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Is there still a need to reduce
myocardial infarct size in patients
with ST-segment elevation
myocardial infarction?
Ischaemic heart disease (IHD) remains the leading cause of death and
disability in Europe and worldwide. A major cause of morbidity and
mortality in IHD patients is an acute ST-segment elevation myocardial
infarction (STEMI), which despite prompt reperfusion by primary
percutaneous coronary intervention (PPCI) has significant mortality
(7% death at 1 year) and morbidity (22% prolonged or new hospitaliza-
tion for heart failure at 1 year) in patients with large infarcts.1 When
high-risk STEMI patients presenting with cardiogenic shock are not
excluded, mortality at 1 year is even higher, at 12% after 1 year.2 As
such, there remains an urgent need to discover novel therapies which
can be given prior to or at the time of PPCI to reduce myocardial infarct
(MI) size in order to preserve left ventricular (LV) systolic function,
prevent the onset of heart failure, and improve survival in reperfused
STEMI patients. In patients presenting with STEMI, rapid access to
the emergency medical services and timely reperfusion by PPCI minim-
ize the total ischaemic time, a major determinant of MI size.

Although myocardial reperfusion is essential to salvage myocar-
dium following a STEMI, the process of restoring coronary blood

flow to the ischaemic tissue can, in itself, induce myocardial injury
and cardiomyocyte death, a phenomenon which is known as ‘myo-
cardial reperfusion injury’.3,4 Crucially, there is currently no effective
therapy for reducing myocardial reperfusion injury in STEMI pa-
tients, and therefore, it remains a valid target for cardioprotection.
However, the search for an effective therapy capable of targeting
myocardial reperfusion injury and reducing MI size has been quite
challenging, with a large number of failures to translate novel cardi-
oprotective therapies into the clinical setting.5,6 In this consensus
article, we highlight the importance of myocardial reperfusion injury
as a viable target for cardioprotection and discuss the potential rea-
sons underlying the neutral results of recent clinical cardioprotec-
tion trials and explore the future possibilities for reducing MI size
and improving clinical outcomes in patients with IHD.

Why has it been so difficult to
prevent myocardial reperfusion
injury in patients with ST-segment
elevation myocardial infarction?
One major factor is an incomplete understanding of the mechanisms
underlying myocardial reperfusion injury, with variable reperfusion
times, multiple pathophysiological factors (calcium overload,
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oxidative stress, inflammation, and mitochondrial dysfunction), and
multiple players (cardiomyocytes, microvasculature, inflammatory
cells, and platelets), making it a complex phenomenon to target ef-
fectively.4,7,8 There is general agreement that a large part of the cell
death caused by myocardial reperfusion injury occurs during the
first few minutes of reperfusion, and that early treatment is required
to prevent it.4,7 The most important aspect of reperfusion injury is
cardiomyocyte cell death, which depends mainly on phenomena oc-
curring within cardiomyocytes themselves, as it is possible to recap-
itulate reperfusion injury and demonstrate cardioprotection in
isolated cardiomyocytes9 (Figure 1). However, other cells can also
contribute to cardiomyocyte cell death during reperfusion injury.
This is particularly clear in the case of platelets, the activation and
adhesion of which increase cell death independently of aggregation
and of any effects on myocardial flow.10 Activated resident cardiac
fibroblasts may also exacerbate the local inflammatory reaction and
aggravate reperfusion damage to cardiomyocytes.11,12 Microvascu-
lar injury and microvascular obstruction may prevent the restor-
ation of myocardial blood flow despite restoration of coronary
artery patency in patients with STEMI, and its extent is associated
with larger MI size, adverse LV remodelling,13 and worse progno-
sis,14,15 but up to what a point it is a cause or consequence of the
existence of large infarcts needs to be clarified—and it may depend
on the circumstances. Furthermore, increased endothelial perme-
ability and subsequent recruitment of inflammatory cells into the
site of infarction may also contribute to acute ischaemia/reperfusion
injury—a number of clinical studies that have investigated anti-
inflammatory therapies administered at the time of reperfusion to
reduce MI size have had neutral results.16,17

