

Delft University of Technology

Targeting static and dynamic workloads with a reconfigurable VLIW processor

Hoozemans, Joost

DOI
10.4233/uuid:c3be6373-f4f2-4865-b3f0-750bfb17871e
Publication date
2018
Document Version
Final published version
Citation (APA)
Hoozemans, J. (2018). Targeting static and dynamic workloads with a reconfigurable VLIW processor.
https://doi.org/10.4233/uuid:c3be6373-f4f2-4865-b3f0-750bfb17871e

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:c3be6373-f4f2-4865-b3f0-750bfb17871e
https://doi.org/10.4233/uuid:c3be6373-f4f2-4865-b3f0-750bfb17871e

Targeting static and dynamic workloads
with a reconfigurable VLIW processor

Targeting static and dynamic workloads
with a reconfigurable VLIW processor

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op donderdag 21 juni 2018 om 10:00 uur

door

Joost Johannes HOOZEMANS

Master of Science in Computer Engineering,
Technische Universiteit Delft,
geboren te Delft, Nederland.

Dit proefschrift is goedgekeurd door de

promotor: prof. dr. K.L.M. Bertels
copromotor: dr. ir. J.S.S.M. Wong

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. K.L.M. Bertels Technische Universiteit Delft, promotor
Dr. ir. J.S.S.M. Wong Technische Universiteit Delft, copromotor

Onafhankelijke leden:
Prof. dr. H.P. Hofstee Technische Universiteit Delft
Prof. dr. H. Corporaal Technische Universiteit Eindhoven
Prof. dr. -ing. M. Hübner Ruhr-Universität Bochum, Duitsland
Prof. dr. ir. C. Vuik Technische Universiteit Delft
Prof. dr. ir. S. Hamdioui Technische Universiteit Delft, reservelid

Overige leden:
Dr. ir. Z. Al-Ars Technische Universiteit Delft

This work has been supported by the ALMARVI European Artemis project nr. 621439.

Keywords: Computer architecture, VLIW processor, dynamically reconfig-
urable, polymorphic, embedded computing, FPGA, streaming

Printed by: Ipskamp printing

Front & Back: Conceptual diagram created by Bart Kallenbach for the Dig-it! re-
search exhibition. 𝜌-VEX logo by Thijs van As, adapted by Jeroen
van Straten.

Copyright © 2018 by J.J. Hoozemans

ISBN 978-94-6366-049-5

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Contents

Summary ix

Samenvatting xi

Acknowledgements xiii

1 Introduction 1
1.1 Dynamic workloads call for dynamic processors 2
1.2 Leveraging design-time customization for highly static work-

loads . 3
1.3 Embedded execution platforms 4

1.3.1 General-purpose . 4
1.3.2 Application-Specific . 4
1.3.3 Reconfigurable . 5

1.4 Workload analysis . 6
1.4.1 Requirements . 7
1.4.2 Parallelism. 8
1.4.3 Code characteristics . 11

1.5 Problem formulation and scope 12
1.5.1 Software: Workloads . 12
1.5.2 Hardware: Reconfigurable processors 15
1.5.3 Scheduling: Tasks and processor configurations 16

1.6 Proposed platform: a design-time configurable, run-time parametriz-
able VLIW processor . 17
1.6.1 Static (design-time) reconfigurability 17
1.6.2 Dynamic (run-time) parameterization. 18
1.6.3 Environment . 21
1.6.4 Platform overview. 23

1.7 Approach . 23
1.7.1 Modeling & Simulation . 26
1.7.2 Using FPGA technology . 26
1.7.3 Code characterization method 27
1.7.4 A runtime for scheduling tasks and configurations. . . . 27
1.7.5 Workload generation . 28
1.7.6 Benchmarks. 28

1.8 Contributions and thesis outline 29

v

vi Contents

Part 1 - Static workloads, statically reconfigurable platform 33

2 Using VLIW softcore processors for image processing 35
2.1 Introduction . 36
2.2 Related work . 37
2.3 The 𝜌-VEX platform . 38

2.3.1 The VEX system: ISA and toolchain. 38
2.3.2 The 𝜌-VEX VLIW processor 38

2.4 Image processing applications . 39
2.5 Results and discussion . 40
2.6 Conclusions . 42

3 A streaming FPGA computation fabric 43
3.1 Introduction . 44
3.2 Related work . 45
3.3 Implementation . 45

3.3.1 Processing elements . 45
3.3.2 Memory hierarchy . 46
3.3.3 Platform . 47

3.4 Experimental setup . 47
3.5 Evaluation results . 48

3.5.1 Resource utilization . 48
3.5.2 Image processing performance 49

3.6 Conclusions . 50

4 Frame-Based Programming, Stream-Based Processing 53
4.1 Introduction . 54
4.2 Related work . 55

4.2.1 Optimizing/accelerating image processing workloads . . 55
4.2.2 FPGA acceleration . 55
4.2.3 FPGA overlays. 57
4.2.4 FPGA image processing overlays. 57
4.2.5 Integration frameworks . 57

4.3 Approach . 58
4.3.1 OpenCL’s view on parallel computing 58
4.3.2 OpenCL memory model . 58
4.3.3 Streaming data and OpenCL 59
4.3.4 OpenCL data architecture. 60

4.4 Implementation - Hardware . 61
4.4.1 Processing element. 62
4.4.2 Memory structure . 62
4.4.3 Interfaces . 64

4.5 Implementation - Software . 65
4.5.1 Compilation and operation 65
4.5.2 Buffer management . 66
4.5.3 Synchronization and communication 67
4.5.4 Application development 68

Contents vii

4.6 Experiments/Evaluation . 69
4.7 Conclusions . 70

Part 2 - Dynamic workloads, dynamically reconfigurable platform 73

5 Evaluating auto-adaptation methods 75
5.1 Introduction . 76
5.2 Approach . 77

5.2.1 Target processor . 77
5.2.2 Proposed auto-adapting method 78

5.3 Implementation . 79
5.3.1 Common . 80
5.3.2 Window-based monitoring 81
5.3.3 BTCB . 81
5.3.4 Phase change annotations 82

5.4 Evaluation . 82
5.4.1 Experimental setup . 82
5.4.2 Results . 82

5.5 Related work . 85
5.6 Conclusions . 86

6 Adapting to dynamic workloads 87
6.1 Introduction . 88
6.2 Background . 89
6.3 The 𝜌-VEX polymorphic VLIW processor 90
6.4 Approach . 91

6.4.1 On-line profiling . 91
6.4.2 Compiler annotations . 92
6.4.3 Datapath assignment . 92

6.5 Experiments/Evaluation . 93
6.5.1 Annotation overhead and coverage 94
6.5.2 Throughput & Performance. 94

6.6 Related work . 98
6.6.1 Phase detection and workload characterization 98
6.6.2 Polymorphic processors . 98

6.7 Conclusions . 99

Part 3 - Real-time and mixed-criticality systems 101

7 Evaluating real-time properties 103
7.1 Introduction . 104
7.2 Background . 106
7.3 Related work . 107
7.4 Implementation . 108
7.5 Experimental Setup . 110
7.6 Results . 112
7.7 Conclusions . 113

viii Contents

8 A platform for mixed-criticality systems 115
8.1 Introduction . 116
8.2 Background . 118

8.2.1 Processing platform . 118
8.2.2 Scheduling methodology for dynamic processors 120

8.3 System architecture for Mixed-criticality systems 122
8.3.1 Spatial isolation . 122
8.3.2 Temporal isolation . 124
8.3.3 Assigning unallocated cycles to non-critical tasks 124

8.4 Scheduling approach . 125
8.4.1 Worst-case schedule creation 125
8.4.2 Improving average-case performance 128

8.5 Experimental setup . 129
8.6 Results . 131

8.6.1 Schedulability. 132
8.6.2 Performance & area utilization 133
8.6.3 Resource utilization and throughput 134

8.7 Related work . 138
8.8 Conclusions . 140

9 Conclusion 141
9.1 Conclusions . 141
9.2 Future research directions . 142

List of Publications 145

References 147

Curriculum Vitæ 161

Summary

Embedded systems range from very simple devices, such as a digital watch, to
highly complex systems such as smartphones. In these complex devices, an in-
creasing number of applications need to be executed on a computing platform.
Moreover, the number of applications (or programs) usually exceeds the number of
processors found on such platforms. This creates the need for scheduling. Further-
more, each program exhibits different characteristics and their interaction with the
(real-life) environmentment leads to real-time requirements. Consequently, the set
of programs, called workload, exhibits highly dynamic behavior. Workloads can be
dynamic in intensity (i.e., the number of concurrent tasks), characteristics (amount
and type of parallelism), and requirements (real-time constraints, power budgets,
performance). We argue that dynamic workloads require a dynamic computing
platform and propose to use one that comprises the 𝜌-VEX reconfigurable VLIW
processor. It can dynamically adapt to the workload while it is running. Adapta-
tions can be triggered by a user, programmer, compiler, or an operating system.
The latter two methods can operate fully automatic and exploring these is one of
the goals of this work.

Besides dynamic workloads, a number of new classes of embedded devices are
running application programs that are very static, but require very high through-
put. Examples are the latest generations mobile telecommunications hardware and
vision-based applications (automation, surveillance, automated driving). In this
case, adapting to the workload at run-time is not advantageous because there are
no changes to adapt to. Optimizing for these applications is possible, but must be
done before the hardware platform is manufactured (during the design phase) or
by making use of Field-Programmable Gate Arrays (FPGAs).

This thesis explores the use of the proposed reconfigurable processor to tar-
get the full spectrum of embedded workloads. First, design-time reconfigurability
is employed to optimize a hardware platform for a static, streaming image pro-
cessing workload. Second, we explore the run-time reconfigurable processor for
dynamic workloads. This is achieved by adapting to a single program to optimize
energy efficiency, followed by adapting to a generated set of programs optimizing
for throughput. Third, the real-time characteristics of the processor are evaluated
and it is shown to have better schedulability compared to static processors. The
VLIW architecture results in good timing-predictability, which allows finding tight
bounds on the worst-case execution time. Last, we show that the processor is able
to assign more parallel execution resources to a static program that is added into
the workload, while still guaranteeing time-safety for critical tasks.

ix

Samenvatting

Er bestaan vele vormen van embedded (geïntegreerde) systemen, van simpele ap-
paraten, zoals digitale horloges, tot veel complexere, zoals een smartphone. De
complexere systemen worden geacht steeds meer en in toenemende mate diverse
applicaties te kunnen uitvoeren op hun embedded processor. Het draaien van al
deze verschillende programma’s, allen met hun eigen karakteristieken, gecombi-
neerd met de interactie met de omgeving (waardoor veel embedded systemen
real-time restricties hebben), resulteert in een werklast die zeer dynamisch is. Een
werklast kan dynamisch zijn qua intensiteit (i.e., het aantal gelijktijdig actieve ta-
ken), karakteristieken (hoeveelheid en type parallelisme), en restricties (real-time,
vermogen budgets, prestatie-eisen). Om dit type werklast efficïent uit te voeren,
stellen we voor om gebruik te maken van een dynamisch computerplatform in de
vorm van de 𝜌-VEX herconfigureerbare VLIW processor. Deze processor kan zich
aanpassen aan de werklast terwijl hij draait. Aanpassingen kunnen handmatig in
gang gezet worden door de gebruiker, de programmeur, de ontwerper, of automa-
tisch door een compiler of besturingssysteem. Een van de doelstellingen van dit
werk is om de automatische methodes te onderzoeken.

Behalve dynamische werklasten ontstaan er ook nieuwe elektronische systemen
die programma’s uitvoeren die zeer statisch zijn, maar wel zeer hoge rekensnelheid
vereisen. Voorbeelden hiervan zijn de laatste generaties mobiele telecomappa-
ratuur en applicaties die werken met beeldherkenning (zoals diverse automatise-
ringstoepassingen, (camera)toezicht, zelfrijdende auto’s). In dit geval heeft het
geen zin om tijdens het uitvoeren van de applicatie de processor aan te passen,
omdat er geen veranderingen zijn. Een hardwareplatform kan nog steeds voor
deze applicaties worden geoptimaliseerd, maar het moet gebeuren tijdens de ont-
werpfase of door gebruik te maken van Field-Programmable Gate Arrays (FPGA).

Dit proefschrift onderzoekt het gebruik van een herconfigureerbare processor
voor het uitvoeren van het gehele spectrum van embedded software. Eerst maken
we gebruik van configureerbaarheid tijdens de ontwerpfase om een hardwareplat-
form te optimaliseren voor een statische, streaming beeldverwerkingsapplicatie.
Vervolgens onderzoeken we de run-time herconfigureerbare processor voor dyna-
misch werklasten. Dit doen we door eerst de processor aan te passen aan een
enkel programma om de energie-efficiëntie te optimaliseren, gevolgd door het on-
derzoeken van aanpassingen aan een gegenereerde verzameling van programma’s
om de totale rekensnelheid te optimaliseren. Hierna evalueren we de real-time
eigenschappen van de processor, en laten we zien dat we er real-time schedules
voor kunnen maken die niet mogelijk zijn op vergelijkbare statische processoren.
Ten slotte demonstreren we dat de processor in staat is om meer parallelle reken-
eenheden toe te wijzen aan een statische taak die aan de werklast is toegevoegd,
terwijl de tijd-kritische taken nog steeds aan hun real-time restricties voldoen.

xi

Acknowledgements

The PhD. project has been an incredible journey and I have been lucky to have
been surrounded with so many wonderful people throughout the whole process. I
will attempt to thank most of them here.

Stephan, under your guidance I have enjoyed the freedom in choosing a path
that I felt was truly my own. Your topic is most definitely not the easiest in our field
and you have always countered adversity and skepticism with optimism, creativity
and perseverance (qualities that I quickly recognized as being essential in bringing
a PhD. to a successful conclusion). It has been an amazing adventure and I want
to thank you for everything. Zaid, traveling abroad to project meetings and confer-
ences with you felt more like city trips with friends. Your energy and drive never
seized to amaze me, and your faith in me has been deeply appreciated. Koen, I
am grateful this is not an in memoriam and that you have made such an incredible
recovery. I have been a part of your group for half a decade now and I felt at home
right from the start.

I would like to thank my PhD. committee, Peter, Henk, Michael, Kees and Said for
taking the effort to review my work and provide valuable suggestions and critique.

Sorin, you have given me the opportunity to teach some things about computer
architecture to hundreds of students from all over the world for four years. It is
something I am very proud of. Thank you for all the confidence you placed in me,
and thanks to Thomas, Nicoleta and Jeroen for all their help.

A big thanks to the wonderful staff; Lidwina, Joyce, Arjan, and sysadmin Erik (I
hope you didn’t mind me occasionally making sure you weren’t bored).

I have had delightful times with many colleagues from overseas, including Qi,
Jian, Jintao, Shanshan, Cuong (whom I’ve had the pleasure of visiting in Vietnam!),
Innocent, Hoang Anh, and the profoundly talented football players Lei and Joey.
Our weekly matches were something I always looked forward to! Thanks to Imran,
Daniel, Razvan, Motta, and the others (also from other groups, including Accel
and Long). Thanks to my Dutch PhD. buddies Johan and Erik; I have enjoyed the
lunches, borrels, events and discussions with you!

I have the warmest memories of our friends from UFRGS, Brazil, who I have
had the pleasure of working together with (many even as office mates). Luigi, it
was difficult to even picture my defense without you. But I am glad that I never
have to address you as ”opponent”, as I feel like you have been one of my greatest
supporters. Caco, I will not forget your powerful presence on the football field!
Arthur and Anderson, it was really great to have you guys as office mates on more
than one occasion. Thank you all, also the others (Tiago, Sebastian, Jeckson), for
the wonderful times we shared in Delft and at conferences elsewhere!

xiii

xiv Acknowledgements

Participating in the ALMARVI project has taught me a lot, and I would like to
thank the partners, especially the ones that we occasionally collaborated closely
with, such as the guys from TUT Finland (Pekka, Timo and friends), Jiri from UTIA
Czechia, and of course Rob and Steven at Philips.

Many thanks to the folks in the MEST board; Sven and Jordi, Nauman, Jan,
Boyao, Fei, Chock, Hui, Augusto, Andres, and my successor Haji.

Koen & Carmina’s quantum effort has rocketeered the group into a leading
position in this upcoming field and sparked the creation of a whole department.
Carmina, Leon, Lingling, Savvas, Xiang, Nader, Hans and the others; I feel very
proud to have been your colleague and wish you all the best of luck!

There has been a large number of students working on the 𝜌-VEX for their
Master’s thesis, each contributing something to the project, the team, and even
to this thesis; a big thanks to Muez, Maurice, Klaas, Hugo, Jens, Koray, Panos,
Bas, Rolf, Muneeb, Angelos, Lennart, Jonathan, Jacko, Saevar, Anurag, Uttam, and
Federico. In addition, I have thoroughly enjoyed having Bachelor’s honour track
students Tom, Piet, Luc and Matti participate in our lab!

Anthony, things have never been the same after you left and I have missed you
at the lab ever since. Jeroen, you have been like a whirlwind going through our
lab from the start, fixing and improving everything you saw. I cannot imagine how
things would have gone without you, and I have often had to shake my head in
awe about how talented and hard-working you are. The three of us felt like an
unstoppable team, and I want you to know how much I loved working with you.

Carsten, our paths have never strayed far from each other from school all the
way up to the PhD., and I have always considered our friendship something very
special and valuable. I will miss having you so close.

To all my friends; thanks for all the fun and I hope to enjoy more of your company
at bars, boats, barbecues and beaches!

Steven, Prem and Suzanne; thank you for making me feel part of your family. To
my own family; Coen and Suus, I’m so proud of you and always love being around
you. Dearest Mom and Dad, I am thankful for everything you have given me and
for having you in my life. Over the years, I have become deeply aware of how
special you are.

And at the end of the day, Olga, none of it would be worth much if you weren’t
here to share with. You are the sunshine of my life.

1
Introduction

1

1

2 1. Introduction

Ever since electronic devices started to use programmable embedded processors
instead of dedicated circuits, more and more software that increases their function-
ality is being added each generation. The embedded domain, that has historically
been concerned with very low-power designs running simple programs, is expand-
ing its reach with ever increasing numbers of devices executing an ever widening
spectrum of software: from washing machines to self-driving cars. This creates the
need for embedded systems to be able to target applications in the entire spectrum
in an efficient manner. As the applications and their requirements are so diverse,
there exists no single execution platform that can execute all workloads efficiently.

This chapter introduces two sides of the spectrum of embedded workloads in
Section 1.1 and 1.2, briefly introduces embedded execution platforms that are cur-
rently used to execute these workloads in Section 1.3, and discusses general work-
load properties in Section 1.4. Then, the problem formulation and scope of this
work are presented in Section 1.5, the proposed solution is discussed in Section
1.6, and the evaluation approach is presented in Section 1.7.

1.1. Dynamic workloads call for dynamic processors
We are continuously surrounded by electronic devices. Some of these just make
our lives easier, while others perform crucial tasks such as operating the wings of
an airplane or the brakes in our cars. In these devices, there has been a steady
increase in usage of embedded processors, because of their relatively low cost
compared to designing a dedicated electronic circuit for each task or device. For
example, high-end cars currently have over 100 processors on board [1], and the
demand for processing power may start to increase at a significantly higher pace
now all competing brands have started to incorporate Advanced Driver Assistance
Systems (ADAS) into their models.

The workloads that are executed on embedded processors are increasing in
complexity [2]. Early embedded systems typically had only a single task to execute.
To decrease costs, power consumption, and other factors such as the wiring in cars,
the industry is pushing towards consolidating multiple tasks onto a single embedded
processor [3]. As a result, systems have workloads consisting of multiple tasks that
each have their own requirements and characteristics. Some of them will have very
strict real-time requirements, others may have a performance requirement. Tasks
can be multi- or single-threaded, and their execution time can be dominated by
computation, control (branches), or memory accesses.

These complex workloads, combined with close interaction with the environment
(e.g., responding to sensor input), lead to highly dynamic behavior. Workloads
can be dynamic in intensity (i.e., the number of concurrent tasks), characteristics
(amount and type of parallelism), and requirements (real-time constraints, power
budgets, performance). A single program that has a high degree of Instruction-
Level Parallelism (ILP) can be executed efficiently on a high-performance single-
core processor. A program consisting of a large number of parallel threads should be
executed on a processor with a large number of cores, in which case individual core
performance is less important. Even within a program, some of these properties can
change rapidly as execution passes through different phases [4]. On a workload

1.2. Leveraging design-time customization for highly static workloads

1

3

level, some programs more strict real-time requirements than others, leading to
mixed-criticality systems [5]. However, contemporary embedded platforms, that
are used to execute these highly dynamic workloads, are based on homogeneous
or heterogeneous multi-core processors that are static.

Homogeneous multi-core processors have multiple instances of a processor core
on a single chip, supporting concurrent execution of multiple tasks or threads. Het-
erogeneous multi-core processors usually have a number of high-performance and
a number of energy-efficient (but lower performance) cores. This provides some
potential to match a program to a core type, depending on its requirements (how
much performance does it need?) and code characteristics (some code will not
run significantly faster on a high-performance processor core, because for example
it is bound by the performance of the memory system). This approach limits the
accuracy of this match, because the number of core types is fixed and finite (cur-
rent heterogeneous processors such as ARM big.LITTLE provide only two options).
Additionally, it limits resource utilization, because if a program is running on one
core, all the others are idle. A final drawback is that there is a penalty involved
when migrating a task from one core to another. These observations have inspired
architects from industry and academia to propose dynamically reconfigurable pro-
cessors.

Dynamic (or ‘polymorphic’) processors adapt to the workload. Typically, they
can split cores to run multiple programs at the same time (providing high total
throughput), or merge them to provide high single-thread performance. Several
designs have been described in literature [6] [7] [8], and a theoretical foundation
for their potential performance advantage has been given by Hill and Marty [9]. One
such design is the 𝜌-VEX polymorphic VLIW (Very Long Instruction Word) processor,
which is the focus of this dissertation. It is discussed in more detail in Section 1.6.

Having a processor that is able to adapt to the workload is not enough. It is
still necessary to analyze the currently executing workload and evaluate what the
best processor configuration is. Without such functionality, it is up to the user
to trigger processor adaptations manually during run-time, up to the designer to
trigger them according to a certain rule set devised at design-time (this can for
example be based on environmental observations such as battery level), or to the
programmer to profile and annotate his code during compile-time. Our goal is to
perform these steps fully automatically in hardware, during run-time.

1.2. Leveraging design-time customization for
highly static workloads

On the other side of the spectrum of embedded workloads, applications exist that
continuously performs a fixed set of operations of a stream of input data. For
example, a currently rising class of applications uses some form of computer vision.
Most notably, this includes automation (e.g., vision-guided robotics), surveillance,
automotive and medical industries. A necessary step for these systems is to retrieve
input from a sensor and to perform some form of signal processing. For some
applications this step can be very simple, others need to perform a large number

1

4 1. Introduction

of complex steps on the input data under strict real-time constraints.
These applications can be highly complex and computationally demanding, but

their behavior is static. In this case, adaptations during run-time are not advanta-
geous, because there is no dynamic behavior to adapt to. A processor can still be
optimized for these workloads, but the optimization must be performed at design-
time as opposed to run-time. This is possible because we know that the application
will not change. Optimization may be necessary because the application can have
very high performance requirements at limited power budgets, preventing the us-
age of Commercial Off-The-Shelf (COTS) processing systems.

1.3. Embedded execution platforms
This section briefly presents some background knowledge about processing plat-
forms in embedded systems past and present.

1.3.1. General-purpose
Classic embedded devices used dedicated electronic circuits to perform a certain
function. At some point, these circuits were replaced by general-purpose proces-
sors, that could be used in any embedded systems and programmed to perform
any function. However, the complexity of embedded systems grew from a digital
watch or a washing machine (that only need to perform a single, simple function)
into complex devices such as smartphones and tablets. These require more power-
ful embedded processors to provide the performance for, for example, high-quality
video en/decoding and baseband communications.

To provide more performance at acceptable power utilization, manufacturers
started creating multicore platforms. These processing systems can be homoge-
neous, meaning that each core is identical, or heterogeneous, where there are
different types of cores. These differences can be transparent to a program, such
as clock frequency, cache sizes and other factors that impact performance. These
systems are called single-ISA (Instruction Set Architecture) heterogeneous multi-
core processors. They are utilized by smartphone manufacturers to provide both
high performance when the users requests it, and long battery life when the device
is not in use. The different core types can execute the same code, but it will require
more power and less time on one core compared to the next.

In addition to single-ISA heterogeneous cores, cores can be completely different
and highly specialized for a certain task. For example, a processor could have
a general-purpose core, a DSP (Digital Signal Processor), and an AES (Advanced
Encryption Standard) accelerator. These processors are designed specifically for
their application, and need to be programmed separately.

1.3.2. Application-Specific
Specialized Application-Specific Integrated circuits (ASICs) can provide orders of
magnitude better performance or energy efficiency. However, specifically design-
ing a circuit for a certain (family of) tasks requires significant investments and
effort. Another approach is to start designing from a generic processor design,

1.3. Embedded execution platforms

1

5

Figure 1.1: Conceptual depiction of homogeneous versus heterogeneous multicore processors.

and optimize it to the application. These processors are called Application-Specific
Instruction-set Processors (ASIPs). They represent a middle ground between full-
custom circuitry and general-purpose processors. By including specialized instruc-
tions for the application domain, they are still able to achieve good performance
and energy efficiency. Additionally, they can still be programmed for different ap-
plications within their domain. For example, a an ASIP for a baseband modem
will include instructions for operations that are common for various error correction
codes. This is advantageous in, for example, telecommunications hardware where
multiple highly complex communication protocols (2G, 3G, 4G) must be supported
[10].

1.3.3. Reconfigurable
Reconfigurable processors take the concept of optimizing for an application a step
further. They are able to change their behavior after they have been manufactured.
The most narrow view on this type of system is the Field-Programmable Gate Array
(FPGA), which is a chip that consists of vast numbers of Configurable Logic Blocks
(CLBs) and interconnects. CLBs can be configured to perform any logic function
with a small number of in and outputs. For example, the Xilinx Virtex6 family uses
Look-up-Tables (LUTs) with six inputs. Combined with the reconfigurable intercon-
nects, FPGAs can implement electronic circuits including complex designs such as
a complete processor. A circuit configuration can be loaded into the FPGA before
starting a new application. FPGAs have been used to accelerate certain segments
of a program that are very time-consuming in software but can be performed effi-
ciently by an FPGA circuit. By using partial reconfiguration, parts of the FPGA can
be reconfigured while other circuits continue to function on other parts of the FPGA.
This way, the FPGA can adapt not only at the start of a program but also when a
program changes to another phase in its execution.

In addition to FPGAs, there exist processing platforms that are not organized
in CLBs and interconnects, but using larger (coarse-grained) blocks of logic. As
the notion of what can be denoted as ’reconfigurable’ is debatable, even a normal
processor can be viewed as reconfiguring itself to perform a different operation

1

6 1. Introduction

every clock cycle (depending on the instruction it is executing). In contrast to an
FPGA, this type of reconfiguration can occur every clock cycle (as opposed to once
when starting the application), and is concerned with an entire ALU (Arithmetic
Logic Unit) that consists of several thousands of gates and can perform a multitude
of operations (as opposed to individual logic blocks that are tiny in comparison).

Figure 1.2: Classification of reconfigurable processors based on [11]. A processor can be reconfigurable
regarding different components such as memory, compute units or connections between processors
or components. Depending on the reconfiguration penalty involved, processors can be reconfigured
at high frequencies (fine-grained) or, for example, per application. Similarly, the components that are
reconfigurable can be very large (such as a whole core) or in case of FPGAs almost on a per-gate level.

This broad view creates a range of different reconfigurable processors, similar
to the spectrum of different workload types. Figure 1.2 shows a classification, in-
troduced by [11]. Different parts of a processor’s organization can be reconfigured,
most notably the memory resources (such as caches), compute resources (such as
the ALU or other functional units), and the connections between them (not only
between the functional units and the memory, but possibly also between functional
units themselves). The spatial granularity denotes the size of the reconfigurable
parts and the temporal granularity determines at which frequency these reconfigu-
rations can be performed. Every type of reconfigurable processor has one property
in common; each of them aims to adapt the hardware to the workload.

1.4. Workload analysis
This section discusses several requirements and characteristics that a workload can
have, and the how they can be dealt with by an execution platform.

1.4. Workload analysis

1

7

1.4.1. Requirements
An application can have several requirements that are imposed by the designer or
the environment:

Time
In the embedded domain, timing requirements are very common. A real-time sys-
tems needs to guarantee that a result is available within a specific amount of time
(the deadline), otherwise the system will fail. Often, a distinction is made between
tasks where the result is useless and may result in a catastrophic failure if it is not
available before the deadline (hard real-time tasks - HRTT), and tasks where the re-
quirement is not as strict and a late result may even be of some value (soft real-time
tasks - SRTT). Embedded real-time systems can have tasks that are periodic and
aperiodic in nature. New instances of a periodic task will be triggered (released) at
its specific interval (the task period). Aperiodic tasks are triggered when a certain
event happens, such as a button being pressed. These tasks also have a deadline
before which the system must have handled the event.

Performance
As performance is the inverse of delay, most performance requirements can also be
expressed as a timing requirement. For example, a performance requirement for
encoding video at a frame rate of at least 25 frames per second (FPS) seems to be a
performance requirement but can also be expressed as a periodic task (encoding a
video frame received from the image sensor) that should always finish within 40ms.
For applications that have less easily identifiable blocks, a performance requirement
can be expressed in terms of throughput, such as for example compressing data
with a minimum throughput of 1Gibit per second.

Power/Energy
Embedded systems are often battery-powered, and modern high-performance em-
bedded systems such as mobile phone Systems-on-Chip (SoC) have thermal bud-
gets to prevent devices from overheating. Also in the server domain, energy con-
sumption is a key component of total costs and has established itself as a critical
performance metric. For datacenters, it is becoming increasingly difficult to match
power provisioning and cooling capacity to the demand, as workloads can be highly
variable [12]. Consequently, energy or power requirements are common in both
the embedded and server domains. Methods to meet these requirements include:

• Multicore processors can be used to divide a workload over multiple pro-
cessors. Subsequently, the clock frequency and voltage of the processors can
be reduced to achieve the same performance. As power utilization scales lin-
ear with frequency and superlinear with voltage, this should result in lower
total power utilization.

• Heterogeneous Computing is applied in two separate fashions: Single-
ISA Heterogeneous Multicore Processors (HMP) [13] such as ARM
big.LITTLE processors [14] can provide high performance using big processor

1

8 1. Introduction

cores and high energy-efficiency using little cores. This concept aims to
meet the contradictory requirements of mobile phone SoCs to provide
high performance for cutting edge media and 3D graphics processing but
also very long standby times. Hardware accelerators provide optimized
ASIC implementations of common intensive tasks such as video coding and
encryption. These can be offloaded to the accelerators, instead of executing
them inefficiently on the central processor.

• Dynamic Voltage and Frequency Scaling (DVFS) is a common technique
that changes the voltage and frequency of a processor during run-time, ac-
cording to the demand for processing power.

• Power/Clock gating can be used to switch off parts of the processor that
is not being used. In processors, this is commonly implemented as different
sleep modes. Lower sleep modes conserve more power but require more time
to restore to full functional state.

1.4.2. Parallelism
Exploiting parallelism is one of the key mechanisms to increase the performance of a
computer system [15]. This can be done by overlapping (parts of) calculations that
can be performed concurrently, by assigning them to different functional units or
even different processors. Depending on the application, parallelism can be present
on multiple levels.

Task-level parallelism
The most straightforward form or parallelism is when there are multiple unrelated
tasks assigned to a system. These tasks can be assigned to different processors
available on a multicore or multiprocessor system. Increasing the number of pro-
cessors in a computer system increases the number of parallel tasks it can perform,
until shared resources such as memory bandwidth will become the bottleneck.

Thread-level parallelism
A related form of task-level parallelism is thread-level parallelism, where a single
program is divided into parts, each running on a different execution thread. In
this case, the tasks are related, which means they need to perform some form of
synchronization and possibly communication of intermediate results. This overhead
limits the speedup that can be achieved by distributing a task over multiple threads
and assigning each thread to a separate processor. For some types of applications,
the overhead is relatively small and performance can be increased by using a large
number of small processors. Otherwise, a limited number of threads executing on
high-performance processors is a more suitable approach.

Data-level parallelism
Some applications can be divided in such a way that the exact same operations
are performed on subsets of the data. This form of parallelism can be exploited by
using SIMD (Single Instruction, Multiple Data) architectures. These architectures

1.4. Workload analysis

1

9

execute a single stream of instructions on multiple different sets of data. If the bit
depth of each individual data item is relatively small, multiple data items can be
calculated using a single datapath. For example, a 32-bit datapath, in SIMD mode,
can execute 2 16-bit operations or 4 8-bit operations simply by decoupling the carry
chain [16, Fig. 5.6]. Additionally, specialized vector datapaths can be added to a
processor that are much wider than the processor’s general scalar datapath. Using
SIMD greatly reduces the control overhead1, communication and synchronization
compared to computing the data sets on separate processors. SIMD datapaths can
be very wide, supporting several parallel operations, but need to access memory in
such a way that the full width can be exploited. This means that either the register
file must support these wide accesses, there must be a separate vector register file,
or the SIMD datapaths need to be able to directly access a cache line (which, in
turn, needs to be wide enough). For example, the Hexagon VLIW [17] provides
four 1024-bit wide vector datapaths, and has a dedicated vector register file that
directly connects to the L2 cache. On the software side, SIMD requires compiler
support in the form of automatic vectorization.

Instruction-level parallelism
Instead of splitting up tasks or datasets into multiple parts, a processor can also
exploit parallelism on the level of individual instructions. It is the most transparent
approach for the programmer, as it requires no manual program transformations or
vectorizing compilers. Historically, exploiting ILP has been one of the key architec-
tural driving forces behind processor performance increase. Classical approaches
include pipelining and multi-issue processors, both of which are employed heavily
in processor designs.

Pipelined processors divide individual instructions into several steps and overlap
their execution. Pipelining has been one of the main enablers of the continuous
increase in processor clock frequencies until the power density (that steadily in-
creased with scaling down technology feature sizes) resulted in heat dissipation
problems. This forced architects to search for other means to increase processor
performance without increasing the frequency.2 As the performance of a program
is dictated by execution time = cycles

frequency
and cycles = instruction count

instructions per cycle
, increasing

the number of instructions per cycle (IPC) has an equal effect on performance as
the processor clock frequency. A natural way to do this is to allow the processor to
start multiple independent instructions per clock cycle: multiple-issue processors.

There are two main paradigms for designing multi-issue processors: super-
scalar and VLIW processors. Superscalar processors use complex circuitry to de-
tect whether operations can be executed in parallel or not. VLIW processors move
this complexity to the compiler, thereby allowing simpler processors with decreased
1This includes all the circuitry needed to run the program that is not the datapaths themselves (such as
branch units and pipeline control logic), but also for example the memory bandwidth required for the
instruction stream.

2This is not to say there were no previous efforts in this direction: indeed, the first superscalar processors
have been designed in the 1960s by Cray and IBM. However, frequency scaling provided a steady
performance increase with every new technology generation up to this point, after which architectural
improvements were the only way forward.

1

10 1. Introduction

power consumption to achieve similar performance as long as the compiler can find
enough parallelism in the code. There are some fundamental limits to exploiting
ILP:

• There are limits on the available ILP in code. In the general-purpose domain,
between 15 and 25 % of all executed instructions are branches, which means
that there will be on average between three and six instructions available
before a branch [15, p. 67]. This means that a processor must be able to
cross branches to find a decent amount of ILP.

• When finding ILP across branches, the processor must speculate whether
these branches are taken or not. Even with highly accurate predictors, mis-
predictions will continue to occur occasionally. These require the processor
to flush any speculatively issued instructions from the pipeline and restart
execution at the resolved branch address.

• Speculation (when assumed to be imperfect) inherently reduces energy effi-
ciency [15, p. 182].

• Some instructions have true dependencies that cannot be resolved by the
processor (e.g., by using register renaming).

Even with perfect branch prediction, an infinite number of parallel datapaths and
an infinite window for finding independent instructions, the number of instructions
that can be executed in parallel is limited [15, Ch. 3]. In addition to the limits of
finding enough ILP to efficiently utilize multiple parallel datapaths, there are some
practical limits to increasing the issue width of a processor:

• The number of parallel datapaths cannot be increased indefinitely because of
increasing circuit complexity3.

• Compiler techniques to increase ILP such as loop unrolling will increase binary
sizes and subsequently increase the required instruction cache capacity and
memory bandwidth.

• Processing multiple data items in parallel will also require more accesses to
the data memory, creating the need for larger and multi-ported caches.

The limitations to both the hardware and software quickly result in diminished re-
turns: a small increase in performance requires a large investment in circuit com-
plexity and consequently energy consumption. Modern computing systems combine
the techniques discussed in this section to exploit as much parallelism as possible:
multicore superscalar processors with very deep pipelines and SIMD extensions are
common even in the embedded domain.

3Fully connected VLIW processors will see the circuit area of both their register file and forwarding logic
increase superlinearly with their issue width. There are approaches to mitigate this effect, such as
clustering [18] and using exposed datapath architectures with limited connectivity [19] [20].

1.4. Workload analysis

1

11

1.4.3. Code characteristics
In addition to the type and amount of parallelism available in an application, an
important characteristic is the instruction mix and how this influences the perfor-
mance of a processor. In a very general sense, instructions from any RISC (Reduced
Instruction Set Computing) processor can be divided into three families:

• Control flow operations change the flow of the processor through the pro-
gram by jumping to a certain address. These include function calls but also
conditional branches, that for example implement if/else constructs.

• Memory operations load or store values to and from the processor’s internal
registers (the register file).

• Arithmetic operations perform calculations such as additions or multiplica-
tions on values stored in the register file.

Each of the instruction type uses a different processor subsystem that can cause
the processor to stall, degrading performance.

Control-bound
As discussed in Section 1.4.2, processors with deep pipelines rely heavily on specu-
lation to achieve high performance. Branch prediction is arguably the most impor-
tant form of speculation, and mispredictions are very expensive. Programs with a
large amount of branches require more complex prediction logic to keep the mis-
prediction rate low. VLIW processors often rely on the compiler to perform static
branch prediction. The compiler analyzes the most likely control flow and restruc-
tures the code so that the common case will execute fastest. In addition, tech-
niques exist to expose ILP across branches by combining multiple blocks of code
(trace, superblock and hyperblock scheduling). However, there are limitations to
these techniques and exploiting ILP in branch-heavy programs using VLIW proces-
sors remains challenging. Control-bound applications are currently most suitable to
be executed on general-purpose processors with a high operating frequency and
sophisticated branch prediction.

Memory-bound
If a program performs a relatively large number of memory operations, and few
operations on the data in between accesses, the memory accesses can create a
performance bottleneck. There is a large discrepancy between latency of proces-
sors and memory devices, and in modern server-grade computer systems, a main
memory access costs hundreds of processor cycles to complete. As this difference
has been growing over the past decades, an increasing number of cache levels
have been added to the memory hierarchy (three levels is currently very common).
While caches solve part of the problem for applications with enough locality, a pro-
cessor should still be able to overlap the time it is waiting for outstanding main
memory requests with computations on already available data. For highly regu-
lar memory access patterns, this can be accomplished by prefetching data 4. This
4Where superscalar processors have hardware circuitry that tries to predict future memory accesses
to fetch these values from memory, VLIW processors commonly employ explicit prefetch instructions

1

12 1. Introduction

can allow programs with limited cache locality to still achieve high performance.
For example, some streaming workloads operate on a small set of input data only
once, before continuing with the next input. Afterwards, a data set is never used
anymore, rendering the caches to be of little use. However, the memory access pat-
tern of these workload types is usually very regular and can achieve high sustained
memory bandwidth.

