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Targeting TGF-β signal transduction 
for fibrosis and cancer therapy
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Abstract 

Transforming growth factor β (TGF-β) has long been identified with its intensive involvement in early embryonic 
development and organogenesis, immune supervision, tissue repair, and adult homeostasis. The role of TGF-β in 
fibrosis and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects 
depending on the stage of the disease. Under pathological conditions, overexpressed TGF-β causes epithelial-mes-
enchymal transition (EMT), extracellular matrix (ECM) deposition, cancer-associated fibroblast (CAF) formation, which 
leads to fibrotic disease, and cancer. Given the critical role of TGF-β and its downstream molecules in the progression 
of fibrosis and cancers, therapeutics targeting TGF-β signaling appears to be a promising strategy. However, due to 
potential systemic cytotoxicity, the development of TGF-β therapeutics has lagged. In this review, we summarized 
the biological process of TGF-β, with its dual role in fibrosis and tumorigenesis, and the clinical application of TGF-β-
targeting therapies.
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Background
Transforming growth factor β (TGF-β) is a prototype of 
the TGF-β family, which is composed of TGF-β, Activin, 
Nodal, bone morphogenetic proteins (BMPs), growth 
and differentiation factors (GDFs), and other factors [1, 
2]. As a multifunctional polypeptide cytokine, TGF-β 
plays a critical role in early embryonic development and 
adult homeostasis [3]. Three subtypes of TGF-β (TGF-
βI-III) are only expressed in mammals with unique mul-
tifunctional growth factors. In the following paragraphs, 
TGF-β refers to TGF-βI if not otherwise specified. TGF-β 
is mainly secreted and stored in the extracellular matrix 
(ECM) as a latent complex [4], while only activated 
TGF-β binds to the TGF-β receptor (TβR) complex to 
lead to its biological functions. Therefore, TGF-β activa-
tion is critical for its operation.

In recent years, scientists found that overexpressed 
TGF-β causes a plethora of metabolic disorders and dys-
function, and promotes epithelial-mesenchymal tran-
sition (EMT) and excessive deposition of ECM [5, 6], 
which causes immune dysfunction, fibrosis, and cancers 
[7]. Because of the vital function of TGF-β in human 
fibrosis and cancers, anti-TGF-β approaches have been 
introduced to treat these diseases [8]. In recent years, 
many clinical trials have verified the therapeutic effect of 
TGF-β-targeted drugs on a variety of tumor and fibrotic 
diseases. By combining TGF-β-targeting drugs (anti-
TGF-β antibody, TβR inhibitor, and recombinant pro-
teins) with other antigens (programmed cell death one 
ligand 1 (PD-L1), M7824, SHR-1701, JS201, TST005, and 
COX-2 (STP705)) is the most popular treatment strategy 
currently. This review focuses on the biological process 
of TGF-β, its dual role in fibrosis and tumorigenesis, and 
the clinical application of TGF-β-targeting therapeutics.

The procession of TGF‑β
Pro-TGF-β is synthesized as a latent complex in the 
ECM and is associated with a signal peptide in the large 
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N-terminal portion called the latency-associated pep-
tide (LAP) and a mature cytokine in the C-terminal frag-
ment [9–11]. The large latent complex (LLC) comprises 
LAP, TGF-β, latent TGF-β binding proteins (LTBP) 1/3, 
and LTBP4. Latent TGF-β is activated by proteins and 
enzymes (thrombospondin 1 (TSP-1), glycoprotein A 
repetitions predominant protein (GARP), integrins, and 
other TGF-β-binding proteins) and transformed into 
disulfide-linked dimers and homodimeric ligands. The 
activated TGF-β interacts with the TβR complex or other 
cytokines to regulate biological responses through dros-
ophila mothers against decapentaplegic (SMAD) and/or 
non-SMAD pathways [12].

TGF‑β secretion
LAP binds to LTBPs covalently via two disulfide bonds 
with two cysteine residues [10]. LTBPs are the promoter 
of the folding of TGF-β precursor protein. In addition, 
LTBPs are crucial to latent TGF-β location and activation 
[13, 14]. LAP, in turn, is cleaved by furin (an indispensa-
ble proprotein convertase) from the mature TGF-β pre-
cursor in the trans-Golgi network (Fig. 1) [12], in which 

LTBPs are considered as the primary activator [13]. 
Although LAP is cleaved from the C-terminal portion, it 
remains associated with the mature cytokine TGF-β non-
covalently [2].

Location and activation of TGF‑β
In general, LLC is secreted to the ECM and is located 
there via the unique biological properties of LTBP, which 
interacts with extracellular matrix fibers to keep TGF-β 
in an inactive form (Fig.  1) [13, 15]. A recent study 
showed that the crystals of pro-TGF-βI are a ring-shaped 
complex. When LAP-surrounded TGF-β monomers are 
freed under cytoskeletal force, the active cytokine inter-
acts with TβR to regulate cellular responses (Fig. 1). This 
force-dependent activation requires the unfastening of a 
pro-domain named the ‘straitjacket’ element [16].