The mitochondrial permeability transition pore (MPTP) is an im-
portant mediator of myocardial reperfusion injury,18 yet several as-
pects of its role remain obscure. It is not well understood how

opening of the MPTP causes sarcolemmal rupture within the first
few minutes of reperfusion. A potential link could be the develop-
ment of hypercontracture, caused by high and oscillating Ca2+ in the
presence of ATP.19 Calpain activation occurring upon normalization
of intracellular pH in cells with Ca2+ has been demonstrated to con-
tribute to cardiomyocyte death.20 Reactive oxygen species may in-
duce MPTP opening, and interventions attenuating mitochondrial
ROS production can prevent MPTP opening and reduce MI size,21

but they also have extra-mitochondrial targets, the importance of
which needs to be clarified. A potentially important target of ROS
is the tetrahydrobiopterin–eNOS complex, which may be disso-
ciated by oxidation, resulting in peroxynitrite formation and re-
duced NO availability.22 Recent studies have proposed that
RIP3-mediated programmed cell necrosis may play a role in myocar-
dial reperfusion injury through CaMKII and the MPTP.23

A number of mechanical and pharmacological interventions have
been investigated in clinical cardioprotection studies to target myo-
cardial reperfusion injury in reperfused STEMI patients over the last
few years—these are discussed in the following sections (Table 1;
Figures 1 and 2).

Ischaemic post-conditioning
Zhao et al. first reported that brief episodes of ischaemia and reper-
fusion performed immediately after reflow can limit MI size in the
dog heart.24 This novel finding was later confirmed in different ex-
perimental models.25,26 Staat et al. and Thibault et al. first demon-
strated that comparable cardioprotection could be obtained in
STEMI patients with four 1-min cycles alternating inflations and de-
flations of the angioplasty balloon applied immediately after reopen-
ing the culprit coronary artery as evidenced by a reduction in MI
size, measured by cardiac enzyme release, SPECT, and cardiac

Figure 1 Main mechanisms of cardiomyocyte cell death during myocardial reperfusion and their inter-relations.
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magnetic resonance imaging (MRI).27,28 Several, but not all, Phase II
trials have confirmed that ischaemic post-conditioning (IPost) is car-
dioprotective in STEMI patients admitted with a full coronary artery
occlusion.29 –32 Reasons for failure of some trials might be related to
the absence of direct stenting and delivery of the IPost protocol
within the stent with the incumbent risk of coronary micro-
embolization.31 –33 Specific questions remain as to whether all pa-
tients may benefit from IPost given the potential influence of risk fac-
tors (e.g. diabetes, age) and concurrent treatments (e.g. anti-platelet
agents, statins).34– 38

Although none of these studies have reported safety concerns, it
remains uncertain whether IPost can improve clinical outcomes in
STEMI patients. In this regard, the DANAMI-3 Phase III trial has
completed recruitment, and the results are expected this year
(NCT01435408).39

Remote ischaemic conditioning
The application of cycles of brief ischaemia and reperfusion to an or-
gan or tissue remote from the heart has been demonstrated to re-
duce MI size following an episode of acute ischaemia/reperfusion
injury, a phenomenon which has been termed remote ischaemic
conditioning (RIC).40 – 44 The ability to recapitulate this cardiopro-
tective effect by simply inflating a blood pressure cuff placed on
the upper arm or thigh to induce cycles of brief ischaemia and reper-
fusion in the upper or lower limb, has facilitated the translation of
RIC into the clinical setting, where it has been shown to reduce peri-
operative myocardial injury but to not improve clinical outcomes in
patients undergoing coronary artery bypass graft surgery.45– 49