Irregular memory access patterns are more challenging. In this case, an ap-
proach to overlap memory access latency with computation is to switch to another
thread when the currently executing thread encounters a long latency cache miss
(Switch-on-Event or coarse-grained Multi-Threading). This requires the processor
to be able to store multiple program states in internal registers to allow it to quickly
switch between them.

Compute-bound
In contrast to memory-bound programs, some programs perform large amounts of
operations per memory access. If there is enough ILP in the code, the situation
can arise where there are more operations available for executions than there are
functional units available to perform them. In this case, the processor does not fully
utilize the available memory bandwidth. The program can execute faster if there
are more execution units, for example by using a wider issue superscalar or VLIW
processor.

1.5. Problem formulation and scope
The industry is continuously pushing for increasingly fast time-to-market, driven
by a decreasing window of competitive advantage for new technologies. At the
same time, maintaining multiple processor families, along with their complete
ecosystem of toolchain, libraries, operating system and application support, is
becoming increasingly expensive. This raises the question whether it is possible
to use a single processor family to target both sides of the spectrum – allowing
run-time adaptations for dynamic workloads, design-time optimization for static
workloads, and short time-to-market. This leads to the following research question:

How to target both highly static and dynamic workloads using a single processor
architecture?

As discussed, there is a large spectrum of both software (workloads) and hardware
(embedded reconfigurable processors). In addition, having a run-time reconfig-
urable processor adds the question of how to schedule these configurations. The
scope of this work concerning these aspects is defined in the following sections.

1.5.1. Software: Workloads
In this thesis, we will discuss three general types of workloads, each in their own
embedded application domain. A workload is considered as the set of application

that can be inserted into the code by the compiler or programmer (once more reflecting the VLIW
philosophy of moving complexity from hardware to the compiler).

1.5. Problem formulation and scope

1

13

programs that is executed on the system under consideration. Individual programs
can have multiple instances (they can be restarted, for example, with a new set
of input data). Not all programs are necessarily active at the same time (some
can be triggered by an event, or have a dependency on the termination of another
program). In increasing order of complexity, the workloads studied in this work
are:

• Static workloads continuously perform the same (set of) operations on an
input stream. In particular, this work focuses on a medical imaging workload
consisting of convolution kernel filters that are applied to input from an image
sensor. The input passes through a chain5 of image processing filters that
aim to improve image quality by means of, for example, noise reduction and
contrast enhancement. This workload has a high degree of data, thread, and
instruction-level parallelism.

Figure 1.3: Image divided into slices, each processed on a different (set of) processors. In this still
image, slices are alternating between no filters, a blurring filter, and blurring combined with an edge
detection filter.

• Dynamic workloads consist of multiple different tasks, having different
amounts of ILP. The number of concurrently executing tasks varies during
the execution of the workload. Because of this, both Instruction-level and
Task-Level Parallelism (TLP) are varying during the course of execution. In
the time domain, this behavior occurs on both a very coarse-grained level
and a fine-grained level, because 1) individual tasks typically go through nu-
merous phases during their execution [4] and 2) some programs alternate
between phases very rapidly.

Figure 1.4 shows the phases of JPEG with different window sizes, as detected
by our modified compiler. It can be seen that the program shows changing
behavior on a very fine-grained level (with a phase of only 50 cycles in the top

5These chains of filters are commonly referred to as a ’pipeline’. This term is also widely used to denote
a processor datapath.

1

14 1. Introduction

Figure 1.4: Graphic representation of ILP phases in JPEG as detected by a VLIW compiler. Depicted
window sizes range from the full execution in the bottom figure, to 1000 cycles in the top figure. The
subwindows are left-aligned at the same point exactly halfway through the full execution. These figures
show changes in ILP requirements on different levels of temporal granularity.

1.5. Problem formulation and scope

1

15

Figure 1.5: Graphic representation of ILP phases in LAME as detected by a VLIW compiler. It has a
much larger portion of long, stable phases compared to JPEG.

figure) as well as on a larger scale (with a stable phase of 60, 000 cycles in
the second lowest figure). In comparison, Figure 1.5 plots the full execution
of MP3 encoder LAME, which shows long stable phases of tens or hundreds of
millions of cycles. These two examples show that there are widely different
programs regarding phase behavior.

• Real-time workloads add strict timing requirements to dynamic workloads.
This necessitates the execution platform to provide a guarantee to each real-
time task that, every time it is activated, it will receive a number of execution
cycles no less than its Worst-Case Execution Time (WCET). We will consider
task sets with multiple tasks that can each have a distinct WCET and timing
requirement. In this work, we use real-time workloads that contain multiple
periodic tasks. Each task has a period after which a new instance of the task
is triggered. If the previous instance has not finished execution at that time,
it has missed its deadline (deadlines are implicit).

• Mixed-criticality systems combine real-time workloads with a static work-
load by adding a static program to a real-time workload. The static program
does not have a timing requirement such as the real-time tasks, but should be
optimized for throughput. This workload type represents the mixed-criticality
systems field of research. This field originated from the need to certify avionics
systems [5] that has tasks with different levels of criticality (requiring different
certifications), but evolved to also include systems with critical and non-critical
tasks.

The method in which we generate workloads for these different types, for use in
our evaluations, is discussed in Section 1.7.5.

1.5.2. Hardware: Reconfigurable processors
This thesis focuses on the 𝜌-VEX VLIW processor that is reconfigurable on two
extremes on the temporal granularity axis: static (design-time) reconfigurability
(also application-level by using FPGA technology) [21], and dynamic (run-time)
parameterization [22] on a region level. The use of the term parameterization

1

16 1. Introduction

serves to distinguish the two types of reconfigurability, but also signifies that this
type of reconfigurability is limited to changing a set of parameters that is fixed at
design-time.

Figure 1.6: The position of the -VEX dynamically reconfigurable processor in the classification of Figure
1.2 (based on [11]).

The design-time reconfigurability of the processor is used to target highly static
workloads. The run-time parameterization is used for the dynamic, real-time and
mixed critical workloads. The component that is parameterized is the interconnects
between memories (caches and register files) and compute units (datapaths). This
is discussed in more detail in Section 1.6.

1.5.3. Scheduling: Tasks and processor configurations
When given a compute problem consisting of a number of tasks, and a computing
platform consisting of a set of resources (e.g., processors, memory, and intercon-
nections), the problem of creating a schedule emerges. In classical single-core
computing, creating a schedule was a single-dimensional problem that could be
solved by assigning processing cycles (time) to tasks. Some important properties
of a solution is the ordering (which task to execute when) and time partitioning
(what fraction of the available time does each task receive). Multi-core processors
slightly complicated schedule creation, especially when considering Heterogeneous
Multi-Processors (HMPs). Now, a spatial dimension is added to the problem, con-
cerned with which tasks to assign to which core (task mapping). Similarly, making
a processor reconfigurable adds a dimension to the scheduling problem, as the
processor can execute in a number of different configurations at any point in time.

There are two general approaches to scheduling - static and dynamic. Here,

1.6. Proposed platform: a design-time configurable, run-time
parametrizable VLIW processor

1
17

static indicates that the schedule is created at compile-time and remains fixed dur-
ing the execution of the workload (similar to static reconfigurability and static work-
loads that do not change during run-time). Dynamic means that the scheduling is
performed during run-time (corresponding to dynamic parameterization and dy-
namic workloads).

1.6. Proposed platform: a design-time configurable,
run-time parametrizable VLIW processor

In this work, we will use the 𝜌-VEX design-time configurable, run-time parametriz-
able VLIW processor. It is a proof-of-concept for VLIW-based polymorphism, im-
plemented in the context of the Liquid Computing research theme at the Computer
Engineering Laboratory of Delft University of Technology, the Netherlands.

1.6.1. Static (design-time) reconfigurability
The core is implemented using synthesizable VHDL (VLSI Hardware Description
Language) code, that can be modified by the designer. To aid designers in their DSE,
design-time reconfigurability is provided for the parameters listed in Table 1.1. A

Subsystem Configuration options

Platform

Number of cores
Clock frequency

Connectivity (Bus, NoC)
Peripherals (GRLIB, Xilinx IP libraries)

Trace unit (enable/disable)
DRAM controller (enable/disable)

Core

Number of pipelines per core
Number of pipeline groups (dynamic reconfigurability)

Number of execution contexts (Virtual cores)
Code compression (using stop bits [23])

Pipeline organization
(Nr. of pipeline stages, amount and locations of functional units)

Instruction-set extensions
Various debug and trace options

Memory
Caches (enable/disable, capacity)

Scratchpad memories
(enable/disable, capacity, sharing, address mappings)

Table 1.1: Design-time configuration options of the -VEX processor

number of different platforms is provided, including standalone cores without main
memory, SoC designs with an AMBA (Advanced Microcontroller Bus Architecture)
bus and peripherals (by using Xilinx or GRLIB IP libraries), and a streaming platform
with a simple NoC (Network-on-Chip) and local scratchpad memories for each core
(one of the topics of this thesis). Discussing the details of all configuration options

1

18 1. Introduction

is beyond the scope of this thesis. They are documented in the 𝜌-VEX user manual
[24].

Two of the configuration options are of particular interest for this work, as they
are concerned with dynamic reconfigurability. These are the core-level options for
setting the number of contexts and the number of pipeline groups, which will be
discussed in the following section.

1.6.2. Dynamic (run-time) parameterization
The polymorphic nature of the 𝜌-VEX processor allows it to adapt to the workload
by assigning computational resources to threads in a flexible manner. In case of
the 𝜌-VEX, this is implemented by being able to split and merge together groups
of parallel datapaths (pipelines) of the VLIW, and connecting them to one or more
execution contexts 6. This way, pipelines can work together to provide high single-
thread performance or work separately, each executing a different application, to
provide high total throughput.

A classification of dynamically reconfigurable processors
There are numerous dynamically reconfigurable processors described in literature.
In addition to the more general classification for reconfigurable processors proposed
by [11] (displayed in Figure 1.6), a specific classification concerning dynamically
reconfigurable processors is proposed by [25]. A slightly modified version that
illustrates the position of the 𝜌-VEX is presented in Figure 1.7. The first focus is on
the number of contexts that a processor supports (in contrast to the original paper,
we have used the number of hardware contexts only). Secondly, it classifies the
size of the individual processing elements (PEs). The last factor is the number of
PEs in the system. An FPGA has a large number of very small PEs (LUTs) and a
single context (although this can depend on the design). A superscalar processor
is essentially a very large PE that has a single context (although processors can
have multiple contexts by means of hardware multi-threading). VLIWs are typically
somewhat smaller in size. A multicore consists of multiple PEs that can have various
sizes (each PE can be as large as a full superscalar processor). A 𝜌-VEX can be
configured to have between 1 and 8 contexts and between 1 and 8 PEs.

The design space for dynamically reconfigurable processors is considerably
larger than that of the 𝜌-VEX. Individual PEs can be larger, for example when using
full superscalar cores as proposed by [6] [7] [26] (defined as “Tile processors”
by [25]), or smaller as is the case when combining simple functional units in
a Coarse-Grained Reconfigurable Arrays (CGRAs) [11], in which case the PEs
themselves are not individually programmable (the configuration determines the
functionality). The number of contexts can be much larger than what the 𝜌-VEX
supports, but it must be noted that there are practical limits to the number of PEs
that can be combined to speed up a single context (e.g., wire delays or inter-cluster
communication).

6A context represents the full register state of a thread or process, including all general-purpose registers
(GPRs) and Control Registers such as the program counter.

1.6. Proposed platform: a design-time configurable, run-time
parametrizable VLIW processor

1
19

Figure 1.7: Classification of dynamically reconfigurable processors based on [25]. The horizontal axis
shows the number of threads (contexts) a processing element is able to keep on-chip. The vertical axis
shows the approximate granularity of individual processing elements. The third axis shows the number
of processing elements in a processor. An FPGA has enormous amounts of tiny processing elements
(CLBs). A (single-core) superscalar has one large processing element.

Bringing Simultaneous Multi-Threading to the embedded domain
The goal to distribute computational resources among multiple threads is similar to
SMT (Simultaneous Multi-Threading) [27], a common design technique used in the
high-performance domain (for example, the IBM POWER8 processor [28]). The 𝜌-
VEX brings this functionality to the embedded domain, by means of the differences
discussed in this section. The first difference with SMT is that the assignment is per-
formed in pipeline groups, where each group of pipelines is able to execute the full
instruction set. This has two advantages in the embedded domain: Firstly, it allows
unused pipelines to be fully disabled to reduce power consumption. Secondly, it re-
moves the possibility for pipeline resource contention between concurrent threads.7

The organization of pipelines into groups is a design-time parameter as listed in Ta-
ble 1.1. The default 𝜌-VEX configuration organizes pipelines into pairs, where both
pipelines have an ALU and Multiplier, one pipeline has a memory unit and the other
a branch unit.

Each pipeline that is assigned to a context, can potentially execute one opera-
tion from the program during each cycle, so assigning more pipelines to a context

7Consider the case where an SMT processor has eight parallel pipelines, two of which are able to execute
a memory operation. When running in SMT-2 mode, two threads can both dispatch up to four operations
in the same clock cycle. However, when both threads want to execute two memory operations, one of
them will need to wait for the memory lanes to become available, leading to a well-known drawback
of SMT systems: performance interference.

1

20 1. Introduction

may increase its performance. However, the availability of an operation depends on
a number of factors (including branch penalty and memory stall cycles, not further
discussed here), most notably the instruction-level parallelism in the code. High-
performance superscalar processors use complex circuitry to detect whether oper-
ations can be executed in parallel or not. Some processors, such as the POWER8,
perform register renaming and instruction re-ordering to increase the available par-
allelism, at the cost of additional power consumption and circuit area.

In contrast, the 𝜌-VEX uses a VLIW-style architecture [16] that relies on the
compiler to find this parallelism and encode it explicitly in the binary. Apart from
decreasing circuit complexity and power consumption, this provides a way to mea-
sure the amount of ILP in the code using simple hardware mechanisms. The binaries
are encoded in such a way that they can be executed in all supported processor
configurations [29], and allow horizontal NOP removal [23].

Using a VLIW architecture provides another advantage for the embedded do-
main, in the form of a high degree of time-predictability. Contemporary systems
are focused on delivering very high performance for the common case (by using
techniques such as caches and branch prediction), but it is very difficult on these
platforms to reason about the worst case, which is necessary to rule out deadline
misses for critical tasks. The 𝜌-VEX compiler generates code that is completely
statically scheduled, which means that all pipeline latencies are explicitly dealt with
(not relying on pipeline interlocking8). Branches are optimized by reordering basic
blocks at compile-time, using heuristics or code profiling to find the most proba-
ble control flow. The result is that code is executed exactly as scheduled by the
compiler, assuming a perfect memory system (in Chapter 8, we propose to use
single-cycle local scratchpad memories for critical tasks).

The last differences with SMT architectures are that the pipeline to context as-
signment is explicit, and the temporal granularity is slightly reduced. In SMT ma-
chines, the issue slots are distributed among the threads by the hardware each
cycle. The distribution can be performed using a simple round robin method (such
as a barrel processor), using heuristics such as which threads have the least out-
standing cache misses, or using sophisticated priority-based methods (as used by
the POWER8). The 𝜌-VEX uses a control register that can be written to change
the pipeline to context assignment. Such a reconfiguration request requires ap-
proximately 4 cycles latency to decode (depending on the current and new con-
figuration), and results in 5 cycles penalty to flush the pipeline and start the new
configuration. Context-pipeline couplings that are not changed by the reconfigura-
tion request continue to execute unaffected. Decreasing the temporal granularity
is a design choice that considerably reduces design complexity (and, as a result,
circuit complexity), but is not a fundamental limitation of the 𝜌-VEX’s concept.

In summary, the 𝜌-VEX design has the following advantages in the embedded

8Pipeline interlocking means that hardware circuitry detects hazards between instructions, and stalls the
pipeline if necessary. Using a VLIW architecture does not prevent the usage of pipeline interlocking:
a notable example is the st231 VLIW processors from STMicroelectronics. The increase in circuit com-
plexity may be compensated by the reduction in binary size (resulting in improved instruction cache hit
rates and reduced instruction fetch bandwidth requirements) because it allows the removal of vertical
NOPs [16, Section 3.5.2].

1.6. Proposed platform: a design-time configurable, run-time
parametrizable VLIW processor

1
21

application domain:

• Reduced circuit complexity because of the slightly reduced temporal gran-
ularity and VLIW-style architecture.

• Performance isolation between contexts because of a fixed resource as-
signment, statically scheduled VLIW code, and a private memory access port
per lanepair.

• Performance predictability because of statically scheduled VLIW code,
explicit pipeline latencies, and the use of scratchpad memories.

• Potential power savings by allowing datapaths to be disabled as each indi-
vidual lanepair can execute the full ISA.

Making the configuration explicit and providing an interface to request adaptations,
allows the following methods to perform configuration optimization:

• The user can manually request a configuration.

• The programmer can manually request a configuration at any point in his
code (for example, at the beginning of a loop).

• The Operating System (OS) can change configuration during scheduling
based on system policy (high performance, energy efficient) or task priority.

• The designer can create a circuit that changes the configuration based on
sensor input such as temperature/battery level, or based on performance
monitors.

• The compiler can insert configuration change requests at certain points in
the code.

The first two require manual intervention. This thesis focuses on exploiting the last
three automatic methods to adapt the dynamic processor to the workload. A more
detailed rationale of the run-time adaptable version of the 𝜌-VEX and discussion of
related architectures is presented in [30].

1.6.3. Environment
The HDL implementation of a processor is only a small part of a processing environ-
ment. A large set of tools is required to be able to execute programs on it, including
compilers, operating systems and libraries. This section gives an overview of these
tools and the efforts that have been made in this area to be able to use the 𝜌-VEX
as intended. Where possible, we have ported the tools that were available for the
st200 series of VLIW processors by STMicroelectronics. The st200 VLIW family is
the architectural sibling of VEX, the ISA of the 𝜌-VEX. VEX and st200 are both de-
scendants from the Lx architecture created by HP (Hewlett-Packard) laboratories in
collaboration with STMicroelectronics in the 1990s [31] and share many similarities.

1

22 1. Introduction

Toolchain
The 𝜌-VEX is supported by an elaborate toolchain that contains several compilers,
a port of the GNU binutils toolcollection, a debugger, and several libraries. Within
the context of this work, the open source st200 compiler, that is based on Open64,
was ported to the 𝜌-VEX and integrated into the existing toolchain. As this compiler
was maintained by STMicro for their industrial st200 VLIW family, the performance,
reliability, and compatibility is higher compared to the available alternatives includ-
ing HP VEX that is based on the Multiflow compiler and provided to the academic
community by [16].

The 𝜌-VEX toolchain currently provides two C standard runtime libraries: newlib
and uCLibc. Newlib can be linked together with programs that are intended to run
bare-metal – without any operating system directly on the processor. It provides a
system call interface that, in its turn, relies on a low-level library that implements
functionality such as memory allocation. A simple filesystem library can be gener-
ated that implements the open, close, read, write, and lseek POSIX system
calls. uCLibc is based on the st200 port from the STLinux distribution, and can be
linked together with programs that are intended to run on Linux.

In addition to the C standard library, a math library (libm) and a runtime support
library that contains floating point emulation and various division routines. Lastly,
experimental support is available for pthread and OpenMP (by means of the 𝜌-VEX
port of the LLVM 3.9 compiler and the GNU OpenMP library, libgomp).

Operating Systems
In an earlier project, uCLinux (micro-controller Linux) was ported to the 𝜌-VEX [32].
It is highly experimental and uses a limited version of an early Linux kernel (2.0
nommu). It does not support virtual memory as the 𝜌-VEX does not have a Memory
Management Unit (MMU). This means that there is only a single address space in
which all active applications must execute alongside each other and the kernel itself.
To this end, we have ported the bFLT flat file format, that writes all the relocation
information generated by the linker into the application binary. This information is
then parsed by the bFLT loader in the Linux kernel, that was modified to fill in all
the relocations based on the address where the kernel wants to place the program
in memory.

Simulator: sim-rvex
An architectural simulator for the 𝜌-VEX is available named sim-rvex. It was
implemented in C and based on a very early (open source) version of the sim-200
simulator. It is binary compatible with the HDL implementation and provides the
following features:

• Control registers including the full set of performance counters

• Dynamic reconfigurability and multiple contexts

• Tracing execution of multiple concurrently executing contexts

• Trace output shows disassembly and symbols loaded from the program’s ELF
file

1.7. Approach

1

23

• Optional system call emulation on host machine

• Optional cache simulation

• Simulates several peripherals including UART, framebuffer, timers, interrupt
controller

With cache simulation disabled, the simulator is cycle accurate with respect to the
HDL implementation of the processor connected to single-cycle memories. With
cache simulation enabled, the accuracy decreases significantly as the cache model
simply uses miss penalties instead of fully modeling a DRAM controller connected via
a bus. The simulator achieves up to approximately 100 MIPS9 on an Intel i5-4690
CPU @ 3.50GHz.

1.6.4. Platform overview
Figure 1.8 displays an overview of the full system stack of the 𝜌-VEX environment,
and Figure 1.9 shows the toolflow of running applications on a 𝜌-VEX hardware
prototype or simulator.

Figure 1.8: Overview of the full system stack.

1.7. Approach
This section discusses the tools and methods that are used to evaluate the proposed
platform.
9Here, MIPS denotes millions of simulated instructions per second, with an instruction being a single
operation within a VLIW bundle. The performance of the simulator is highly dependent on the simulated
program.

1

24 1. Introduction

Figure 1.9: Overview of the toolchain.

1.7. Approach

1

25

Code repository name Description

almaif ALMARVI interface for the Portable OpenCL
framework (pocl)

asic-pcb Printed Circuit Board design for the ASIC prototype
asic-synthesis Scripted toolflow for the ASIC prototype

binutils-gdb* Utilities concerning 𝜌-VEX binaries such as assembler
and linker. Also contains the GNU DeBugger (GDB)

confsched† Configuration scheduler

elf2flt†
Utility to convert ELF (Executable and Linkable Format)
files to relocatable Flat format

FreeRTOS Real-time OS
GCC* Compiler
LAO* Linear Assembly Optimizer

libgcc-rvex* Run-time library for software emulation of division and
floating-point operations

LLVM-OMP* Compiler with OpenMP support
streaming-rvex* Manycore streaming platform
Mälardalen* Benchmark suite
MiBench* Benchmark suite

newlib* Runtime library implementing the C standard library
functions (bare-metal)

Open64† Compiler
PolyBench* Benchmark suite
Powerstone* Benchmark suite
rvex-debug Interface to the hardware debug unit (core revision 3)
rvex-drivers Device drivers for various peripherals
rvex-hdl Hardware implementation (core revision 3)
rvex-linux-2.0† Linux OS kernel (nommu)
rvex-vhdl* Hardware implementation (core revision 2)
sim-rvex† Architectural simulator
SPEC* Benchmark suite
testfloat* Floating-point test suite

toolbuild Script to build a design and all required tools
for a given configuration

uCLibc* Runtime library implementing the C standard library
functions (Linux)

USB-grlib-JTAG-bridge* Interface to the hardware debug unit (core revision 2)
vexparse Assembly-level rescheduler for generic binaries

* Some effort or a simple port was required for use in this work
† Considerable effort or full implementation was required for use in this work

1

26 1. Introduction

1.7.1. Modeling & Simulation
To rapidly evaluate architectural concepts, a common approach is to implement
them in multiple steps of increasing accuracy. First, to evaluate a general concept,
a model can give a rough estimation of how the idea might perform. In the case of
polymorphic processors, this model is presented by [9].

A next step is to implement an architectural simulator that is able to execute (in-
terpret) actual code targeting the envisioned processor. An architectural simulator
can have different degrees of simulation speed and accuracy (see [16, p254]). In
this work, most of the evaluations were performed using an architectural simulator
called sim-rvex that is discussed in more detail in Section 1.6.3.

Finally, the actual implementation can be performed using a Hardware Descrip-
tion Language such as VHDL and simulated using a circuit-level or gate-level simula-
tion. These simulations are mostly used for design verification and are not suitable
to evaluate architectural concepts due to their long execution times. Instead, they
can also be synthesized to reconfigurable hardware (FPGA) which is discussed in
the following section.

1.7.2. Using FPGA technology
FPGA technology is used for two distinct purposes that are discussed in the following
sections; to prototype designs targeting ASIC technology during development, and
for designs that are not expected to be sold in large volumes.

FPGA-based implementations
Manufacturing a design as an ASIC (Application-Specific Integrated Circuit), for ex-
ample using CMOS (Complementary Metal Oxide Semiconductor) technology, is a
very time-consuming and expensive process. For designs that are not expected
to be sold in enormous volumes (millions), an FPGA implementation is a possible
alternative. FPGA chips can be programmed with a circuit design that will be mim-
icked using large quantities of configurable logic blocks and interconnections. The
resulting product will operate at reduced clock frequencies and energy efficiency
compared to an ASIC. Developing an ASIC will take at least several months and
requires an enormous investment for the mask set that is needed for manufac-
turing (depending on the technology used, this can cost anywhere from 100.000
to millions of Euros). In contrast, an FPGA is an off-the-shelf component, and a
design can be synthesized in a matter of hours. This makes it a suitable platform
for designs that are highly optimized for a particular application, as is the case
for our design-time reconfigurable processor targeting static workloads. When im-
plemented on an FPGA, these processors are referred to as softcore processors.
The dynamicaly reconfigurable processor, as it is meant to adapt itself to various
workloads, is aimed more towards ASIC implementations.

FPGA Prototyping for ASIC implementations
FPGA technology is also used to aid the development of ASICs. FPGA prototyping
is a commonly used method to verify a processor design [33], not only regarding
functionality (i.e., is the implementation correct?) but also to explore the feasibility

1.7. Approach

1

27

(e.g., estimating how much circuit area a certain component will require) and vari-
ous performance metrics. These can include for example the number of logic levels
to identify critical paths, the expected clock frequency, and fully cycle-accurate
execution times of certain benchmarks. As FPGA implementations can achieve op-
erating frequencies in the range of several MHz, benchmarks that would require
weeks or months to execute on a circuit simulator can be executed on an FPGA
prototype in a matter of hours [34].

The 𝜌-VEX is implemented in VHDL and its default configuration achieves an
operating frequency of 80MHz on a Xilinx Virtex7 FPGA. As discussed, the FPGA
prototype is used mostly for verification and feasibility checking. Our architectural
simulator performs relatively fast, and can be executed on a high performance
computer with many instances running concurrently. This approach was used for
most of the measurements presented in this work.

1.7.3. Code characterization method
To adapt a processor to the workload, an important step in finding the most suitable
configuration is to measure the characteristics of the currently running code. The
first question here is what characteristics to measure, as there are numerous. One
of the key properties of a VLIW architecture is that parallelism is encoded explicitly
in the code, which allows it to be measured using a simple counter mechanism.
This information gives a strong indication of the performance using different core
configurations.

The second question is how to perform the measurements, which is one of the
topics of part 2. There are two general approaches that are introduced here.

Compiler-based
As VLIW processors are statically scheduled (the assignment of operations to par-
allel datapaths is performed by the compiler), it is possible to analyze the number
of cycles that is required to execute any code section using a certain core configu-
ration. We modified the 𝜌-VEX Open64 compiler so that it annotates each relevant
section of code (particularly loops and straight-line functions of a certain minimum
length) with the number of execution cycles for every supported core configuration
of the 𝜌-VEX.

Monitoring-based
In addition to analyzing code at compile-time, it is possible to use performance
counters (monitors), embedded in the processor, to measure the amount of par-
allelism. The 𝜌-VEX already includes a counter that keep track of the number of
committed operations, and a counter for the number of committed VLIW bundles.
The ratio between these metrics represents the average datapath utilization, which
gives an indication of the expected performance using different core configurations.

1.7.4. A runtime for scheduling tasks and configurations
Now that information about code performance is available, a runtime system is
required that uses this information to optimize the processor configuration to the

1

28 1. Introduction

workload. We implemented a run-time scheduler for the 𝜌-VEX, written in C, that
not only assigns tasks to cores based on a taskgraph with inter-task dependen-
cies, but also samples the code characteristics periodically and requests processor
adaptations accordingly.

1.7.5. Workload generation
The input for the scheduler is a taskgraph with dependencies. The purpose of the
taskgraph is to create a workload with varying number of concurrently executing
tasks (dynamic in intensity). Combined with randomly selected tasks with different
characteristics, this causes both the amount and type of parallelism (Instruction-
level versus Thread or Task-level) to vary over time. The taskgraph generator is a
script with the following input parameters:

• A list of tasks that will be randomly sampled (simple random sampling without
replacement),

• The maximum number of tasks to sample (the generator will randomly choose
a number of tasks between 1 and this number),

• The maximum number of dependencies to create per task.

The output is a C file that includes arrays with task IDs and dependencies. It can
be included in full by (or linked together with) the scheduler code. The script will
consequently rebuild the scheduler with the generated file, and call the simulator
with all the required binaries for each benchmark in the taskgraph. As the 𝜌-VEX
by default does not include a memory management unit (MMU), it has only a single
address space in which all programs must be able to execute concurrently. To
support this, each benchmark binary has been linked with a distinct start address,
taking care that no two programs will every access overlapping memory regions.
Another option is to encode every binary using the bFLT (binary flat) format as is
used by the 𝜌-VEX Linux port, and subsequently have the scheduler allocate suffient
memory and relocate the program at start time. We did not choose this method as
it is more complex.

1.7.6. Benchmarks
We have used a number of different benchmark suites for our evaluations. They
were ported to run bare-metal on the 𝜌-VEX using the newlib C standard library to
minimize any overhead. The benchmark suites each represent a certain application
domain.

• SPEC, the Standard Performance Evaluation Corporation, provides the
industry-standard SPEC benchmark suite, primarily targeting workstations
(high-performance desktop machines). As the 𝜌-VEX does not target floating
point applications, SPEC CINT2006 was used. Not all programs are supported
by the 𝜌-VEX toolchain.

• MiBench [35] is a benchmark suite that targets the embedded domain. It
contains the most relevant programs for our dynamic embedded workloads.

1.8. Contributions and thesis outline

1

29

The suite includes programs from different embedded application domains
including media, communications, and automotive.

• PolyBench contains applications with heavy numerical computations that are
common in the high-performance computing domain.

• The Mälardalen WCET Benchmark suite was used for real-time applica-
tions.

1.8. Contributions and thesis outline
Reflecting back to the scope of this work discussed in Section 1.5, we have identi-
fied two general categories – static and dynamic – regarding software (our targeted
workload types), hardware (processor reconfigurability), and scheduling. This cre-
ates a taxonomy as depicted in Table 1.2. Classical approaches use fixed (static,
non-reconfigurable) hardware to execute both static and dynamic workloads. The
scheduling methodology depends on the application domain. Typically, it will be
dynamic, but in some cases a static schedule may be desirable (for example in
some real-time systems). In the first part of this dissertation (Chapters 2 - 4), we
will use static hardware (design-time optimized) to execute static workloads. The
scheduling method used is also static, as we will only perform task mapping at
design-time. Each core continuously performs the same calculation on new input
data, therefore there is no ordering or partitioning required in the time domain. In
Part 2, Chapters 5 and 6 will use the run-time parameterized (dynamic) hardware
to execute dynamic workloads. The scheduling method used is also dynamic, as
both the processor configuration, task mapping and ordering are determined during
run-time. In addition to dynamic workloads and dynamic scheduling, Chapters 7 -
8 in Part 3 add real-time requirements to the workloads which necessitates a static
schedule. Lastly, it will add a static component to the workload and adds a dynamic
scheduler.

Hardware Software Scheduling

Classical Static
Static &
Dynamic

Static &
Dynamic

Part 1
Static

(fixed, design-time) Static Static (compile-time)

Part 2
Dynamic

(adaptable, run-time) Dynamic Dynamic (run-time)

Part 3
Dynamic

(adaptable, run-time)
Static &

Real-time
Static (compile-time) &

Dynamic (run-time)

Table 1.2: Overview of the approaches in the different overall parts of this thesis

In more detail, the individual parts provide the following contributions:

Part 1 - Static workloads, statically reconfigurable platform
Part 1 introduces a design-time customizable computation fabric based on VLIW

1

30 1. Introduction

softcore processors and a streaming memory hierarchy:

• First, the suitability of a VLIW-based architecture for this application domain
is evaluated in Chapter 2. We show up to a factor of 3.2× better performance
with similar resource utilization compared to the industry-standard MicroBlaze
processor, as published in [36].

• Second, in Chapter 3 we introduce the computational fabric with design-time
optimizable memory hierarchy, and show that streaming data directly between
cores results in considerably better performance compared to a bus-based
topology [37].

• Lastly, in Chapter 4 we show how this stream-based platform can be pro-
grammed using OpenCL in a frame-based fashion, abstracting away the hard-
ware complexity from software programmers. This platform can be used for
rapid prototyping, debugging and optimization to bridge the gap to High-Level
Synthesis (HLS). It features a wide number of configuration parameters that
can be explored by the designer without needing to program or modify HDL
code. Additionally, it has improved scalability compared to a similar platform
targeting the biomedical imaging domain, allowing it to increase the core
count and operating frequency on an FPGA [38].

Part 2 - Dynamic workloads, dynamically reconfigurable platform
In Part 2, we introduce mechanisms that allow a polymorphic processor to au-
tomatically evaluate code characteristics of a highly dynamic workload and adapt
accordingly:

• We evaluate the ability of fine-grained reconfigurable processors to closely
match dynamic program characteristics using high frequency adaptations in
Chapter 5 [39].

• Chapter 6 studies if automatic reconfigurations enable reconfigurable proces-
sors to achieve better performance on dynamic workloads compared to static
heterogeneous processors [40].

Part 3 - Real-time and mixed-criticality systems
In Part 3, we add real-time requirements to the workload, and explore mixed static
and dynamic workloads and scheduling:

• In Chapter 7, the architectural properties of the 𝜌-VEX that are advantageous
for real-time systems (e.g., low interrupt latency) are examined [41].

• A method to increase static real-time schedulability by leveraging the dynamic
properties of the run-time parameterizable processor are evaluated in Chapter
8, as published in [42].

• Lastly, the platform architecture targeting Mixed-Criticality systems proposed
in Chapter 8 is evaluated in terms of increasing throughput for non-critical

1.8. Contributions and thesis outline

1

31

static tasks. Time-safety for critical tasks is still guaranteed by dynamically
(i.e., at run-time) re-assigning cycles that are left unused in the static schedule
[43].

In Chapter 9, we summarize and conclude the work and mention several possible
future research directions.

Part 1 - Static workloads,
statically reconfigurable

platform

The first chapter of this thesis introduced a number of embedded domains
with each their own set of requirements and characteristics. Part 1 focuses
on the static domain, where a continuous stream of data must be processed
in a highly structured and repetitive fashion (e.g., image processing). The
usage of vision-based applications is increasing in multiple mobile domains
(smartphones, action cameras, surveillance, automotive). In these domains,
computational power is required but power budgets are limited.

The aim of Part 1 is to demonstrate how a design-time configurable processor,
based on a VLIW-style architecture, is able to effectively target these types
of workloads. As explained in Section 1.7, we are using FPGA prototyping
to evaluate the platform and the proposed concepts. Chapter 2 examines
the suitability of using our proposed VLIW architecture in comparison with
the industry-standard MicroBlaze softcore processor. Chapter 3 proposes a
design-time optimizable FPGA computation fabric using VLIW processors and
a custommemory hierarchy to efficiently stream data through the processors.
Chapter 4 adds support for programming this framework in OpenCL, allowing
the programmer to keep a frame-oriented view. Additionally, it shows how
it can be used to perform rapid design-space exploration and debugging for
FPGA-based image processing frameworks.

Hardware Software Scheduling

Classical Static
Static &
Dynamic

Static &
Dynamic

Part 1
Static

(fixed, design-time) Static Static (compile-time)

Part 2
Dynamic

(adaptable, run-time) Dynamic Dynamic (run-time)

Part 3
Dynamic

(adaptable, run-time)
Static &

Real-time
Static (compile-time) &

Dynamic (run-time)

33

2
Using VLIW softcore
processors for image

processing

In Section 1.6, we have proposed to use a VLIW-based reconfigurable pro-
cessor to target a spectrum of workloads, including image processing. This
chapter studies the suitability of the VLIW architecture for executing image
processing filters that are common in this application domain. As we are
focusing on FPGA-based devices, we will compare our proposed VLIW pro-
cessor with an industry-standard softcore processor, the Xilinx Microblaze.

Parts of this chapter have been published in [36].

35

2

36 2. Using VLIW softcore processors for image processing

Abstract
The ever-increasing complexity of advanced high-resolution image processing appli-
cations requires innovative solutions to ensure addressing this issue efficiently and
cost effectively. This chapter discusses the utilization of reconfigurable general-
purpose softcore processors in image processing applications such that hardware
resources are efficiently utilized and at the same time ensure high image process-
ing performance for the targeted application. Results show that the 𝜌-VEX softcore
processor can achieve remarkably better performance compared to the industry-
standard Xilinx MicroBlaze (up to a factor of 3.2 times faster) on image processing
applications.

2.1. Introduction
Whenever image/video processing is an integral function of the end user product,
the stringent performance and power consumption requirements (that are hard to
meet in software) are often fulfilled by embedding the imaging/video functionality
as hardware accelerators implemented in FPGAs or as ASICs. The main advantages
of embedded accelerator implementations of image/video processing functions lie
in computation speed, high energy and area efficiency, etc. However, the transi-
tion from pure software prototypes towards production-grade FPGA or ASIC-based
systems is associated with high engineering and manufacturing cost. Moreover,
hardware development requires expensive toolsets and dedicated know-how, which
usually results in a relatively high per-unit cost due to smaller production quantities
and higher customization overhead. As a result, the development cycles of hard-
ware approaches increasingly lag behind the demands of the fast-paced markets.

In recent years, however, software-based approaches on commodity hardware,
notably on embedded graphics processors (GPUs) and multi-core CPUs, have in-
creasingly gained attention. Although GPUs seem like the most logical choice to ac-
celerate imaging applications [44], they have a number of characteristics that cause
them to fail requirements in some cases. In these cases, FPGAs may be preferred.
First, they draw considerable amounts of power. Second, some product areas such
as medical imaging systems (e.g., X-ray) require the availability of system compo-
nents over an extended period of time (up to 15 years). However, in these areas
there are conflicting requirements such as a high degree of maintainability, that
are normally not compatible with FPGA acceleration (changes to the software could
lead to required changes in the acceleration fabric which is tedious). Therefore, it
is highly desirable to have an acceleration fabric that is more easily programmable
than the reconfigurable logic itself. Putnam et al. [45] shows the viability of using
application-tailored softcores to speed up datacenter applications. [46] presents a
softcore specifically designed to perform fast fourier transforms at efficiency lev-
els comparable to that of dedicated FPGA circuits. A softcore-based environment
benefits from standardized hardware design and a pre-existing development plat-
form and toolchain that allows it to be programmed using common programming
languages. A single softcore will not be able to achieve performance levels similar
to dedicated accelerators written in VHDL (or synthesized using high-level synthe-

2.2. Related work

2

37

sis). However, the total system performance for data-intensive applications (such
as image processing) will often be bound by the available memory bandwidth (as
is true for any multicore system [47]). Moreover, the parallel nature of image pro-
cessing provides a high level of scalability for multicore systems. This means that
if the number of softcores that can be placed on the FPGA is sufficiently high as to
achieve “wirespeed performance” (i.e., fully utilize the available bandwidth to the
FPGA), the application speedup of the softcore-based system will be equal to an im-
plementation that uses dedicated FPGA accelerators but with reduced development
effort and increased maintainability.

In this chapter, we propose to use the 𝜌-VEX softcore based on the VEX ISA
for image processing applications (which is one of the main application domains
for this architecture) considering the aforementioned scenario. Our 𝜌-VEX softcore
implementation is design-time reconfigurable and run-time parametrizable which
allows it to adapt to varying requirements of applications. This has the promise
of providing low development cost and good maintainability as well as efficient
resource utilization to achieve efficient image processing power. In this chapter,
we will show that the 𝜌-VEX exhibits good performance in the application domain
compared to an industry standard softcore (the Xilinx MicroBlaze).

