorophyll absorption in
reflectance index MCARI MCARI = (RE− R− 0.2 · (RE− G)) · RE

R [68]
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Index Number Index Name Index Acronym Index Formula Reference Works

43 Misra green vegetation index MGVI MGVI =
−0.386 · G− 0.530 · R + 0.535 · RE + 0.532 · NIR [80]

44 Misra non such index MNSI MNSI =
0.404 · G− 0.039R− 0.505 · RE + 0.762 · NIR [80]

45 Misra soil brightness index MSBI MSBI =
0.406 · G + 0.600 · R + 0.645 · RE + 0.243 · NIR [80]

46 Misra yellow vegetation index MYVI MYVI =
0.723 · G− 0.597 · R + 0.206 · RE− 0.278 · NIR [80]

47 Modified anthocyanin
reflectance index mARI mARI =

( 1
G −

1
RE

)
· NIR [81]

48 Modified chlorophyll absorption in
reflectance index 1 MCARI1 MCARI1 =

1.2 · (2.5 · (NIR− R)− 1.3 · (NIR− G))
[82]

49 Modified simple ratio NIR/red MSRNIR_R MSRNIR_R =
( NIR

R − 1
)
/
√

NIR
R + 1 [83]

50 Modified soil adjusted
vegetation index MSAVI MSAVI = 2 · NIR + 1 −

√
(2 · NIR + 1)2 − 8 · (NIR − R)

2
[82]

51 Modified triangular vegetation
index 1 MTVI1 MTVI1 = 1.2 · (1.2 · (NIR− G)− 2.5 · (R− G)) [82]

52–54 Normalized: Green, Red,
NIR reflectance

NormT, where T ∈
{G, R, NIR} NormT = T

NIR + R + G C

55–60 Normalized difference: Green-Red,
NIR-B, NIR-Red, NIR-RE, R-G, RE-R

NT1T2DI, where T1T2 ∈{
GR, NIRB, NIRR,
NIRRE, RG, RER

} NT1T2DI = T1 − T2
T1 + T2

C
[69]
[75]

61 Optimized soil adjusted
vegetation index OSAVI OSAVI = (1 + Y) · NIR − R

NIR + R + Y , where Y = 0.16 [82]

62 Pan NDVI PNDVI PNDVI = NIR − (G + R + B)
NIR + G + R + B

[77]

63 Plant senescence reflectance index PSRI PSRI = R − B
NIR [84]

64 RDVI RDVI RDVI = NIR − R√
NIR + R

[82]

65 Red edge 2 Rededge2 Rededge2 = RE − R
RE + R [85]

66 Red-blue NDVI RBNDVI RBNDVI = NIR − (R + B)
NIR + (R + B)

[77]

67 Saturation S S = max(R,G,B) − min(R,G,B)
max(R,G,B)

[86]

68 Shape index IF IF = 2 · R − G − B
G − B [69]

69 Soil adjusted vegetation index SAVI SAVI = NIR − R
NIR + R + L · (1 + L), where L = 0.5 [87]

70 Soil and atmospherically resistant
vegetation index 2 SARVI2 SARVI2 = 2.5 · NIR − R

1 + NIR + 6 · R − 7.5 · B [88]

71 Soil and atmospherically resistant
vegetation index 3 SARVI3 SARVI3 = 1.5 · NIR − R

NIR + R + 0.5 [88]

72 Spectral polygon vegetation index SPVI SPVI = 0.4 · (3.7 · (NIR− R)− 1.2 · (G− R)) [89]

73 Tasseled Cap—Green vegetation
index MSS GVIMSS GVIMSS =

−0.283 · G− 0.660 · R + 0.577 · RE + 0.388 · NIR [90]

74 Tasseled Cap—Non such
index MSS NSIMSS NSIMSS =

−0.016 · G + 0.131 · R− 0.425 · RE + 0.882 · NIR [90]

75 Tasseled Cap—Soil brightness
index MSS SBIMSS SBIMSS =

0.332 · G + 0.603 · R + 0.675 · RE + 0.262 · NIR [90]

76 Tasseled Cap—Yellow vegetation
index MSS YVIMSS YVIMSS =

−0.899 · G + 0.428 · R + 0.076 · RE− 0.041 · NIR [90]

77 Ratio MCARI/OSAVI MCARI_OSAVI MCARI_OSAVI = MCARI/OSAVI [90]

78 Transformed chlorophyll
absorption ratio TCARI TCARI = 3 ·

(
(RE− R)− 0.2 · (RE− G) · RE

R

)
[89]

79 Triangular chlorophyll index TCI TCI = 1.2 · (RE− G)− 1.5 · (R− G)
√

RE
R

[68]

80 Triangular vegetation index TVI TVI = 0.5 · (120 · (RE− G)− 200 · (R− G)) [89]

81 Wide dynamic range
vegetation index WDRVI WDRVI = 0.1 · NIR − R

0.1 · NIR + R [83]

82 Structure intensive pigment index SIPI SIPI = NIR − B
NIR − R [89]
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83–92
Ratio: B/G, B/R, B/RE, B/NIR, G/R,
G/RE, G/NIR, R/RE, R/NIR,
RE/NIR

rT1T2, where T1T2 ∈
BG, BR, BRE,

BNIR, GR, GRE,
GNIR, RRE, RNIR,

RENIR


rT1T2 = T1

T2 C

93–101
Normalized ratio: B-G, B-R, B-RE,
B-NIR, G-R, G-RE, G-NIR, R-NIR,
RE-NIR

nT1T2, where T1T2 ∈
BG, BR, BRE,

BNIR, GR, GRE,
GNIR, RRE, RNIR,

RENIR


nT1T2 = T1−T2

T1+T2

C
[91]
[92]

102–111
Difference: B-G, B-R, B-RE, B-NIR,
G-R, G-RE, G-NIR, R-RE, R-NIR,
RE-NIR

dT1T2, where T1T2 ∈
BG, BR, BRE,

BNIR, GR, GRE,
GNIR, RRE, RNIR,

RENIR


dT1T2 = T1− T2 C
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