Several clinical studies have found that RIC using transient arm or
leg ischaemia/reperfusion reduced MI size by 20–30% (assessed by
cardiac enzymes, SPECT or cardiac MRI) in STEMI patients reper-
fused by either PPCI50 – 54 or thrombolysis.55 Furthermore, RIC
has been reported to improve LV systolic function at four weeks
in a subgroup of anterior STEMI patients56 and reduce major ad-
verse cardiac and cerebral events in a follow-up study of 251 STEMI
patients.57 It has been shown to be a cost-effective intervention
within the first 2 years following PPCI, an effect which was mainly
driven by a reduction in hospital re-admissions for heart failure (un-
published data). Finally, post hoc analysis failed to find any major con-
founding effects of co-morbidities or concomitant medication on
the cardioprotective efficacy of RIC in reperfused STEMI patients.58

In summary, RIC using transient limb ischaemia/reperfusion holds
promise as an adjunct to PPCI in STEMI patients for reducing MI size.
Whether it can improve long-term clinical outcomes is not known
and is currently being investigated in the 4300 STEMI patient
CONDI-2/ERIC-PPCI clinical study.59

Therapies which target the nitric
oxide/cyclic guanosine
monophosphate signalling pathway
There is extensive and consistent experimental evidence that nitric
oxide/cyclic guanosine monophosphate (NO/cGMP) is reduced in
reperfused myocardium, and pharmacological activation of this
pathway at the time of reperfusion has been shown to reduce MI

..
..

..
..

..
..

..
..

.
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

T
ab

le
1

S
um

m
ar

y
o

ft
he

da
ta

av
ai

la
bl

e
fo

r
se

ve
ra

lt
he

ra
pe

ut
ic

in
te

rv
en

ti
o

ns
fo

r
ta

rg
et

in
g

m
yo

ca
rd

ia
lr

ep
er

fu
si

o
n

in
ju

ry
an

d
re

du
ci

ng
m

yo
ca

rd
ia

li
nf

ar
ct

si
ze

Is
ch

ae
m

ic
co

nd
it

io
ni

ng
N

O
/c

G
M

P
pa

th
w

ay
M

it
o

ch
o

nd
ri

a
an

d
M

P
T

P
M

ul
ti

pl
e

ta
rg

et
s

IP
o

st
R

IC
A

N
P

G
IK

E
xe

na
ti

de
N

it
ri

c
o

xi
de

an
d

ni
tr

it
e

M
T

P
-1

31
C

sA
T

R
O

40
30

3
P

K
C

-d
in

hi
bi

ti
o

n
H

yp
o

th
er

m
ia

M
et

o
pr

o
lo

l
A

de
no

si
ne

M
ec

ha
ni

sm
of

ca
rd

io
pr

ot
ec

tio
n

kn
ow

n
+

+
+

+
+

+
+

+
+

/2
+

/2
+

+
+

Pr
e-

cl
in

ic
al

da
ta

sh
ow

s
co

ns
is

te
nt

ca
rd

io
pr

ot
ec

tio
n

+
+

+
+

+
+

/2
+

+
/2

+
/2

+
/2

+
+

+

Po
te

nt
ia

li
ss

ue
s

ov
er

sa
fe

ty
2

2
2

2
2

2
2

2
+

/2
2

+
/2

+
/2

2

C
lin

ic
al

M
Is

tu
di

es
+
+

+
+

+
+

/2
+

+
/2

2
+

/2
2

2
2

+
+

/2

M
et

a-
an

al
ys

is
da

ta
+

+
+

/2
+

C
lin

ic
al

ou
tc

om
e

st
ud

ie
s

*
*

2
*

M
ec

ha
ni

sm
of

ca
rd

io
pr

ot
ec

tio
n

kn
ow

n:
+

,k
no

w
n;

+
/2

,n
ot

cl
ea

r.
Pr

e-
cl

in
ica

ld
at

a
sh

ow
s

co
ns

ist
en

t
ca

rd
io

pr
ot

ec
tio

n:
+

,c
on

si
st

en
t

ca
rd

io
pr

ot
ec

tio
n;

+
/2

,i
nc

on
si

st
en

t
ca

rd
io

pr
ot

ec
tio

n.
Po

te
nt

ia
li

ss
ue

s
ov

er
sa

fe
ty

:2
,n

o
kn

ow
n

sa
fe

ty
is

su
es

;+
/2

,p
ot

en
tia

ls
af

et
y

is
su

es
.