The chapter is organized as follows. Section 2.2 discusses related work. Section
2.3 presents the 𝜌-VEX platform including the ISA, the toolchain and the softcore
design. Section 2.4 discusses the applications used in the evaluation. Section 2.5
presents the test setup and the measurement results, and Section 2.6 concludes
the chapter and discussed possible future directions for research.

2.2. Related work
Spyder [48] appeared as the first softcore VLIW processor. The provided toolchain
was not complete and the processor was not run-time reconfigurable. An FPGA-
based design of a softcore VLIW processor based on the ISA of the Altera NIOS-II
soft processor is presented in [49]. The compilation scheme consists of a Trimaran
[50] as the frontend and the extended NIOS-II as the back-end. Due to the licensed
Altera NIOS-II, this VLIW design is not very flexible and not open-source. Addition-
ally, the design is not run-time reconfigurable. In [51], a modular design of a
VLIW processor is reported. Certain parameters of the processor architecture could
be altered in a modular fashion. In [52], the architecture and micro-architecture
of a customizable softcore VLIW processor are presented. Additionally, tools are
discussed to customize, generate, and program this processor. The limitation is
the absence of a compiler. A VLIW processor with reconfigurable instruction set is
presented in [53]. In this case, a reconfigurable unit is coupled to a VLIW proces-
sor. The co-processor can be configurable for any custom instruction. The 𝜌-VEX
is different from this design in the sense that it does not couple a reconfigurable
co-processor. We can add a custom unit to the data paths of our processor at
design time and reconfigure the issue slots at run-time. In [54], we present the
rationale and the design and implementation of an open-source softcore VLIW pro-
cessor. This processor is design-time parametrized and can be configured to make
its issue-width adjustable during run-time [22][55].

2

38 2. Using VLIW softcore processors for image processing

2.3. The 𝜌-VEX platform
2.3.1. The VEX system: ISA and toolchain
The VEX stands for VLIW Example [16]. The VEX is developed by Hewlett-Packard
(HP) and STMicroelectronics. The VEX instruction set architecture (ISA) is a 32-bit
clustered VLIW ISA that is scalable and customizable to individual application do-
mains. The VEX ISA is loosely modeled on the ISA of HP/ST Lx (ST200) family of
VLIW embedded cores [16]. Based on trace scheduling, the VEX C compiler is a
parameterized ISO/C89 compiler. A flexible programmable machine model deter-
mines the target architecture, which is provided as input to the compiler. A VEX
software toolchain including the VEX C compiler and the VEX simulator is made
freely available by the Hewlett-Packard Laboratories [56].

2.3.2. The 𝜌-VEX VLIW processor
The 𝜌-VEX is a configurable (design-time) open-source VLIW softcore processor
[21]. The ISA is based on the VEX ISA [56]. Different parameters of the 𝜌-VEX
processor, such as the number and type of functional units (FUs), number of mul-
tiported registers (size of register file), number and type of accessible FUs per
syllable, width of memory buses, and different latencies can be changed at design
time.

Figure 2.1: Design overview of a -issue instance of the -VEX VLIW softcore processor.

Figure 1 depicts the organization of a 32-bit, 4-issue 𝜌-VEX VLIW processor.
The 𝜌-VEX processor consists of fetch, decode, execute, and writeback stages/u-
nits. Operations take place in either the parallel Arithmetic logic unit (A) and mul-
tiplier (M) units, or the branch (CTRL) or load/store (MEM) units. All jump and
branch operations are handled by the CTRL unit, and all data memory load and
store operations are handled by the MEM unit. The different write targets could
be the general register (GR) file, branch register (BR) file, or data memory. All
operations normally have a delay of one cycle, except for MEM and MUL operations

2.4. Image processing applications

2

39

which need an extra cycle. The core contains forwarding logic to minimize pipeline
stalls. Additionally, the 𝜌-VEX processor supports reconfigurable operations, as the
VEX compiler supports the use of custom instructions via pragmas within an appli-
cation code. The instruction and data caches for the processor are implemented
with BRAMs (Block RAM resources on the FPGA). The GRLIB SoC library [57] is
used to connect the processor core to off-chip DDR memory and peripherals via an
AMBA bus system. This setup allows us to use any IP that is compatible with this
bus, and to use existing tools to connect to the board in order to load applications,
start/stop the core, etc. The GRLIB library also contains the framebuffer used to
visually inspect the result images.

The 𝜌-VEX core can be configured at design time to be dynamically (run-time)
reconfigurable or not. When configured to be dynamic, it can couple or decouple its
datapaths to either run in a single-core mode with a large issue-width, or in a multi-
core mode with smaller processors that can run separate tasks or threads. Dynamic
reconfigurability will result in the flexibility to balance instruction-level parallelism
(ILP) for high performance on a single thread with thread-level parallelism (TLP)
for applications with low ILP but that can benefit from utilizing multiple threads.
This comes at a cost of increased FPGA resource utilization. Partial reconfiguration
is not needed for this concept to work; the principle is applicable also for ASIC
implementation. This chapter focuses on the architecture and not the dynamic re-
configurability. The applications used in this chapter for evaluation do not exhibit
dynamic behavior (see Section 2.4) and as such are not suitable to study these prop-
erties. Therefore, the processor core used in this chapter is a static (not run-time
reconfigurable), 4-issue VLIW. Using a higher issue width and/or dynamic recon-
figurability will result in increased resource utilization and possibly lower operating
frequency.

2.4. Image processing applications
To evaluate the suitability of our architecture for imaging applications, we imple-
mented two basic algorithms that are commonly found in the application domain:
a greyscale converter and a convolution filter with adaptable filter size. Both ap-
plications can be used for varying image sizes and the convolution filter can be
configured to use different kernels, each performing a different operation on the
image. The execution time is independent of the values used in the kernel. The
images are represented in memory as an array containing a 32-bit word per pixel.
This representation allows it to be displayed directly using a framebuffer device on
the FPGA to facilitate visual inspection of the resulting images.

The greyscale converter is essentially a single loop performing a single operation
on every pixel. The convolution filter performs a number of operations per pixel,
depending on the size of the kernel. Both applications are representative for image
processing steps in a medical imaging system. The greyscale converter represents
the step of assigning a color value to the output of the sensor, depending on the
precision of its output (which is often higher than 8 bits). The convolution filter can
be used for a range of operations such as edge detection and image sharpening.

Care has been taken to ensure that the measurements contain as little overhead

2

40 2. Using VLIW softcore processors for image processing

[−1 −1 −1−1 8 −1−1 −1 −1]
Figure 2.2: Example of a convolution kernel that performs edge detection [58].

MicroBlaze 𝜌-VEX
% # %

Registers 17,477 5% 10,927 3%
LUTs 15,099 10% 18,900 12%
Slices 7376 19% 7506 19%

Table 2.1: Synthesis results

as possible. The programs do not contain input/output inside the measured parts
of the program. The programs run without operating system and there are no
interrupts enabled in the system.

2.5. Results and discussion
We use the Xilinx ML605 board as evaluation platform. The 𝜌-VEX is synthesized at75 MHz and the MicroBlaze was synthesized using the platform studio base system
wizard included in the Xilinx ISE 13.4 toolset. The MicroBlaze was created using
the “maximum performance” setting of the wizard. The system contains a core
that is clocked at 150 MHz and an AXI bus at 75 MHz (as are the default maximum
settings). The MicroBlaze contains a multiplication unit but no division or floating
point unit. Both cores contain 32 KiB of instruction memory and 1 KiB of data
memory. In both cases, the .text section of the programs is small enough to
fit in the instruction cache. Using data cache sizes of more than 1 KiB did not
result in any performance increase for either processors. However, a larger cache
prevents the MicroBlaze from meeting its timing at 150 MHz, which necessitates
lower clock frequencies, further reducing the MicroBlaze performance. Since the𝜌-VEX runs at a lower frequency of 75 MHz, cache sizes can be increased without
further lowering the frequency. The 150 MHz frequency and 1 KiB data cache size
were chosen to keep the comparison between the two processors as fair as possible.
Synthesis results can be seen in Table 2.1. The resource utilization of both platforms
is comparable, with the 𝜌-VEX utilizing slightly more lookup tables (LUTs) and the
MicroBlaze utilizing more registers.

The same code is compiled for both cores, with pre-processor macros selecting
the timer and print functions, and the memory locations of the image in/output
according to the location of the DDR RAM in each platform’s memory map. For
the 𝜌-VEX, our VEX port of the Open64 compiler is used with full optimization (-
O). For the MicroBlaze, the default GCC-based compiler is used that is included

2.5. Results and discussion

2

41

Figure 2.3: Execution time for the greyscale conversion algorithm.

Figure 2.4: Execution time for convolution of a 3x3 kernel.

Figure 2.5: Execution time for convolution of a 5x5 kernel.

2

42 2. Using VLIW softcore processors for image processing

with the Xilinx toolset. Full optimization was also enabled, but for convolution it
appeared that optimizing for size (-Os) resulted in significantly better performance.
Therefore, size optimization was used when compiling the convolution code for
the MicroBlaze. The resolutions used in these experiments include two industry
standards (VGA 640x480 and HD 1080p) as well as 1024x1024, a resolution taken
from the requirements of an actual medical imaging system.

The execution of the 𝜌-VEX is measured by resetting the execution cycle counter
that is included in the platform before the program enters the calculation section
(thereby removing the overhead of initialization code and printing startup messages
to the UART) and reading the number of cycles again when execution has finished.
The execution time of the MicroBlaze is measured by starting a timer unit attached
to the AXI bus running at 75 MHz, reading its value before and after running the
calculations and printing the difference to the UART.

The results can be seen in Figures 2.3 - 2.5. For convolution, the 𝜌-VEX is 80%
faster compared to the MicroBlaze for the smallest input size and a factor 3.2 times
faster for the largest input size. For greyscale conversion, the 𝜌-VEX is faster with
factors of 2.3 to 3 times.

With the 𝜌-VEX being a 4-issue processor at 75 MHz and the MicroBlaze a single-
issue processor at 150 MHz, the expected difference in performance between the
cores is a factor of 2. However, inspection of the assembly code shows that the
compiler uses loop unrolling to decrease branching delays and, more importantly,
fill the issue slots so the VLIW can fully utilize all of its resources. As the processor
is calculating values for multiple adjacent pixels at the same time, it is able to
keep more input pixel values in registers and/or make use of better cache locality
compared to the MicroBlaze that needs to reload input pixel values for every inner
loop iteration. This effect will continue to have impact as long as the number of
available registers is sufficient, as is shown by the growing performance difference
between the cores as the problem size increases.

2.6. Conclusions
In this chapter, we have shown that the 𝜌-VEX softcore processor can achieve re-
markably better performance compared to the industry-standard Xilinx MicroBlaze
(up to a factor of 3.2 times faster) on image processing applications. In order
to be able to use the 𝜌-VEX as a competitive platform capable of accelerating in-
dustrial grade image processing applications, a number of improvements can be
implemented. These improvements are needed in the following of areas:

• How to efficiently stream data to and from the FPGA

• Designing a fast memory hierarchy on the FPGA or a means to efficiently
stream data between different cores (each core might perform a certain step
in the image processing pipeline, or each core will have a certain part of the
image assigned and will perform all the steps)

• Investigating instruction-set extensions that can perform or speed up common
image processing operations

3
A streaming FPGA

computation fabric

In the previous chapter, we have seen that the 𝜌-VEX VLIW architecture per-
forms up to a factor of 3.2 × better compared to the general-purpose Mi-
croBlaze in the image processing domain. Still, several cores are needed
to achieve the required performance. However, using a standard bus-based
connection is not scalable to larger numbers of processors. This chapter dis-
cusses how to design a processing fabric using several processors, with a
streaming memory structure that can be easily optimized for the application.
This structure allows the workload to be spread over as many cores as can
fit on an FPGA, without creating a memory access bottleneck.

Parts of this chapter have been published in [37].

43

3

44 3. A streaming FPGA computation fabric

Abstract
In this chapter, we present and evaluate an FPGA acceleration fabric that uses
VLIW softcores as processing elements, combined with a memory hierarchy that
is designed to stream data between intermediate stages of an image processing
pipeline. These pipelines are commonplace in medical applications such as X-ray
imagers. By using a streaming memory hierarchy, performance is increased by a
factor that depends on the number of stages (7.5× when using 4 consecutive fil-
ters). Using a Xilinx VC707 board, we are able to place up to 75 cores. A platform of
64 cores can be routed at 193MHz, achieving real-time performance, while keeping20% resources available for off-board interfacing.
Our VHDL implementation and associated tools (compiler, simulator, etc.) are avail-
able for download for the academic community.

3.1. Introduction
In contemporary medical imaging platforms, complexity of image processing algo-
rithms is steadily increasing (in order to improve the quality of the output while re-
ducing the exposure of the patients to radiation). Manufacturers of medical imaging
devices are starting to evaluate the possibility of using FPGA acceleration to pro-
vide the computational resources needed. FPGAs are known to be able to exploit
the large amounts of parallelism that is available in image processing workloads.
However, current workflows using High-Level Synthesis (HLS) are problematic for
the medical application domain, as it impairs programmability (increasing time-to-
market) and maintainability. Additionally, some of the image processing algorithms
used are rather complex and can yield varying quality of results. Therefore, in
this chapter, we propose a computation fabric on the FPGA that is optimized for the
application domain, in order to provide acceleration without sacrificing programma-
bility. By analyzing the structure of the image processing workload type (essentially
a pipeline consisting of multiple filters operating on the input in consecutive steps),
we have selected a suitable processing element and designed a streaming memory
structure between the processors.

The image processing workload targeted in this chapter consists of a number of
filters that are applied to the input data in sequence. Each filter is a stage in the
image processing pipeline. The input stage of a filter is the output of the previous
stage - the stages stream data to each other. Making sure these transfers are
performed as efficiently as possible is crucial to provide high throughput.

The processing element used in this work is based on a VLIW architecture.
These type of processors are ubiquitous in areas such as image and signal process-
ing. They are known for their ability to exploit Instruction-Level Parallelism (ILP)
while reducing circuit complexity (and subsequently power consumption) compared
to their superscalar counterparts. In the medical imaging domain, power consump-
tion is not a main concern, but as image processing workloads can be divided into
multiple threads easily, a reduction in area utilization will likely result in an increase
in total throughput.

The remainder of this chapter is structured as follows: Section 3.2 discusses

3.2. Related work

3

45

related work, Section 3.3 discusses the implementation details, Section 3.4 and 3.5
present the evaluation and results, and Section 3.6 provides conclusions and future
work.

3.2. Related work
A prior study on using VLIW-based softcores for image processing applications is
performed in [36], showing that a VLIW-based architecture has advantages over a
scalar architecture such as the MicroBlaze in terms of performance versus resource
utilization. In [59], an FPGA-based compute fabric is proposed using the LE-1
softcore (based on the same Instruction Set Architecture - VEX), targeting med-
ical image processing applications. This work focuses solely on offering a highly
multi-threaded platform without providing a memory hierarchy that can sustain the
needed bandwidth through the pipeline. A related study on accelerating workloads
without compromising programmability is [60], with one of the design points being
a convolution engine as processing element. A well-known prior effort, and one of
the inspirations of this work, uses softcores to provide adequate acceleration while
staying targetable by a high level compiler is the Catapult project [45]. The tar-
get domain is ranking documents for the Bing search engine. A related effort that
aims to accelerate Convolutional Neural Networks is [61]. However, this project
did not aim to conserve programmability (only run-time reconfigurability), as the
structure of this application does not change enough to require this. In the image
processing application domain, [62] provides a comparison of convolution on GPU or
FPGA using a Verilog accelerator, [46] and [63] present resource-efficient stream-
ing processing elements, and [64] introduces a toolchain that targets customized
softcores.

3.3. Implementation
The computation fabric developed in this work consists of two facets; the processing
elements and the memory hierarchy, as shown in Figure 3.1. The implementation of
both will be discussed in this section. Then, the process of designing a full platform
using these components is discussed.

3.3.1. Processing elements
This section describes the design and implementation of our fabric. The processor
cores in the fabric are derived from the 𝜌-VEX processor [21]. The 𝜌-VEX processor
is an VLIW processor based on the VEX ISA introduced by Fisher et al [16]. The 𝜌-
VEX processor has both run-time and design-time reconfigurable properties, giving
it the flexibility to run a broad selection of applications in an efficient way.

Image processing tasks are highly parallelizable in multiple regards; 1) The code
is usually computationally dense, resulting in high ILP, and 2) Every pixel can in
theory be calculated individually and it is easy to assign pixels to threads (by dividing
the image into blocks). In other words, there is an abundance of Thread-Level
Parallelism (TLP). Exploiting TLP is usually more area efficient than exploiting ILP
- increasing single-thread performance comes at a high price in power and area

3

46 3. A streaming FPGA computation fabric

2-issue

core

Instr.

memory

Data

memory

2-issue

core

Instr.

memory

Data

memory

Decoder

Debug access bus

20 MHz

200 MHz

2-issue

core

Instr.

memory

Data

memory

DecoderDecoder

Data

source

Data

sink

Stream unit Stream unit Stream unit

Figure 3.1: Organization of a single stream of processing elements (Stream unit) and the streaming
connections that link the data memories. Each processor can access the memory of its predecessor.
Each processor’s memories and control registers can be accessed via a bus that runs on a low clock
frequency to prevent it from becoming a timing-critical net.

utilization and will quickly show diminishing returns. This is why GPUs exploit TLP
as much as possible by using many small cores. Therefore, the processing elements
of our fabric will use the same approach and we will use the smallest 2-issue VLIW
configuration as a basis. This will still allow it to exploit ILP by virtue of having
multiple issue slots and a pipelined datapath.

By placing multiple instances of our fabric on an FPGA, TLP can be exploited in
two dimensions; by processing multiple blocks, lines or pixels (depending on the
filter) concurrently, and by assigning each step in the image processing pipeline to
a dedicated core (pipelining on a task level in contrast to the micro-architectural
level).

To explore the design space of the processor’s pipeline organization, we have
measured code size and performance of a 3x3 convolution filter implemented in C.
This convolution code forms a basis with which many operators can be applied to an
image depending on the kernel that is used (blurring, edge detection, sharpening)
so it is suitable to represent the application domain. The main loop can be unrolled
by the compiler using pragmas. Figure 3.2 lists the performance using different
levels of loop unrolling for different organizations of a 2-issue 𝜌-VEX pipeline; the
default pipeline with 5 stages and forwarding, one with 2 additional pipeline stages
to improve timing, and one using the longer pipeline and with Forwarding (FW)
disabled to further improve timing and decrease FPGA resource utilization. Loop
unrolling will allow the compiler to fill the pipeline latency with instructions from
other iterations. The performance loss introduced is reduced from 25% to less than2% when unrolling 8 times. Additionally, disabling forwarding reduces the resources
utilization of a core allowing more instances to be placed on the FPGA (see Figure
3.1).

3.3.2. Memory hierarchy
In our fabric, processing elements are instantiated in ‘streams’ of configurable
length. This length should ideally be equal to the number of stages in the image
processing pipeline. Each stage will be executed by a processor using the output of
the previous processor. A connection is made between each pair of 𝜌-VEX proces-

3.4. Experimental setup

3

47

0 2 4 8
0
50
100
150

Loop Unroll factor

Ex
ec

ut
io

n
tim

e
(M

cy
cl
es

)

5-stage Forwarding
7-stage Forwarding

7-stage no Forwarding

Figure 3.2: Execution times of a 3x3 convolution filter on a single processor using different loop unrolling
factors.

sors in a stream, so that a core can read the output of the previous step (computed
by the previous core in the stream) and write the output into its own data memory
(making it available for reading by the next core in the stream). The memory blocks
are implemented using dual-port RAM Blocks on the FPGA. Each port can sustain a
bandwidth of one 32-bits word per cycle per port, so both processors connected to
a block (current, next) can access a block without causing a stall. The blocks are
connected to the processors by means of a simple address decoder between the
memory unit and the data memories.

The first and last core should be connected to DMA (Direct Memory Access)
units that move data to and from input and output frame buffers (eventually going
off-board).

3.3.3. Platform
The VHDL code of the components is written in a very generic way and there are
numerous parameters that can be chosen by the designer. First of all, the 𝜌-
VEX processor can be configured in terms of issue width, pipeline configuration,
forwarding, traps, trace unit, debug unit, performance counters, and caches. Sec-
ondly, there is an encompassing structure that instantiates processors in streams.
The number of streams and length per stream are VHDL generics.

3.4. Experimental setup
Since the target application of the designed system is related to medical image
processing, an X-ray sample image is used as input for the evaluation. Typical

3

48 3. A streaming FPGA computation fabric

medical imagers work with images that have a size of 1000 by 1000 pixels. The
dimensions of our benchmark images are 2560 by 1920 pixels. The image is resized
to other dimensions in order to determine the scalability of system performance.
Each pixel is represented by a 32-bit value (RGBA). Using a technique described in
the following section, the image may be scaled down to 1280 by 960 and 640 by
480 pixels.

A workload of algorithms based on a typical medical image processing pipeline
is used. The first step in the image processing pipeline is an interpolation algorithm
used to scale the size of the source image. The bi-linear and nearest neighbor
interpolation algorithms both have the same computational complexity making them
equally feasible. Because of its slightly higher flexibility, we select the bi-linear
interpolation algorithm for the evaluation. Secondly, a gray scaling algorithm is
applied. This algorithm is selected because it operates on single pixels in the input
dataset. The third stage is a convolution filter that sharpens the image, followed
by the final stage, an embossing convolution filter.

3.5. Evaluation results

Pipeline organization Cores Resource utilization Freq.
Forwarding Stages LUT FF BRAM (MHz)
Enabled 7 64 99% 29% 81% 149
Enabled 5 64 93% 26% 81% 103
Disabled 7 75 96% 33% 95% 162
Disabled 5 75 98% 30% 95% 143
Disabled 7 4 5% 2% 5% 200
Disabled 7 64 82% 28% 81% 193

Table 3.1: Resource utilization and clock frequency of different platform configurations on the Xilinx
VC707 FPGA board.

3.5.1. Resource utilization
We have synthesized the platform using various configurations targeting the Xil-
inx VC707 evaluation board. As stated, the pipeline organization of the processing
elements has influence on the resource utilization and timing. In Table 3.1, 4 op-
tions have been evaluated using the standard synthesis flow (unconstrained). With
forwarding enabled, the platform completely fills the FPGA using 64 cores. When
forwarding is disabled, this can be increased to 75.

Additionally, we have performed a number of runs where we created simple
placement constraints that steered the tool towards clustering the cores per stream
so that they are aligned on the FPGA in accordance with their streaming organi-
zation. A single stream consisting of 4 cores achieves an operating frequency of
200MHz. Using 16 streams, timing becomes somewhat more difficult as the FPGA
fabric is not homogeneous (some cores will need to traverse sections of the chip
that are reserved for clocking, reconfiguration and I/O logic, and the distribution of

3.5. Evaluation results

3

49

RAM Blocks is not completely uniform). Still, this configuration achieves an operat-
ing frequency of 193 MHz at 80% LUT utilization, leaving room for interfacing with
off-board electronics.

FW
5-s

tag
e 64

-co
re

FW
7-s

tag
e 64

-co
re

no
FW

5-s
tag

e 75
cor

e

no
FW

7-s
tag

e 75
cor

e

no
FW

7-s
tag

e 64
cor

e
0
5
10
15 .

. . . .

Ex
ec

ut
io

n
tim

e
(𝜇s)

0
100
200

cl
oc

k
fr
eq

ue
nc

y

Figure 3.3: Execution times of a convolution 3x3 filter for the platforms in the design-space exploration
as listed in Figure 3.1 using 8x loop unrolling (from Figure 3.2).

2590*1920 1280*960 640*480

10
10

,

Image size

Ex
ec

ut
io

n
tim

e
(M

cy
cl
es

)

Streaming Non-Streaming

Figure 3.4: Execution times of a 4-stage image processing pipeline on a streaming versus non-streaming
platform using different image sizes

3.5.2. Image processing performance
Figure 3.3 depicts the execution times of a 3x3 convolution filter on the various
platforms, taking into account the number of cores, execution frequency, code per-
formance on the pipeline organization (using 8x loop unrolling).

3

50 3. A streaming FPGA computation fabric

The results on using the streaming architecture for consecutive filters versus the
same system with caches and a bus are depicted in Figure 3.4. Enabling streaming
of data results in speedup of 7.5 times. Processing an image sized 1280 by 960
requires 94.72 million clock cycles (see Figure 3.4). Using 16 streams consisting of
4 cores (64 cores in total) at an operating frequency of 193 MHz, this would mean
that our fabric can process approximately 34 frames per second.

Note that the difference will increase with the number of stages, so the fabric
will perform better with increasingly complex image processing pipelines.

3.6. Conclusions
In this chapter, we have introduced and evaluated an implementation of a FPGA-
based computation fabric that targets medical imaging applications by providing
an image processing pipeline-oriented streaming memory hierarchy combined with
high-performance VLIW processing elements. We have shown that the streaming
memory hierarchy is able to reduce bandwidth requirements and increase perfor-
mance by a factor of 7.5 times when using a single stream of only 4 processing
stages. The platform stays fully targetable by a C-compiler and each core can be
instructed to perform an individual task. The platform is highly configurable and
designers can modify the organization to best match their application structure. For
future work, there is room for further design-space exploration of the processing el-
ements in terms of resource utilization versus performance, introducing design-time
configurable instruction sets, increasing the clock frequency, and other architectural
optimizations. The platform, simulator and toolchain are available for academic use
at http://www.rvex.ewi.tudelft.nl.

http://www.rvex.ewi.tudelft.nl

3.6. Conclusions

3

51

Figure 3.5: The layout of the 64-core, 193MHz platform on the Xilinx XC7VX485T-2FFG1761C FPGA on
the Virtex 7 VC707 evaluation board. Manually created placement constraints were used to group each
stream together. Each colored block represents an individual core.

4
Frame-Based Programming,

Stream-Based Processing

Chapter 3 presented an image processing fabric that can be optimized for
the image processing filter chain. However, there is still a large conceptual
gap between the stream-based hardware platform and the programmer. Pro-
grammers typically have little experience with the details of custom-designed
hardware. Normally, programming an image processing algorithm is done
from the perspective of operating on a full frame. However, the streaming fab-
ric splits each frame into segments that are processed on a separate pipeline
of processing cores. In this chapter, we show how we use the OpenCL com-
puting paradigm to provide a programming framework that facilitates map-
ping frame-based image processing code onto the streaming fabric.

Parts of this chapter have been published in [38].

53

4

54 4. Frame-Based Programming, Stream-Based Processing

Abstract
This chapter presents and evaluates an approach to deploy image processing
pipelines that are developed frame-oriented on a hardware platform that is
stream-oriented, such as an FPGA. First, this calls for a specialized streaming
memory hierarchy and accompanying software framework that transparently
moves image segments between stages in the image processing pipeline. Second,
we use softcore VLIW processors, that are targetable by a C compiler and have
hardware debugging capabilities, to evaluate and debug the software before
moving to a time-consuming and specialistic High-Level Synthesis flow. This allows
both software developers and hardware designers to test changes in a matter of
seconds (compilation time) instead of hours (synthesis or circuit simulation time).

4.1. Introduction
The goal of an interventional X-Ray (iXR) system is to provide the physician with
real-time images from the anatomy of the patient while performing a medical inter-
vention. Typical interventions on the system include repairing blood vessel defor-
mations such as aneurysms by positioning stents or replacing heart valves. During
these procedures, blood vessels are filled with a contrast medium, which is visual-
ized by X-rays and shown in real-time high resolution video images to the physician.
As radiation is harmful to patients, doses need to be kept to a minimum. Using
lower doses leads to more noise in the images, which can be reduced by using
image processing filters.

The iXR is a complex system with strong real-time requirements. The system
consists of many different compute architectures. The image processing algorithms
are often closely tuned to the platform architecture. This makes it difficult to service
the systems. In the context of the ALMARVI project we have worked on portability
of image processing algorithms across platforms (CPU, GPU, embedded) in order to
become less platform dependent. Mainly FPGA (SoC) platforms are interesting due
to the long life time, strong performance and good real-time capabilities. However,
FPGAs are often perceived as being difficult to design for. In order to address this,
we have zoomed in on enablers for portability towards FPGAs exploiting novel tools
and techniques such as High Level Synthesis (HLS) tools.

Image or video processing algorithm development is mainly done in a frame
based manner which allows random access of the frame and parallelization tech-
niques such as tiling. When moving to FPGA accelerators we cannot buffer a full
frame before we start processing, due to amongst others memory bandwidth, power
and latency requirements. Therefore, the algorithm has to be implemented in a
stream based manner, where we wish to process pixels as soon as they come in
and, as quickly as possible, pass the result on to the next processing step (accel-
erator). This involves intensive hand optimizations such as using line buffers and
data re-ordering instead of random memory access. We wish to abstract from this
implementation level in order to ease the implementation for the programmer.

Frameworks exist that facilitate mapping computations to FPGA (including
frameworks specifically targeting image processing), but these do not solve the

4.2. Related work

4

55

frame versus stream problem. Mapping the frame-based software to a stream-
based hardware platform on FPGA creates the following challenges; creating a
framework that moves and buffers data (in the form of image segments) between
stages, and the development/test cycle time increases tremendously because of
synthesis. In this chapter, we propose an approach to solve these challenges by
using an FPGA overlay fabric consisting of softcore processors that are targetable
by OpenCL and a streaming memory framework.

4.2. Related work
A common aim in the development of support frameworks for specific application
domains is to reduce Non-Recurring Engineering costs (NRE) by speeding up de-
velopment time and facilitate component re-use. The performance may be slightly
negatively affected (a specific full-custom design is hard to beat), but that is usually
offset by lower development costs and time-to-market.

In this section, we will first discuss general approaches to speed up image pro-
cessing workloads, then proceed to focus on FPGA acceleration including software
support approaches, followed by a discussion of hardware support approaches us-
ing overlays and image processing fabrics and hardware integration frameworks.

4.2.1. Optimizing/accelerating image processing workloads
Currently, there are numerous ways to either optimize image processing code or
mapping it to FPGA/GPU. On common ARM and x86-based systems, Single Instruc-
tion, Multiple Data (SIMD) instruction set extensions such as AVX can be exploited
to gain considerable performance [65]. There exists efforts to be able to insert
these instructions automatically and some compiler support exists. When a new
generation of processors or SIMD extensions is introduced, however, code must be
optimized, leading to large costs in testing and validation. A study about optimiz-
ing HEVC (High Efficiency Video Codec) using the AVX SIMD extension concludes
that ”The large speedup, however, could only be achieved with high programming
complexity and effort.” [66, p853]

GPUs suffer from the problem of performance portability [67]. This means that
for a new GPU generation, the same issue arises where engineering effort may be
required to optimize the code again. Additionally, GPU primarily target floating point
calculations, that are usually algorithmically not necessary for image processing.

To facilitate the optimization process and to aid design space exploration for
various target execution platforms, the Halide programming language and compiler
can be used to generate code from a functional description of a filter [68]. Map-
ping parallel computations to a variety of computational fabrics (including multicore
CPUs, GPUs and FPGA) can be done using OpenCL [69].

4.2.2. FPGA acceleration
Mapping computations to FPGA can be performed in a number of ways. High-Level
Synthesis [70] is becoming a standard tool in many FPGA design environments. Ad-
ditionally, FPGA vendors are supporting OpenCL through for example SDAccel [71].

4

56 4. Frame-Based Programming, Stream-Based Processing

Figure 4.1: High-Level Synthesis (HLS) aims to reduce development time compared to a full-custom RTL
design. Recently, FPGA vendors started to support OpenCL code. Starting from an OpenCL program,
it costs less time to synthesize the first working design to FPGA, but it requires a considerable number
of costly test, debug, and optimization cycles before it starts to perform comparable to an HLS design.
Using an FPGA overlay that supports OpenCL code facilitates this process.

The traditional approach of developing datapath designs in VHDL is becoming rare
and will be utilized only for very specific designs or if the HLS tools are not able
to meet certain requirements. Still, the HLS toolflow has some drawbacks. Code
modifications are often necessary, as it is not possible to write code in a frame-
based way - the tools need to be able to identify buffers in such a way that it can
be mapped to FPGA efficiently (stream-based) to prevent prohibitively slow main
memory accesses. The ROCCC HLS compiler [72] is able to insert smartbuffers that
can provide some data reuse, and in [73] this concept has been extended into a
framework that can generate VHDL code for sliding window filters with optimized
memory structure. Other related efforts exist, that aim to generate streaming de-
signs from C code [74] or make use of Domain-Specific Languages (DSL) such as
Halide are Darkroom [75] and HIPAcc. These approaches are able to generate
hardware components for FPGA by providing an abstraction layer for HLS. Using

4.2. Related work

4

57

HLS and frameworks that generate HDL code, quality of result is not always con-
sistent and synthesis times are still very long. This means there is still a gap to be
bridged between the image processing code and FPGA development.

4.2.3. FPGA overlays
To reduce compilation time and enhance portability, FPGA overlays are becoming
an interesting research area. Using an overlay on FPGAs would allow software
programmers to target familiar architectures, without understanding the low-level
details. MARC [76] is one such project where a multi-core architecture is used as
an intermediate compilation target. It consists of one control processor and mul-
tiple processors (Cores) to perform computations. The data cores are used to run
OpenCL kernels and the control core is used to schedule work to the data cores.
The authors conclude that using such an overlay dramatically reduces development
time and bridges the gap between hardware and software programs at an accept-
able performance hit compared to hand-optimized FPGA implementation. Another
related effort is OpenRCL [77]. The concept of using accelerators to speed up
applications while retaining programmability is discussed in [60].

4.2.4. FPGA image processing overlays
In [64], a toolset is introduced for customized softcore image processing on FP-
GAs. Customizing the softcores is a concept that can be added to our proposed
framework to improve performance. Resource-efficient processing elements are
introduced by [46] and [63]. Our framework could make use of these processors
if they were available, but our chosen processor supports OpenCL and we provide
our own design-space exploration. This work introduces an FPGA framework that
can be used for prototyping and debugging, and can form a basis to use HLS if the
system does not achieve the target performance requirements. A similar framework
has been introduced in [59], but instead of providing stream-based processing that
allows scalability, they employ shared memory in a banked organization, accessible
via a crossbar. This reduces scalability as will be evaluated in Section 4.6.

4.2.5. Integration frameworks
There have been related efforts in creating FPGA development frameworks that fa-
cilitate development and integration. One example is RIFFA [78], an open source
project that provides communication and synchronization between host and FPGA
accelerators using PCIe. As we are using I/O directly connected to the FPGA board,
we do not require PCIe interfacing. A commercial framework that can incorpo-
rate HSL-generated accelerators, hand-written VHDL and IP is the DYnamic Process
LOader or Dyplo from Topic Embedded Products [79]. It incorporates a network on
chip which connects both software functions and FPGA accelerators together. The
network can be re-routed at run time and designated areas of the FPGA can be re-
configured with a different accelerator through Xilinx Partial Reconfiguration [80].
The Dyplo framework handles data transfers transparently by visualization of the
accelerators on the FPGA, thus offering ease of programming and flexibility. Philips
Healthcare has successfully used the Dyplo framework in their study for ALMARVI.

4

58 4. Frame-Based Programming, Stream-Based Processing

int a[128], b[128];

static int get(int addr)
{
if (addr < 0 || addr >= 127)
return 0;

else
return a[addr];

}

void fun()
{
int i;
for (i = 0; i < 128; i++)
{
b[i] = (get(i-1) + get(i) + get(i+1)) / 3;

}
}

Figure 4.2: Code example of an OpenCL kernel.

4.3. Approach
This section will outline how we have used a slightly modified view on the OpenCL
programming model to target our proposed streaming-based hardware framework
while using ordinary OpenCL kernels.

4.3.1. OpenCL’s view on parallel computing
In many cases a compute ‘problem’ consists of a data-set for which each element
needs to undergo a certain transformation and basically this transformation is the
same for each element. Consider the code example in Figure 4.2:

Every b[i] is produced by the exact same code fragment and there is no depen-
dency of an element of b[] to another element of b[]. Such an operation is called
a ‘kernel’ in OpenCL terminology. Conceptually, all 128 computations could have
been executed concurrently, on a platform that provides 128 processing elements.
This kind of parallelism is the main target of OpenCL: execution of as many kernels
in parallel as possible. Note that the code for each kernel is identical, but the exe-
cution flow can be different for example due to the boundary checking ‘if’ statement
in the ‘get()’ function. The OpenCL framework tries to have many accelerators per-
forming the same operation on many datasets independently. One element of such
a dataset is called a ‘work-item’.

4.3.2. OpenCL memory model
OpenCL defines 4 types of memory objects:

1. Global Memory – read/write accessible from both the host and the execution
device

2. Constant Memory – like Global Memory, but read-only for execution devices

4.3. Approach

4

59

3. Local Memory – only accessible within (a group of) execution devices

4. Private Memory – only accessible from a single execution device

OpenCL also defines a data cache between the Global / Constant memories and
the execution devices. This cache is optional, but in practice it is always needed to
avoid slow-down due to data transfers. This cache needs to be carefully designed,
as many cores will try to access it simultaneously. If cache does not have enough
access ports, it will quickly become a bottleneck. Figure 4.3 shows the OpenCL
memory structure.

Figure 4.3: OpenCL memory structure

4.3.3. Streaming data and OpenCL
The OpenCL model works with Single Instruction Multiple Data (SIMD) processing.
One set of kernels is operating on the full data set. Other sets of kernels have to
be programmed each time for iterative processing, where the data is stored to the
global memory in between processing steps. This approach is shown in Figure 4.4.
We would like to use OpenCL in a data pipelined, or streaming, implementation as
explained in the previous section. This means that we would like a situation where
we can program different sets of kernels where data is passed on from one set to
the next, as depicted in Figure 4.5. Here, results are no longer written back to
global memory, but passed to other accelerators through a connection mechanism
that needs to be scalable (as we are targeting highly parallel workloads running on
large numbers of compute devices) and able to provide sufficient bandwidth. This
can be a Network on Chip or a certain connection topology that suits the application.

Note that an alternative approach could be to execute the different kernels con-
secutively on every compute device (essentially, we changing the kernel instead of
moving the data - keeping the data set local). This requires every compute device
to be capable of storing the instruction stream of each kernel in local instruction
memory or cache. The storage capacity of these memories is an important design

4

60 4. Frame-Based Programming, Stream-Based Processing

Figure 4.4: OpenCL data model

parameter as is explored in Section 4.4.1. Additionally, the size of the instruction
stream will typically be larger than the size of a data block.

4.3.4. OpenCL data architecture
In OpenCL a kernel always has a full view on the entire dataset but in most cases
that is not necessary. Given that a certain kernel is operating on a block of data,
this kernel only needs a limited view on the total working set as depicted in Figure
4.6. In this example (a 5x5 convolution kernel), the data located more than 2 lines
above the current coordinates (x,y) are not needed anymore and the lines more
than 2 lines below (x,y) are not needed yet. Assuming a set of compute devices
are processing the data line by line, each device requires 5 lines of storage capacity
to store their working set. A control mechanism should feed each compute device
with the appropriate data in time and keep track of the locations of lines when
assigning tasks to ensure the needed input lines are present and output results
are only overwriting stale data. The OpenCL system provides a suitable basis to
build such a mechanism: the command queue. This queue distributes work-items
to the compute units, so it knows exactly which work-items are being processed.
Consequently, it knows about the maximum view of each kernel and can compute
the required data (sub)set as well.

Determining the maximum view size of the kernels in the image processing
pipeline also influences certain parameters of the required hardware infrastructure
(the storage capacity of the local memories of the compute devices). Conversely:

4.4. Implementation - Hardware

4

61

Figure 4.5: Streaming data model

for a given size of hardware buffers there is a maximum view size for each kernel.
The process of finding the optimal buffer sizes between all kernels is important
to prevent bottlenecks while minimizing the required sizes. There are numerous
approaches to solve this, for example by performing simulations with iteratively de-
creasing buffer sizes, but this is outside the scope of this work. In our reference
platform, we assume all filters have a maximal window size of 5x5 and will there-
fore need a buffer size of 5 lines for input and 1 additional line for output. The
width of the lines depends on the stripe length (e.g., how the image is divided into
vertical stripes), which also determines how many vertical lines of pixels need to be
processed redundantly.