Cl
in

ica
lM

Is
tu

di
es

:+
+

,s
ev

er
al

po
si

tiv
e

M
Is

tu
di

es
;+

,o
nl

y
on

e
po

si
tiv

e
M

Is
tu

dy
;+

/2
,i

nc
on

si
st

en
t

M
Is

tu
di

es
;2

,n
eu

tr
al

M
Is

tu
di

es
.

M
et

a-
an

al
ys

is
da

ta
:+

,p
os

iti
ve

da
ta

;+
/2

,i
nc

on
si

st
en

t
da

ta
.

Cl
in

ica
lo

ut
co

m
e

st
ud

ie
s:

*,
ou

tc
om

e
st

ud
y

on
go

in
g;

2
,n

eu
tr

al
ou

tc
om

e
st

ud
y

da
ta

.

Targeting reperfusion injury in STEMI patients 937
D

ow
nloaded from

 https://academ
ic.oup.com

/eurheartj/article/38/13/935/3056908 by guest on 16 August 2022



size.60 However, there is only one published trial testing the effect of
stimulating cGMP synthesis by particulate guanylate cyclase with at-
rial natriuretic peptide in STEMI—it showed a modest reduction in
enzymatic MI size.61 A number of other clinical trials have investi-
gated other therapies which target the NO/cGMP signalling path-
way. These include insulin, as part of glucose– insulin–potassium
(GIK) therapy which has had mixed results in clinical studies, al-
though the IMMEDIATE trial found that GIK administered in the am-
bulance reduced MI size in a subset of STEMI patients,62 and other
insulin-mimetics such as exenatide.

Exenatide
The anti-diabetic, glucagon-like peptide-1 (GLP-1), has been de-
monstrated in experimental animal studies to reduce MI size
when administered at the onset of reperfusion by mechanisms inde-
pendent of increased insulin levels.63 As a therapeutic strategy, the
GLP-1 analogue, exenatide, has also been shown to protect against
myocardial reperfusion injury in small and large animal MI mod-
els.64,65 In the clinical setting, an intravenous infusion of exenatide
initiated prior to PPCI has been shown to reduce MI size in patients
presenting with an acute STEMI, especially in those patients presenting
with short ischaemic times from symptom onset (,132 min).66–68

Another GLP-1 analogue, liraglutide, when administered prior to
PPCI and continued for 7 days, has been shown in a study of 85 STEMI
patients to improve LV systolic function.69

Further studies are now required to determine whether this
therapeutic approach can improve clinical outcomes in reperfused
STEMI patients.

Nitric oxide and nitrite
Nitric oxide is known to be an important mediator of cardioprotec-
tion in various forms of ischaemic conditioning,70 and circulatory ni-
trite has been demonstrated to be a potential humoral mediator of

remote ischaemic preconditioning.71 Although, there have been ex-
perimental studies demonstrating cardioprotection with intraven-
ous nitrite administered at the onset of reperfusion,72 the
National Heart Lung and Blood Institute (NHLBI) Consortium for
preclinicAl assESsment of cARdioprotective therapies (CESAR)
Network failed to demonstrate MI size reduction with nitrite using
a multi-centre approach in small and large animal MI models.73,74

Two recent clinical studies have failed to demonstrate a significant
reduction in MI size with nitrite administered by either the intraven-
ous75 or intracoronary76 routes in STEMI patients treated by PPCI.
However, there was a borderline increase in myocardial salvage in-
dex and reduced MI size in a subgroup of patients presenting with a
fully occluded coronary artery.76

The recent 250 patient NOMI study (NCT01398384) has inves-
tigated the role of inhaled nitric oxide (vasoKINOX 450) as an ad-
junct to PPCI to target myocardial reperfusion injury in STEMI
patients. Although no beneficial effect on MI size (Day 3 cardiac
MRI) was demonstrated, post hoc subgroup analysis revealed that
there was a significant reduction in MI size in those patients who
had not received nitrates in the ambulance.