4.4. Implementation - Hardware
An FPGA-based platform targeting image processing pipelines needs a number of
elements; a streaming memory structure, processing units, one or more DMA units,
interfaces with off-board electronics (to receive the image and output it after pro-
cessing), and control & debug interfaces with a central host. Additionally, run-time
support is needed to move the image segments through the streaming memory
structure. This should be done as transparently as possible in order to keep frame-

4

62 4. Frame-Based Programming, Stream-Based Processing

Figure 4.6: A kernel only needs a limited view on the total working set

based programmability.

4.4.1. Processing element
The processing elements used in this work are based on the 𝜌-VEX VLIW processor
developed by TU Delft [21]. The implementation of this processor is written in a
very generic way, so design space exploration can be performed. In our application
domain, there is ample parallelism on both instruction level and data level (that can
be exploited by SIMD or multithreading). The design-time configuration options
available for the 𝜌-VEX are listed in Table 4.1. The processor will be configured

Configuration Area Code
option utilization performance Timing
Issue-width - - + -
Forwarding - + -
Traps +/- +/- +/-
Breakpoints +/- +/- -
Perf. counters - +/- -
Additional
pipeline stages +/- - +

Table 4.1: Design-time configuration options of the -VEX processor and their effect on various explo-
ration metrics.

in the smallest issue width to improve timing and limit area utilization as much as
possible. Any decrease in area utilization may results in a larger number of cores,
which will directly improve performance. Disabling forwarding in the pipeline and
adding additional pipeline stages will impact code performance due to additional
latency between operations, but this penalty can be reduced or even removed by
using loop unrolling in the 𝜌-VEX compiler in order to fill the latency slots with other
operations. This requires the cores to have sufficiently sized instruction memories,
resulting in another trade-off as the memory sizes will impact timing and, to a
certain extent, the number of cores that will fit on the FPGA.

4.4.2. Memory structure
The memory structure as used in our overlay is introduced in [37]. The concept
is to organize the cores into streams of a configurable number of cores. Within

4.4. Implementation - Hardware

4

63

such a stream, each processor has a local (scratchpad) instruction memory and
a local data memory. The sizes of these memories must be set at design-time
and determine the maximum size of the program (.text section of the binary), and
the maximum size and number of line buffers that cores can store. Similar to the
design-space exploration of the instruction memory size, as discussed in Section
4.4.1, the size of the data memory buffers is an important parameter that should
be carefully considered. Too large data memories can limit the number of cores
that can be placed on the FPGA and create timing difficulties, too small memories
can results in bottlenecks in the stream or prevent a certain core from supporting
certain filters (for example, a convolution filter with a 5x5 pixel window size needs
at least 5 buffered input lines and a buffer to write the output line).

In addition to its own local data memory, each core in a stream is able to access
the data memory of its predecessor by means of an address decoder (see Figure
4.7). Each core in the stream will run a filter in the image processing pipeline. The
local data memories are implemented using dual-ported BRAMs so that each core
has single-cycle access to both memory regions. The first and last memories in the
streams are connected to an AXI bus using a DMA unit. The image is segmented to
distribute the workload over the available streams, while taking into consideration
the necessary overlap to perform the window-based operations. Communication
between the cores is realized in two ways; sending data, commands, parameters
and synchronization is performed using the local memories (for example, convolu-
tion kernel parameters are propagated through the stream). Loading the instruction
memories, debugging and resetting the individual cores is performed using a sep-
arate debug bus that is operating on a lower frequency to avoid timing difficulties.
These last tasks are only performed during startup or debugging, therefore the
lower frequency will not interfere with the performance.

Figure 4.7: Overview of the streaming memory framework. Obtaining the image segment from the
source and writing it to the sink is performed by a DMA unit that accesses framebuffers in the DRAM on
the FPGA. Transfers between stream units are performed by local buses in the FPGA fabric, connecting
local memories instantiated using BRAMs.

4

64 4. Frame-Based Programming, Stream-Based Processing

4.4.3. Interfaces
This section will discuss the hardware interfaces that move data to and from the
processing elements and the outside world.

DMA unit
As stated, the first and last core of each stream is connected to a DMA unit that
can transfer blocks of data to the AXI bus. This connection is implemented in a
non-blocking way, to allow cores to send a request to the DMA unit without having
to wait until it becomes available. Arbitration is performed by means of a simplified
Network-on-Chip (NoC), as is depicted in Figure 4.8.

Figure 4.8: DMA unit that is in essence a simple NoC with switches leading up to an AXI bridge that
bursts packets of streaming data to a framebuffer in DDR (or any memory address provided by the
requesting stream).

The requesting core writes the target address and the data (or size) to be trans-
fered into a BRAM, and flags the request in a control register. Each pair of streams
is connected to an arbiter (router) in a fully unbalanced organization (this creates a
better layout for Place and Route). Each arbiter contains registers in order to avoid
a long timing path. When receiving a new request, an arbiter will lock itself until
the payload has been fully transferred (similar to wormhole switching). This way,
all payloads will be transferred undivided, so the burst mode of the AXI bus can be
used most effectively. The priorities of the arbiters are set such that streams that
are further away from the bus interface have precedence.

Debug bus
In order to support the extensive debugging capabilities that are offered by the𝜌-VEX processor, a separate bus is created that operates on a lower frequency than
the datapaths and memories. This is because this bus is not performance critical
and the lower clock will facilitate timing on the FPGA. The bus is bridged to the
AXI main bus by means of an AXI slave interface, and connected to all cores in the
system (all of which are memory-mapped into the AXI slave’s address space). The
functionality of the debug bus is determined by the memory regions of each 𝜌-VEX

4.5. Implementation - Software

4

65

core that it is able to access - the instruction memory, data memory, and control
registers. The set of control registers allow standard operations such as halting and
resetting the core, but also more advanced requests such as register file access,
setting watch/breakpoints and toggling single-step execution mode.

To be able to use all debugging functionality, the 𝜌-VEX must be configured
with traps enabled. Whenever a trap occurs during execution, the core will store
the cause, the location in the program (program counter value), and an argument
in a control register. This way, it is possible to ascertain what went wrong before
the core halted or trapped into the trap handler. For example, if the core performs
a memory read to an invalid address (unmapped or unaligned address), it will show
the cause associated with invalid data access, along with the program counter that
contained the corresponding load instruction and the address it was trying to access.

4.5. Implementation - Software
This section describes the implementation from a software point of view, start-
ing with the buffer management and how the workload is parallelized over multi-
ple cores, how the system performs the necessary synchronization, the way that
OpenCL support has been implemented, how the interfaces are programmed and
lastly how to develop applications for the platform.

4.5.1. Compilation and operation
The process elements, as discussed in Section 4.4.1, are based on the VEX instruc-
tion set architecture [16]. There is a full toolchain available for these cores, that
must be used to compile code for the platform. A C compiler is available, along
with a port of binutils and an architectural simulator that can be used for initial
debugging of the code during development. The process of writing parallel code
for the platform will be discussed in more detail in Section 4.5.4.

To load the binaries into all the processing elements, the current platform im-
plementation includes a management core. In principle, this can be a (hard) ARM-
based device (in case of Zynq and comparable platforms), or even an additional𝜌-VEX core, but in our current implementation it is a microblaze processor as it is
used in Xilinx reference designs to configure the AXI-based platform and periph-
erals. This core is not running any filters, but only concerns itself with sending
commands to all the processing elements. It is able to access all the processing
elements’ control registers, instruction memory and data memory by means of the
debug bus. In addition, it can control the DMA unit using control registers.

At startup time, the management cores resets and halts all processing elements
and loads the corresponding instruction stream into the instruction memory of each
core in each stream. Then it populates a datastructure in the data memories of
each core to in order to have them wait for instructions (see also Section 4.5.3) and
releases the cores. During normal operation, the instruction memories only need
to be loaded once, however, it is possible to change the image processing pipeline
by simply halting the cores and uploading a different instruction stream.

4

66 4. Frame-Based Programming, Stream-Based Processing

4.5.2. Buffer management
As discussed in Section 4.4.2, the image processing workload will be distributed
across the available cores in two dimensions - each core in a stream will perform
a separate filter (task-level parallelism), and each stream will handle a part of the
image (data-level parallelism). The image is divided by vertical stripes of a certain
width. In our reference design, the total number of cores is 16 streams of 4 cores
each and the default stripe width is 60 pixels. The stripes are buffered per line in the
local data memories of the processing elements. The data structure of these buffers
is depicted in Figure 4.9. The type of filters that are to be supported by a certain

Figure 4.9: Struct that contains a single line of a stripe of the image that is being processed. It contains
the position in the frame so it can be used as input for subsequent filters or written into a frame buffer.

core in the stream determines the number of line buffers that need to fit into the
input data memory. If the filter operates on a 5x5 window to produce 1 output line,
there must be enough storage capacity to store 5 lines in the input memory and 1
line in the output memory. Note that these storage requirements overlap between
two adjacent cores. The buffers circulate in such a way that the required input lines
are stable to be accessed by a core, and the line that is not needed anymore will be
used as output storage for the previous core. The horizontal overlap is handled by
extending the stripes on both sides when reading in the input from the framebuffer
using DMA. This overlap is dependent on the filter size in the same way as the
required number of buffered lines.

When distributing block-based filters among multiple streams, some amount of
overlap is required between the stripes. Instead of communicating these pixels
between cores (which is not supported by the memory structure), our platform
redundantly computes them in every stream. The largest filter size determines
the necessary amount of overlapping pixels, and these are added to the workload
automatically by the management core. Edges can be dealt with in different ways;
each core could implement the edge behavior and perform a check on each input
line to identify whether it is an edge line. However, this will increase code size.
Another option is to implement the behavior on a dedicated core and instruct the
management core to send all edge lines to it. If the management core is fast
enough, it could also perform the filters on all the edge lines directly.

4.5. Implementation - Software

4

67

Figure 4.10: Diagram showing the overlap between stripes allocated to neighboring Streams, and lines
that automatically overlap because they are allocated to the same stream.

4.5.3. Synchronization and communication
As the processing elements’ data memories are not connected to the AXI bus di-
rectly, but to a slower debug bus, controlling each individual core from the microb-
laze using this debug bus would be too slow. However, each processing element is
able to receive commands from the management core by means of a data structure
that is depicted in Figure 4.11.

The struct contains a state member that is used for synchronization and to
control buffer ownership. The predecessor core can take ownership of a line buffer
by writing the index of that particular buffer into the state field. The buffers contain
consecutive lines in a circular fashion and it is always implied that the buffers that
are not reserved by the predecessor core contain valid lines (so that these can be
used as input by the successor core). The successor core resets the state value
to 0 when it is finished processing its line. The predecessor core will wait for this
event before proceeding with the next line, so this mechanism can be used to apply
backpressure.

In addition to the state member, the structs contain a filter parameter struct for
each following core. An example of this struct is depicted in Figure 4.12

If the state field is set to -1, a core will propagate these values to its successor.
This way, new values can be loaded into each core. Lastly, the communication
struct contains a number of line buffers. As discussed, the exact number must be
set by the designer after careful consideration of the filters that a certain core needs
to be able to perform.

4

68 4. Frame-Based Programming, Stream-Based Processing

Figure 4.11: Example of a struct that is used to communicate between the cores, and to synchronize the
streams. It can be used to change which filter should be performed, update filter parameters, and to
apply backpressure to predecessor cores (using the state member). This struct is used to communicate
between core 1 and 2 (therefore it does not contain any parameters for cores 0 and 1) and contains 6
linebuffers.

4.5.4. Application development
One of the related work in terms of software development for image processing
filters is Halide [68]. It can generate code by describing the relationship between
an output pixels and its required input pixels. This is possible because the operations
are the same for each pixel, using different input pixels. As discussed in Section
4.3, a work-item size of a single pixel is bad because of overhead (not only on a
software level, but this would also prevent the DMA engine from achieving high
bus throughput as this requires burst transfers). Therefore, our platform operates
on lines instead of pixels. Developing filters for the platform consists of modifying
the frame-based reference implementation into a line-based implementation. In the
halide analogy, instead of describing how to calculate a single pixel, the programmer

4.6. Experiments/Evaluation

4

69

Figure 4.12: Example of a struct that is used to communicate filter parameters between cores. In theory,
each core in the stream could have a specific struct because they can all have a distinct instruction
memory containing different filters. In our reference implementation, the cores all support 2 different
filters (median and convolution), and the kernel that is used for the convolution can be modified using
the struct.

must specify how to compute a line of a given length.
The framework supplies the input linebuffers and an output linebuffer, the width

of the line, and if applicable parameters for the filter. Kernels can be programmed
in OpenCL and compiled with our LLVM backend from the Portable OpenCL (pocl)
framework [81]. Alternatively, kernels can be programmed in C or VEX assembly
code. The kernel code must be linked together with the control loop that polls for
work.

4.6. Experiments/Evaluation
To evaluate the approach, we have developed a reference implementation using
the framework and synthesized this for the Xilinx VC707 evaluation board with a
Virtex 7 FPGA. The VHDL design is fully parameterized, and the fabric is organized
in 16 streams of 4 consecutive cores with each 4KiB of instruction and data mem-
ory. Figure 3.5 depicts the layout of the placed and routed design on the FPGA,
after providing placement constraints for each individual stream of 4 cores while
constraining the management core (microblaze) and interface logic such as HDMI
and DDR controllers to the upper right corner.

In Figure 4.13, a comparison has been made with a related effort named Bio-
Threads [59], showing the advantage of our memory structure regarding scalability.

The workload of the medical imaging platform consist of window-based image
processing algorithms. For our evaluation, we have implemented the convolution
operator that can be used with various filter kernels (which can be programmed
into the processing elements as discussed in Section 4.5.3). The detector provides
images with a resolution of 960 by 960 pixels. As our reference platform has 16
parallel streams, this results in a line size of 60 pixels. Table 4.2 depicts the perfor-
mance of the platform for a convolution kernel using a 3x3 and 5x5 filter size. The
implementation used here is naive regarding algorithmic optimizations; it computes
each output pixel from all their respective input pixels (instead of re-using part of

4

70 4. Frame-Based Programming, Stream-Based Processing

1 2 4 8

2x
4

010
2030
4050
6070

cores

LU
Ts

/R
eg

s
(×10)

Regs (This work)
Regs (BioThreads)
LUTs (This work)
LUTs (BioThreads)

0
100
200
300
400

BR
AM

s

BRAMs (This work)
BRAMs (BioThreads)

Figure 4.13: Resource utilization comparison with a related platform [59]. The advantage of this work
is that it provides the option of adding parallel processing pipelines instead of increasing the number of
cores connected to a central memory component (8 versus 2x4 cores). This is far more scalable and
allows us to place a considerably larger number of cores on an FPGA.

the computation for the current pixel for the next pixel.

4.7. Conclusions
This work presents our approach of using a VLIW-based FPGA fabric that allows im-
age processing kernels to be programmed in a frame-based fashion and processed
efficiently in a stream-based fashion. Our memory structure is scalable and allows
pipelines of different size with different filters to be mapped to the fabric. Instead
of repeatedly synthesizing the platform, designers can explore and debug the de-
sign using this framework by only recompiling OpenCL or C code. If the platform
does not provide enough throughput to satisfy the performance requirements, the
code that is mapped onto the VLIW softcore processors can be passed through a
HLS toolflow to produce a faster system that uses the same streaming memory
structure. Results show that the platform is more scalable compared to a related
image processing framework.

4.7. Conclusions

4

71

Algorithm Cycles/line Cycles/img Frames/s
(60 pixels) (960x960) (200 MHz)

Convolution 3x3 4005 3844800 52
Convolution 5x5 10216 9807360 20

Table 4.2: Performance for different filters of a single processing element per line, per image segment,
and the total throughput assuming a 16-stream platform running at 200 MHz assuming no I/O stalls.

Future directions could include providing support for 1 ∶ 𝑛 or 𝑛 ∶ 1 connections
to support processing steps that need input data from multiple sources or provide
output to multiple sources. Additionally, a HLS flow for automatic accelerator gen-
eration could be created, and automatic design-space exploration using Halide or a
similar tool.

Part 2 - Dynamic workloads,
dynamically reconfigurable

platform

Part 1 discussed highly static embedded image processing workloads. Part
2 focuses on dynamic environments, where workloads of varying intensity
and characteristics must be executed with the highest possible throughput.
In our opinion, dynamic workloads call for dynamic computing platforms.
The overal aim of this part of this thesis is to demonstrate the ability of a
dynamic processor to adapt itself to the workload, thereby achieving better
performance than comparable (static) heterogeneous systems. Chapter 5 dis-
cusses ways to perform automatic characterization of a running program and
to execute it as energy-efficient as possible. Chapter 6 examines a system ex-
ecuting generated workloads consisting of several tasks, optimizing for total
throughput.

Hardware Software Scheduling

Classical Static
Static &
Dynamic

Static &
Dynamic

Part 1
Static

(fixed, design-time) Static Static (compile-time)

Part 2
Dynamic

(adaptable, run-time) Dynamic Dynamic (run-time)

Part 3
Dynamic

(adaptable, run-time)
Static &

Real-time
Static (compile-time) &

Dynamic (run-time)

73

5
Evaluating auto-adaptation

methods

In the introduction, we proposed to use the 𝜌-VEX fine-grained adaptable pro-
cessor, being a dynamic processing platform, to target dynamic workloads.
The first step in evaluating the suitability of a fine-grained adaptable pro-
cessor for dynamic workloads is to study different methods of exploiting this
adaptability. This chapter focuses on how a simple hardware circuit is able
to utilize the explicit parallelism encoded into VLIW binaries to detect the most
suitable configuration to execute code sections. It uses the different methods
to continuously and automatically optimize the processor configuration, with
the aim to study if there is enough variability in code characteristics to ex-
ploit and to evaluate the efficiency of the different methods. The methods
use run-time performance monitoring, and a hybrid approach that adds a
compiler analysis step.

Parts of this chapter have been published in [39].

75

5

76 5. Evaluating auto-adaptation methods

Abstract
To achieve energy savings while maintaining adequate performance, system de-
signers and programmers wish to create the best possible match between program
behavior and the underlying hardware. Well-known current approaches include
DVFS and task migrations in heterogeneous platforms such as big.LITTLE proces-
sors. Additionally, processors have been proposed in literature that are able to
adapt (parts of) their organization to the workload. These reconfigurations can be
managed using hardware monitors, profiling and other compile-time information
or a combination of both. Many current solutions are suitable for heterogeneous
systems, as migration penalties pose a practical limit to the maximum adaptation
frequency, but not for dynamic processors that can adapt much more fine-grained.

In this chapter, we present two novel concepts to aid these low-penalty recon-
figurable processors - one requiring an ISA extension and one without. Our experi-
mental results show that our approaches enable a dynamic processor to reduce the
energy-delay product by up to 25% and on average 10% to 18% compared to the
best performing static setups.

5.1. Introduction
With energy utilization as a new critical metric for computing systems, designers
have devised numerous ways of configuring systems to run in various perfor-
mance/power modes. The most notable examples are Dynamic Voltage and
Frequency Scaling (DVFS), Heterogeneous Multicore Processors (HMPs) such
as big.LITTLE, and polymorphic processors such as MorphCore [6]. In turn,
researchers try to match program behavior to processor configurations in order to
minimize both the energy utilization and the performance penalty associated with
low-power configurations.

The time it takes to move an ARM big.LITTLE core in or out of sleep modes
lies in the order of milliseconds and changing DVFS involves a latency of tens of
microseconds. Furthermore, migrating a task to another core will introduce an
additional penalty because of cold resources (cache, predictors) [82]. Because of
these properties, a granularity of context-switch level (10 milliseconds) is adequate,
as adapting to the workload any faster will only result in prohibitively large penalties.

In contrast to this, program characteristics can change at much higher frequen-
cies [83]. Therefore, designs have been proposed that greatly reduce these penal-
ties for heterogeneous systems [82] [84], and adaptable processors have been
proposed that have very low adaptation penalties [6] [85]. These processing plat-
forms have the potential of matching the program in a far more fine-grained way (in
the time domain). However, currently used monitoring-based approaches are often
based on measurement windows that are far too large to drive these high-frequency
adaptations.

This work aims to determine what evaluation frequency is needed to profit from
fine-grained adaptable processors. As sampling performance counters at this rate
will create excessive overhead, we argue that an automatic evaluation circuit is
required, moving the evaluation and adaptation control loop into hardware. Next

5.2. Approach

5

77

to sampling performance counters, we propose two additional auto-adaptation ap-
proaches. In one approach, we modified the compiler to insert instructions in loca-
tions that are likely to correspond with a phase boundary. When encountering this
instruction, the processor starts a measurement and stores the results in a dedi-
cated field in the same instruction word. The second approach involves a branch
target buffer. At every branch, a measurement is started and results are stored in
the buffer. When branching to the same target address again, the code charac-
teristics have already been measured and can be retrieved. These two approaches
aim to make adaptations more proactive.

We have applied the approaches to the 𝜌-VEX dynamic VLIW (very long in-
struction word) processor that is able to change configurations with a penalty of
only 5 cycles (a pipeline flush). Results show that the 𝜌-VEX processor benefits
from monitoring windows of approximately 75 cycles. Using the auto-adaptation
approaches, the energy consumption of the adaptable processor can be reduced
by 10% to 18% on average compared to the best static setup. The branch-based
proactive approach slightly outperforms window-based solutions.

5.2. Approach
5.2.1. Target processor
In this work, we target the 𝜌-VEX processor, an open-source reconfigurable VLIW
processor [54]. It can assign datapaths in pairs to one or multiple threads or disable
them to conserve energy (see Figure 5.1). It has a reconfiguration penalty of 5

Figure 5.1: Conceptual depiction of the fine-grained reconfigurable VLIW processor targeted in this
work. It consists of 8 datapaths that can be split or merged in pairs (i.e., each sub-block represents
a 2-issue VLIW processor). These can be assigned to a thread or powered down to conserve power
(left-hand side). Multiple blocks can be assigned to a single thread to exploit as much ILP as possible,
or each block can be assigned to its own thread to exploit thread-level parallelism (right-hand side - the
colors represent different threads).

cycles, because it needs to flush the pipeline. The processor can switch between a2, 4, or 8-issue configuration without changing the binary it is executing, because
it uses generic binaries [29]. In short, these work by ensuring that each VLIW
bundle of 8 operations can also be executed in 2 or 4-issue mode, by removing

5

78 5. Evaluating auto-adaptation methods

intra-bundle dependencies. (see Figure 5.2 for a simplified depiction of this).

mov r2 = r3

mov r3 = r4

mov r1 = r2

;;

;;

mov r2 = r3

mov r3 = r4

mov r1 = r2

;;

;;

GenericOriginal

Figure 5.2: The -VEX is able to switch configurations at any time, because the toolchain makes sure
the code can be executed in every possible configuration. It does this by ’re-sequentializing’ the code
after it has been compiled for 8-issue. Each bundle is reordered such that the dependencies (shown as
arrows) are met when executing the operations one by one.

VLIW architectures are widely adopted in embedded media and DSP applica-
tions, providing high energy efficiency (for example, in modem, audio and image
processing subsystems in mobile phone SoCs) [86]. Code for VLIWs is statically
scheduled by the compiler, decreasing hardware complexity. Instruction-level par-
allelism (ILP) is explicitly encoded in the binary. This makes it possible to measure
performance of different core configurations, as we will see in Section 5.3. This
makes the chosen VLIW platform very suitable to evaluate the proposed techniques.

5.2.2. Proposed auto-adapting method
The main idea behind our approach is that program characteristics change during
the course of execution, but characteristics of code itself is fixed. In other words,
the changes are due to the control flow through the different code sections in the
binary. We propose to measure these characteristics once for every code section,
and store this information in such a way that we can easily retrieve it whenever we
revisit that section. For each section, a measurement only needs to be performed
once for each core type (for HMPs) or configuration (for adaptable processors),
after which the results for both are stored in their own field.1 We are proposing
two ways to store the measured code characteristics.

The first approach utilizes a structure that is similar to the branch target buffer
(BTB) that is widely used in modern processors. Normally, the BTB is used to
predict the branch target address early in the pipeline to reduce branch penalties.
Our ’Branch Target Configuration Buffer’ (BTCB) is a cache that is indexed by branch
target addresses. Whenever a branch occurs, the BTCB is accessed to determine
if there is information about the code that is being jumped to. If there is not, a
measurement is triggered. When the next branch occurs, the measurement results
1 On HMPs, measuring performance on one core type does not provide information about the perfor-
mance on the other core type (see [87, Section 6.3]). To monitor which core type is the most efficient,
the program needs to be migrated back and forth continuously. The same holds for different configu-
rations of an adaptable processor.

5.3. Implementation

5

79

are stored in the buffer. If there is information in the buffer, it can be used during
the branch to reconfigure the processor to the most energy efficient configuration.

Our second approach introduces a special instruction we named pchg (phase
change) that is added to the program by the compiler at certain locations that
are likely to correspond with a longer, more stable phase (compared to the first
approach, that operates on a basic block level). When encountering this instruction,
a lookup is performed in a configuration buffer similar to the BTCB. This lookup can
use the least significant bits of the PC (program counter) as index, or the compiler
can assign indexes to code sections and place their index in the instruction.

Figure 5.3: Overview of the pchg approach when encountering a loop, using the PC address as config-
uration buffer index.

During runtime, when the processor encounters this instruction for the first
time, it keeps track of the index and starts the performance counters to evaluate
the program characteristics in that phase. When the measurement has completed
(when encountering the next pchg instruction), the results of the measurement are
written back into the configuration buffer. Each time the processor encounters the
instruction again, the information is available and the processor can use it to perform
a reconfiguration immediately. An overview of the pchg approach is depicted in
Figure 5.3.

Both approaches have their merits. The first approach is the most fine-grained
but may trigger adaptations too often. The second approach requires recompilation
of binaries (note that, if this is not possible, old binaries will still execute correctly
but not trigger any adaptations) and results in runtime overhead because of the
added instructions.

5.3. Implementation
This section discusses the implementation of the different approaches in the target
platform. We start with the elements that the different approaches have in common,
then we discuss the window-based monitoring approach, followed by the BTCB
approach, and concluding with the phase change annotations.

5

80 5. Evaluating auto-adaptation methods

5.3.1. Common
The target processor has a controller that handles reconfiguration requests. These
requests can be performed via a memory-mapped control register writable by soft-
ware (user or OS). Although the platform reduces adaptation overhead to only 5
cycles, sampling and evaluating performance counters in software introduces addi-
tional overhead. At the frequencies we are proposing in this chapter, this overhead
becomes very significant. Therefore, we propose to use a hardware circuit to per-
form the evaluation and reconfiguration request directly. This section discusses this
circuit.

We use a performance counter for each possible 𝜌-VEX core configuration. Using
a scheme similar to [88], we increment these counters based on the location of a
VLIW bundle marker. If a bundle is completely filled with 8 operations, the counter
for the 2-issue configuration will increase by 4 and the counter for the 4-issue
configuration will increase by 2 (see Figure 5.4). This scheme is enough to measure
the performance of the configurations. However, we propose to estimate energy
utilization.

Figure 5.4: Measuring the performance for different configurations is done by decoding the location
of the stop bit (VLIW bundle boundaries shown as ‘;;’). This bundle requires 4 cycles to execute on
the 2-issue configuration and 2 cycles on the 4-issue. The 8-issue counter is equivalent to the bundle
counter.

We have used the following energy estimation function:𝐸 = 𝐸 + 𝐸 where𝐸 = (𝑆𝑌𝐿 ∗ 𝐸) + (𝑁𝑂𝑃 ∗ 𝐸) and𝐸 = (𝐶𝑌𝐶 ∗ 𝐸) + (𝐶𝑌𝐶 ∗ 𝐸) + (𝐶𝑌𝑆 ∗ 𝐸).
Here, 𝑆𝑌𝐿 is the number of execution syllables (individual operations of a VLIW bun-
dle), 𝑁𝑂𝑃 is the number of unfilled syllable slots, and 𝐶𝑌𝐶 represents the number
of executed cycles in 2-issue, 4-issue and 8-issue mode. The energy values de-
pend on the hardware characteristics and should be set by the designer based on
power estimations or measurements. For our evaluation we have used the values
listed in Table 5.1. The dynamic part of the function is largely the same between
configurations, so we can use a single cost value for each configuration.

Instead of multiplying the counter values with the energy estimation values
(which would be expensive in hardware), we propose to use prescaler counters.
The prescaler is increased using the configuration cycle count of the bundle (as

5.3. Implementation

5

81

𝐸 𝐸 𝐸 𝐸 𝐸
4 1 2 3 4

Table 5.1: Used values for the energy estimation function in the simulator

depicted in Figure 5.4). When a configuration’s prescaler exceeds its cost value, its
energy estimation counter is increased by 1 and the prescaler is reset. The prescaler
only needs enough precision to express the ratios between the cost values. The
final energy estimation counters also needs limited precision, because 1) we are
measuring relatively short sections of code and 2) if two estimations are very close
to each other, both choices are equally suitable. In our current implementation,
we are using 7 bits per configuration for the energy estimation counters. When
any one of the counters overflows, all of them are right shifted by 1 position (the
ratios between them stay intact). The required storage for the configuration buffer
entries is 7 × 3 bits (one for each possible 𝜌-VEX configuration).

5.3.2. Window-based monitoring
Window-based monitoring is not a novel approach proposed in this chapter but
rather the current art to which we would like to compare. Using the hardware
circuit from the previous section, our window-based implementation evaluates the
energy estimation using a fixed period. The configuration with the lowest value is
forwarded to the reconfiguration request register, and the counters are reset.

5.3.3. BTCB
For this approach we propose to add a buffer, the Branch Target Configuration Buffer
(BTCB) that stores code information about branch targets. In case the processor
already features a BTB, such as the Philips TriMedia VLIW [89], this structure can
be widened to include the desired information.2 When the processor executes a
branch (conditional branches are only considered when taken), it will perform a
lookup in the buffer to see if there is an entry with valid code information. If that
is the case, it will perform a core adaptation.

If no such entry is found, the processor will start the performance counters. A
register keeps track of the index of the entry. When a new branch is taken, this
register is used to update the BTCB using the measured values. This can be done
one cycle later than the new branch’s BTCB lookup, to avoid requiring an additional
access port. In our implementation, the BTCB is direct-mapped. Therefore, any
collision (two branch addresses that map to the same BTCB entry) results in an
eviction.

2Note that in that case, it is no longer indexed by the branch target but rather the PC of the branch
itself; the buffer will return the predicted branch target and we propose to add the code information
for that branch target to the entry.

5

82 5. Evaluating auto-adaptation methods

5.3.4. Phase change annotations
In this approach, the compiler identifies locations that are likely to correspond to
a phase. In these locations, it adds an instruction, named pchg (phase change).
The processor performs a lookup in the configuration buffer when encountering
this instruction, instead of at every branch. We have modified the 𝜌-VEX compiler
to add a pchg instruction at the top of every loop and every leaf function. The
compiler can choose to skip loops and functions that it estimates to have a total
execution time lower than a certain threshold.

5.4. Evaluation
5.4.1. Experimental setup
To evaluate our approach, we have used the open source 𝜌-VEX polymorphic pro-
cessor as discussed in Section 5.2.1. We have implemented our pchg approach in
the compiler as discussed in Section 5.3 and modeled the monitoring hardware in
the simulator. To measure only the behavior of the processor core, caches were
disabled. Using this setup, the simulator is cycle-accurate regarding a 𝜌-VEX core
attached to single-cycle instruction and data memories, as the code is completely
statically scheduled. We will use MiBench [35] and SPEC CPUINT 2006 for our
measurements. Not all programs could be used, as some are not supported by the𝜌-VEX toolchain or libraries. We will use the modes listed in Table 5.2.

Type Modes
Static core 2-issue, 4-issue, 8-issue
Dynamic core, windowed 10,000, 1,000, 500, 250, 100, 75, 50
Dynamic core, pchg pchg-0, pchg-100
Dynamic core, BTCB BTCB-inf, BTCB-2048

Table 5.2: Evaluated modes of execution.

Here, the static setups represent the supported 𝜌-VEX configuration modes,
without any runtime adaptations. The windowed modes utilize performance mon-
itoring with fixed windows of various sizes to perform core adaptations. The pchg
modes utilize the proposed phase change annotations, with loop annotation thresh-
olds of 0 and 100 cycles. BTCB uses the proposed branch target configuration
buffer. We have evaluated a buffer with infinite entries and one with 2048 entries.

We will use the Energy-Delay Product (EDP) as metric and normalize to a static
8-issue configuration which represents the highest performing setup. Note that,
due to the chosen values for the energy estimation function (see Table 5.1), the
outcome for all measurements cannot be lower than 0.5, because no setup can
execute faster than the 8-issue and the 2-issue energy estimation is 0.5× that of
the 8-issue.

5.4.2. Results

5.4. Evaluation

5

83

Overhead
Adding the pchg instructions into the programs results in runtime overhead. We
have measured this overhead by running all 3 version of the binaries (not annotated,
threshold 0, threshold 100 cycles) on a static 2-issue core. The results are plotted in
Figure 5.5. On average, the runtime overhead is quite acceptable at approximately
0.5% on average.

(a) MiBench (b) SPEC

Figure 5.5: Overhead of adding the phase change instructions.

Window sizes

Figure 5.6: EDP for different window sizes. For both benchmark suites, 75 instructions performs best.

We evaluate windowed monitoring setups using various window sizes between
50 and 10,000 cycles. The results are plotted in Figure 5.6. For both benchmark
suites, the disadvantage (overhead) surpasses the advantage of higher frequency
adaptations at approximately 75 cycles. Our measurements reveal that using a

5

84 5. Evaluating auto-adaptation methods

window size of 75 compared to 1000 cycles improves EDP up to 20% (for specrand
and rijndael) and on average 6%, supporting our claim that code can change
very frequently and a fine-grained reconfigurable processor is able to match these
changes more closely.

Runlength thresholds

(a) Mibench.

(b) SPEC.

Figure 5.7: EDP for different runlength thresholds.

The energy estimation counters can use a minimum runlength threshold for a
measured code section. If this threshold is not reached when the measurement
is finished (because of a new pchg instruction, or because of a branch), the core
will not perform an adaptation. We have evaluated different threshold values and
the results are depicted in Figure 5.7. In case the BTCB is limited in size to 2048
entries, there is a clear optimal threshold for MiBench of 64 instruction bundles and
the relative loss in performance (compared to the best performing setup with an
infinite buffer) is in this case 6%. The other setups, as well as the SPEC benchmarks,
are not as strongly influenced by the threshold. The loss can be attributed mostly

5.5. Related work

5

85

to two outlyers in the form of basicmath in MiBench and specrand in SPEC, that
may suffer from a high number of collisions.

Comparing the approaches

Figure 5.8: EDP for the best performing setups for each approach.

Using the best results for each approach as reported in previous sections, we
have plotted the averages of the different techniques in Figure 5.8. The dynamic
setups perform considerably better compared to the static cores. The first observa-
tion is that the window-75 setup performs relatively well, achieving 10% and 17%
better EDP on average (for SPEC and MiBench, respectively), compared to the best
performing 4-issue static core. The BTCB approach performs best, with on aver-
age 12% and 18% better EDP. The pchg annotations perform up to 26% and on
average 10% (SPEC) and 16% (MiBench) better than the best performing static
core.

For many programs, ILP variability is quite low, and the EDP for the dynamic
approaches is not significantly lower than that of the best performing static setup.
The largest gains are measured for the program rawcaudio with all approaches
achieving approximately 25% better EDP than static setups. However, the window-
1000 approach performs similarly for this program (indicating that fine-grained ap-
proaches do not provide an advantage) In contrast, rijndael does not show any
improvement when using a 1000 cycle monitoring window, while our proposed
BTCB approach provides 20% lower EDP compared to the best static core and 8%
over the best window approach (75 cycles).

5.5. Related work
The polymorphic processor used in our evaluations is discussed in more detail in
[85]. Other dynamic processors that could make use of our proposed scheme are
MorphCore [6], TRIPS [7] and CoreFusion [8]. Rodrigues et al. [90] propose a
dynamic processor that morphs by allowing one core to take control over a func-

5

86 5. Evaluating auto-adaptation methods

tional unit residing in a neighboring core. They introduce a dynamic phase clas-
sification scheme that uses a table to store and lookup phases. Guo et al. [88]
built a windowed counter scheme for the 𝜌-VEX that predicts program phases and
reconfigures the processor accordingly. Similarly, [91] tries to predict phases us-
ing statistical and table-based predictors. Chi et al. [92] show the advantage of
combining static and dynamic profiling techniques to improve performance/energy
tuning, focusing on disabling some processor resources and fetch throttling. Our
approach uses compiler analysis instead of profiling as the static component.

In addition to dynamic processors, the scheme can be used by single-ISA het-
erogeneous multicore systems [13] such as ARM big.LITTLE processors [14], par-
ticularly, systems that were designed to have low migration penalties such as [82]
and [84]. For schemes with similar objectives on HMPs see for example [93], [87]
and [83]. Related work in autotuning are for example [94] and [95], where hard-
ware modules are introduced that perform evaluation of power and performance
on a softcore processor. However, the purpose is to perform dynamic partial re-
configuration, which is very different from how the 𝜌-VEX works.

Sherwood et al. [96] propose a similar technique of using an on-chip buffer to
store detected phases based on branches, but focusing on long, stable phases. In
addition, they evaluate ”Dynamic Processor Width Adaptation” similar to the 𝜌-VEX
(but supporting only a 2-issue and 8-issue configuration). They perform a short
measurement in both configurations at every phase change, which is one of the
problems that our proposed solution aims to solve (see Section 5.2.2).

5.6. Conclusions
When targeting a highly dynamic processor that has a low reconfiguration penalty
(in this work, the 𝜌-VEX with a penalty of 5 cycles), improvements in energy effi-
ciency can be gained by using very fine-grained automatic adaptations. Evaluations
of window-based autotuning of the configuration show that using a window of 75
cycles results in the best EDP (up to 20% better than a 1000 cycle window). This
confirms that code characteristics can change very rapidly, and that the dynamic
processor is able to follow the changes more closely than traditional autotuning
schemes that use relatively large window sizes. Not all programs show this highly
dynamic behavior.

The proposed approaches open up the possibility of superscalar-based, single-
ISA heterogeneous or adaptable processors with low penalties. Using a window-
based approach is not possible in this case, because it would need continuous
migrations between core types to evaluate the code characteristics, negating the
advantages. Using our proposed methods to store information about code sections,
measurements need to be performed once in every configuration, after which the
information is stored and can be retrieved when revisiting the section again.

Overall, the approaches enable the reconfigurable processor to achieve up to
25% and between 10% and 18% on average better EDP compared to the best
static platform. The proposed BTCB approach achieves the best results, slightly
outperforming window-based autotuning.

6
Adapting to dynamic

workloads

The previous chapter studied different methods to automatically adapt a pro-
cessor to the code characteristics of a running program. While a single pro-
gram can have very dynamic code properties, a large part of the dynamic
behavior in embedded workloads is due to there being multiple tasks placed
on a single processor. These tasks will not be active all at the same time and
will all have their own code characteristics as well. This chapter aims to im-
prove performance by continuously maximizing resource utilization. Similar
to the previous chapter, we evaluate setups that rely solely on performance
monitoring and setups that use compiler analyses.

This chapter is based on [40].