Since there were no adverse events in these trials, further studies
on nitrite and nitric oxide appear worthwhile, to test whether this
therapeutic approach may yield benefit in a selected patient group.

Cyclosporin A
As a potent inhibitor of MPTP opening, cyclosporin A (CsA) has
been shown to significantly reduce MI size in a number of experi-
mental studies,77 –79 but not all.80,81 Some, but not all, Phase II clin-
ical trials have suggested that CsA might also protect the heart and
brain following a prolonged ischaemic insult.82 – 86 The recently
completed CYCLE trial of 410 STEMI patients failed to demonstrate
any benefit with CsA administered prior to PPCI in terms of
ST-segment resolution and enzymatic MI size.87 Finally, in the CsA
in Reperfused Acute Myocardial Infarction (CIRCUS) 970 patient

Figure 2 Various time-windows for applying therapeutic strategies for reducing myocardial infarct size in STEMI patients undergoing PPCI.
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trial, the administration of CsA immediately prior to PPCI failed to
improve clinical outcomes at 1 year (all-cause death, heart failure
hospitalization, and adverse LV remodelling) in anterior STEMI pa-
tients.1 Why these larger clinical trials failed to confirm the benefit
of CsA in reducing MI size from initial Phase II trials is unclear.88,89

Apart from a classical type I error frequently observed in small-
size clinical studies, several different causes may have attributed to
the neutral results of the CIRCUS trial: (i) CsA is a non-specific in-
hibitor of cyclophilin D and its other actions (e.g. cyclophilin A and
calcineurin inhibition) might have counteracted the benefit of inhi-
biting MPTP opening.90 (ii) Important changes in STEMI patients
since the initial Phase II trial might have played a role, including a
greater use of the new P2Y12 platelet inhibitors (prasugrel, ticagre-
lor), which are known to reduce MI size per se.91 (iii) The concen-
tration of CsA required to inhibit MPTP opening in STEMI patients is
not known. The blood concentration of CsA at 4 h after IV bolus
administration averaged 533+ 189 ng/mL in a subset of CIRCUS
patients—this was comparable to that observed in the original posi-
tive Phase II trial.1,82 (iv) Whether it is enough to inhibit MPTP open-
ing to prevent myocardial reperfusion injury in STEMI patients may
be questioned. One may wonder whether much longer ischaemia
times observed in humans (when compared with animal models)
might alter the binding site or the function of cyclophilin D and ren-
der it inaccessible to CsA. This last point may be pertinent in the
CIRCUS trial in which total ischaemic times were relatively pro-
longed at 4.5 h.1

In any case, the failure of CsA to improve clinical outcomes in
STEMI patients by no means questions the concept of protection
against myocardial reperfusion injury.

MTP-131
The mitochondria-targeting peptide, MTP-131, optimizes mito-
chondrial energetics and attenuates the production of ROS by se-
lectively targeting cardiolipin in the inner mitochondrial membrane.
It has been reported in small and large animal experimental studies
to reduce MI size when administered at the onset of reperfusion
and prevent adverse LV remodelling following MI.92,93 However, in
the 117 patient EMBRACE STEMI clinical trial,94 intravenous
MTP-131 administered prior to PPCI failed to reduce enzymatic MI
size in a carefully selected population of anterior STEMI patients
with ischaemic time ,4 h, no collaterals, and fully occluded coronary
artery. The reasons for the neutral results of this study are not known,
but may include reasons similar to those of other MPTP-targeted in-
terventions (as discussed previously) as well as pharmacokinetic or
pharmacodynamic difficulties to target mitochondria in STEMI pa-
tients. Clinical trials are currently underway to investigate whether
this agent can benefit patients with chronic heart failure.

TRO40303
The mitochondrial targeting drug, TRO40303, which binds to the
translocator protein TSPO in the outer mitochondrial membrane
and aims to inhibit MPTP opening by attenuating ROS production,
has been reported in small animal experimental studies to reduce
MI size when administered at time of reperfusion.95 However, in a
clinically-relevant large animal MI model, it failed to reduce MI size

in the porcine heart.96 In the 163 STEMI patient MITOCARE
study,97 this agent failed to reduce MI size despite careful patient
selection (completely occluded infarct-related artery, large area-
at-risk). Prior experimental studies had revealed ambiguous cardio-
protective capacity, and the formulation and dosage of TRO40303
used in the clinical study differed from experimental studies, which
may in part explain the neutral findings of the MITOCARE study.
Finally, more adverse events were reported in patients receiving
TRO40303 when compared with the placebo arm,97 thereby limit-
ing the clinical application of this therapeutic approach.

Protein kinase C-d inhibition
After Downey et al. first identified protein kinase C (PKC) to be
a cytosolic mediator of ischaemic preconditioning protection,
the role of the PKC-d isoform in cardioprotection has been
contentious,70 with some studies reporting its genetic98 or pharma-
cological99 inhibition to be cardioprotective, while other studies
finding it to be a mediator of ischaemic preconditioning and opioid
cardioprotection.100,101 An initial clinical study (DELTA-MI)102 had
suggested that intracoronary delcasertib administered prior to
PPCI may be cardioprotective in STEMI patients. However, in the
follow-up PROTECT-MI trial, delcasertib was given as an intraven-
ous instead of intracoronary infusion and it failed to reduce MI size in
acute anterior STEMI patients.103 A number of factors may have con-
tributed to the neutral results of the PROTECT AMI trial including in-
consistent experimental data, inadequate dosing with the intravenous
route of administration, and inclusion of patients who had spontan-
eously reperfused prior to PPCI. Therefore, as a therapeutic strategy,
PKC-d inhibition appears to be limited in its clinical application.

Adenosine
The role of adenosine as a mediator of cardioprotection is well-
established,70 with experimental studies demonstrating that adeno-
sine administered prior to index ischaemia can reduce MI size;
however, whether it can also reduce MI size when administered at
the time of reperfusion has been very contentious.104,105 Unsurpris-
ingly then, the results of clinical studies investigating adenosine as an
adjunct to PPCI have also been inconsistent, and this may, in part,
relate to patient selection, the variable doses used, and the route
of administration (intravenous vs. intracoronary).106 Some studies
have reported reductions in MI size with high-dose intravenous ad-
enosine administered as a 3 h infusion initiated prior to reperfusion
in STEMI patients presenting within 3 h of chest pain onset,107 – 109

with other studies using lower doses of IV adenosine or boluses of
intracoronary adenosine being less successful at reducing MI size.110

A recent meta-analysis has shown a positive effect of adenosine
treatment on heart failure outcomes in reperfused STEMI pa-
tients.106 Therefore, larger clinical trials are needed to test whether
this therapeutic approach is effective in STEMI patients presenting
with shorter ischaemic times.