87

6

88 6. Adapting to dynamic workloads

Abstract
Dynamic (polymorphic) processors are designed to cope with dynamic workloads
encountered in many modern-day embedded (signal processing) domains. They
differ from their counterparts, i.e., homogeneous (employing SMT) and heteroge-
neous multi-processors, in how to achieve their purpose. Still, they are faced with
the following challenges: (1) how to efficiently measure code characteristics on-the-
fly, (2) how to determine the most suitable core (type), and (3) how to increase
the sampling rate of performance monitors for more fine-grained behavior. In this
chapter, we propose to use a VLIW-based architecture and exploit its characteristic
of having explicit parallelism to dynamically match running code to core configura-
tions (of the polymorphic processor) or core types (in case of using heterogeneous
multi-cores). Additionally, we propose two methods to perform this match; using
a compiler pass that annotates the code and using a monitoring-based scheme.
Both methods are implemented and evaluated in terms of overhead, code cover-
age, and performance on randomly generated task sets. Results show that our
methods allow a polymorphic processor to execute these task sets 20% faster on
average compared to a heterogeneous multicore system with equal computational
resources.

6.1. Introduction
Modern-day embedded signal processing platforms are faced with increasing work-
load complexity due to the dynamic nature of applications. An example is the code
explosion in automotive systems. Currently, Heterogeneous Multi-Processors (HMP)
(e.g., ARM big.LITTLE) are used to deal with these dynamic workloads. The use
of high-performance and low-power cores are self-evident as suggested by their
names. However, and less evident, an application without inherent Instruction-
Level Parallelism (ILP) should avoid being executed on a high-performance core.
Moreover, penalties are associated with the transfer of execution from one core type
to another, e.g., (1) context saving/restoring and (2) “cold”-starting the caches and
predictors after the migration. These factors severely limit the frequency at which
tasks can be migrated to the most suitable core.

Based on these observations and supported by a theoretical foundation given by
[9], dynamic (polymorphic) processors were proposed. They can merge cores to
achieve high performance for single programs or split them for high total through-
put for multiple programs. As internal states no longer need to be moved between
the cores, they adapt much more quickly to dynamic workloads. Moreover, dy-
namic processors have more configuration options compared to current HMPSoCs
(big.LITTLE has only 2 options - a big core and a little core). This allows the process-
ing platform to more accurately match the application requirements. However, the
challenge of characterizing the current workload and determining the most efficient
processor configuration for it remains.

The dynamic processor targeted by this work is a polymorphic VLIW processor
called 𝜌-VEX [21]. It allows for run-time adaptation of the issue-width with a latency
of 4 and penalty of 5 clock cycles. Possible execution modes are a single 8-way,

6.2. Background

6

89

two 4-way, four 2-way VLIW cores, or a combination. This way, the 𝜌-VEX can
run tasks with high ILP on the full 8-issue processor, achieving high single-thread
performance, and running lighter threads on multiple 2-issue cores, achieving high
multi-threaded throughput.VLIW-based polymorphism provides a natural way of
assigning execution resources (i.e., datapaths) to threads, as the compiler has al-
ready bundled instructions that can be executed in parallel. Unused slots can be
assigned to execute another thread. It also enables quick determination of how
many datapaths the program needs to achieve its maximum performance. This is
not possible for superscalar architectures (where parallelism is implicit and needs
to be extracted by hardware). More precisely, the compiler is aware of the instruc-
tion schedule and can therefore, precalculate execution times of code sections for
different processor configurations.

In this chapter, we propose two methods to explicitly provide information on
the available parallelism to the runtime environment, that subsequently determines
the most efficient assignment of execution resources to threads. The first method
utilizes performance counters to determine the performance of supported processor
configuration by simply counting the operations encoded in the VLIW (instruction)
bundles. The second method utilizes the compiler to encode this information into
the binary. This approach can be more fine-grained than the first method and aims
to make the core adaptations more proactive and reduce the time code is running
on a mismatched core. We implemented a task scheduler for the 𝜌-VEX that pe-
riodically samples the datapath utilization information to select the most appropri-
ate hardware configuration. Furthermore, we evaluated a fully automated scheme
where the processor itself utilizes the compiler information from the currently run-
ning threads to continuously optimize its configuration. Our results show that our
approach allows the dynamic processor to achieve 20% higher performance on
average compared to a HMP with equal computational resources.

6.2. Background
The first goal of this work is to assign computational resources (datapaths) to
threads to maximize resource utilization (thereby increasing throughput). The sec-
ond goal is to do this in a fine-grained manner, to exploit high-frequency changes
in code characteristics present in certain programs. There are different manners in
which this assignment can be performed:

• Simultaneous Multi-Threading executes multiple execution contexts on
a set of datapaths. Hardware performs the resource assignment to threads.
Therefore, an intelligent resource assignment method is not necessary and
we will not evaluate our approach on this type of system.

• Heterogeneous processors migrate tasks between larger/smaller cores to
assign more/less computational resources. In current HMPs (based on su-
perscalar architectures), this includes larger structures that are required to
extract ILP, such as instruction windows, register renaming logic, and de-
pendency checking circuitry. Furthermore, task migrations typically incur a
considerable performance penalty.

6

90 6. Adapting to dynamic workloads

• Polymorphic processors can split or merge (parts of) their resources. Per-
formance penalties involved with splitting or merging is typically far lower
compared to HMPs, because internal states (of running threads) do not need
to be moved to another core.

Heterogeneous and polymorphic systems based on superscalar architectures face
the challenge how to measure/evaluate the performance of a workload. Because
ILP is implicit and must be extracted by the processor, performance can be mea-
sured on one core but this will not provide an accurate prediction of the code’s
performance on another core [87]. Compile-time profiling can improve the predic-
tion, but it remains challenging at run-time without frequent migrations between
the cores and, therefore, incurring the associated migration penalties.

In contrast to the superscalar (sequential) binaries, VLIW binaries do provide
explicit ILP information by means of the bundle boundaries (‘stopbits’). Stopbits
signal the end of an instruction packet (bundle) indicating to the processor that
these instructions can be executed in the same cycle. Even when running in a lower
issue-width than the maximum bundle size, the processor can count these bundle
boundaries and compare with the number of committed instructions to obtain the
average number of operations per bundle. This is a strong indicator of performance,
as running a program with a low average number of instructions per bundle will likely
not execute any faster on a high issue-width processor. This relation, next to their
prevalence in embedded signal-processing systems, is the key reason we chose to
target VLIW architectures.

6.3. The 𝜌-VEX polymorphic VLIW processor
In this section, we provide a brief summary of the 𝜌-VEX processor [85]. The design
combines an 8-issue datapath organization similar to what can be found in the
Texas Instruments TMS320C6x family of DSPs [97] with a multi-threaded approach
as seen in the Qualcomm Hexagon DSP processors found in modern Snapdragon
chipsets [86].

By assigning datapaths to threads, programs can run in 2-issue, 4-issue, or 8-
issue mode or combinations thereof. It can change between configurations with a
penalty of 5 cycles (to flush the pipelines and restart the datapaths). In contrast
to previously proposed polymorphic processors [98] [99], the 𝜌-VEX processor can
change configurations at any time during run-time without separate binaries and
checkpoints. This is achieved by use of generic binaries [29]. Even though the
original chapter reports performance penalties up to 30%, subsequent improve-
ments have reduced this to below 5% (via a different register allocation algorithm
and register renaming during assembly). Generic binaries are a requirement to use
the 𝜌-VEX’s polymorphism in general, not just to use the concepts proposed in this
work. The final property of the 𝜌-VEX platform is its design-time configurability al-
lowing static versions, without polymorphism, to be synthesized. We utilized these
static configurations for our evaluations (“one 4-issue core with two 2-issue cores“,
similar to performance-asymmetric HMPs such as ARM big.LITTLE).

6.4. Approach

6

91

Figure 6.1: The -VEX organization: The datapaths are connected to the task state storage (i.e., register
file and complete set of control registers such as program counter) through a set of multiplexers. Per-
formance is achieved by assigning more datapaths to a task and high throughput is achieved by running
multiple tasks. The depicted ‘422’ configuration shows tasks / / / running in / /idle/ -issue mode,
respectively.

6.4. Approach
6.4.1. On-line profiling
The use of stopbits in a VLIW architecture allows for quick determination whether
an instruction bundle can execute faster on a high issue-width processor while
running on a low issue-width processor and vice versa. For example, it takes 4
cycles to commit an 8-operation bundle on a 2-issue machine during which only
a single stopbit is encountered. This clearly indicates that the same bundle could
have been executed in a single cycle on an 8-issue machine. This information can
be sampled over a longer period of time to measure the average amount of VLIW
datapaths that a given code segment is able to utilize. This gives a strong indication
on how many resources should be assigned to this task.

ldw r2 = symbol[r0]

add r3 = r3, 16

mpyl r4 = r3, r8

shl r5 = r5, 7

add r6 = r6, 1

add r7 = r6, r13

add r8 = r6, r5

add r9 = r6, r4 ;;

ops +2

ops +2

ops +2

ops +2, stops +1

Figure 6.2: Execution of a single VLIW bundle consisting of 8 operations on a 2-issue core. The dashed
line depicts the operations that are executed per cycle. By counting the number of committed operations
and the encountered stopbits, the average datapath utilization of the code can be calculated easily.

6

92 6. Adapting to dynamic workloads

Operation and bundle boundary counters were already present in the 𝜌-VEX de-
sign. In our current implementation, sampling the ‘stopbit’ and operation counters
happens in software at a frequency of 100 Hz. As the 𝜌-VEX can be synthesized at80 MHz on a Virtex-7 FPGA, this corresponds to a period of 800.000 cycles.

6.4.2. Compiler annotations
Our second approach entails information passing from the compiler to the runtime
regarding the datapath utilization. An additional compiler analysis pass inserts an-
notations into the binary code. This pass is rather simple, as we target a VLIW
architecture, and is performed after the compiler has exhausted all ILP extraction
possibilities. Furthermore, our analysis has access to the iteration counts of loops
when they are fixed, or will otherwise estimate them based on heuristics. These
iteration counts are normally used for static branch optimization (minimizing branch
penalties for the most common path by reordering basic blocks). We will evaluate
different thresholds using the iteration count; 1000, 100, or 0 (annotate every loop,
regardless of length).

During the analysis pass, we accumulate the schedule lengths for the different𝜌-VEX configurations (2-issue, 4-issue, 8-issue). If the number of total cycles of
such a schedule (iterations × schedule length) is larger than the threshold, a pair of
instructions is added before the head of the code section (see Figure 6.3). These in-
structions write the schedule lengths (normalized to <= 255 so that the information
for 4 possible hardware configurations can fit in a single 32-bit word) to a memory
address. In our current implementation, this memory address points to a processor
control register. Alternatively, it can point to a field in an OS data structure that is
evaluated by the OS scheduler [100]. As the reconfiguration penalty of the 𝜌-VEX is
extremely low, the read-out of these control registers and hardware configuration
determination are moved to hardware resulting in significant overhead reduction.
Therefore, we implemented this in our simulation for further evaluation. Further-
more, the compiler is able to clear the value after the loop, in order to 1) measure
the portion of time that the processor is running in annotated loops (to measure the
coverage) and 2) to inform the runtime that there is currently no information about
the parallelism. Subsequently, the runtime can decide to configure the VLIW to the2-issue mode, to keep the current configuration, or to give priority to other threads
that do have valid ILP information. Resetting the value is done by added a single
store instruction to all the basic blocks that have an exit arc from the annotated
loop.

6.4.3. Datapath assignment
As the 𝜌-VEX has 4 contexts, the runtime can evaluate the parallelism of up to 4
threads and decide how to best assign the VLIW datapaths to them. The scheduler
works as follows. First, it divides the total number of operations in the schedules
by the 3 different configuration settings to obtain the average resource utilization
(for example, a loop with 18 operations requires 9, 6, and 3 cycles to execute in 2-,4- and 8-issue modes, respectively, with resource utilization factors of 2, 3, and 6 -
maximum total resource utilization is 8 equal to the number of datapaths). Second,

6.5. Experiments/Evaluation

6

93

Figure 6.3: Examples of assembler instructions that are added by the compiler before the loop head.

it determines the highest total resource utilization for every possible configuration.

6.5. Experiments/Evaluation
In our evaluations, we used programs extracted from the SPEC (CPU2006 Integer
C), MiBench, and PolyBench benchmark suites. SPEC represents a general-purpose
workload targeting workstations, MiBench focuses on the embedded domain, and
PolyBench consists mostly of scientific workloads. We chose these different suites
to be able to evaluate how well the compiler annotations perform on different types
of workloads. For performance measurements, we mainly utilized benchmarks from
MiBench, because these are the most relevant for the target application domain.
The libraries used to link with the benchmarks (floating-point, division, newlib C
standard library) have all been compiled with the same compiler as the respective
platform under evaluation.

We used an internally developed architectural simulator to perform our evalua-
tions. Without caches, our simulator is cycle-accurate when validated to our design
prototyped on a Xilinx Virtex-7 FPGA.

6

94 6. Adapting to dynamic workloads

6.5.1. Annotation overhead and coverage
The first evaluation metric is the amount of overhead by the annotations inserted
during program compilation. We executed the unaltered versions of each program
and compared the number of cycles to the versions that were compiled by our
modified compilers. The average results are presented in Table 6.1. When anno-
tating every loop and straight-line function that the compiler is able to find, the
average overhead is 2.35% and coverage 73%. The compiler with loop threshold
100 provides a reasonable trade-off between coverage and overhead. The runtime
overhead could be reduced by merging the added instructions into existing VLIW
bundles (if there are empty slots available, which is usually the case). The mea-
surements presented here use fully separate bundles for each added annotation, in
order to identify the upper bounds on overhead.

The Polybench benchmark suite represents a class of programs that are highly
structured, with a large fraction of stable, long-running loops. We observed that the
compiler is able to achieve high coverage and the loop threshold has little influence.
MiBench targets embedded systems and seems to have less structured longer loops
to annotate. Using a lower threshold, decent coverage can still be obtained. SPEC
represents the general-purpose domain and seems to be difficult to analyze. The
highest achievable coverage is less than 50% at a cost of 3.8% overhead. The
annotation phase in the compiler needs to be considerably more sophisticated to
be able to properly annotate this code, therefore we cannot target this application
domain with our compiler scheme at this time (regardless, note that VLIWs have
flourished mostly in other domains than general-purpose).

Overhead (%) Coverage (%)
Loop threshold 1000 100 0 1000 100 0
Mibench 1.50 1.90 2.30 33.7 57.9 63.7
PolyBench 2.03 2.03 2.09 84.1 84.1 84.6
SPEC 1.53 1.98 3.76 32.5 39.7 47.9
Total 1.77 1.98 2.35 59.3 69.3 72.6

Table 6.1: Average annotation overhead and coverage for the different benchmark suites

6.5.2. Throughput & Performance
The goal of using the datapath utilization to assign datapaths to tasks is to increase
throughput for multi-task workloads. To evaluate this, we will execute randomly
generated task graphs (randomly selected programs that are assigned random de-
pendencies on other programs in the graph) on the execution platforms listed in
Table 6.2.

The homogeneous multicores and the heterogeneous 422 are based on the
static version of the 𝜌-VEX so there is no difference in instruction set. Note that all
the platforms have the same number of datapaths. Although this chapter focuses on
assigning execution resources, not caches, we have performed measurements with
both a perfect memory system (single-cycle access) and caches (with a simple bus
model) to provide some insight into their influence on the results. A design-space

6.5. Experiments/Evaluation

6

95

Type Organization Scheduling
four 2-issue cores (2222) plain

Homogeneous two 4-issue cores (44) plain
one 8-issue core (8) plain

one 4-issue core, two 2-issue cores (422) plain
Heterogeneous one 4-issue core, two 2-issue cores (422) perfmon

one 4-issue core, two 2-issue cores (422) annotated
8-issue Polymorphic hardware

Polymorphic 8-issue Polymorphic perfmon
8-issue Polymorphic annotated

Table 6.2: Evaluated setups

exploration of the best cache organization for the polymorphic processor is outside
the scope of this chapter, therefore, we have chosen for a layout that shares sim-
ilarities with the Hexagon and TMS320 VLIW processors. For cached setups, each
2-issue core equivalent is attached to a 32KiB, 4-way set-associative cache so that
total cache capacity is also equal for all platforms. The cache blocks are shared
between 2 neighboring cores in case of the polymorphic processor (dual ported).
The 422 platform represents heterogeneous platforms similar to ARM big.LITTLE
(such as the Qualcomm Snapdragon 808 that has 2 large and 4 small cores). The
platforms that make use of the compiler annotations are all running generic bina-
ries, the other platforms are running un-annotated generic binaries. Regarding the
resource assignment, we use the following scheduling types:

• Plain - straight-forward execution of the taskgraphs. The heterogeneous plat-
form will migrate a task if a big core is idle.

• perfmon - periodically sampling performance counters and performing task
migrations.

• annotated - periodically sampling the schedule info and performing task mi-
grations.

• hardware - utilizing the schedule info, fully automatic core adaptations (only
on polymorphic platform).

In the hardware scheduling mode, we simulate a hardware configuration sched-
uler that will adapt the core when the contents of the schedule info register change.
This mode is not feasible for the 422 platform as the migration overhead will be-
come prohibitive. Similarly, there is no plain mode on the polymorphic platform,
as not performing any adaptations renders it equal to one of the other platforms
(all possible individual configurations of the dynamic core are present). Making the
schedule info available for periodic sampling will allow us to evaluate the efficacy
of the compiler annotations on heterogeneous systems. We also measured this
scheme on the dynamic core for comparison.

6

96 6. Adapting to dynamic workloads

Figure 6.4: The left plot shows the average throughput (number of committed operations) during 100M
cycles. The Dynamic processor achieves 8% more throughput compared to the HMP. The performance
monitoring approach provides 10% more throughput than plain scheduling on the HMP. The right plot
shows the normalized performance (1/execution time) of the full task graphs. Here the Dynamic proces-
sor achieves 20% better performance than the HMP. Each result set is normalized to the fully automated
polymorphic processor.

Figure 6.4 depicts the normalized average throughput of all platforms. The fully
automated dynamic core has been used for normalization. For setups with perfect
memory (nocache), it provides the highest throughput by a small margin. When
using caches, it suffers a considerable penalty (13% on average) because the cache
is not shared between all datapaths. This means that excessive adaptations may
cause a program to be repeatedly cut off from the cache block that may contain
live data. A solution is to share the cache blocks between all the datapaths, but this
will likely result in higher access latency or infeasible requirements (e.g., 4 access
ports).

Of the sampling-based setups, the performance monitoring approach performs
slightly better compared to the compiler-annotated approach. This can be ex-
plained partially by the overhead of the annotations (according to Table 6.1, around2% overhead is expected). Additionally, some programs have relatively low code
coverage, which may severely limit the quality of the information on which the re-
source assignment is based. We can see that task migrations based on performance
monitoring allows the static core to achieve 10% better performance on average
compared to plain task execution. Comparing the platform types, the polymorphic
processor provides approximately 8% higher throughput on average compared to
the HMP. The advantage varies considerably between task graphs, and can get up
to a factor 2× higher or down to 20% lower. This can be attributed to the degree of
variability in the tasks. When the code characteristics are very stable, a static plat-
form is well capable of executing it efficiently. In the presence of a highly dynamic
workload, the dynamic processor is able to adapt without suffering from excessive
migration penalties.

6.5. Experiments/Evaluation

6

97

The performance results, on the right side of Figure 6.4, are slightly more pro-
nounced, with a 20% advantage shown by the polymorphic processor over the
HMP. This is due to the amount of parallelism that changes during the course of
the execution of the task graph (sometimes multiple tasks can be run in parallel,
sometimes only one). The polymorphic is able to exploit more parallelism (TLP or
ILP) in all these sections.

Figure 6.5: Task-level parallelism versus normalized throughput during 100M cycles.

Figure 6.5 shows the relation between Task-Level Parallelism (TLP) and the
throughput of the setups. This has been calculated by monitoring the number of
tasks that were active during execution and is therefore limited to at most 4 tasks.
The single-core setup performs adequately when the task graph is very sequential
(TLP ≈ 1) and similarly, the 4-core homogeneous platform is at its best when it
can execute a task on each core (TLP ≈ 4). The HMP setups perform best with
task-level parallelism around 3 (note that this platform has 3 cores). Therefore, we
have tuned our task graph generation algorithm to create graphs with average task-
level parallelism of approximately 3, to provide a lower bound on the advantages of
the polymorphic processor. The graph shows that the polymorphic setups deliver
high throughput independent of the task-level parallelism and helps to interpret
the difference between the throughput and performance results in Figure 6.4. The
throughput measurements show a snapshot of a workload with an average TLP of
3 (represented by the corresponding point on the X-axis of Figure 6.5), while the
performance results measure the behavior during the entire lifespan of the task
graphs, during which the TLP will continuously change (visualize this by moving
left and right in the TLP graph of Figure 6.5). Combined with the ability to better
adapt to code variability, this results in the observed 20% increased performance
in Figure 6.4.

6

98 6. Adapting to dynamic workloads

6.6. Related work
6.6.1. Phase detection and workload characterization
In order to tune application performance (be it automatically by using online adap-
tive approaches or manually), an important step is to measure performance charac-
teristics of a workload. An important realization is that these characteristics change
significantly during the course of a program’s execution [4]. There are two gen-
eral approaches in phase detection: online and offline. There have been efforts to
combine the two [92] [101]. This is fully supported by our proposed scheme and
will likely increase the quality of our results [4], but it is outside the scope of this
chapter and regarded as future work.

Online methods use counters to profile applications at run-time [102] [103].
Every scheme that makes use of these has to balance the sampling rate and over-
head. For current systems, this overhead can be kept tolerable because the rate
at which the hardware can adapt (DVFS, core migration) is also low. However, our
target hardware platform can adapt at much higher rates, rendering most online
approaches unusable.

Most work on compiler-aided application tuning focuses on cache performance
(e.g., [104]), for example by improving cache partitioning between simultaneously
executing threads. A related technique that aims to reduce power consumption
by reconfiguring a processor using compiler annotation is [105]. Their technique
focuses on identifying regions of code that have a high cache miss ratio, and scaling
down processor frequency. These techniques are orthogonal to ours, as we focus
on utilization of execution resources (functional units).

6.6.2. Polymorphic processors
A number of previous projects have designed polymorphic processors in the past,
most notably [7], [6]. Most of these efforts were based on a superscalar architec-
ture targeting general-purpose computing. The 𝜌-VEX is a VLIW-based architecture
that targets embedded systems. Earlier polymorphic processors based on VLIW ar-
chitectures [98] [99] needed separate binaries for each supported configuration
and/or are limited to configuration changes determined at compile-time. Operat-
ing system support for dynamically reconfigurable architectures is introduced by
Chameleon [100], which could be used in conjunction with this work. In [88],
performance monitoring is used to adapt the 𝜌-VEX to a single program in order to
achieve higher energy efficiency. This work instead targets a multi-tasking environ-
ment, adds the compiler approach, and also allows measurements when running in
lower issue-widths than the full 8-issue configuration. In [92], a hybrid approach
is introduced, combining compile-time profiling and run-time monitoring to reduce
the issue width of a hypothetical superscalar processor. Sherwood et al. [96] briefly
discuss an adaptable issue-width processor where they sample each configuration
option every time their phase classifier detects the start of a new phase. This
work attempts to prevent this by proposing to exploit the parallel nature of a VLIW
architecture.

6.7. Conclusions

6

99

6.7. Conclusions
In this work, we introduced and evaluated two methods to steer migrations in a
heterogeneous multicore and adaptations in a polymorphic processor. Using these
methods, a polymorphic processor shows a 20% improvement in performance on
average over a heterogeneous platform with an equal amount of computing re-
sources. On the heterogeneous platform, they provide 10% better performance
compared to plain task scheduling. Without these methods, user intervention, man-
ual resource assignment, or compile-time profiling is required to steer the task mi-
grations or core adaptations. The additional value of using compiler annotations in
combination with automatic core adaptations in hardware depends strongly on the
workload and can provide up to a factor 2× more throughput. In the presence of
caches, the performance of the most adaptive setup is reduced because the cache
blocks are not shared between all datapaths of the polymorphic processor. Devis-
ing a proper cache organization that can cope with this adaptive architecture is a
complex topic outside of the scope of this chapter and a possible future research
direction.

Part 3 - Real-time and
mixed-criticality systems

Part 2 discussed dynamic workloads where the optimization goal was
throughput or energy-efficiency. Each task was assumed to be of equal
importance. In many embedded applications, this is not possible because
some tasks have real-time requirements. This means that the platform must
be able to give strict performance guarantees to some tasks.
Part 3 of this thesis starts with discussing the architectural properties of the𝜌-VEX processor that create advantages for real-time systems in Chapter 7.
Then, wewill discuss how they can be used to improve the static schedulabil-
ity for real-time workloads in Chapter 8. Additionally, it proposes a full sys-
tem architecture that is suitable for mixed-criticality systems. The platform
is designed to guarantee time-safety for critical tasks while still providing as
much throughput as possible to non-critical tasks.

Hardware Software Scheduling

Classical Static
Static &
Dynamic

Static &
Dynamic

Part 1
Static

(fixed, design-time) Static Static (compile-time)

Part 2
Dynamic

(adaptable, run-time) Dynamic Dynamic (run-time)

Part 3
Dynamic

(adaptable, run-time)
Static &
Real-time

Static (compile-time) &
Dynamic (run-time)

101

7
Evaluating real-time

properties

In the introduction, we note that many embedded applications are faced with
strict timing requirements. This chapter discusses the properties of the 𝜌-
VEX that are of particular interest to the real-time application domain. Some
complex components that are needed for the processor’s adaptability can also
be used to remove context switching penalties and decrease interrupt latency.
These are important aspects of a computing platform for real-time systems, as
the maximum interrupt latency is often limited and context switch penalties
must be taken into account when scheduling multiple tasks on a processor.

Parts of this chapter have been published in [41].

103

7

104 7. Evaluating real-time properties

Abstract
The register file is an expensive component in the design of any processor, espe-
cially, when considering the additional ports that are needed to support multiple
datapaths within a wide-issue VLIW processor. In a recent work, these additional
resources were used to dynamically reconfigure the register file to support a dynam-
ically reconfigurable VLIW core. The design can be perceived as a single 8-issue,
two 4-issue, or four 2-issue VLIW cores. Consequently, the multi-ported design can
operate in different modes, namely as 𝑜𝑛𝑒, 𝑡𝑤𝑜, or 𝑓𝑜𝑢𝑟 register files, respectively,
corresponding to the active number of cores. The implementation of the register
file design on FPGAs using Block RAMs still results in unused resources due to the
coarseness of the Block RAMs.

In this chapter, we propose to re-purpose these unused BRAM resources to
additionally support multiple contexts next to earlier-mentioned modes. In this
manner, the 8-issue, 4-issue, and 2-issue cores have access to 4, 2, and 1 contexts,
respectively. Consequently, we can avoid saving and restoring of the task states
in a multi-task environment, turning context switching from a traditionally time-
consuming event to an almost instantaneous event. The advantage of this is the
reduction of interrupt latency and task switching latency, which are important in
real-time and embedded systems.

Our results show that our technique can improve interrupt latency by a factor
of 17.4× compared to using a software register spill routine, depending on the
behavior of the memory system. Likewise, the task switching time can be improved
by 6.7×.

7.1. Introduction
The 𝜌-VEX processor [21] is a dynamically reconfigurable VLIW processor that can
adapt its organization to the requirements of different workloads. One of its most
important run-time parameters is the issue-width that allows for adaptation towards
the ILP of the task(s) at hand. The design can be configured as a single 8-way (1×8-
way), two 4-ways (2 × 4-way), four 2-way (4 × 2-way) VLIW processor core(s), or
combinations of those: e.g., two 2-ways and one 4-way. This capability requires
the design of an extensive register file to support these different modes. In the
worst case, the register file must provide:

• 8 write ports and 16 read ports when running in the 1 × 8-way mode

• 4 architecturally separate register files when running in the 4 × 2-way mode

To design a register file that satisfies these requirements we use techniques such as
Block RAM (BRAM) duplication and a Live Value Table (LVT), which we will discuss
in Section 7.2.

A major drawback of the current design is the large resource utilization. The
BRAMs used to implement the register file on the FPGA need to be duplicated mul-
tiple times to provide the necessary amount of read and write ports. Every BRAM
has a capacity of 512 32-bit words (2 KiB); however, the architecture only requires

7.1. Introduction

7

105

64 32-bit registers. Because of this, the resulting design has an enormous stor-
age capacity of which at most an eighth is used by the processor in any particular
configuration.

The design presented in this chapter aims to convert the drawback of the high
BRAM usage of the register file for wide-issue VLIW softcore processors into an
advantage by using the overcapacity to store different execution contexts. The
actual utilization of the BRAM storage capacity will increase from to . Support
for multiple contexts in hardware relieves the core from having to spill and restore
its entire register file contents to and from memory in the event of a task switch
or interrupt. In a multi-tasking environment, this concept changes task switches,
which are traditionally very time-consuming, into a virtually instantaneous event.
Faster context switching has advantages in numerous computing scenarios, as it will
increase responsiveness for interactive workloads and improve interrupt latency and
task switching speeds in real-time systems. In the following, we illustrate several
cases in which our work can improve performance:

• Frequently used threads: Kernel threads, like schedulers, must be frequently
executed. In a traditional core implementation, timers interrupt the core and
trigger context switching in order to execute such threads. In our work, these
threads can be maintained within the core and thereby remove the need for
context switching. For example, an application is executing in the 8-issue
mode using 1 out of 4 contexts. When the scheduler needs to execute, the
current thread can be scheduled to run on a 4-issue core - this mode switch
only takes several cycles when using generic binaries [29]. In the remaining4-issue core, the execution of the scheduler can be resumed by using its own
context that remained “dormant” within the core.

• Dynamic switching of execution by different cores: When threads require
more resources, e.g., when their ILP increases, our processor design allows
for it to claim additional datapaths to execute the code more efficiently. This
does mean that another thread must be stalled for a while. However, in our
case, the context of the second thread does not need to be saved into the
memory and can remain within the core until it is resumed. In the latter,
another context switching operation is saved.

• Context-cycling after cache misses: When our processor is running in the 8-
issue (4-issue) mode, it can have up 4 (2) contexts stored within each core.
This means that when one thread is encountering a cache miss, thus execution
is stalled, the core can easily switch to another thread (context) and continue
execution, i.e., Switch-on-Event Multi-Threading SoEMT.

• Embedded real-time systems with multiple tasks that require stringent real-
time constraints (e.g., control loops with sensors and actuators). A single core
can process more events using multiple contexts [106]. Therefore, a softcore
can be used as microcontroller on an FPGA which would save the designer
from having to design hardware circuits to handle some events or having to

7

106 7. Evaluating real-time properties

resort to a multi-core system where distinct events are handled by a dedicated
core.

The register file of our 𝜌-VEX is a complex topic, as it is also instrumental in
supporting the core’s dynamic reconfigurability [22]. We limit the scope of this
chapter to evaluating the benefits from multiple hardware contexts. It must there-
fore be noted that the costs of this design (see Table 7.1) are paid not only for
multiple contexts, but also to support the dynamic reconfigurability. Our approach
in this chapter gives us a 17.4× reduction in interrupt latency and 6.7× reduction
in context switching time.

7.2. Background
The multi-ported register file is a challenging component in the design of softcore
VLIW processors. Wide-issue VLIW processors like the 𝜌-VEX need register files
with a large number of read and write ports. The VEX instruction set architecture
(ISA) supports operations that use two source registers and one destination register.
Because of this, the number of write ports required is equal to the issue-width, and
the number of read ports is equal to twice the issue-width. Creating such complex
register files using FPGA LUT resources is very expensive and scales very poorly with
the number of ports. The reconfigurable 𝜌-VEX design and the implementation of
its multi-ported register file are introduced in [107]. Moreover, in [108], the idea of
using a Live Value Table (LVT) is discussed that enables the use of banked memories
with duplication to create multi-ported BRAM memories. The ideas presented in this
chapter are built upon a register file design that is implemented using this technique.
We will discuss the concepts and challenges briefly in this section.

Creating RAM memories that have more read ports is straightforward and
achieved by duplicating the BRAM and writing data into each block simultaneously.
In this way, each BRAM contains the same data, and their read ports can be used
independently of each other. Increasing the number of write ports, however, is
more difficult. Several solutions exist in literature. The simplest solution is to
divide the register file into banks, each connected to one of the write ports [109].
This solution restricts the range of registers each write port can write to and thus
reduces the freedom the compiler has to schedule instructions. Another solution
introduced in [110] increases the size of each bank to the original register file
size and renames the registers in between the compiler and assembler. This
solution enables a banked design with the same scheduling freedom as an actual
multi-ported register file but utilizes a multiple of the number of registers. Note
that this technique does not necessarily require more BRAMs since their size is a
lot larger than the 64 registers specified in the VEX ISA. It does, however, increase
the number of bits required to specify the source and destination registers in
instructions.

The register file used in the 𝜌-VEX uses the technique introduced by [108]. This
scheme also duplicates the register file for each write port. However, instead of
uniquely naming the registers in each bank, a Live Value Table (LVT) keeps track of
which bank holds the most recent value of each register. It uses this information

7.3. Related work

7

107

to multiplex the right bank to the read ports, as shown in Figure 7.1. The LVT
needs to be implemented as a multi-ported LUT based RAM because it still needs
one write port per register file write port. However, since it only needs to hold a
bank address, it is much narrower than the original register file that the scheme
seeks to replace. While this technique enables the register file to be implemented
mostly with BRAMs instead of LUTs, it still scales poorly with the number of ports.
The number of BRAMs required is equal to the product of the number of read and
write ports. The depth of the LVT scales linearly with the number of registers in the
register file while the width scales logarithmically with the number of write ports.
The number of ports required for the LVT is equal to the number of ports on the
register file.

7.3. Related work
In [111] the authors analyzed the high requirements that wide-issue VLIW proces-
sors pose on the register file. They discuss hypothetical FPGA primitives similar to
existing BRAMs but featuring many more read and write ports. These primitives do
not exist in current FPGAs, therefore, the use of large BRAM or LUT-based structures
is required to emulate this behavior [108].

In [112], it is stated that “the context switch time is one of the most significant
overhead factors in any operating system” and shows that high timer interrupt han-
dling latency can impede schedulability of real-time tasks. In [106], it is measured
that using a multi-threaded architecture with 4 register sets allows an autonomous
guided vehicle to run at a 28% higher velocity. In [113], measurements were per-
formed to quantify the interrupt latency of several embedded Linux distributions
running on a Xilinx Microblaze.

There are numerous examples of processors which use the concept of multi-
ple register files to enhance the context switching time and interrupt latency in
hardware. In [114], comparisons are made (by means of simulations) between
increasing the number of cores and increasing the number of register sets in terms
of increasing performance for a parallel workload. In [115], the MIPS architecture
is extended by duplicating the register file multiple times and adding special in-
structions to switch between them when a context switch is required. In [116], the
authors propose a novel architecture, which also supports holding multiple contexts
in hardware simultaneously, and extend it with a dedicated cache to hold contexts
to prevent spilling to main memory. Among other things the effects of the ad-
ditional contexts on interrupt latency is investigated. Storing multiple contexts is
also a requisite for (Simultaneous) Multi-Threading (SMT) [27]. An example of a
VLIW processor with SMT support is the Itanium [117]. These technologies target
high-end ASIC processors while this work targets the embedded (FPGA) domain.

The synthesizable ARPA-MT [118] and RTBlaze [119] processors also use SMT to
improve schedulability and performance for embedded real-time systems. However,
all the resource investments in this core are only used for SMT. The ARPA-MT core
has a single execution pipeline. The fetch and decode circuits as well as the register
file need to be duplicated for each thread slot.

In contrast, the 𝜌-VEX uses the additional resources to support: 1) a very wide

7

108 7. Evaluating real-time properties

LVT

64

Entries

BRAM

MUX

Figure 7.1: Block diagram of register file implementation using multiple banks of BRAMs. The green
arrows indicate write ports, while the blue arrows indicate read ports. The shaded area represents the
portion of the BRAM used for storing a single context.

VLIW to exploit ILP, 2) multiple hardware contexts and 3) a multi-core configura-
tion (in other words, all contexts can be active and executing at the same time).
Therefore, it uses the additional resources in a more efficient way compared to the
previous work.

7.4. Implementation
Figure 7.1 shows the implementation of a register file with four write ports and eight
read ports (4𝑊 ×8𝑅), using BRAMs and an LVT. The 8𝑊 ×16𝑅 version would be 4
times as large. The hatched area represents the part of the BRAM that is actually
used to store the 64 registers used by the 𝜌-VEX. The figure shows that a large part
of the BRAMs is unused. Because the 𝜌-VEX can be configured as four independent
processors, it also needs four separate register files. However, the total number of
read and write ports is the same for one large 8-issue processor or four separate2-issue processors. Because of this characteristic, the same multi-ported register
file can be used in each configuration. The number of registers, however, needs
to be quadrupled, for a total of 256 registers, since each core needs a separate
register file of 64 registers. The BRAM resources on contemporary FPGA boards
provide more than sufficient storage capacity to accommodate this, so there is no
added cost in BRAM resources. However, the LVT does need to increase in size, to
keep track of the most recent location of all 256 registers.

Figure 7.2 shows how the multiple contexts can be stored in the previously
unused space of the BRAMs. Creating four separate register spaces is a necessary

7.4. Implementation

7

109

LVT

256

Entries

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3
0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3
0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3
0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

MUX

Figure 7.2: Block diagram of register file implementation supporting multiple contexts. Here the number
of BRAMs is the same, but the LVT is larger.

cost to enable the 𝜌-VEX to be split into four separate processors. However, not
all of the register spaces are used when the core is configured as a single 8-issue
processor or two 4-issue processors. This creates the opportunity to re-purpose
these unused register spaces as alternative register windows, which can be used
to store the register context of inactive processes. Since the four register windows
are implemented as a larger continuous address space, the uppermost bits can be
used to select one of the four register windows.

The 𝜌-VEX utilizes more registers than just the 64 general purpose registers. It
also has the following registers, that must be stored for a context switch:

1. A special 32-bit register used to store the return address for a function call
(the link register).

2. Eight 1-bit registers used for conditional branching.

3. The program counter.

4. Various control registers, used for example for interrupt handling.

These registers cannot easily be stored in BRAMs, as the control logic needs to
be able to access all these registers at once. Therefore, these registers are im-
plemented in LUTs. To support running as 4 × 2-issue processors, all these regis-
ters need to be duplicated as well, and can thus be used as part of the hardware
contexts. Some additional hardware is required to use these registers for con-
text switching, as not every lane would necessarily need access to all duplicates of
the registers for reconfiguration only, while this is necessary for context switching.

7

110 7. Evaluating real-time properties

However, when this is done, the only registers which need to be spilled and restored
are those registers which are used by the context switching routine, or scheduler
itself. Because the additional hardware cost is small, our context switching design
incorporates this feature.

A hardware context switch is not entirely free in terms of cycles in the current𝜌-VEX design. To avoid complicating the forwarding logic, context switches are
only possible when the pipeline is empty. Because the 𝜌-VEX has a five stage
pipeline, five cycles are needed to flush the pipeline before a context switch can
occur. In addition, the context switches are currently controlled by the dynamic
reconfiguration controller, which takes three additional cycles to decode and commit
a new configuration. Two of these are spent still executing instructions in the old
context.

7.5. Experimental Setup
Our measurements are carried out using the 𝜌-VEX VLIW softcore processor clocked
at 37.5 MHz running on a Xilinx ML605 development board, which incorporates an
XC6VLX240T Virtex 6 FPGA. We use a timer connected to the interrupt request input
of the processor to generate interrupts at different rates to measure the impact of
our approach on the performance of the system.

We quantify the impact on performance by measuring two different values,
namely:

1. Interrupt Latency: The number of cycles elapsed between the moment an in-
terrupt request is received by the core, and the first instruction of the interrupt
handler being executed.

2. Context switching latency: The number of cycles elapsed between the mo-
ment a context switch is requested (due to an interrupt), and the first instruc-
tion being executed in the new context.

Figure 7.3 shows what these latencies are made up of, namely: pipeline flushing,
saving context registers, running the interrupt service routine (in our case the task
scheduler), and finally restoring the context registers. By using hardware contexts
the latency of saving and restoring registers can be eliminated. We measured
these quantities by creating a workload of four programs. At every timer interrupt
a scheduler selects a different program to execute, and performs the context switch
to that program. The programs themselves have no impact on the measurements,
since they are purely dependent on the time it takes to save and restore all context
registers.