Therapeutic hypothermia
Therapeutic hypothermia has been consistently shown to reduce MI
size in pre-clinical studies.111 Large animal experiments have shown
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that hypothermia dose-dependently down to 328C is cardioprotec-
tive if initiated during ischaemia but not after reperfusion.112 – 115

Even prolonged ischaemia to induce hypothermia has been noted
to reduce MI size.116 However, early clinical studies (ICE-IT, COOL-
MI) failed to demonstrate a benefit of hypothermia, possibly due to
slow cooling.117,118 Combination of cold saline and endovascular
cooling induced a faster temperature fall and reduced MI size in a
20-patient pilot trial (RAPID MI-ICE), while the larger CHILL-MI
trial failed to demonstrate a significant reduction in MI size, although
patients presenting within 4 h with an anterior STEMI had a reduc-
tion in MI infarct size and there was also a significant reduction in
heart failure rate.119,120 It is thought therefore that, in order to
translate this therapeutic approach into the clinical setting, new de-
vices capable of delivering faster cooling are needed. This possibility
is currently being investigated in anterior STEMI patients in the
COOL AMI EU Pilot Trial (NCT02509832), and newer techniques
are being developed, which allow non-invasive rapid hypothermia to
,328C in 20 min to be initiated in the ambulance.121

Metoprolol
Intravenous metoprolol administered prior to reperfusion has been
shown to reduce MI size and preserve LV systolic function in the
porcine heart.122 The mechanisms underlying this cardioprotective
effect are currently being investigated and appear to extend beyond
their effects on haemodynamics and myocardial oxygen consump-
tion. In the 270 anterior STEMI patient METOCARD-CNIC trial,
intravenous metoprolol administered in the ambulance prior to
PPCI reduced MI size prevented LV adverse remodelling, preserved
LV systolic function, and lowered hospital re-admissions for heart fail-
ure.123,124 Results are awaited from the EARLY BAMI trial, which has
recently completed recruitment of 600 STEMI patients and which in-
vestigated the effect of IV metoprolol or placebo prior to PPCI on MI
size by cardiac MRI.125 However, this therapeutic approach may not
be suitable for all STEMI, and those with heart failure, hypotensive,
or presenting with AV block will not qualify for this therapy.

Whether this therapeutic approach can improve clinical outcome
in reperfused STEMI patients will be addressed by the MOVE ON!
randomized clinical trial, which will investigate the effect of meto-
prolol on cardiac death and heart failure hospitalization.

Optimizing approaches to
cardioprotection

More rigorous selection of
cardioprotective therapy
A number of clinical trials may have failed to demonstrate benefit
with some cardioprotective therapies due to inconsistent and/or in-
sufficient experimental data (see Figure 1). In some cases,
meta-analyses of experimental studies have been necessary to de-
termine the efficacy of a particular treatment (see Figure 1). Other
treatments have been tested in clinical trials without prior experi-
mental studies in large animals. In general, most interventions have
been studied only in healthy, young animals, and pre-clinical studies
in adult or older animals, with co-morbidities and concomitant

medication usually received by patients with STEMI have been lack-
ing.38,126 Among concomitant medication relevant to STEMI pa-
tients, platelet inhibitors may be particularly important, as they
have been shown to have cardioprotective effects,10,91 which may
interfere with cardioprotective interventions.127

In general, studies on novel cardioprotective therapies should be
performed only in patients after consistent demonstration of effi-
cacy and absence of safety concerns obtained in adequate small
and large animal models in different laboratories using standardized
methods. Research networks may be necessary to obtain the neces-
sary level of pre-clinical evidence. In this regard, the NHLBI CESAR
network was set up in the USA with this purpose in mind,73,128 and
similar networks should be created in Europe.

Optimizing clinical study design
In some instances, the failure of some clinical trials may have been
predictable based on issues related to clinical study design.

Patient selection
It is important to select the patients who have been shown in clinical
studies who derive the most benefit from an intervention applied as
an adjunct to PPCI to reduce MI size; this includes those STEMI pa-
tients presenting with the following:

† Short ischaemic time (,2–3 h)67,109

† Large area-at-risk (.30–40% of LV)129 such as anterior STEMI
† Fully occluded coronary artery prior to PPCI (TIMI flow ,1)29

† No significant coronary collaterals

Dosing the intervention
A failure to ascertain the most efficacious dose of the cardioprotec-
tive intervention, whether it be a mechanical or pharmacological
one, may have contributed to the failure to translate cardioprotec-
tion in some of the clinical STEMI studies.