In order to measure the difference between hardware and software context
switching, we wrote a software and a hardware context switching routine. The
software version saves the complete context to the stack of the currently running
task, stores the stack pointer to a predefined memory location, and starts executing
the interrupt handler. The interrupt handler then calls the scheduler in order to
schedule the next task. The current stack pointer is then replaced with the stack
pointer of the new task. Next, the application context of the newly selected task is

7.5. Experimental Setup

7

111

task A
context

save

pipeline

flush

context

restore
scheduler task B

task A scheduler task B

interrupt latency

context switching latency

interrupt latency

context switching latency

Software

Context Switching

Hardware

Context Switching

Figure 7.3: Context switching and interrupt latency definition.

restored from the stack, after which control is handed back to the application. The
hardware switch routine does not need to save or restore all registers. Instead it
only has to do so for the registers used by the interrupt routine, in this case the
scheduler.

The scheduler utilizes a linked list in memory to determine which task to switch
to; each entry representing a task, with a mapping to another task. When a task
completes, the linked list is rebuilt such that the context switching code does not
switch back to the completed task, and a context switch is requested immediately
using a software trap instruction. When the last task completes, it signals comple-
tion to the platform.

Because cache behavior will impact the latencies for saving and restoring the
contexts we perform the measurements for different memory access latencies. We
measure using latencies from 0 (single cycle memory access) to 30 cycle mem-
ory access on cache miss. The cache itself consists of a separate instruction and
data cache, respectively 32 KiB and 8KiB in size. The size has intentionally been
kept small, because the programs under test had to be small as well for the entire
memory to fit on the FPGA; it is assumed that, under normal circumstances, larger
caches will be used, but the running programs will also use wider regions of more
memory. Both caches have single-cycle hit latency for reads. The data cache has
a two-cycle latency for writes for both hits and misses, as long as one of the four
write buffers is vacant.

To evaluate the context switching overhead in multi-process time-sharing sys-
tems, overall performance of the multi-task system is tested on hardware using the
cached system. The timer is used to generate an interrupt at a fixed frequency, of-
ten referred to as the system “tick,” in which a context switch is performed. Clearly,
the context switching overhead is directly related to the frequency of the system
tick [112]. The frequency of the tick is usually in the order of 50 to 1000 Hz. A

7

112 7. Evaluating real-time properties

Register File

1 Context 4 Contexts Core Increase
over Core

Slice Registers 806 1392 8529 6.9%
Slice LUTs 10764 15591 35148 13.7%
RAMB18E1 128 128 147 0%
RAMB36E1 0 0 128 0%

Table 7.1: Resource usage of register file with and without support for multiple contexts.

lower frequency will lead to lower switching overhead, but higher frequencies will
result in a more responsive system. Systems that require more responsiveness will
therefore have a higher tick frequency. For example, the Linux kernel uses a system
tick of 1000 Hz for desktop systems, but this can be reduced to 100 Hz for server
systems to reduce overhead. On the other hand, the Windows kernel uses 66 Hz.
The frequency is varied between tests to evaluate its effect. In addition, the system
is evaluated with varying bus latencies. The latencies used are estimates of what
the average latency would be for a real off-chip memory system.

A cycle counter available within the 𝜌-VEX processor is used to measure the
time from system reset to the program completion signal, which is given by the
task switching implementation when all tasks have completed. For each timer and
memory system configuration, both context switching implementations are evalu-
ated. Because all other factors are kept constant, the difference in total execution
time is only dependent on the context switching overhead. The speedup between
the baseline and hardware context switching implementations is then determined
to quantify this overhead.

7.6. Results
In Table 7.1 we show the increase in resource utilization of the register file when
adding support for four contexts. As expected the number of BRAMs used does not
increase. Only the number of registers and LUTs increases, since these are used to
implement the LVT. While these increases seems large, when compared to the total
usage of the core they are less significant. Additionally, note that this increase in
resources in the register file is required to support the dynamic reconfigurability of
the processor.

As we can observe in Table 7.2, the interrupt latency is 87 cycles for software
context switching. The interrupt latency when using hardware contexts is only 5
cycles, solely due to the pipeline flush performed by the trap handling logic. A full
context switch, i.e., the time between a tick interrupt request and the execution
of the first instruction in the new context, takes 174 cycles using the software
implementation, compared to 26 cycles using the hardware contexts.

In Table 7.3, we can observe the results of the same experiments run using
a cached memory system, with a bus latency of 20 cycles. We observe that the
improvement due to the hardware context switching is greater in this system, with

7.7. Conclusions

7

113

Software Hardware Reduction

Interrupt Latency 87 5 17.4×
Context Switch Latency 174 26 6.7×

Table 7.2: Interrupt and context switching latency with single-cycle memories in cycles.

1.0

1.1

1.2

1.3

0 250 500 750 1000 1250

Task Switching Frequency (Hz)

S
p
ee

d
u
p

Bus Latency

0

10

20

40

Figure 7.4: Speedup of the multi-task system due to the hardware context switching implementation.

the improvement in interrupt latency increasing from 17.4 to 23.5×, and the im-
provement of context switching time increasing from 6.7 to 14.8×.

Software Hardware Reduction

Interrupt Latency 16798 713 23.5×
Context Switch Latency 31861 2148 14.8×

Table 7.3: Interrupt and context switching latency with cache and 20 cycles bus latency in cycles.

Figure 7.4 shows the speedup for different frequencies of the timer tick parame-
terized for different memory latencies, as measured on hardware using the cached
system. It can be seen that in the region of higher task switching frequencies the
difference between hardware and software context switching can be quite substan-
tial depending on the memory system. A speedup of over 1.3× can be achieved for
a bus latency of 40 cycles at a switching frequency of 1280 Hz.

7.7. Conclusions
The concept of using additional register files to speed up multi-threading perfor-
mance has been applied in numerous designs in the past. In this chapter, we

7

114 7. Evaluating real-time properties

apply the concept to an existing design, exploiting the overcapacity of the BRAMs
in the existing implementation of the multi-ported register file and the additional
logic required by the parameterized reconfigurability of the 𝜌-VEX softcore. We
have demonstrated that the proposed design can decrease the interrupt latency
by a factor of over 20 times in a realistic environment. Likewise, the total context
switching time can be decreased by a factor of over 10 times. In a simple multi-
task system the effect of this is apparent as the decrease in overhead results in
a speedup of 1.3× in the most extreme case evaluated. For applications with few
real-time requirements, where the system tick frequency would be relatively low,
the speedup is negligible, as the task switching code would not be executed as
often. However, embedded real-time systems that need to process large numbers
of events will benefit most from the improvements.

8
A platform for

mixed-criticality systems

In the previous chapter, we have shown how the architectural properties of
the 𝜌-VEX result in improved interrupt latency and context switching penal-
ties. Creating a real-time schedule, however, is considerably more involved
and is the focus of the present chapter. It includes finding the worst-case
execution time of the programs in the schedule, which can be difficult if the
performance of the processor is highly unpredictable (for example, because
it uses techniques such as caches and branch prediction).

We highlight the performance predictability of the VLIW-based architecture
and present a broader view on designing a full platform that is suitable for
mixed-criticality systems. In addition to the processor, we discuss spatial
and temporal isolation of the memories as well. This is important, as the
memory is also a part of the program state, and unpredictable memory access
latency can create problems similar to unpredictable processor performance.
A system must be able to provide guarantees on both sides, to ensure that
no task is ever influenced by another task both in terms of functionality (not
executing correctly because the state has been corrupted) and timing (missing
a deadline because it unexpectedly needed to wait for another task).

We discuss the topic of schedule creation for an adaptable processor, and
show that the static schedulability can be improved compared to static mul-
ticore processors. Additionally, we study whether it is possible to increase
resource utilization within the static real-time schedule, by adding a dynamic
scheduling component that re-assigns unused resources to another task.

Parts of this chapter have been published in [42] and [43].

115

8

116 8. A platform for mixed-criticality systems

Abstract
As embedded systems are faced with ever more demanding workloads and more
tasks are being consolidated onto a smaller number of microcontrollers, system
designers are faced with opposing requirements of increasing performance while
retaining real-time analyzability. For example, one can think of the following
performance-enhancing techniques: caches, branch prediction, out-of-order (OoO)
superscalar processing, simultaneous multi-threading (SMT). Clearly, there is a
need for a platform that can deliver high performance for non-critical tasks and full
analyzability and predictability for critical tasks (mixed-criticality systems).

In this chapter, we demonstrate how a polymorphic VLIW processor can sat-
isfy these seemingly contradicting goals by allowing a schedule to dynamically, i.e.,
at run-time, distribute the computing resources to one or multiple threads. The
core provides full performance isolation between threads and can keep multiple
task contexts in hardware (virtual processors, similar to SMT) between which it can
switch with minimal penalty (a pipeline flush). In this work, we show that this dy-
namic platform can improve performance over current predictable processors (by
a factor of 5 on average using the highest performing configuration), and provides
schedulability that is on par with an earlier study that explored the concept of cre-
ating a dynamic processor based on a superscalar architecture. We measured a15% improvement in schedulability over a heterogeneous multi-core platform with
an equal number of datapaths. Datapaths that are not used by critical tasks can
be assigned to non-critical tasks by adding a dynamic scheduling component. This
allows the dynamic processor to assign up to 50% and on average 25% more re-
sources to lower-priority threads during the execution of a static real-time schedule.
Finally, our VHDL design and tools (including compiler, simulator, libraries etc.) are
available for download for the academic community.

8.1. Introduction
In numerous real-time application domains such as automotive computing, emerg-
ing restrictions such as power limitations, cost, size, and maintainability push in-
creasingly more tasks onto a single microcontroller. The timing properties of these
tasks can vary in the degree of strictness, giving rise to the field of mixed-criticality
systems [5]. Platforms executing these types of workloads have the following re-
quirements:

• Full predictability/analyzability - It should be possible to perform Worst-Case
Execution Time (WCET) analysis to extract tight bounds on the required com-
putation time for each task.

• Timing isolation - Running tasks should not be affected by external influences,
e.g., other tasks contending for resources, to ensure the timing validity of the
system.

However, they also have the following desirable properties that are prone to con-
tradict with above-mentioned requirements:

8.1. Introduction

8

117

• High-performance - Tasks should not only be able to meet their own deadlines,
but also to allow non-critical tasks to achieve a certain quality of service (for
example, car entertainment media playback). Many architectural techniques
to improve performance impede predictability and subsequently analyzability.
Examples are caches, branch prediction, and out-of-order (OoO) processing.

• Multicore/Multi-threaded - Multiple tasks should be able to run concurrently,
for reasons of performance and power (a single-core that is powerful enough
to run all tasks will require more power than multiple cores with lower clock
frequency and voltage), and improved schedulability (see Section 8.6). Mul-
ticore platforms often under-utilize processor resources, while multi-threaded
platforms such as SMT processors fail to provide timing isolation [120].

In order to meet these requirements, numerous processor designs with predictable
timing have been introduced. A recent example is FlexPRET [121], which is a
fine-grained multi-threaded processor that provides full isolation and timing pre-
dictability. It is similar to a barrel processor but allows more flexibility in assigning
cycles to threads in order to allow higher single-thread performance at the cost of
adding forwarding paths (that need to distinguish the thread ID of instructions) to
the design.

In this chapter, we propose to use the 𝜌-VEX polymorphic VLIW processor for
mixed-criticality and real-time workloads. Its goal is to provide a high level of flex-
ibility by being able to adapt to different workloads. We show that it has good
properties in terms of performance and schedulability in this application domain.
The runtime reconfigurable (polymorphic) version can choose to target programs
with a high level of ILP in a high-performance single core 8-issue VLIW configura-
tion, or multiple threads/programs in a multicore configuration with smaller issue
widths. The key behind this runtime-adaptability is being able to split the proces-
sor’s data paths into separate cores or combining them into a single larger core.
When the processor is split, the independent datapaths provide full isolation from
each other. The 𝜌-VEX provides multi-core processing capabilities without under-
utilizing resources. The VLIW architecture, when used without caches, provides
a high degree of time-predictability [122] as it offers static branch prediction (the
compiler analyzes the most likely control flow and restructures the code accord-
ingly), in-order execution and an exposed pipeline (all instruction latencies are fixed
and known to the compiler - no pipeline interlocking or resource contention). Even
when using caches, the 𝜌-VEX provides full performance isolation between tasks as
the caches are split in the same fashion as the core, assuming that the backing bus
interconnect provides isolation. Naturally, adding caches will reduce predictabil-
ity and this chapter will therefore not evaluate cached setups. The designer can
choose to use local memories and/or enable caches using VHDL generics. We eval-
uate the benefits of using this hardware platform for real-time workloads in terms
of schedulability, throughput, and single-thread performance.

The contributions of this work are:

• We propose to use a polymorphic VLIW processor for real-time and mixed-
criticality workloads.

8

118 8. A platform for mixed-criticality systems

• We discuss how to provide both temporal and spatial isolation.

• We perform an evaluation of the processor in terms of schedulability and
performance using the Mälardalen real-time benchmark suite.

• We show that the number of randomly generated task sets that can be suc-
cessfully scheduled on the processor is on par with an earlier study on a
proposed dynamic superscalar architecture [26], and up to 15% higher com-
pared to a heterogeneous multicore processor with an equal number of total
datapaths.

• We perform an evaluation using the 𝜌-VEX proof-of-concept in terms of
throughput using task graphs generated from the Mälardalen real-time
benchmark suite.

• We show that the polymorphic VLIW is able to assign up to 50% more re-
sources to non-critical tasks during execution of a static real-time schedule
compared to heterogeneous processors with equal computational resources.

The remainder of this chapter is structured as follows. Section 8.2 introduces the
execution platform and concepts necessary to understand the work. It also dis-
cusses the scheduling methodology that provides timing isolation between critical
tasks while still being able to exploit processor polymorphism to increase schedu-
lability. Section 8.3 presents a system architecture providing spatial and temporal
isolation, and how to exploit processor polymorphism to dynamically assign exe-
cution resources to non-critical tasks when they are not utilized by critical tasks.
Section 8.4 discusses how we use the scheduling methodology to create valid real-
time schedules for the proposed platform. Section 8.6 presents the evaluation setup
and discusses the results, Section 8.7 compares this work to existing literature and
Section 8.8 concludes the chapter.

8.2. Background
This section briefly discusses concepts from earlier work that are needed to un-
derstand this work. First, we will introduce the dynamic processing platform used.
Subsequently, we discuss the scheduling framework that we will use to schedule
workloads for this dynamic processor.

8.2.1. Processing platform
In this work, we will use the 𝜌-VEX dynamically reconfigurable VLIW processor [21],
that was implemented as a proof-of-concept for VLIW-based processor polymor-
phism. The main concepts of the processor will be discussed here as background
for this work. The VEX ISA has been introduced by Fischer et al. in [16], as the aca-
demic sibling of the industrial st200 architectures that has been manufactured by
STMicroelectronics. It is a family of architectures [31] that is parametrized regard-
ing many design characteristics such as the number of registers and issue width.
The 𝜌-VEX processor is a VLIW core that can contain multiple instances of the full

8.2. Background

8

119

processor state (i.e., the general-purpose register file and control registers such as
the program counter) creating ‘virtual cores’ called contexts. Between the 8 datap-
aths and the contexts, an interconnect is added that can be configured at run-time.
When running in a single 8-issue mode, all datapaths are connected to one of the
four contexts, and when running in 4 × 2-issue mode, each context is attached
to a pair of datapaths (the instruction set architecture requires a minimum of two
datapaths to support long immediates). A single pair of datapaths or multiples of
these pairs can be re-assigned (i.e., reconfigured) to the contexts without the need
to save/restore the contexts to/from main memory. Reconfiguring the interconnec-
tion can be performed within 9 cycles (4 cycles during which the new configuration
is decoded and the core will continue running in the old configuration, 4 cycles to
flush the pipeline and 1 cycle to start the new configuration). Datapaths that are
unaffected by the reconfiguration command will continue running without stall cy-
cles. A more in-depth discussion regarding the circuit complexity of this design and
the benefits in terms of context switching and (reduced) interrupt latency can be
found in [41].

Figure 8.1: Schematic depiction of the concept behind the -VEX polymorphism: multiple contexts can
be connected to the datapaths in different fashions. In this configuration, Task 1 has been assigned a
single pair of datapaths (a 2-issue VLIW), task 2 uses 2 pairs (forming a 4-issue VLIW), task 3 is inactive
and task 4 has 1 pair of datapaths.

The core has an array of performance counters including cycle, operation, stall,
and various cache-related counters. without stall cycles In order to provide high-
precision timers, the size of these registers can be configured and are at most 56
bits (resulting in 10 days with single cycle accuracy at 80 MHz before the timer over-
flows). Using this width, they can be accessed by 2 ordinary load word instructions

8

120 8. A platform for mixed-criticality systems

Figure 8.2: Schematic of a single datapath with default configuration. The VHDL code is highly generic
and units can be assigned to a pipeline stage at the designers discretion. The registers between the
stages are automatically inserted. [85]

as the most significant 8 bits of the lower part are identical to the least significant
bits of the high part.

The 𝜌-VEX pipeline has 4 stages by default (see Figure 8.2) and supports for-
warding and variable-length VLIW instructions. It is also highly configurable at
design time using VHDL generics, can be used with or without caches and is syn-
thesizable to ASIC and FPGA targets. It supports up to 8 contexts. Using the default
configuration, it can be synthesized at 80 MHz on the Xilinx VC707 evaluation board.

8.2.2. Scheduling methodology for dynamic processors
In [26], modifications to an Alpha 21164 processor are proposed to create a dynam-
ically partitionable processor that can run 1 thread in 4-issue in-order superscalar
mode, 4 threads in scalar mode, or a combination. The goal for this design is to
be able to provide high performance for single threads but also analyzability and
timing isolation between threads. Although this work is not directly comparable,
being a proposed design without hardware implementation and also targeting the
high-performance instead of embedded domain, it does provide us with a very use-
ful scheduling methodology for our dynamic processor. It will be introduced here
briefly.

The scheduling framework provides a way to create static schedules for a dy-
namic processor that supports high frequency reconfigurations. The problem with
creating schedules for these processors is that 1) each task in the task set has its
own period, so the hyper-period of the task set can become very large, and 2) the
processor can be reconfigured at any time, resulting in an infeasible search space
when combined with the length of the hyper period. In addition to this (although
this problem is not discussed by [26]), a program can have different phases over
the course of its execution, in which the Instruction-Level Parallellism (ILP) varies
[4]. Depending on the current ILP of a program, changing the issue-width of the
processor can have different effects on the performance (see Figure 8.3). Because
of this, a WCET measurement (see Table 8.2) for a certain issue width is only valid if

8.2. Background

8

121

the issue-width is not changed while the program is running. Extrapolating the per-
formance between 2 issue widths (executing half of the program in 1 mode and the
other half in another mode, and taking the mean of the WCET of the 2 modes) only
works if the program is assumed to have uniform ILP (e.g., every VLIW instruction
must have the same number of operations which is very unrealistic).

The scheduling methodology works by dividing the scheduling timeline into
rounds of fixed length. The round length is a designer’s choice, but should be short
enough so that it fits a reasonable amount of times into each task’s periods and
long enough to spread the core’s adaptation penalty. The execution of each task is
spread in time, evenly over the rounds. Each task gets a fraction of each round equal
to . At the end of the task’s period, it will have executed rounds.
The number of cycles that have been assigned to a task is 𝑟𝑜𝑢𝑛𝑑𝑙𝑒𝑛𝑔𝑡ℎ ×
(the number of assigned cycles per round) × (the number of executed
rounds during the tasks period). As this is equal to the WCET, it guarantees the
validity of the schedule. In this fashion, we have spread out the executions of all
tasks in the task set over their entire period resulting in a common sub-period (the
round). Therefore, instead of having to analyze the entire hyper-period, we only
have to create a schedule for a round and repeat it indefinitely.

In summary, creating a schedule for a workload corresponds to creating a valid
schedule for a single round, resulting in a small search space for reconfigurations.
This scheduling method ensures that reconfigurations always occur at the same
time within a round and always coincide with a task switch. This way, every task
always runs with a constant issue-width during its entire execution. From each

Figure 8.3: Depicted on top is the phase behavior of a MP3 encoder (LAME) during the course of
its execution. As can be seen, the first stable phase requires an 8-issue configuration to achieve its
maximum performance. the second stable phase can be executed on a 4-issue configuration without
incurring a penalty. Running the first stable phase in 4-issue mode will result in a longer execution time
that cannot be compensated by executing the second phase in 8-issue (because there is not enough ILP),
and will therefore overshoot the WCET. However, this information is not known during execution. This
is why we must ensure a task is always executed in the configuration that was used during scheduling.

8

122 8. A platform for mixed-criticality systems

task’s point of view, it is always running in the same issue width despite of the
reconfigurations. Because of this, the WCET for a task using that particular issue
width is valid. It is the main point of how the scheduling method allows us to use
a dynamic platform to schedule real-time workloads.

8.3. System architecture for Mixed-criticality sys-
tems

In this section, we describe how we use the adaptable processor combined with the
scheduling methodology discussed in Section 8.2 to create a system architecture
that provides temporal and spatial isolation for critical tasks and is able to provide
high throughput for non-critical tasks.

8.3.1. Spatial isolation
In order to guarantee that critical tasks execute correctly, their full state needs to
be protected from being (harmfully) modified by external factors, such as a faulty
or malicious task. The state of a task consists of all the values of the internal
processor registers and the memory in use by the task. The first part of this state,
the processor registers, is the least challenging to protect, as it only needs to be
accessible from the task itself. Its integrity is therefore guaranteed as long as the
instructions read from the memory are valid. Memory isolation is more difficult, as
every task is able to access memory, and a limited form of inter-task communication
through memory may be required by the application. However, without protection
mechanisms in place, any task could overwrite the instruction or data memory of
any other task.

In our proposed platform, memory protection is implemented using two con-
cepts. Firstly, by using local (scratchpad) memories instead of globally shared
memory, and assigning a local memory to a context. Only that context is able
to access this memory, as it is memory mapped only into the address space of
that context. This is implemented by using the context id for multiplexer selection,
instead of address decoders. Synchronization and communication between threads
can be performed via global shared memory that is memory-mapped into every
context’s address space.

Additionally, we propose to be able to assign multiple software tasks to a hard-
ware context, so that the platform facilitates running more threads than there are
hardware contexts (in case of the 𝜌-VEX, there are four). In this case, one hard-
ware context needs to divide its time between running different tasks. This means
that either 1) there must be more local memories than contexts (keeping the 1:1
mapping between tasks and memories) or 2) that the local memory assigned to
this context needs to store multiple program memory states and provide isolation
between them (keeping the 1:1 mapping between hardware contexts and memo-
ries).

The first solution can be implemented by adding a processor register that con-
tains the current task id, which can be written only by privileged code (e.g., the
context switch routine). Its value will be used for multiplexing between scratchpad

8.3. System architecture for Mixed-criticality systems

8

123

(a) Task set with WCETs and periods.

(b) Task set spread over rounds.

Figure 8.4: Figure (a) presents an example task set, Figure (b) shows this set after the tasks have been
equally spread over rounds.

8

124 8. A platform for mixed-criticality systems

memories. The second solution can be implemented by adding a processor control
register whose value masks the accessible memory region (similar to what is used
by [121], although they propose to use a low and high address register that both
need a carry chain to perform the comparison, which is disadvantageous for tim-
ing). This register needs to be set by privileged code during task switches as well.
Note that 1) the additional control register needs to be created for each context
(virtual processor), and 2) the second solution can also be used in combination
with a single globally shared memory instead of local memories for each context.
In this case, however, contexts need to compete for access, requiring a multiple-
access scheme such as round robin. This scheme needs to divide access to the
memory ports, while also guaranteeing temporal isolation. This will be discussed
in the following section.

8.3.2. Temporal isolation
In addition to providing memory protection for critical tasks, the system needs to
guarantee that tasks cannot be interfered with regard to timing. Interference here
means that a task must wait for a certain resource to become available, because
it is in use by another task. These resources can be execution resources such as
functional units in the processor pipeline, access to a bus, or a memory port. Gen-
erally, there are multiple ways to deal with interference; for example, by arbitrating
between requests in a time-predictable way (using bounded delay or fixed time
sharing), and by distributing resources over tasks in such a way that interference
cannot occur altogether. Our proposed platform takes the latter approach. The
most rigorous example of this is to run each task on a separate microcontroller.
This distribution, when static, inherently impedes resource utilization. We pro-
pose to make the distribution dynamic, aiming to maintaining the time-predictable
interference-free properties without limiting resource utilization.

By using a polymorphic processor, datapaths can be assigned to threads dy-
namically. They can be assigned to a single task, maximizing resource utilization.
When assigned to separate threads, the distribution is fully separate, so that each
thread can execute without any interference from the others. The memory layout
discussed in Section 8.3.1 does not only provide spatial isolation, but also temporal
isolation as each context can access its storage area with single-cycle access. Using
local memories improves WCET analysis considerably, compared to a system using
caches. Memory regions that are globally shared will use a round robin or time divi-
sion access control protocol, so that all threads have bound latency on code sections
performing communication or synchronization between different tasks. This way,
busses, DDR memory and other shared resources can be used while still providing
timing isolation (see for example [123]). Non-critical tasks can operate from main
memory to conserve storage capacity in the local memories, if these tasks do not
need to level of strictness regarding timing.

8.3.3. Assigning unallocated cycles to non-critical tasks
By exploiting the dynamic resource distribution, execution resources that are not
required by critical tasks can be assigned to non-critical tasks in an efficient way.

8.4. Scheduling approach

8

125

This can lead to increased throughput for these tasks, while still guaranteeing the
real-time schedule. This is what makes this platform especially suitable for mixed-
criticality systems, where a system runs critical tasks as well as non-critical tasks
that can have a soft real-time requirement or a performance requirement. An often
used example is an Unmanned Aerial Vehicle (UAV) that has a critical control loop
maintaining stability of the aircraft, combined with communications and media en-
coding tasks that have some tolerance for delay, a dropped frame or a decrease in
video quality.

Soft real-time tasks can be added into the schedule in the same fashion as hard
real-time tasks. Best effort tasks can be added after creating the schedule (slack
scheduling) as there will usually be much more free cycles because the typical
execution time will often be lower than the worst case, especially if the execution
time depends on the input). The 𝜌-VEX is also able to utilize these cycles as follows.
As soon as a task finishes, it will request the scheduler to give its resources to one of
the non-critical tasks as depicted in Figure 8.5. Naturally, the scheduler must ensure
that tasks cannot take away resources from other tasks. From that moment, the
portion of resources that was reserved for that task in each round will be given
to the other task. When the original task is released again, the interrupt routine
will restore the original schedule, thereby again guaranteeing the task’s processing
time. This means that the critical task is still fully isolated.

Depending on how much resources are left and how many threads are active,
the core can run tasks in either high-performance 8-issue mode or high-throughput
multicore mode, unlike other analyzable processors such as [121] that is limited to
scalar execution. This is one of the key points of the 𝜌-VEX processor - it is able
to provide timing isolation, in addition to exploiting its dynamic properties to adapt
to the characteristics of the workload (Instruction-level or Thread-level parallelism
as discussed in [85]). When using a heterogeneous multicore system, a task can
be migrated from a little core to a big core when it becomes available to increase
resource utilization as well (depicted in Figure 8.5). However, when the critical task
is triggered that is normally assigned to that large core, the core must first save the
state of the non-critical task before the critical task can resume. This penalty must
therefore be added to the WCET. As long as there are enough hardware contexts
available, this is not required by the polymorphic core.

8.4. Scheduling approach
This section discusses how the scheduling methodology presented in Section 8.2.2
is used to create valid static schedules for the proposed platform. We then propose
two ways in which performance of one of the tasks can be improved beyond merely
meeting its deadline in the worst case.

8.4.1. Worst-case schedule creation
To create a valid schedule for a single round as per the methodology described in
Section 8.2.2, the scheduler needs to assign the required number of cycles and
amount of compute resources (datapaths) to each task, drawing from a pool of

8

126 8. A platform for mixed-criticality systems

Figure 8.5: A Hard Real-Time Task (red) giving its resources to a Soft Real-Time Task when it has
finished. When the original task is triggered again, it will take its resources back. Static multicore
systems are not able to utilize all resources. A heterogeneous multicore can achieve a higher utilization
by migrating a task to a larger core when it becomes available. However, this needs state saving and
restoring (not needed by the dynamic core).

available resources. To solve this, our scheduler uses a 2-dimensional binpacking
algorithm , where the number of cycles is one dimension (X) and the number of
datapaths the second (Y).

The figures and examples in this chapter use a round length of 200 cycles,
because a number of the benchmarks from benchmarks have runtimes starting
from 2000 cycles (see Table 8.2). In our experimental evaluation, we will use
longer round lengths to decrease reconfiguration and task save/restore overhead.

The amount of available datapaths depends on the processor. In case of the 𝜌-
VEX, it is a design-time parameter and can be 2, 4, or 8. The polymorphic core has 8
datapaths by default. For our evaluations, we will compare an 8-issue polymorphic
core to a number of static (fixed) core configurations, each having the same total
amount of datapaths. These fixed configurations are 4x 2-issue, 1x4 + 2x2-issue,
2x4-issue, and 1x8-issue.

8.4. Scheduling approach

8

127

The fixed configurations differ in terms of schedulability. For example, if a task
has a period between the 4 and 8-issue WCET, the 1x8-issue platform will be able
to schedule it, while the other platforms cannot provide sufficient single-thread
performance. Conversely, a task set with four tasks that each have a period that
is slightly longer than the respective 2-issue WCET is schedulable on the 4x2-issue
platform, but will most likely not be on the other platforms due to ILP limitations of
the tasks.

In theory, the polymorphic platform is capable of scheduling all task sets that
are schedulable on at least one of the static platforms. This is because the poly-
morphic core can ‘mimic’ them. Furthermore, there are also task sets that are only
schedulable on the polymorphic core; see Figure 8.6 for an example. Therefore, the
set of task sets that are schedulable on the dynamic core is a superset of the set of
task sets that are schedulable on any of the evaluated static platforms. However,
in practice, there is a small fraction of task sets where the current dynamic platform
scheduler fails, while one of the static platform schedulers succeeds. This is due to
the heuristic nature of the binpacking algorithm used in the evaluation process.

Our solution to the 2-D binpacking problem is implemented as follows. For
each task in the task set, a list of two-tuples is created. This list contains an entry
for issue widths of 2, 4, and 8; the two-tuples represent the issue width and the
corresponding WCET divided by the task period. Only issue widths for which the
WCET is smaller than or equal to the task period are included. The tasks are
now sorted by area, a common pre-heuristic for binpacking algorithms. The area
is defined as follows: min (⋅ 𝑤𝑖𝑑𝑡ℎ). Before running the binpacking

algorithm, a feasibility check is performed by simply testing whether the sum of all
the areas is less than or equal to the total computational resources. If a task set
is not feasible, it is ignored. The tasks are now packed one by one, by descending
area. Packing is first attempted using the narrowest core (in case of the 1x4, 2x2
heterogeneous platform) and using the narrowest issue width compatible with that
core. The packing algorithm utilized is bottom-left first (BLF) [124]. If packing fails,
wider compatible issue widths are attempted first. If all possible run configurations
on the narrowest core in a multi-core system fail, packing is attempted on the next
core. If packing fails on all cores in the platform, the task set is considered to not
be schedulable on that platform.

The output of the scheduler is a time-varying mapping from datapath to con-
text/static core and from context/static core to task. Such a schedule is illustrated
in Table 8.1.

Activation cycle Context to datapath Context to task0 0 → 4..71 → 2..32 → 0..1 0 → 𝐴1 → 𝐵2 → 𝐶60 0 → 4..73 → 0..3 0 → 𝐴3 → 𝐷
Table 8.1: Schedule table corresponding to the example in Figure 8.6.

8

128 8. A platform for mixed-criticality systems

Figure 8.6: Example of how to create a valid schedule for a dynamic processor.

8.4.2. Improving average-case performance
Typically, the worst-case schedule of a task set created using the methods described
above does not utilize all datapaths all the time. This would only happen if the
task set were perfectly matched to the processing system. More likely, there will
be unused resources, even in the worst-case. These resources can be used to
accelerate tasks that benefit from increased performance, beyond what they need
to meet their deadline. For instance, a compression algorithm may have a WCET
for giving its first output, but may be able to successively refine the quality of the
output when given more computational resources.

In this work, we select one task from the task-graph to give the unused resources
to. We refer to this task as the non-critical task, within the context of a mixed-
criticality system where a number of critical tasks have deadlines and the non-
critical task has a minimum performance requirement, but it could also be a critical
task that benefits from additional performance. We propose two methods for doing
this. The first method simply assigns the unused processor time in the worst-case
schedule to the non-critical task. The second method uses runtime information to
also use processor time from the critical tasks, in case the actual runtime of these
critical tasks is less than the worst case. We refer to the first method as the static
scheduler, as it does not use runtime information, and to the second method as the
dynamic scheduler.

8.5. Experimental setup

8

129

Furthermore, we propose that the processing system is automatically recon-
figured by a hardware circuit. This prevents a large amount of context save and
restore time needed for a software solution based on timer interrupts. The proposed
circuit for the static scheduling method consists of a timer that resets at the end of
each round, a local memory that contains the schedule in the form of timestamp
to configuration mappings, and a simple state machine. The state machine reads
the schedule entry from the local memory and waits until the round timer reaches
the schedule entry timestamp. When it does, it triggers a reconfiguration based on
the datapath to context mapping (only for the polymorphic core), and writes the
context to task mapping to the ‘requested soft context’ (RSC) control register of
each 𝜌-VEX context (for both the polymorphic and static processing systems). The
state machine then reads the next schedule entry, or resets itself if it reached the
end of the list.

A write to the RSC register of the 𝜌-VEX triggers an interrupt if the new value
does not match the value in the ‘current soft context’ (CSC) register. The handler for
this trap then saves the state of the current task to memory, sets CSC to RSC, and
then loads the requested task from memory. This prevents the need for DMA-like
hardware.

The dynamic scheduling method requires additional hardware. Specifically, we
propose to give each critical task a 1-bit ‘yield’ register. This register indicates
whether the critical task currently needs to execute or whether it has met its dead-
line already, ‘yielding’ to the non-critical task. This flag may be reset by a timer
interrupt at the start of the period of the respective task, and set when the task
completes.

When a reconfiguration and/or set of context switches is performed, the hard-
ware must read these yield registers to determine which of the tasks that are to be
mapped to the processor in the worst-case schedule have already met their dead-
lines. It can then assigns as many datapaths to the non-critical task as possible
without negatively affecting the execution of remaining critical tasks.

8.5. Experimental setup
For the measurements, we are using a cycle-level architectural simulator for flexi-
bility, and base our results on an FPGA prototype of the 𝜌-VEX processor clocked
at 80 MHz running on a Xilinx VC707 development board. We will use 23 programs
from the Mälardalen benchmark suite [125]. Execution times, listed in Table 8.2,
were measured on a single core for each of the 3 possible configurations, in a
platform without caches and using single-cycle memories (implemented by FPGA
RAM blocks). These execution times are assumed to be the worst-case execution
times, as they are always executed using the same input. However, standard WCET
analysis or measurement techniques can be applied [122].

The programs were compiled using our port of the Open64 compiler using op-
timization level 3. Programs were run bare-metal, with our port of the newlib
embedded standard C library. Our UART driver was modified so it did not wait
when the output buffer is full, in order to remove the influence of serial output.
Output is written into a reserved memory region so that it can still be examined

8

130 8. A platform for mixed-criticality systems

Worst-Case Execution Time (cycles)
Benchmark 2-issue 4-issue 8-issue
adpcm 350009 315107 309206
cnt 3626 2937 2664
compress 5236 4479 4241
cover 2210 2006 1815
crc 17879 14985 14667
edn 23184 18581 17505
expint 10800 9926 9512
fft1 50389 34061 26614
fir 183221 139559 129815
lms 4986376 3372138 2709911
ludcmp 55388 41112 34928
matmult 93211 85882 84649
minver 19289 13406 10844
ndes 31120 26502 24457
ns 5212 4253 4116
nsichneu 6357 6330 6316
prime 25788 23170 23158
qsort-exam 2995 2241 1922
qurt 21211 14494 11591
sqrt 19587 13877 11574
st 3631939 2313149 1731382
ud 11579 10720 10420
whet 29519872 18704428 13694591

Table 8.2: WCETs of the benchmarks for the possible processor configurations (2-issue, 4-issue, 8-issue).

8.6. Results

8

131

after execution.

In order to measure the ‘schedulability’ (how many task sets can be successfully
scheduled) of the processor and compare to [26], we have implemented a program
that mimics the task set generator according to their description. We will briefly
describe it here for clarity. We will generate task sets consisting of 4 tasks randomly
selected from the benchmark set. For each of the tasks, a period is randomly
chosen using the following constraints: 𝑊𝐶𝐸𝑇 ≤ 𝑝𝑒𝑟𝑖𝑜𝑑 < (1.5 × 𝑛) ×𝑊𝐶𝐸𝑇 . These boundaries guarantee any single task to be schedulable on a
single 8-issue core (highest performing processor in our design space), and that
a sufficient number of schedules are generated that are schedulable on a single
2-issue core (lowest performing processor in our design space).

The task set are divided into 4 bins of varying ‘difficulty’; every set is categorized
in terms of total 2-issue utilization (the sum of the 2-issue utilization of each task in
the set; ∑). Bin 0 contains the lightest task set with a total utilization
of 0 - 1, and bin 3 has the most difficult task sets with highest utilizations (between3 and 4). Each task set is randomly generated and assigned to its corresponding
bin until each bin has 2500 task sets. In [26], the bins consist of 25 task sets
each. However, using that size, we found the results to vary significantly between
runs. Therefore, we increased it to get more consistent outcomes. In addition to
comparing to [26], we also generate task sets consisting of 8, 12 and 16 tasks that
are randomly selected from the benchmark set.

Resource utilization was evaluated as follows. For each generated task set, one
task was selected to operate as a non-critical task. This task is repeated continu-
ously. During the execution of the task graph, the execution time of the instances
of all the other (critical) tasks in the graph are randomly varied between 0.5×WCET
and WCET, to mimic the behavior of tasks with different inputs that have influence
on the actual execution time. We have measured the resource assignment (num-
ber of cycles × datapaths) and throughput (committed number of operations) for
the non-critical task in a cycle-accurate simulation model of the processor execut-
ing the task graphs, using per-cycle execution traces of the benchmarks. We will
evaluate 2 algorithms; one static algorithm that only assigns as much resources to
the non-critical task as possible during the creation of the static real-time schedule,
and a dynamic algorithm that re-assigns resources using the runtime scheduler as
described in Section 8.4.2.

We will consider a number of platforms in our evaluation, all having equal ag-
gregate resources (i.e., 8 datapaths in total), to demonstrate the effectiveness of
the dynamic processor in utilizing these resources. The exception is the 1x2-issue
platform, to match the “scalar processor” in [26].

8.6. Results
This section presents the measurement results in three evaluation metrics: schedu-
lability, performance, and resource utilization.

8

132 8. A platform for mixed-criticality systems

Figure 8.7: Plot of the number of successful schedulings for each of the evaluated hardware platforms.
On the x-axis are the 4 bins with increasing total utilization. Results are relative to the number of feasible
task sets in the bins (infeasible task sets are ignored).

8.6.1. Schedulability
Figure 8.7 plots the number of task sets that can be successfully scheduled on
the different platforms. The four groups on the x-axis each list the results for a
certain schedule bin, from 0 (task sets with lowest total utilization) to 3 (task sets
with highest total utilization). Every result is relative to the number of feasible
schedules in the bin (which is plotted in Figure 8.8).

A single 2-issue core can, by definition, only schedule tasks from bin 0 (total
2-issue utilization must be < 1). This can be clearly seen in the graph, where all
other bins have 0 successful schedules for that platform. As the difficulty increases,
the advantage of using the dynamic processor becomes clear; in bin 2 it is able
to schedule 97% of the feasible schedules and in bin 3 50%. The homogeneous
multi-core platforms can schedule considerably smaller numbers of task sets, with
the 4x2-issue being able to accommodate only 10% of the task sets from bin 3.
These sets consist of tasks with periods that are close to, but not shorter than,
the 2-issue execution time. If there is a single task in the set that requires a
larger core to meet the deadline, this platform cannot schedule it. The 2x4-issue
platform showing 0 successful schedules in bin 3 is due to the often small difference
between 2-issue and 4-issue execution times (see Table 8.2). For this platform,
running the programs in 4-issue mode is the only choice, resulting in more total
‘area’ utilization for a task, even if it does not need the additional performance. The
same applies to the 1x8-issue platform, but the effect is even more pronounced.
The heterogeneous 1x4,2x2-issue platform provides a very adequate schedulability,
with the dynamic processor beating it by only 15%. This means that, if the higher
single-thread performance that the 8-issue dynamic core can deliver is not needed,
a heterogeneous platform is a good alternative for designers to consider.

The number of feasible task sets per bin is plotted in Figure 8.8. It drops as
the difficulty of the task set bin increases to 80% for bin 2 and 20% for bin 3. Of
these 500 feasible task sets in bin 3, the dynamic core is able to schedule around

8.6. Results

8

133

Figure 8.8: Plot of the number of feasible task sets for each of the task set bins.

50%, which could indicate that 1) there is room for improvement in the scheduling
framework and binpacking algorithm, or 2) the requirement that every individual
task must always run using a constant issue-width (see Section 8.2) could be a
limiting factor.

Comparing to the results from [26], plotted in Figure 8.9, we see a similar curve
over the task set bins, but our scheduler performs somewhat better for the dynamic
processor. In bin 3, it can schedule almost twice the number of task sets at 50%
vs. 28%. An equivalent of the heterogeneous 1x4, 2x2 platform has not been
evaluated so we cannot make a comparison.

Figure 8.10 shows a different representation of the schedulability results, plot-
ting the fraction of successful schedulings in relation to the total system utilization.
The lower graph counts 10 cycles penalty for a reconfiguration (latency pipeline
flush) and 150 cycles penalty for a migration. In both cases, the polymorphic
processor (DynCore) provides a clear advantage in schedulability over the other
platforms. At high utilization, the 4x2-issue platform is able to schedule a rela-
tively large portion of the task graphs and performs equally well as the dynamic
core. Here, the dynamic core will run in 4x2 configuration the majority of the time,
not benefiting from adaptations. At lower utilizations, the dynamic core is able to
schedule some tasks that require higher performance, thereby being able to sched-
ule more task graphs than the 4x2 platform. Similarly, the 1x4, 2x2 platform is able
to keep up with the dynamic core up to some point, where the dynamic core can
benefit from being able to run an additional task in parallel.

8.6.2. Performance & area utilization
To evaluate the performance of the 𝜌-VEX processor, a comparison was performed
with a 32-bit RISC-V processor on which the FlexPRET time-predictable processor
[121] is based. As we are only measuring performance, the timing extensions
are not needed. Measurements are based on cycle counts from the spike simulator
executing the RV32I instruction set. All benchmarks are compiled using optimization
level 3. The speedups are calculated assuming a target clock frequency of 80MHz

8

134 8. A platform for mixed-criticality systems

Figure 8.9: Schedulability results from [26], to be compared with Figure 8.7. RVMP (Real-time Virtual
MultiProcessor) should be compared to dyncore.

for both processors. It must be noted, though, that the RISC-V will likely be able
to achieve higher clock frequencies. Also note that there are 3 benchmarks that
have been removed from the results (fft1, ns and sqrt). This is because the RISC-V
compiler completely optimized them away, resulting in a program that only returns
the answer.

When weighted to execution time, the highest performing 8-issue 𝜌-VEX is 4.69×
faster than the RISC-V. As this benchmark suite is being dominated by the execution
time of whet, we also report the non-weighted average of 5.54× speedup. Table 8.4
lists the FPGA utilization for the two processors when prototyped on a FPGA. The
utilization of Block RAMs is relatively high in case of the 𝜌-VEX, because the multi-
ported register file implementation requires duplicated storage combined with a Live
Value Table [108]. Compared to the FlexPRET, the 𝜌-VEX utilizes approximately 5
times more resources. As can be seen in Table 8.3, this is similar to the increase in
performance. This compares quite favorably as single-thread performance normally
does not scale linearly with area utilization.

The size of the 𝜌-VEX, however, is a factor that designers will need to consider as
an 8-issue VLIW will be overkill for many application scenarios. However, for some
domains such as media or digital signal processing, VLIWs are known to provide
significant performance gains over scalar RISC processors, therefore, in these cases
the 𝜌-VEX is a suitable platform.

8.6.3. Resource utilization and throughput
In Figure 8.11, resource utilization and throughput for the non-critical task is de-
picted. The resource utilization (shown in the top graph) is calculated from the
maximum possible number of resources (8 datapaths) while executing 500 rounds
of 20.000 cycles. When total utilization of the task graph is low, more resources

8.6. Results

8

135

Speedup
Benchmark RISC-V 2-issue 4-issue 8-issue
adpcm 1732860 4.95 5.50 5.60
cnt 9554 2.63 3.25 3.59
compress 6917 1.32 1.54 1.63
cover 1808 0.82 0.90 1.00
crc 21633 1.21 1.44 1.47
edn 818203 35.29 44.03 46.74
expint 6726 0.62 0.68 0.71
fir 956526 5.22 6.85 7.37
lms 19926799 4.00 5.91 7.35
ludcmp 194575 3.51 4.73 5.57
matmult 682965 7.33 7.95 8.07
minver 43312 2.25 3.23 3.99
ndes 32785 1.05 1.24 1.34
nsichneu 4260 0.67 0.67 0.67
prime 74616 2.89 3.22 3.22
qsort-exam 10283 3.43 4.59 5.35
qurt 92343 4.35 6.37 7.97
st 15210054 4.19 6.58 8.78
ud 4120 0.36 0.38 0.40
whet 49287174 1.67 2.64 3.60
Weighted avg. speedup N.A. 2.27 3.52 4.69
Avg. speedup N.A. 3.95 4.99 5.54

Table 8.3: Performance - RISC-V (RV32I) vs -VEX.

8

136 8. A platform for mixed-criticality systems

can be assigned to a single thread, which is why the graph shows a decreasing
slope. The platforms that have a 4-issue as highest performing core cannot assign
more than 50% of its resources (4 datapaths) to a single thread, and for the 4x2
platform this is 25% (2 datapaths). The results from Figure 8.10 can be recognized
as some platforms are not able to schedule task graph above a certain utilization
(prematurely ending their graph here). On all platforms, the dynamic algorithm is
able to assign significantly larger fractions of the resources to the non-critical task,
which is to be expected as the difference between WCET and actual execution time

30 40 50 60 70 80 90 100

Total utilization (%)

0

20

40

60

80

100

S
u

c
c

e
s
s
fu

l
s
c

h
e

d
u

li
n

g
s
 (

%
)

4x2-issue

1x4, 2x2-issue

2x4-issue

1x8-issue

8-issue DynCore

Schedulability without overhead

30 40 50 60 70 80 90 100

Total utilization (%)

0

20

40

60

80

100

S
u

c
c

e
s
s
fu

l
s
c

h
e

d
u

li
n

g
s
 (

%
)

S chedulability with overhead

Figure 8.10: Schedulability plotted in relation to total system utilization.

8.6. Results

8

137

20 30 40 50 60 70 80 90 100
Total utilization (%)

0

10

20

30

40

50

60

70

80

90

R
e
so

u
rc

e
s

(%
)

Resources assigned to non-critical task

20 30 40 50 60 70 80 90 100
Total utilization (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
o
m

m
it

te
d

 o
p

e
ra

ti
o
n

s

1e7

4x2-issue, static schedule

1x4, 2x2-issue, static schedule

2x4-issue, static schedule

1x8-issue, static schedule

8-issue DynCore, static schedule

4x2-issue, dynamic schedule

1x4, 2x2-issue, dynamic schedule

2x4-issue, dynamic schedule

1x8-issue, dynamic schedule

8-issue DynCore, dynamic schedule

Throughput for non-critical task

Figure 8.11: Resource assignment (top) and resulting throughput (bottom) for the non-critical task
plotted in relation to total system utilization. Dynamically re-assigning resources leads to significantly
better results. The polymorphic core is able to assign up to 50% and on average 25% more resources
to the non-critical task compared to the second best performing platform.

8

138 8. A platform for mixed-criticality systems

𝜌-VEX
(4-threads)

FlexPRET
(4-threads)

Increase
(factor)

Slice Registers 8529 2687 4.72
Slice LUTs 31839 5661 5.6
BRAMs 128 Not reported N.A.

Table 8.4: Resource usage of -VEX vs. the FlexPRET timing-analyzable multi-threaded processor

for all the task instances cannot be exploited using the static algorithm.
Comparing the platforms, the dynamic core is at a clear advantage. It assigns

up to 50% and on average 25% more resources to the non-critical task compared
to the second best performing platform, the heterogeneous platform with one 4-
issue and two 2-issue cores. Interestingly, when looking at the results in the lower
graph, this increase in computational resources results in very modest throughput
increases. This is because 1) we are using a single task, thereby limiting the pro-
cessor to exploiting ILP (and preventing it from exploiting TLP) and 2) the tasks
from the benchmarks suite do not have significant ILP. Tasks that typically run in
the background on a VLIW will often be signal or media processing applications that
will offer more inherent parallelism. Concluding, the top graph in Figure 8.11 pro-
vides an upper bound and the lower graph provides a lower bound on the expected
increase in throughput by using the polymorphic processor. The seemingly anoma-
lous spikes at the end of the throughput graphs for some of the platforms can be
explained by the observations that, at these high utilization, only a small fraction
of the task graphs can actually be scheduled on that particular platform (decreas-
ing the dampening effect of averaging), and these graphs will likely contain one or
more tasks with relatively high ILP.

By averaging the resource utilization for the non-critical task over all the task
graph types (with all different numbers of tasks per graph and utilization levels),
we obtain the graph depicted in Figure 8.12. It shows how many datapaths (lanes)
each platform is able to assign by using either algorithm. Note that some platforms
do not have datapoints for all utilization levels. The 8-issue platform has a high
average in this graph because it can only schedule task graphs with a very low
utilization (see Figure 8.10 and 8.11). Still, it provides a clear overview of the
advantages of re-assigning unused cycles dynamically, and using the polymorphic
processor (DynCore).

8.7. Related work
This work discusses (static real-time) schedulability, multi-threaded architectures,
and time-predictable processors. In [126] and [112], predictability and schedula-
bility is discussed. Examples of processors with multiple contexts/threads for the
purpose of real-time systems are [106] [118]. In [114], performance comparisons
are made between increasing the number of cores and increasing the number of
register sets. A related VLIW architecture that has multiple hardware contexts is

8.7. Related work

8

139

4x2-is
sue

1x4, 2
x2-is

sue

2x4-is
sue

1x8-is
sue

8-is
sue DynCore

0

1

2

3

4

5

A
ve

ra
g

e
 n

u
m

b
e
r

o
f

a
ss

ig
n

e
d

 l
a
n

e
s

Static schedule
Dynamic schedule

Resources assigned to non-critical task

Figure 8.12: Average resource assignment for the non-critical task per evaluated setup.

the Itanium [117]. There, it is used to increase throughput, mostly by overlap-
ping long-latency events (such as L2 cache misses) with computations from other
threads. This is not directly comparable to the 𝜌-VEX used in this work as it targets
the high-performance instead of embedded domain, and furthermore their SMT ap-
proach does not provide performance isolation. An SMT architecture with bounded
performance interference is proposed in [120]. The multiple contexts of the 𝜌-VEX
are discussed in [41]. In [26], modifications to an Alpha 211164 are proposed that
makes use of multiple isolated multi-threaded contexts (virtual processors) to im-
prove static real-time schedulability. These modifications share some similarities
with the 𝜌-VEX, and their scheduling method is also used in this work (see [42]
for a more in-depth discussion on the relation with our work). Some of the contri-
butions we provide over this work is the use of a platform that is implemented in
VHDL and available for download for the academic community, and which targets
the embedded instead of high-performance domain.

Although it is not discussed by [26], the scheduling method is similar to period
transformation [127] and p-fair scheduling [128]. P-fair also relies on rounds to
assign resources to tasks. However, in p-fair scheduling, a round is atomic regarding
resource assignment (a resource can only be assigned to a task for a full round).
The scheduling method used in this work divides the resources within a round in
order to reduce the search space of a dynamic processor that can change at any
time during runtime.

In [129], a multi-processor static and dynamic scheduling method is approached
that aims to increase utilization for mixed-criticality systems. The effect of resource
sharing on application execution time is researched by [130].

In the realm of time-predictable processors, the most notable example is ar-
guably the recently introduced FlexPRET softcore [121] that is also available for

8

140 8. A platform for mixed-criticality systems

download and can be prototyped on an FPGA. Instead of assigning execution lanes
to threads, it can assign cycles to threads in a fine-grained multi-threaded fashion.
By assigning it a larger number of the cycles, it can also throttle the performance
of a single thread. The advantage of the 𝜌-VEX is that it is a VLIW architecture
that can provide a performance advantage over the scalar FlexPRET (see [42]),
particularly in certain embedded domains such as signal processing or media ap-
plications. Other time-predictable multi-threaded processors are PTARM [131] and
Merasa [132]. In [133], a time-predictable 2-issue VLIW processor is introduced
combined with caches that include hardware support for WCET analysis. See [122]
for a study about time-predictability of VLIWs and their compilers. In a related
effort, [134] aims to construct a timing-predictable platform using existing proces-
sors and using a number of design principles similar to our work (for example using
separate memories).

8.8. Conclusions
This chapter introduces the 𝜌-VEX polymorphic processor to the field of real-time
and mixed-criticality systems. We showed that it can exploit its dynamic properties
to 1) improve schedulability over fixed execution platforms, while still providing
execution time guarantees when using a round-based scheduling methodology, and
2) efficiently assign resources to lower-priority threads when high-priority threads
finish ahead of their WCET (up to 50% and on average 25% more). The resulting
increase in throughput depends on the tasks characteristics such as ILP. Due to
the 8-issue VLIW architecture, it can also provide significant performance gains
compared to scalar RISC architectures such as time-predictable RISC-V processors.

The nature of VLIW architectures provides a high degree of predictability as it
uses static branch prediction and an exposed pipeline. This makes it possible to
establish relatively tight WCET bounds, either using measurements (if it is possible
to fabricate an input that activates the longest execution path) or using static anal-
ysis techniques. The processor’s polymorphism creates the opportunity for systems
to quickly adapt to the environment, a property identified to be desirable for fu-
ture cyber-physical systems by [135], to be able to quickly react to an emergency
situation (for example, by assigning all computational resources to avoiding an im-
minent collision). These advantages make it a suitable platform for mixed-criticality
systems, especially when the workload contains media and/or signal processing
applications.

The cost of increased area utilization is a trade-off that designers must make
when choosing an execution platform. Keep in mind that, to achieve full predictabil-
ity in a complete system, a predictable interconnect (and main memory system, if
applicable) must be used such as [123]. when using caches instead of local memo-
ries, the system still provides performance isolation because the caches are split in
the same fashion as the datapaths, but the predictability is severely impacted (one
would need to assume that every cache access results in a miss). The 𝜌-VEX comes
with VHDL code, toolchain (consisting of multiple compilers, binutils, newlib, etc.),
a fast architectural simulator, extensive debug hardware and interface tools. It can
be downloaded for academic use at www.rvex.ewi.tudelft.nl.

9
Conclusion

This section summarizes the topics discussed in this thesis, provides some conclud-
ing remarks and tries to identify a number of research directions for the future.

9.1. Conclusions
In Chapter 1, we have proposed to use static (design-time) reconfigurability to
target static workloads and dynamic (run-time) parametrizability for dynamic work-
loads in the embedded domain. From the evaluations performed in this work, we
can conclude the following:

Part 1 - Static workloads, statically reconfigurable platform
In Part 1, we introduced a design-time customizable computation fabric based on
VLIW softcore processors and a streaming memory hierarchy:

• We found a VLIW processor to provide up to a factor of 3.2× better per-
formance with similar resource utilization compared to the industry-standard
MicroBlaze processor in Chapter 2.

• We showed that, for a static workload consisting of a chain of image pro-
cessing filters, streaming data directly between cores results in considerably
better performance compared to a bus-based topology in Chapter 3

• This stream-based platform can be programmed using OpenCL in a frame-
based fashion, abstracting away the hardware complexity from software pro-
grammers as discussed in Chapter 4. This platform can be used for rapid
prototyping, debugging and optimization to bridge the gap to High-Level Syn-
thesis (HLS). It features a wide number of configuration parameters that can
be explored by the designer without needing to program or modify HDL code.
Additionally, it has improved scalability compared to a similar platform target-
ing the biomedical imaging domain, allowing it to increase the core count and
operating frequency on an FPGA.

141

9

142 9. Conclusion

Part 2 - Dynamic workloads, dynamically reconfigurable platform
In Part 2, we introduced mechanisms that allow a polymorphic processor to au-
tomatically evaluate code characteristics of a highly dynamic workload and adapt
accordingly:

• First, we showed that fine-grained reconfigurable processors are able
to closely match dynamic program characteristics using high frequency
adaptations in Chapter 5. The 𝜌-VEX, with a configuration penalty of 5
clock cycles, achieves up to 20% better energy-delay-product when using
a reconfiguration window size of 75 cycles compared to using a window of
1000 cycles. The performance is, as is to be expected, highly dependent on
the amount of ILP variability present in the code.

• Automatic reconfigurations allow the dynamic processor to achieve up to 25%
and on average 10% better EDP for a single program compared to the best
performance static configuration with equal computational resources.

• Chapter 6 shows that automatic reconfigurations enable the reconfigurable
processor to achieve 20% better performance on dynamic workloads com-
pared to a static heterogeneous configuration with equal computational re-
sources.

• Using compiler annotations to steer reconfigurations can provide up to a factor
of 2× more throughput. However, the results are highly dependent on the
workload and the additional value over using performance monitoring is, on
average, limited.

Part 3 - Real-time and mixed-criticality systems
In Part 3, we added real-time requirements to the workload, and explore mixed
static and dynamic workloads and scheduling:

• In Chapter 7, we show that the additional hardware contexts allow the 𝜌-VEX
to achieve up to a factor 10 × lower context switch latencies. Advantages
are noticeable primarily in scenarios where large numbers of real-time events
must be handled or when the system tick frequency is very high.

• Chapter 8 discusses a method to increase static real-time schedulability by
leveraging the dynamic properties of the run-time parameterizable processor.
In addition, we discuss that the VLIW architecture can provide high perfor-
mance without sacrificing time-predictability.

• The proposed platform architecture targeting mixed-criticality systems
increases throughput for non-critical static tasks while still guaranteeing
time-safety for critical tasks.

9.2. Future research directions
The liquid architectures research direction is a large project within the Computer
Engineering Laboratory and consequently, there have been various collaborations

9.2. Future research directions

9

143

with numerous researchers regarding different topics. Many ideas have been con-
ceived during this time that we have not been able to pursue. We will list some of
them here. For the static 𝜌-VEX:

• SIMD or other instruction set extensions are a proven method to increase
individual core performance for image processing workloads. For example,
the Hexagon Vector Extensions (HVX) use 1024-bit wide datapaths, supported
by Halide. This could even lead to some form of automatic design-space
exploration regarding code generation for image processing filters.

• Explore options for a Network-on-Chip (NoC), or at least supporting 1:n
and n:1 connections between streaming cores. This allows filters that require
more input data, for example a global contrast enhancement algorithm.

• A high-level synthesis (HLS) flow for the code that is running on the cores.
These can be synthesized to specialized accelerators that require less area and
may achieve higher frequencies, but are no longer programmable.

For the dynamic 𝜌-VEX:

• Validating simulation results for performance and energy-efficiency of
high-frequency core adaptations on actual silicon.

• Switch-on-Event (coarse-grained) Multithreading, commonly utilized
method to hide memory latency. When a context must wait for a long latency
event such as a L2 cache miss, it is swapped out by another context (whose
cache miss may have been resolved while it was waiting). The 𝜌-VEX already
has multiple contexts in hardware, which is the most costly component in
terms of area utilization.

• Register file banking or clustering. A unified register file represents the
largest component of a large issue-width VLIW processor. This makes the 8-
issue 𝜌-VEX very expensive in terms of area utilization. A common technique
to mitigate this is to split the register file into banks or clusters [18].

• Explore different options for the cache organization. Currently, the caches
consist of blocks that split and merge together with the datapaths. When
splitting the core, live data may become unreachable at is resides in a dif-
ferent cache block [136]. Another possibility is to create a unified cache or-
ganization, where all datapaths access a single cache block. This has some
limitations (it will not be possible for all 4 sub-cores to perform a memory
access simultaneously), and it will require set-associative cache to prevent
different contexts to evict each other’s live data, but will allow high-frequency
adaptations without contexts losing access to their cached data.

• Auto-tuning OpenMP support. In a recent development, the 𝜌-VEX team
has implemented experimental support for OpenMP. This opens up the pos-
sibility to automatically tune the number of threads based on their character-
istics. A similar concept, auto-tuning SMT modes for a big data framework,
has been evaluated on the POWER8 architecture in [137].

9

144 9. Conclusion

• To exploit the dynamic nature of the 𝜌-VEX on a system-wide basis, SMP
support is required in the Linux kernel. Additionally, the kernel needs to
be able to handle core split and merge events. This functionality has been
implemented in Chameleon [100], whose creators share our vision for running
dynamic workloads on dynamic computing platforms. Their implementation
targets a theoretical dynamic architecture, a position that can be taken by the𝜌-VEX.

• Secure computing. A program could be made more resilient to side-channel
attacks by filling all parallel datapaths of the 𝜌-VEX with instructions, and se-
lecting the correct outcome at the end of the execution block using a predicate
instruction. Each possible flow requires the same amount of time and energy.
An advantageous property of the 𝜌-VEX is that it can still provide high perfor-
mance for code sections that do not require protection. A similar scheme is
possible for fault tolerance.

List of Publications

1. J.J. Hoozemans, J. Van Straten, S. Wong, Increasing resource utilization in Mixed-
Criticality Systems using a polymorphic VLIW processor, Journal of Systems Architec-
ture 84 (2018)

2. J.J. Hoozemans, J. Van Straten, Z. Al-Ars, S. Wong, Evaluating Auto-adapting Meth-
ods for Fine-grained Adaptable Processors, 31st International Conference on Architec-
ture of Computing Systems (ARCS 2018)

3. J.J. Hoozemans, A.A.C. Brandon, J. Van Straten, S. Wong, Compiler-driven versus
Monitoring-based Processor Polymorphism (in preparation)

4. J.J. Hoozemans, J. Van Straten, T. Viitanen, A. Tervo, J. Kadlec, ALMARVI video
processing SoC platform on Zynq (under review)

5. J.J. Hoozemans, R. De Jong, S. Van der Vlugt, J. Van Straten, U.K. Elango, Z. Al-Ars
Frame-based programming, stream-based processing (under review)

6. A. L. Sartor, P. H. E. Becker, J.J. Hoozemans, S. Wong, A.C.S. Beck, Dynamic Trade-
off among Fault Tolerance, Energy Consumption, and Performance on a Multiple-issue
VLIW Processor, IEEE Transactions on Multi-Scale Computing Systems 99 (2017)

7. J.J. Hoozemans, J. Van Straten, S. Wong, Using a Polymorphic VLIW Processor to
Improve Schedulability and Performance for Mixed-criticality Systems, 23rd IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2017)

8. J.J. Hoozemans, R.W. Heij, J. Van Straten, Z. Al-Ars, VLIW-based FPGA computa-
tional fabric with streaming memory hierarchy for medical imaging applications, 13th
International Symposium on Applied Reconfigurable Computing (ARC 2017)

9. A.A.C. Brandon, J.J. Hoozemans, J. Van Straten, S. Wong, Exploring ILP and TLP
on a Polymorphic VLIW Processor, 30th International Conference on Architecture of
Computing Systems (ARCS 2017)

10. J.J. Hoozemans, A. F Lorenzon, A.C.S. Beck, S. Wong, Improved dynamic cache
sharing for communicating threads on a runtime-adaptable processor, 11th HiPEAC
Workshop on Reconfigurable Computing (WRC 2017)

11. J.J. Hoozemans, J. Johansen, J. Van Straten, A.A.C. Brandon, S. Wong, Multiple Con-
texts in a Multi-ported VLIW Register File Implementation, 2015 International Confer-
ence on ReConFigurable Computing and FPGAs (ReConFig 2015)

12. A.A.C. Brandon, J.J. Hoozemans, J. Van Straten, A. F Lorenzon, A. L. Sartor, A.C.S.
Beck, S. Wong, A Sparse VLIW Instruction Encoding Scheme Compatible with Generic
Binaries, 2015 International Conference on ReConFigurable Computing and FPGAs (Re-
ConFig 2015)

145

9

146 List of Publications

13. J.J. Hoozemans, S. Wong, Z. Al-Ars, Using VLIW Softcore Processors for Image Pro-
cessing Applications, 15th International Conference On Embedded Computer Systems:
Architectures, Modeling, And Simulation (SAMOS 2015)

References

[1] S. Chakraborty and S. Ramesh, Guest Editorial Special Section on Automo-
tive Embedded Systems and Software, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 34, 1701 (2015), doi: 10.1109/T-
CAD.2015.2488378.

[2] G. Buttazzo, Research Trends in Real-time Computing for Embedded Systems,
SIGBED Rev. 3, 1 (2006), doi: 10.1145/1164050.1164052.

[3] P. Gai and M. Violante, Automotive embedded software architecture in the
multi-core age, in 21th IEEE European Test Symposium (ETS) (2016) pp.
1–8, doi: 10.1109/ETS.2016.7519309.

[4] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, Dis-
covering and Exploiting Program Phases, IEEE Micro 23, 84 (2003), doi:
10.1109/MM.2003.1261391.

[5] S. Baruah, H. Li, and L. Stougie, Towards the Design of Certifiable
Mixed-criticality Systems, in 16th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS) (2010) pp. 13–22, doi: 10.1109/R-
TAS.2010.10.

[6] Khubaib, M. A. Suleman, M. Hashemi, C. Wilkerson, and Y. N. Patt, Mor-
phCore: An Energy-Efficient Microarchitecture for High Performance ILP
and High Throughput TLP, in 45th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO) (2012) pp. 305–316, doi: 10.1109/MI-
CRO.2012.36.

[7] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W.
Keckler, and C. R. Moore, Exploiting ILP, TLP, and DLP with the polymorphous
TRIPS architecture, in 30th Annual International Symposium on Computer
Architecture (ISCA) (2003) pp. 422–433, doi: 10.1109/ISCA.2003.1207019.

[8] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, Core Fusion: Accommo-
dating Software Diversity in Chip Multiprocessors, in 34th Annual Interna-
tional Symposium on Computer Architecture (ISCA) (ACM, 2007) pp. 186–
197, doi: 10.1145/1250662.1250686.

[9] M. D. Hill and M. R. Marty, Amdahl’s Law in the Multicore Era, Computer 41,
33 (2008), doi: 10.1109/MC.2008.209.

[10] D. Liu, Baseband ASIP design for SDR, China Communications 12, 60 (2015),
doi: 10.1109/CC.2015.7188525.

147

http://dx.doi.org/10.1109/TCAD.2015.2488378
http://dx.doi.org/10.1109/TCAD.2015.2488378
http://dx.doi.org/ 10.1145/1164050.1164052
http://dx.doi.org/ 10.1109/ETS.2016.7519309
http://dx.doi.org/10.1109/MM.2003.1261391
http://dx.doi.org/10.1109/RTAS.2010.10
http://dx.doi.org/10.1109/RTAS.2010.10
http://dx.doi.org/ 10.1109/MICRO.2012.36
http://dx.doi.org/ 10.1109/MICRO.2012.36
http://dx.doi.org/10.1109/ISCA.2003.1207019
http://dx.doi.org/10.1109/ISCA.2003.1207019
http://dx.doi.org/ 10.1145/1250662.1250686
http://dx.doi.org/ 10.1145/1250662.1250686
http://dx.doi.org/10.1109/MC.2008.209
http://dx.doi.org/10.1109/MC.2008.209
http://dx.doi.org/10.1109/CC.2015.7188525

9

148 References

[11] M. Wijtvliet, L. Waeijen, and H. Corporaal, Coarse grained reconfig-
urable architectures in the past 25 years: Overview and classification,
in International Conference on Embedded Computer Systems: Archi-
tectures, Modeling and Simulation (SAMOS) (2016) pp. 235–244, doi:
10.1109/SAMOS.2016.7818353.

[12] X. Fan, W.-D. Weber, and L. A. Barroso, Power Provisioning for a Warehouse-
sized Computer, in 34th Annual International Symposium on Computer Ar-
chitecture (ISCA) (ACM, 2007) pp. 13–23, doi: 10.1145/1250662.1250665.

[13] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
Single-ISA heterogeneous multi-core architectures: the potential for pro-
cessor power reduction, in 36th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO) (2003) pp. 81–92, doi: 10.1109/MI-
CRO.2003.1253185.

[14] P. Greenhalgh, big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7, ARM
White paper (2011).

[15] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth Edition:
A Quantitative Approach (Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2007).

[16] J. A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A VLIW Ap-
proach to Architecture, Compilers, and Tools (Morgan Kaufmann Publishers,
500 Sansome Street, Suite 400, San Francisco, CA 94111, 2005).

[17] L. Codrescu, Architecture of the Hexagon 680 DSP for mobile imaging and
computer vision, in 2015 IEEE Hot Chips 27 Symposium (HCS) (2015) pp.
1–26, doi: 10.1109/HOTCHIPS.2015.7477329.

[18] A. S. Terechko, Clustered VLIW architectures: a quantitative ap-
proach, Ph.D. thesis, Eindhoven University of Technology (2007), url:
http://repository.tue.nl/59f95276-a38c-4d4b-b48b-4a0f6c2f733d.

[19] O. Esko, P. Jaaskelainen, P. Huerta, C. S. de La Lama, J. Takala, and J. I.
Martinez, Customized Exposed Datapath Soft-Core Design Flow with Com-
piler Support, in International Conference on Field Programmable Logic and
Applications (FPL) (2010) pp. 217–222, doi: 10.1109/FPL.2010.51.

[20] H. Corporaal, Transport Triggered Architectures: Design and Eval-
uation, Ph.D. thesis, Delft University of Technology (1995), url:
http://resolver.tudelft.nl/uuid:9ec25f3e-7879-4c1e-a7c7-9452a75032a2.

[21] S. Wong and F. Anjam, The Delft Reconfigurable VLIW Processor, in 17th
International Conference on Advanced Computing and Communications
(ICACC) (2009) pp. 244–251.

http://dx.doi.org/10.1109/SAMOS.2016.7818353
http://dx.doi.org/10.1109/SAMOS.2016.7818353
http://dx.doi.org/10.1145/1250662.1250665
http://dx.doi.org/10.1145/1250662.1250665
http://dx.doi.org/10.1109/MICRO.2003.1253185
http://dx.doi.org/10.1109/MICRO.2003.1253185
http://dx.doi.org/10.1109/HOTCHIPS.2015.7477329
http://repository.tue.nl/59f95276-a38c-4d4b-b48b-4a0f6c2f733d
http://dx.doi.org/10.1109/FPL.2010.51
http://dx.doi.org/10.1109/FPL.2010.51
http://resolver.tudelft.nl/uuid:9ec25f3e-7879-4c1e-a7c7-9452a75032a2

References

9

149

[22] F. Anjam, M. Nadeem, and S. Wong, Targeting code diversity with run-
time adjustable issue-slots in a chip multiprocessor, in Design, Automa-
tion Test in Europe Conference Exhibition (DATE) (2011) pp. 1–6, doi:
10.1109/DATE.2011.5763219.

[23] A. Brandon, J. Hoozemans, J. V. Straten, A. Lorenzon, A. Sartor, A. C. S.
Beck, and S. Wong, A sparse VLIW instruction encoding scheme compat-
ible with generic binaries, in International Conference on ReConFigurable
Computing and FPGAs (ReConFig) (2015) pp. 1–7, doi: 10.1109/ReCon-
Fig.2015.7393361.

[24] J. van Straten, A Dynamically Reconfigurable VLIW Processor and Cache De-
sign with Precise Trap and Debug Support, Master’s thesis, Delft University
of Technology (2016).

[25] H. Amano, A survey on dynamically reconfigurable processors, IEICE Trans-
actions on Communications E89-B, 3179 (2006), doi: 10.1093/ietcom/e89-
b.12.3179.

[26] A. El-Haj-Mahmoud, A. S. AL-Zawawi, A. Anantaraman, and E. Rotenberg,
Virtual multiprocessor: An analyzable, high-performance architecture for
real-time computing, in International Conference on Compilers, Architectures
and Synthesis for Embedded Systems (CASES) (ACM, 2005) pp. 213–224,
doi: 10.1145/1086297.1086326.

[27] D. M. Tullsen, S. J. Eggers, and H. M. Levy, Simultaneous multithreading:
Maximizing on-chip parallelism, in 22nd Annual International Symposium on
Computer Architecture (ISCA) (1995) pp. 392–403.

[28] B. Sinharoy, J. A. V. Norstrand, R. J. Eickemeyer, H. Q. Le, J. Leenstra, D. Q.
Nguyen, B. Konigsburg, K. Ward, M. D. Brown, J. E. Moreira, D. Levitan,
S. Tung, D. Hrusecky, J. W. Bishop, M. Gschwind, M. Boersma, M. Kroener,
M. Kaltenbach, T. Karkhanis, and K. M. Fernsler, IBM POWER8 processor
core microarchitecture, IBM Journal of Research and Development 59, 2:1
(2015), doi: 10.1147/JRD.2014.2376112.

[29] A. Brandon and S. Wong, Support for dynamic issue width in VLIW proces-
sors using generic binaries, in Design, Automation Test in Europe Conference
Exhibition (DATE) (2013) pp. 827–832, doi: 10.7873/DATE.2013.175.

[30] F. Anjam, Run-time Adaptable VLIW Processors – Resources, Performance,
Power Consumption, and Reliability Trade-offs, Ph.D. thesis, Delft Univer-
sity of Technology (2013), doi: 10.4233/uuid:850eb79f-b8de-47b5-832f-
7c2c138787be.

[31] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoll, and F. M. O. Homewood,
Lx: a technology platform for customizable vliw embedded processing, in
27th International Symposium on Computer Architecture (ISCA) (2000) pp.
203–213, doi: 10.1109/ISCA.2000.854391.

http://dx.doi.org/ 10.1109/DATE.2011.5763219
http://dx.doi.org/ 10.1109/DATE.2011.5763219
http://dx.doi.org/10.1109/ReConFig.2015.7393361
http://dx.doi.org/10.1109/ReConFig.2015.7393361
http://resolver.tudelft.nl/uuid:115c94f1-a572-4c9d-b400-2eaf09102a2e
http://dx.doi.org/ 10.1093/ietcom/e89-b.12.3179
http://dx.doi.org/ 10.1093/ietcom/e89-b.12.3179
http://dx.doi.org/10.1145/1086297.1086326
http://dx.doi.org/10.1145/1086297.1086326
http://dx.doi.org/ 10.1147/JRD.2014.2376112
http://dx.doi.org/ 10.1147/JRD.2014.2376112
http://dx.doi.org/ 10.7873/DATE.2013.175
http://dx.doi.org/ 10.7873/DATE.2013.175
http://dx.doi.org/10.4233/uuid:850eb79f-b8de-47b5-832f-7c2c138787be
http://dx.doi.org/10.1109/ISCA.2000.854391

9

150 References

[32] J. Hoozemans, Porting Linux to the rVEX reconfigurable VLIW softcore, Mas-
ter’s thesis, Delft University of Technology, Delft, Netherlands (2014), url:
http://resolver.tudelft.nl/uuid:329eba52-453e-4339-9bd4-8230952446fc.

[33] J. Ray and J. C. Hoe, High-level Modeling and FPGA Prototyping of Micropro-
cessors, in Eleventh International Symposium on Field Programmable Gate
Arrays (FPGA) (ACM, 2003) pp. 100–107, doi: 10.1145/611817.611833.

[34] S. Asaad, R. Bellofatto, B. Brezzo, C. Haymes, M. Kapur, B. Parker, T. Roewer,
P. Saha, T. Takken, and J. Tierno, A cycle-accurate, cycle-reproducible multi-
fpga system for accelerating multi-core processor simulation, in International
Symposium on Field Programmable Gate Arrays (FPGA) (ACM, 2012) pp.
153–162.

[35] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown, MiBench: A free, commercially representative embedded benchmark
suite, in Fourth Annual IEEE International Workshop on Workload Character-
ization. (WWC) (2001) pp. 3–14, doi: 10.1109/WWC.2001.990739.

[36] J. Hoozemans, S. Wong, and Z. Al-Ars, Using VLIW softcore processors
for image processing applications, in International Conference on Embed-
ded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)
(2015) pp. 315–318, doi: 10.1109/SAMOS.2015.7363691.

[37] J. Hoozemans, R. Heij, J. Van Straten, and Z. Al-Ars, VLIW-Based FPGA Com-
putation Fabric with Streaming Memory Hierarchy for Medical Imaging Appli-
cations, in 13th International Symposium on Applied Reconfigurable Comput-
ing (ARC) (Springer, 2017) pp. 36–43, doi: 10.1007/978-3-319-56258-2_4.

[38] J. Hoozemans, R. De Jong, S. Van der Vlugt, J. Van Straten, U. K. Elango,
and Z. Al-Ars, Frame-based programming, Stream-based processing (under
review), (2018).

[39] J. Hoozemans, J. Van Straten, Z. Al-Ars, and S. Wong, Evaluating Auto-
adaptation Methods for Fine-Grained Adaptable Processors, in Architecture
of Computing Systems (ARCS) (Springer International Publishing, 2018) pp.
255–268, doi: 10.1007/978-3-319-77610-1_19.

[40] J. Hoozemans, A. Brandon, J. V. Straten, and S. Wong, Compiler-driven
versus Monitoring-based Processor Polymorphism (in preparation), .

[41] J. Hoozemans, J. Johansen, J. V. Straten, A. Brandon, and S. Wong, Multi-
ple Contexts in a Multi-ported VLIW Register File Implementation, in Inter-
national Conference on ReConFigurable Computing and FPGAs (ReConFig)
(2015) pp. 1–6, doi: 10.1109/ReConFig.2015.7393329.

[42] J. Hoozemans, J. V. Straten, and S. Wong, Using a polymorphic
VLIW processor to improve schedulability and performance for mixed-
criticality systems, in 23rd International Conference on Embedded and Real-

http://resolver.tudelft.nl/uuid:329eba52-453e-4339-9bd4-8230952446fc
http://resolver.tudelft.nl/uuid:329eba52-453e-4339-9bd4-8230952446fc
http://dx.doi.org/ 10.1145/611817.611833
http://dx.doi.org/ 10.1145/611817.611833
http://dx.doi.org/10.1145/2145694.2145720
http://dx.doi.org/10.1145/2145694.2145720
http://dx.doi.org/10.1109/WWC.2001.990739
http://dx.doi.org/10.1109/WWC.2001.990739
http://dx.doi.org/ 10.1109/SAMOS.2015.7363691
http://dx.doi.org/ 10.1109/SAMOS.2015.7363691
http://dx.doi.org/ 10.1007/978-3-319-56258-2_4
http://dx.doi.org/ 10.1007/978-3-319-56258-2_4
http://dx.doi.org/ 10.1007/978-3-319-77610-1_19
http://dx.doi.org/ 10.1007/978-3-319-77610-1_19
http://dx.doi.org/ 10.1109/ReConFig.2015.7393329
http://dx.doi.org/ 10.1109/ReConFig.2015.7393329
http://dx.doi.org/ 10.1109/RTCSA.2017.8046315

References

9

151

Time Computing Systems and Applications (RTCSA) (2017) pp. 1–9, doi:
10.1109/RTCSA.2017.8046315.