Timing the intervention
The intervention is more likely to be effective at targeting myocar-
dial reperfusion injury in the following circumstances:

† There is consistent pre-clinical evidence that the intervention can
reduce MI size when administered prior or at the onset of reper-
fusion, and it has achieved sufficient concentrations in the blood
in the first few minutes of reperfusion.

† It is important to note that those cardioprotective interventions
that are effective only when present during the ischaemic period
may act by reducing acute myocardial ischaemic injury.62,123 Limit-
ing ischaemic injury is a very effective strategy to limit MI size, but it
may be difficult to apply in STEMI because it requires very early ad-
ministration, and in patients with a completely occluded artery, the
treatment may not be able to reach the ischaemic myocardium.
Even when drugs are administered before reperfusion, they may
not reach a sufficient concentration in time to protect against the
cell death, which occurs in the first few minutes of reflow.

Combination therapy for reducing
myocardial infarct size
Using combination reperfusion therapy to target either the different
pro-survival signalling pathways within the cardiomyocyte or
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different proponents of myocardial reperfusion injury (cardiomyo-
cyte, platelets, inflammation, and microvasculature) may provide
more effective cardioprotection against myocardial reperfusion in-
jury than a single targeted approach. Alburquerque-Béjar et al.130

found an additional 26% reduction in MI size when combining RIC
with insulin-like therapies (such as GIK and exenatide) in a porcine
acute MI model. The COMBinAtion Therapy in Myocardial Infarc-
tion (COMBAT-MI) study (NCT02404376) will investigate the po-
tential benefits of combined reperfusion therapy using RIC with
exenatide on MI size reduction in STEMI patients treated by PPCI.
Although an initial clinical study of 54 patients in reperfused STEMI
patients failed to show an additive cardioprotective effect with RIC
and IPost administered in combination,52 the recently published LIP-
SIA study of 696 patients reported increased myocardial salvage in
those patients administered RIC in combination with IPost when
compared with control.54

Future perspectives
Translating cardioprotective therapies for targeting myocardial reper-
fusion injury from experimental studies into the clinical setting for pa-
tient benefit has been extremely challenging. The failure to find an
effective agent for preventing myocardial reperfusion injury thus far,
however, does not question the existence of myocardial reperfusion
injury as a valid target for cardioprotection. Rather it underscores the
need to better understand the mechanisms underlying myocardial re-
perfusion injury. As such experimental studies in this area should con-
tinue, as this will allow us to better define effective therapeutic
strategies for targeting reperfusion injury to reduce MI size. Currently,
an incomplete understanding and lack of appreciation of the complex-
ities of myocardial reperfusion injury has contributed, in part, to the
failure to effectively target myocardial reperfusion injury in the clinical
setting for patient benefit.

Clinical research in this area should also continue. However, les-
sons should be learned from recent clinical trials: (i) future clinical
trials should be restricted to interventions with consistent experi-
mental data and the latter should include studies in large animals;
(ii) clinical study design is crucial when testing novel cardioprotec-
tive therapies in STEMI patients; and (iii) only interventions consist-
ently found to be effective at limiting MI size in Phase II clinical trials
should be investigated in large clinical outcome trials.

Therapeutic strategies that have potential to improve clinical out-
comes in reperfused STEMI patients include remote ischaemic condi-
tioning, exenatide, and metoprolol, and clinical studies are underway
to test their efficacy in this regard. New approaches for limiting MI
size should include combination therapy to (i) target different cardio-
protective signalling pathways within the cardiomyocyte in order to
provide additive cardioprotection and (ii) target the different players
involved in myocardial reperfusion injury (cardiomyocyte, microvascu-
lature, inflammatory cells, and platelets). These experimental and clin-
ical studies are currently underway and should allow more effective
targeting of myocardial reperfusion injury, thereby reducing MI size
in reperfused STEMI and preventing the onset of heart failure.
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