[43] J. Hoozemans, J. V. Straten, and S. Wong, Increasing resource utilization
in mixed-criticality systems using a polymorphic VLIW processor, Journal of
Systems Architecture 84, 2 (2018), doi: 10.1016/j.sysarc.2018.01.003.

[44] L. Russo, E. Pedrino, E. Kato, and V. Roda, Image convolution processing: A
GPU versus FPGA comparison, in VIII Southern Conference on Programmable
Logic (SPL) (2012) pp. 1–6, doi: 10.1109/SPL.2012.6211783.

[45] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. Gopal, J. Gray, M. Haselman, S. Hauck,
S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope,
A. Smith, J. Thong, P. Xiao, and D. Burger, A reconfigurable fab-
ric for accelerating large-scale datacenter services, in 41st International
Symposium on Computer Architecture (ISCA) (2014) pp. 13–24, doi:
10.1109/ISCA.2014.6853195.

[46] P. Wang, J. McAllister, and Y. Wu, Soft-core Stream Processing on FPGA:
An FFT Case Study, in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (2013) pp. 2756–2760, doi: 10.1109/I-
CASSP.2013.6638158.

[47] S. Williams, A. Waterman, and D. Patterson, Roofline: An insightful visual
performance model for multicore architectures, Communication of the ACM
52, 65 (2009), doi: 10.1145/1498765.1498785.

[48] C. Iseli and E. Sanchez, Spyder: a reconfigurable vliw processor using fp-
gas, in IEEE Workshop on Field-Programmable Custom Computing Machines
(FCCM) (1993) pp. 17–24, doi: 10.1109/FPGA.1993.279483.

[49] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster, An FPGA-based
VLIW Processor with Custom Hardware Execution, in 13th International Sym-
posium on Field-Programmable Gate Arrays (FPGA) (ACM, 2005) pp. 107–
117, doi: 10.1145/1046192.1046207.

[50] http://www.trimaran.org.

[51] V. Brost, F. Yang, and M. Paindavoine, A modular VLIW Processor, in IEEE
International Symposium on Circuits and Systems (ISCAS) (2007) pp. 3968–
3971, doi: 10.1109/ISCAS.2007.378669.

[52] M. A. R. Saghir, M. El-Majzoub, and P. Akl, Customizing the Datapath and
ISA of Soft VLIW Processors, in Second International Conference on High Per-
formance Embedded Architectures and Compilers (HiPEAC) (Springer, 2007)
pp. 276–290, doi: 10.1007/978-3-540-69338-3_19.

http://dx.doi.org/ 10.1109/RTCSA.2017.8046315
http://dx.doi.org/ 10.1109/RTCSA.2017.8046315
http://dx.doi.org/10.1016/j.sysarc.2018.01.003
http://dx.doi.org/10.1016/j.sysarc.2018.01.003
http://dx.doi.org/10.1109/SPL.2012.6211783
http://dx.doi.org/10.1109/SPL.2012.6211783
http://dx.doi.org/ 10.1109/ISCA.2014.6853195
http://dx.doi.org/ 10.1109/ISCA.2014.6853195
http://dx.doi.org/10.1109/ICASSP.2013.6638158
http://dx.doi.org/10.1109/ICASSP.2013.6638158
http://dx.doi.org/ 10.1145/1498765.1498785
http://dx.doi.org/ 10.1145/1498765.1498785
http://dx.doi.org/ 10.1109/FPGA.1993.279483
http://dx.doi.org/ 10.1109/FPGA.1993.279483
http://dx.doi.org/10.1145/1046192.1046207
http://dx.doi.org/10.1145/1046192.1046207
http://www.trimaran.org
http://dx.doi.org/10.1109/ISCAS.2007.378669
http://dx.doi.org/10.1109/ISCAS.2007.378669
http://dx.doi.org/10.1007/978-3-540-69338-3_19
http://dx.doi.org/10.1007/978-3-540-69338-3_19

9

152 References

[53] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, and R. Guerri-
eri, A VLIW processor with reconfigurable instruction set for embedded
applications, IEEE Journal of Solid-State Circuits 38, 1876 (2003), doi:
10.1109/JSSC.2003.818292.

[54] S. Wong, T. van As, and G. Brown, 𝜌-VEX: A Reconfigurable and Extensible
Softcore VLIW Processor, in International Conference on Field-Programmable
Technology (FPT) (2008) pp. 369–372, doi: 10.1109/FPT.2008.4762420.

[55] F. Anjam, M. Nadeem, and S. Wong, A VLIW softcore proces-
sor with dynamically adjustable issue-slots, in International Confer-
ence on Field-Programmable Technology (FPT) (2010) pp. 393–398, doi:
10.1109/FPT.2010.5681444.

[56] The HP VEX toolchain, http://www.hpl.hp.com/downloads/vex/.

[57] LEON/GRLIB, http://www.gaisler.com/index.php/downloads/
leongrlib, [Online; accessed 7-Sept-2016].

[58] Images created by Michael Plotke, licensed CC BY-SA 3.0.

[59] D. Stevens, V. Chouliaras, V. Azorin-Peris, J. Zheng, A. Echiadis, and
S. Hu, BioThreads: A Novel VLIW-Based Chip Multiprocessor for Accelerating
Biomedical Image Processing Applications, IEEE Transactions on Biomedical
Circuits and Systems 6, 257 (2012), doi: 10.1109/TBCAS.2011.2166962.

[60] T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright, Pushing the
limits of accelerator efficiency while retaining programmability, in IEEE In-
ternational Symposium on High Performance Computer Architecture (HPCA)
(2016) pp. 27–39, doi: 10.1109/HPCA.2016.7446051.

[61] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. Chung, Ac-
celerating Deep Convolutional Neural Networks Using Specialized Hardware,
(2015).

[62] L. M. Russo, E. C. Pedrino, E. Kato, and V. O. Roda, Image Convolution Pro-
cessing: A GPU versus FPGA Comparison, in 2012 VIII Southern Conference
on Programmable Logic (2012) pp. 1–6, doi: 10.1109/SPL.2012.6211783.

[63] P. Wang and J. McAllister, Streaming Elements for FPGA Signal and Image
Processing Accelerators, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 24, 2262 (2016), doi: 10.1109/TVLSI.2015.2504871.

[64] B. Bardak, F. M. Siddiqui, C. Kelly, and R. Woods, Dataflow toolset for Soft-
core Processors on FPGA for Image Processing Applications, in 2014 48th
Asilomar Conference on Signals, Systems and Computers (2014) pp. 1445–
1449, doi: 10.1109/ACSSC.2014.7094701.

http://dx.doi.org/10.1109/JSSC.2003.818292
http://dx.doi.org/ 10.1109/FPT.2008.4762420
http://dx.doi.org/ 10.1109/FPT.2008.4762420
http://dx.doi.org/ 10.1109/FPT.2010.5681444
http://dx.doi.org/ 10.1109/FPT.2010.5681444
http://www.hpl.hp.com/downloads/vex/
http://www.gaisler.com/index.php/downloads/leongrlib
http://www.gaisler.com/index.php/downloads/leongrlib
http://dx.doi.org/ 10.1109/TBCAS.2011.2166962
http://dx.doi.org/ 10.1109/TBCAS.2011.2166962
http://dx.doi.org/ 10.1109/HPCA.2016.7446051
http://dx.doi.org/ 10.1109/HPCA.2016.7446051
https://www.microsoft.com/en-us/research/publication/accelerating-deep-convolutional-neural-networks-using-specialized-hardware/
https://www.microsoft.com/en-us/research/publication/accelerating-deep-convolutional-neural-networks-using-specialized-hardware/
http://dx.doi.org/10.1109/SPL.2012.6211783
http://dx.doi.org/10.1109/SPL.2012.6211783
http://dx.doi.org/10.1109/TVLSI.2015.2504871
http://dx.doi.org/10.1109/TVLSI.2015.2504871
http://dx.doi.org/10.1109/ACSSC.2014.7094701
http://dx.doi.org/10.1109/ACSSC.2014.7094701

References

9

153

[65] P. Kristof, H. Yu, Z. Li, and X. Tian, Performance Study of SIMD Program-
ming Models on Intel Multicore Processors, in IEEE 26th International Parallel
and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW)
(2012) pp. 2423–2432, doi: 10.1109/IPDPSW.2012.299.

[66] C. C. Chi, M. Alvarez-Mesa, B. Bross, B. Juurlink, and T. Schierl, SIMD Ac-
celeration for HEVC Decoding, IEEE Transactions on Circuits and Systems for
Video Technology 25, 841 (2015), doi: 10.1109/TCSVT.2014.2364413.

[67] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Don-
garra, From CUDA to OpenCL: Towards a Performance-portable Solution
for Multi-platform GPU Programming, Parallel Comput. 38, 391 (2012), doi:
10.1016/j.parco.2011.10.002.

[68] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amaras-
inghe, Halide: A Language and Compiler for Optimizing Parallelism, Locality,
and Recomputation in Image Processing Pipelines, in 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI)
(ACM, 2013) pp. 519–530, doi: 10.1145/2491956.2462176.

[69] J. E. Stone, D. Gohara, and G. Shi, OpenCL: A Parallel Programming Standard
for Heterogeneous Computing Systems, Computing in Science Engineering
12, 66 (2010), doi: 10.1109/MCSE.2010.69.

[70] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang, High-
Level Synthesis for FPGAs: From Prototyping to Deployment, IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 30, 473
(2011), doi: 10.1109/TCAD.2011.2110592.

[71] G. Guidi, E. Reggiani, L. D. Tucci, G. Durelli, M. Blott, and M. D. Santambro-
gio, On How to Improve FPGA-Based Systems Design Productivity via SDAc-
cel, in 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW) (2016) pp. 247–252, doi: 10.1109/IPDPSW.2016.171.

[72] Z. Guo, B. Buyukkurt, and W. Najjar, Input Data Reuse in Compiling Window
Operations Onto Reconfigurable Hardware, in Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES) (ACM, 2004) pp. 249–
256, doi: 10.1145/997163.997199.

[73] Y. Dong, Y. Dou, and J. Zhou, Optimized Generation of Memory Structure
in Compiling Window Operations onto Reconfigurable Hardware, in Third In-
ternational Workshop Reconfigurable Computing: Architectures, Tools and
Applications (ARC) (Springer, 2007) pp. 110–121, doi: 10.1007/978-3-540-
71431-6_11.

[74] F. Plavec, Z. Vranesic, and S. Brown, Towards compilation of streaming pro-
grams into FPGA hardware, in Forum on Specification, Verification and Design
Languages (FDL) (2008) pp. 67–72, doi: 10.1109/FDL.2008.4641423.

http://dx.doi.org/10.1109/IPDPSW.2012.299
http://dx.doi.org/10.1109/IPDPSW.2012.299
http://dx.doi.org/10.1109/TCSVT.2014.2364413
http://dx.doi.org/10.1109/TCSVT.2014.2364413
http://dx.doi.org/ 10.1016/j.parco.2011.10.002
http://dx.doi.org/10.1145/2491956.2462176
http://dx.doi.org/10.1145/2491956.2462176
http://dx.doi.org/ 10.1109/MCSE.2010.69
http://dx.doi.org/ 10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/TCAD.2011.2110592
http://dx.doi.org/10.1109/TCAD.2011.2110592
http://dx.doi.org/10.1109/TCAD.2011.2110592
http://dx.doi.org/10.1109/IPDPSW.2016.171
http://dx.doi.org/10.1109/IPDPSW.2016.171
http://dx.doi.org/10.1145/997163.997199
http://dx.doi.org/10.1145/997163.997199
http://dx.doi.org/10.1007/978-3-540-71431-6_11
http://dx.doi.org/10.1007/978-3-540-71431-6_11
http://dx.doi.org/10.1007/978-3-540-71431-6_11
http://dx.doi.org/ 10.1109/FDL.2008.4641423
http://dx.doi.org/ 10.1109/FDL.2008.4641423

9

154 References

[75] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell,
A. Vasilyev, M. Horowitz, and P. Hanrahan, Darkroom: Compiling High-
level Image Processing Code into Hardware Pipelines, ACM Trans. Graph. 33
(2014), 10.1145/2601097.2601174, doi: 10.1145/2601097.2601174.

[76] I. Lebedev, S. Cheng, A. Doupnik, J. Martin, C. Fletcher, D. Burke, M. Lin,
and J. Wawrzynek, MARC: A Many-Core Approach to Reconfigurable Com-
puting, in International Conference on Reconfigurable Computing and FPGAs
(ReConFig) (2010) pp. 7–12, doi: 10.1109/ReConFig.2010.49.

[77] M. Lin, I. Lebedev, and J. Wawrzynek, OpenRCL: Low-Power High-
Performance Computing with Reconfigurable Devices, in International Con-
ference on Field Programmable Logic and Applications (FPL) (2010) pp. 458–
463, doi: 10.1109/FPL.2010.93.

[78] M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, RIFFA 2.1: A
Reusable Integration Framework for FPGA Accelerators, ACM Trans. Recon-
figurable Technol. Syst. 8, 22:1 (2015), doi: 10.1145/2815631.

[79] Topic Embedded Products, DYnamic Process LOader (DYPLO), Online (2017).

[80] Xilinx, Xilinx Partial Reconfiguration design tool, Online (2017).

[81] P. Jääskeläinen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala, and
H. Berg, pocl: A Performance-Portable OpenCL Implementation, Interna-
tional Journal of Parallel Programming 43, 752 (2015), doi: 10.1007/s10766-
014-0320-y.

[82] J. A. Brown, L. Porter, and D. M. Tullsen, Fast thread migration via cache
working set prediction, in IEEE 17th International Symposium on High Perfor-
mance Computer Architecture (HPCA) (2011) pp. 193–204, doi: 10.1109/H-
PCA.2011.5749728.

[83] K. K. Rangan, G.-Y. Wei, and D. Brooks, Thread Motion: Fine-grained
Power Management for Multi-core Systems, in 36th Annual International
Symposium on Computer Architecture (ISCA) (ACM, 2009) pp. 302–313, doi:
10.1145/1555754.1555793.

[84] M. Rodrigues, N. Roma, and P. Tomás, Fast and Scalable Thread Mi-
gration for Multi-core Architectures, in IEEE 13th International Conference
on Embedded and Ubiquitous Computing (EUC) (2015) pp. 9–16, doi:
10.1109/EUC.2015.36.

[85] A. Brandon, J. Hoozemans, J. V. Straten, and S. Wong, Exploring ILP and
TLP on a Polymorphic VLIW Processor, in 30th International Conference
on Architecture of Computing Systems (ARCS) (2017) pp. 177–189, doi:
10.1007/978-3-319-54999-6_14.

http://dx.doi.org/10.1145/2601097.2601174
http://dx.doi.org/10.1145/2601097.2601174
http://dx.doi.org/10.1109/ReConFig.2010.49
http://dx.doi.org/10.1109/ReConFig.2010.49
http://dx.doi.org/ 10.1109/FPL.2010.93
http://dx.doi.org/ 10.1109/FPL.2010.93
http://dx.doi.org/10.1145/2815631
http://dx.doi.org/10.1145/2815631
https://topicembeddedproducts.com/products/dyplo/
https://www.xilinx.com/products/design-tools/vivado/implementation/partial-reconfiguration.html
http://dx.doi.org/ 10.1007/s10766-014-0320-y
http://dx.doi.org/ 10.1007/s10766-014-0320-y
http://dx.doi.org/ 10.1109/HPCA.2011.5749728
http://dx.doi.org/ 10.1109/HPCA.2011.5749728
http://dx.doi.org/ 10.1145/1555754.1555793
http://dx.doi.org/ 10.1145/1555754.1555793
http://dx.doi.org/ 10.1109/EUC.2015.36
http://dx.doi.org/ 10.1109/EUC.2015.36
http://dx.doi.org/10.1007/978-3-319-54999-6_14
http://dx.doi.org/10.1007/978-3-319-54999-6_14

References

9

155

[86] L. Codrescu, W. Anderson, S. Venkumanhanti, M. Zeng, E. Plondke, C. Koob,
A. Ingle, C. Tabony, and R. Maule, Hexagon DSP: An Architecture Optimized
for Mobile Multimedia and Communications, IEEE Micro 34, 34 (2014), doi:
10.1109/MM.2014.12.

[87] M. Becchi and P. Crowley, Dynamic Thread Assignment on Heterogeneous
Multiprocessor Architectures, in 3rd Conference on Computing Frontiers (CF)
(ACM, 2006) pp. 29–40, doi: 10.1145/1128022.1128029.

[88] Q. Guo, A. Sartor, A. Brandon, A. C. S. Beck, X. Zhou, and S. Wong, Run-time
phase prediction for a reconfigurable vliw processor, in Design, Automation
Test in Europe Conference Exhibition (DATE) (2016) pp. 1634–1639, doi:
10.3850/9783981537079_0644.

[89] J. Hoogerbrugge, Dynamic branch prediction for a VLIW processor, in In-
ternational Conference on Parallel Architectures and Compilation Techniques
(PACT) (2000) pp. 207–214, doi: 10.1109/PACT.2000.888345.

[90] R. Rodrigues, A. Annamalai, I. Koren, and S. Kundu, Improving Performance
Per Watt of Asymmetric Multi-core Processors via Online Program Phase Clas-
sification and Adaptive Core Morphing, ACM Trans. Des. Autom. Electron.
Syst. 18, 5:1 (2013), doi: 10.1145/2390191.2390196.

[91] E. Duesterwald, C. Cascaval, and S. Dwarkadas, Characterizing and Predict-
ing Program Behavior and its Variability, in 12th International Conference on
Parallel Architectures and Compilation Techniques (PACT) (2003) pp. 220–
231, doi: 10.1109/PACT.2003.1238018.

[92] E. Chi, A. M. Salem, R. I. Bahar, and R. Weiss, Combining software and
hardware monitoring for improved power and performance tuning, in Sev-
enth Workshop on Interaction Between Compilers and Computer Architec-
tures (INTERACT) (2003) pp. 57–64, doi: 10.1109/INTERA.2003.1192356.

[93] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer, Scheduling
Heterogeneous Multi-cores Through Performance Impact Estimation (PIE),
in 39th Annual International Symposium on Computer Architecture (ISCA)
(2012) pp. 213–224, doi: 10.1109/ISCA.2012.6237019.

[94] A. Otero, A. Morales-Cas, J. Portilla, E. de la Torre, and T. Riesgo, A Modular
Peripheral to Support Self-Reconfiguration in SoCs, in 13th Euromicro Con-
ference on Digital System Design: Architectures, Methods and Tools (DSD)
(2010) pp. 88–95, doi: 10.1109/DSD.2010.100.

[95] M. Aldham, J. Anderson, S. Brown, and A. Canis, Low-cost hardware pro-
filing of run-time and energy in FPGA embedded processors, in 22nd IEEE
International Conference on Application-specific Systems, Architectures and
Processors (ASAP) (2011) pp. 61–68, doi: 10.1109/ASAP.2011.6043237.

http://dx.doi.org/ 10.1109/MM.2014.12
http://dx.doi.org/10.1145/1128022.1128029
http://dx.doi.org/10.3850/9783981537079_0644
http://dx.doi.org/10.3850/9783981537079_0644
http://dx.doi.org/ 10.1109/PACT.2000.888345
http://dx.doi.org/ 10.1109/PACT.2000.888345
http://dx.doi.org/ 10.1109/PACT.2000.888345
http://dx.doi.org/10.1145/2390191.2390196
http://dx.doi.org/10.1145/2390191.2390196
http://dx.doi.org/10.1109/PACT.2003.1238018
http://dx.doi.org/10.1109/PACT.2003.1238018
http://dx.doi.org/ 10.1109/INTERA.2003.1192356
http://dx.doi.org/ 10.1109/INTERA.2003.1192356
http://dx.doi.org/ 10.1109/INTERA.2003.1192356
http://dx.doi.org/ 10.1109/ISCA.2012.6237019
http://dx.doi.org/10.1109/DSD.2010.100
http://dx.doi.org/10.1109/DSD.2010.100
http://dx.doi.org/ 10.1109/ASAP.2011.6043237
http://dx.doi.org/ 10.1109/ASAP.2011.6043237
http://dx.doi.org/ 10.1109/ASAP.2011.6043237

9

156 References

[96] T. Sherwood, S. Sair, and B. Calder, Phase Tracking and Prediction, in 30th
Annual International Symposium on Computer Architecture (ISCA) (ACM,
2003) pp. 336–349, doi: 10.1145/859618.859657.

[97] TMS320C66x CPU and Instruction Set Reference Guide, Texas Instruments
Literature Number: SPRUGH7 (2010).

[98] H. Zhong, S. Lieberman, and S. Mahlke, Extending Multicore Architectures
to Exploit Hybrid Parallelism in Single-thread Applications, in IEEE 13th In-
ternational Symposium on High Performance Computer Architecture (HPCA)
(2007) pp. 25–36, doi: 10.1109/HPCA.2007.346182.

[99] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz,
Smart memories: a modular reconfigurable architecture, in 27th Interna-
tional Symposium on Computer Architecture (ISCA) (2000) pp. 161–171, doi:
10.1109/ISCA.2000.854387.

[100] S. Panneerselvam and M. M. Swift, Chameleon: Operating System Support
for Dynamic Processors, in Seventeenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASP-
LOS) (ACM, 2012) pp. 99–110, doi: 10.1145/2150976.2150988.

[101] C. Hu, D. A. Jiménez, and U. Kremer, Combining Edge Vector and Event
Counter for Time-Dependent Power Behavior Characterization, in Transac-
tions on High-Performance Embedded Architectures and Compilers (HiPEAC),
edited by P. Stenström (Springer, 2009) pp. 85–104, doi: 10.1007/978-3-
642-00904-4_6.

[102] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger, S.-T. A.
Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl,
Continuous Profiling: Where Have All the Cycles Gone? ACM Trans. Comput.
Syst. 15, 357 (1997), doi: 10.1145/265924.265925.

[103] J. Lau, S. Schoenmackers, and B. Calder, Transition phase classification and
prediction, in 11th International Symposium on High-Performance Computer
Architecture (HPCA) (2005) pp. 278–289, doi: 10.1109/HPCA.2005.39.

[104] R. Sree, A. Settle, I. Bratt, and D. Connors, Compiler-directed resource
management for active code regions, in Seventh Workshop on Interaction
Between Compilers and Computer Architectures (INTERACT) (2003) pp. 85–
93, doi: 10.1109/INTERA.2003.1192359.

[105] C.-H. Hsu, U. Kremer, and M. Hsiao, Compiler-directed dynamic voltage/fre-
quency scheduling for energy reduction in microprocessors, in International
Symposium on Low Power Electronics and Design (2001) pp. 275–278, doi:
10.1109/LPE.2001.945416.

[106] U. Brinkschulte, C. Krakowski, J. Kreuzinger, and T. Ungerer, Interrupt ser-
vice threads-a new approach to handle multiple hard real-time events on a

http://dx.doi.org/10.1145/859618.859657
http://dx.doi.org/10.1145/859618.859657
http://dx.doi.org/10.1109/HPCA.2007.346182
http://dx.doi.org/10.1109/HPCA.2007.346182
http://dx.doi.org/10.1109/ISCA.2000.854387
http://dx.doi.org/10.1109/ISCA.2000.854387
http://dx.doi.org/ 10.1145/2150976.2150988
http://dx.doi.org/ 10.1145/2150976.2150988
http://dx.doi.org/ 10.1145/2150976.2150988
http://dx.doi.org/ 10.1007/978-3-642-00904-4_6
http://dx.doi.org/ 10.1007/978-3-642-00904-4_6
http://dx.doi.org/10.1145/265924.265925
http://dx.doi.org/10.1145/265924.265925
http://dx.doi.org/10.1109/HPCA.2005.39
http://dx.doi.org/10.1109/HPCA.2005.39
http://dx.doi.org/10.1109/INTERA.2003.1192359
http://dx.doi.org/10.1109/INTERA.2003.1192359
http://dx.doi.org/10.1109/LPE.2001.945416
http://dx.doi.org/10.1109/LPE.2001.945416

References

9

157

multithreaded microcontroller, in 20th IEEE Real-Time Systems Symposium
(RTSS) (1999) pp. 11–15.

[107] S. Wong, F. Anjam, and F. Nadeem, Dynamically reconfigurable reg-
ister file for a softcore VLIW processor, in Design, Automation Test
in Europe Conference Exhibition (DATE) (2010) pp. 969–972, doi:
10.1109/DATE.2010.5456908.

[108] C. E. LaForest and J. G. Steffan, Efficient Multi-ported Memories for FPGAs,
in 18th Annual ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA) (ACM, 2010) pp. 41–50, doi: 10.1145/1723112.1723122.

[109] M. A. R. Saghir and R. Naous, A Configurable Multi-ported Register File Archi-
tecture for Soft Processor Cores, in Third International Workshop on Recon-
figurable Computing: Architectures, Tools and Applications (ARC) (Springer,
2007) pp. 14–25, doi: 10.1007/978-3-540-71431-6_2.

[110] F. Anjam, S. Wong, and F. Nadeem, A multiported register file with register
renaming for configurable softcore VLIW processors, in International Con-
ference on Field-Programmable Technology (FPT) (2010) pp. 403–408, doi:
10.1109/FPT.2010.5681446.

[111] M. Purnaprajna and P. Ienne, Making Wide-issue VLIW Processors Vi-
able on FPGAs, ACM Trans. Archit. Code Optim. 8, 33:1 (2012), doi:
10.1145/2086696.2086712.

[112] G. Buttazzo, Hard Real-time Computing Systems: Predictable Scheduling
Algorithms and Applications, Real-time Systems Series, Vol. 24 (Springer,
2011) doi: 10.1007/978-1-4614-0676-1.

[113] A. Ronnholm, Evaluation of Real-Time Operating Systems for Xilinx MicroB-
laze CPU, Master’s thesis, Malardalens University (2006).

[114] R. Thekkath and S. J. Eggers, The Effectiveness of Multiple Hardware Con-
texts, in Sixth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS) (ACM, 1994) pp. 328–337,
doi: 10.1145/195473.195583.

[115] N. I. Rafla and D. Gauba, Hardware implementation of context switching
for hard real-time operating systems, in 54th International Midwest Sympo-
sium on Circuits and Systems (MWSCAS) (2011) pp. 1–4, doi: 10.1109/MWS-
CAS.2011.6026348.

[116] K. Tanaka, Prestor-1: a processor extending multithreaded architecture, in
Innovative Architecture for Future Generation High-Performance Processors
and Systems (IWIA) (2005) pp. 8 pp.–, doi: 10.1109/IWIA.2005.39.

[117] R. Riedlinger, R. Bhatia, L. Biro, B. Bowhill, E. Fetzer, P. Gronowski, and
T. Grutkowski, A 32nm 3.1 billion transistor 12-wide-issue Itanium processor

https://publikationen.bibliothek.kit.edu/310599
https://publikationen.bibliothek.kit.edu/310599
http://dx.doi.org/ 10.1109/DATE.2010.5456908
http://dx.doi.org/ 10.1109/DATE.2010.5456908
http://dx.doi.org/ 10.1145/1723112.1723122
http://dx.doi.org/ 10.1145/1723112.1723122
http://dx.doi.org/10.1007/978-3-540-71431-6_2
http://dx.doi.org/10.1007/978-3-540-71431-6_2
http://dx.doi.org/10.1109/FPT.2010.5681446
http://dx.doi.org/10.1109/FPT.2010.5681446
http://dx.doi.org/ 10.1145/2086696.2086712
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/ 10.1145/195473.195583
http://dx.doi.org/ 10.1145/195473.195583
http://dx.doi.org/10.1109/MWSCAS.2011.6026348
http://dx.doi.org/10.1109/MWSCAS.2011.6026348
http://dx.doi.org/ 10.1109/IWIA.2005.39
http://dx.doi.org/ 10.1109/IWIA.2005.39

9

158 References

for mission-critical servers, in IEEE International Solid-State Circuits Confer-
ence (ISSCC) (2011) pp. 84–86, doi: 10.1109/ISSCC.2011.5746230.

[118] A. Oliveira, L. Almeida, and A. de Brito Ferrari, The ARPA-MT Embedded
SMT Processor and Its RTOS Hardware Accelerator, IEEE Transactions on
Industrial Electronics 58, 890 (2011), doi: 10.1109/TIE.2009.2028359.

[119] T. P. Wijesinghe, Design and implementation of a multithreaded softcore pro-
cessor with tightly coupled hardware real-time operating system, Master’s
thesis, West Virginia University (2008).

[120] M. Paolieri, J. Mische, S. Metzlaff, M. Gerdes, E. Quiñones, S. Uhrig,
T. Ungerer, and F. J. Cazorla, A Hard Real-time Capable Multi-core
SMT Processor, ACM Trans. Embed. Comput. Syst. 12, 79:1 (2013), doi:
10.1145/2442116.2442129.

[121] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, Flexpret: A proces-
sor platform for mixed-criticality systems, in 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS) (2014) pp. 101–110, doi:
10.1109/RTAS.2014.6925994.

[122] J. Yan and W. Zhang, A Time-predictable VLIW Processor and its Compiler
Support, Real-Time Systems 38, 67 (2008), doi: 10.1007/s11241-007-9030-
5.

[123] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken, CoMPSoC: A Template
for Composable and Predictable Multi-processor System on Chips, ACM Trans.
Des. Autom. Electron. Syst. 14, 2:1 (2009), doi: 10.1145/1455229.1455231.

[124] B. Chazelle, The Bottomn-Left Bin-Packing Heuristic: An Efficient Im-
plementation, IEEE Transactions on Computers C-32, 697 (1983), doi:
10.1109/TC.1983.1676307.

[125] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, The Mälardalen WCET
Benchmarks: Past, Present And Future, in 10th International Workshop on
Worst-Case Execution Time Analysis (WCET), OpenAccess Series in Informat-
ics (OASIcs), Vol. 15, edited by B. Lisper (Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2010) pp. 136–146.

[126] J. A. Stankovic and K. Ramamritham, What is Predictability for Real-time
Systems? Real-Time Systems 2, 247 (1990), doi: 10.1007/BF01995673.

[127] L. Sha, J. P. Lehoczky, and R. Rajkumar, Task Scheduling In Distributed Real-
Time Systems, SPIE 0857, IECON’87:Automated Design and Manufacturing
(1987), 10.1117/12.943278, doi: 10.1117/12.943278.

[128] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, Proportionate
Progress: A Notion of Fairness in Resource Allocation, Algorithmica 15, 600
(1996), doi: 10.1007/BF01940883.

http://dx.doi.org/ 10.1109/ISSCC.2011.5746230
http://dx.doi.org/ 10.1109/ISSCC.2011.5746230
http://dx.doi.org/ 10.1109/TIE.2009.2028359
http://dx.doi.org/ 10.1109/TIE.2009.2028359
http://search.proquest.com/docview/250936948?accountid=27026
http://search.proquest.com/docview/250936948?accountid=27026
http://dx.doi.org/10.1145/2442116.2442129
http://dx.doi.org/10.1109/RTAS.2014.6925994
http://dx.doi.org/10.1109/RTAS.2014.6925994
http://dx.doi.org/ 10.1007/s11241-007-9030-5
http://dx.doi.org/ 10.1145/1455229.1455231
http://dx.doi.org/ 10.1145/1455229.1455231
http://dx.doi.org/10.1109/TC.1983.1676307
http://dx.doi.org/ 10.4230/OASIcs.WCET.2010.136
http://dx.doi.org/ 10.4230/OASIcs.WCET.2010.136
http://dx.doi.org/ 10.1007/BF01995673
http://dx.doi.org/10.1117/12.943278
http://dx.doi.org/10.1117/12.943278
http://dx.doi.org/10.1007/BF01940883
http://dx.doi.org/10.1007/BF01940883

References 159

[129] E. Yip, M. M. Y. Kuo, P. S. Roop, and D. Broman, Relaxing the synchronous
approach for mixed-criticality systems, in 2014 IEEE 19th Real-Time and Em-
bedded Technology and Applications Symposium (RTAS) (2014) pp. 89–100,
doi: 10.1109/RTAS.2014.6925993.

[130] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, Scheduling of
mixed-criticality applications on resource-sharing multicore systems, in In-
ternational Conference on Embedded Software (EMSOFT) (IEEE, 2013) pp.
1–15, doi: 10.1109/EMSOFT.2013.6658595.

[131] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A. Lee, A PRET microarchi-
tecture implementation with repeatable timing and competitive performance,
in 30th International Conference on Computer Design (ICCD) (2012) pp. 87–
93, doi: 10.1109/ICCD.2012.6378622.

[132] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange,
E. Quinones, M. Gerdes, M. Paolieri, J. Wolf, H. Casse, S. Uhrig, I. Guliashvili,
M. Houston, F. Kluge, S. Metzlaff, and J. Mische, Merasa: Multicore Execu-
tion of Hard Real-Time Applications Supporting Analyzability, IEEE Micro 30,
66 (2010), doi: 10.1109/MM.2010.78.

[133] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, C. W. Probst,
S. Karlsson, and T. Thorn, Towards a Time-predictable Dual-Issue Micropro-
cessor: The Patmos Approach, in Bringing Theory to Practice: Predictability
and Performance in Embedded Systems, Vol. 18 (2011) pp. 11–21.

[134] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. Maiza, J. Reineke, B. Tri-
quet, and R. Wilhelm, Predictability considerations in the design of multi-core
embedded systems, Embedded Real Time Software and Systems , 36 (2010).

[135] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A.
Scoredos, Mixed-Criticality Real-Time Scheduling for Multicore Systems, in
10th IEEE International Conference on Computer and Information Technol-
ogy (2010) pp. 1864–1871, doi: 10.1109/CIT.2010.320.

[136] S. Hu, A. Brandon, Q. Guo, and Y. Wang, Improving the performance of
adaptive cache in reconfigurable vliw processor, in 13th International Sympo-
sium on Applied Reconfigurable Computing: (ARC 2017), Delft, The Nether-
lands (Springer, 2017) pp. 3–15, doi: 10.1007/978-3-319-56258-2_1.

[137] Z. Jia, C. Xue, G. Chen, J. Zhan, L. Zhang, Y. Lin, and P. Hofstee, Auto-tuning
Spark Big Data Workloads on POWER8: Prediction-Based Dynamic SMT
Threading, in International Conference on Parallel Architectures and Com-
pilation (PACT) (ACM, 2016) pp. 387–400, doi: 10.1145/2967938.2967957.

http://dx.doi.org/ 10.1109/RTAS.2014.6925993
http://dx.doi.org/ 10.1109/RTAS.2014.6925993
http://dx.doi.org/10.1109/EMSOFT.2013.6658595
http://dx.doi.org/10.1109/EMSOFT.2013.6658595
http://dx.doi.org/ 10.1109/ICCD.2012.6378622
http://dx.doi.org/10.1109/MM.2010.78
http://dx.doi.org/10.1109/MM.2010.78
http://dx.doi.org/ 10.4230/OASIcs.PPES.2011.11
http://dx.doi.org/ 10.4230/OASIcs.PPES.2011.11
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.172.4533
http://dx.doi.org/10.1109/CIT.2010.320
http://dx.doi.org/10.1109/CIT.2010.320
http://dx.doi.org/10.1007/978-3-319-56258-2_1
http://dx.doi.org/10.1007/978-3-319-56258-2_1
http://dx.doi.org/10.1007/978-3-319-56258-2_1
http://dx.doi.org/10.1145/2967938.2967957
http://dx.doi.org/10.1145/2967938.2967957

Curriculum Vitæ

Joost Hoozemans was born on July 22, 1987 in Delft, the Netherlands. He obtained
a BSc. degree in Computer Science from Utrecht University in 2011 and a MSc.
degree in Computer Engineering from Delft University of Technology in 2014. His
master’s research was on Operating System support for the 𝜌-VEX dynamically re-
configurable VLIW processor. During his studies, he worked as an intern for TNO,
evaluating a Wireless Sensor Network protocol. He continued his research on dy-
namic VLIW processors as a PhD. candidate within the EU-funded ALMARVI project.
During this period, he has taught practical assignments of various post-graduate
courses including Reconfigurable Computing Design and Modern Computer Archi-
tectures, for which he developed a new set of assignments based on the VLIW
platform used in his research. In addition, he was involved with more than 10
master’s thesis projects and 4 bachelor honors projects related to the 𝜌-VEX. He
has contributed to demonstrators and deliverables for the ALMARVI project, and
written several peer-reviewed conference contributions and journal articles. He
was the general chair of the post-graduate study association ‘Micro-Electronic Sys-
tems and Technology’ and finance chair of the International Symposium on Applied
Reconfigurable Computing (ARC 2017).

161

	Summary
	Samenvatting
	Acknowledgements
	Introduction
	Dynamic workloads call for dynamic processors
	Leveraging design-time customization for highly static workloads
	Embedded execution platforms
	General-purpose
	Application-Specific
	Reconfigurable

	Workload analysis
	Requirements
	Parallelism
	Code characteristics

	Problem formulation and scope
	Software: Workloads
	Hardware: Reconfigurable processors
	Scheduling: Tasks and processor configurations

	Proposed platform: a design-time configurable, run-time parametrizable VLIW processor
	Static (design-time) reconfigurability
	Dynamic (run-time) parameterization
	Environment
	Platform overview

	Approach
	Modeling & Simulation
	Using FPGA technology
	Code characterization method
	A runtime for scheduling tasks and configurations
	Workload generation
	Benchmarks

	Contributions and thesis outline

	Part 1 - Static workloads, statically reconfigurable platform
	Using VLIW softcore processors for image processing
	Introduction
	Related work
	The r-VEX platform
	The VEX system: ISA and toolchain
	The r-VEX VLIW processor

	Image processing applications
	Results and discussion
	Conclusions

	A streaming FPGA computation fabric
	Introduction
	Related work
	Implementation
	Processing elements
	Memory hierarchy
	Platform

	Experimental setup
	Evaluation results
	Resource utilization
	Image processing performance

	Conclusions

	Frame-Based Programming, Stream-Based Processing
	Introduction
	Related work
	Optimizing/accelerating image processing workloads
	FPGA acceleration
	FPGA overlays
	FPGA image processing overlays
	Integration frameworks

	Approach
	OpenCL’s view on parallel computing
	OpenCL memory model
	Streaming data and OpenCL
	OpenCL data architecture

	Implementation - Hardware
	Processing element
	Memory structure
	Interfaces

	Implementation - Software
	Compilation and operation
	Buffer management
	Synchronization and communication
	Application development

	Experiments/Evaluation
	Conclusions

	Part 2 - Dynamic workloads, dynamically reconfigurable platform
	Evaluating auto-adaptation methods
	Introduction
	Approach
	Target processor
	Proposed auto-adapting method

	Implementation
	Common
	Window-based monitoring
	BTCB
	Phase change annotations

	Evaluation
	Experimental setup
	Results

	Related work
	Conclusions

	Adapting to dynamic workloads
	Introduction
	Background
	The r-VEX polymorphic VLIW processor
	Approach
	On-line profiling
	Compiler annotations
	Datapath assignment

	Experiments/Evaluation
	Annotation overhead and coverage
	Throughput & Performance

	Related work
	Phase detection and workload characterization
	Polymorphic processors

	Conclusions

	Part 3 - Real-time and mixed-criticality systems
	Evaluating real-time properties
	Introduction
	Background
	Related work
	Implementation
	Experimental Setup
	Results
	Conclusions

	A platform for mixed-criticality systems
	Introduction
	Background
	Processing platform
	Scheduling methodology for dynamic processors

	System architecture for Mixed-criticality systems
	Spatial isolation
	Temporal isolation
	Assigning unallocated cycles to non-critical tasks

	Scheduling approach
	Worst-case schedule creation
	Improving average-case performance

	Experimental setup
	Results
	Schedulability
	Performance & area utilization
	Resource utilization and throughput

	Related work
	Conclusions

	Conclusion
	Conclusions
	Future research directions

	List of Publications
	titleReferences
	Curriculum Vitæ