Enzymatic activation
In addition to the nonproteolytic mechanism for the 
activation of latent TGF-β, proteases are also involved 
in TGF-β activation. In addition, these proteases are 
divided into containing glycosidases (N-glycanase and 

Fig. 1 A schematic representation of TGF-β activation The pro-TGF-β synthesized in the rough endoplasmic reticulum becomes latent TGF-β when 
cleaved by the convertase furin in the Golgi complex. Then the LAP dimer binds to mature TGF-β noncovalently to form a small latent complex 
(SLC). Then, SLC generally binds to LTBP, forming LLC, while binds to GARP in Treg cells. SLC is anchored to ECM proteins, including fibronectin and 
fibrillin, via LTBP. Both LTBP and GARP play a direct role in anchoring TGF-β for traction-driven activation by integrins. With the help of αβ integrins 
and mechanical force, latent TGF-β becomes active and connects to the TβR complex to regulate transcription
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neuraminidase) and serine proteases (plasmin, cathepsin 
D, and matrix metalloproteases) [10, 17, 18]. Summar-
ily, in the cytoplasmic matrix, TGF-β can be activated 
by several proteases, integrins, and other TGF-β-binding 
proteins in different cell types, tissues, and disease 
milieus [19]. Notably, the proteolytic cleavage sites of 
latent TGF-β implicate the mechanism of how proteases 
cleave the LAP latency lasso. For instance, plasma kal-
likrein (PLK) cleaves residues between R58 and L59 of 
latent TGF-β [20]. Studies on the activation process of 
TGF-β at the molecular level helps to targeting-TGF-β 
therapy.

Regulation by fibrillin
LTBPs are structurally related to and physically bound to 
another family of proteins called fibrillins. Fibrillin 1 can 
function as an inhibitor of TGF-β signaling, but whether 
it works more directly in controlling the fibrillin-LTBP 
interaction or stability suppress latent LLC proteolytic 
activation still needs to be explored [21, 22]. As inte-
gral components of microfibrils, fibrillins play different 
roles in microfibril biology [23]. The microfibrils cover 
the elastin core of elastin-containing fibers and promote 
the temporal and spatial regulation of TGF-β activation 
[24]. Scientists previously suggested that fibrillin-1 can 
be presented to the surface-exposed loop when binding 
to the arginine-glycine-aspartic acid (RGD) integrin-
binding motif [25–27]. While the remaining fibrillins 
showed little inhibitory effect on TGF-β activation. A 
number of studies indicated that fibrillin 2 expression 
is mainly restricted to developing fetal tissues, while 
fibrillin-1 expression endures throughout adult life [28]. 
Moreover, fibrillin-1, together with associated molecules, 
masks fibrillin-2 epitopes to block its bioactivity. There-
fore, fibrillin 1 shows stronger anti-TGF-β activity. Nota-
bly, a recent study showed that when local fibrillin-1 was 
downregulated, fibrillin 2 molecules were exposed in the 
tumor endothelium with a lower capacity to block TGF-β 
[29]. Moreover, Heena Kumra et al. suggested that fibril-
lin-4 might regulate LTBP-4 matrix assembly to impact 
TGF-β signaling [30].

Regulation of TGF‑β activation by GARP
Recent evidence demonstrated that regulatory T cells 
(Tregs) could promote latent TGF-β presented by GARP 
to integrin αVβ8 integrin (Fig. 1) [31]. Unlike LTBPs are 
abundantly presented in the ECM, GARP is retained only 
on the surface of Foxp3-expressing Tregs [32]. It is gen-
erally accepted that αVβ8 integrin is involved in GARP/
TGF-β complex activation, but the exact mechanism is 
controversial. Some scientists indicated that cytoskel-
etal force was unnecessary for αVβ8-mediated TGF-β 
activation. Others believed that the regulation of TGF-β 

activation by GARP required the release and diffusion 
of mature TGF-β [33]. In addition, they discovered that 
mature TGF-β signals were involved in latent TGF-β, 
which indicated that αVβ8-mediated TGF-β activation 
may form a large multi-component cell–cell protein com-
plex to induce the SMAD-dependent pathway [34, 35]. 
Regardless of the mechanism of GARP-induced TGF-β 
activation, targeting GARP is one of the approaches to 
avoid TGF-β activation, targeting GARP is one of the 
approaches to avoid TGF-β activation. Notably, a study 
showed that monoclonal antibodies against GARP in 
GARP/TGF-βI complexes could not recognize amino 
acids GARP137-139 within GARP/TGF-βI complexes 
could not inhibit Treg-associated TGF-β activation [36].

Activation of TGF‑β by integrins
Integrin family members are implicated in the recog-
nition and activation of TGF-β [37–44]. In addition, 
integrin-mediated TGF-β activation is essential in the 
immune system (integrins αvβ6 and αvβ8), tumorigen-
esis, and fibroblasts. Both Integrins αvβ6 and αvβ8 reg-
ulate TGF-β signaling by binding to a linear tripeptide 
RGD depending on actin cytoskeleton-generated tensile 
force [45]. In addition to integrins αvβ6 and αvβ8, integ-
rins α8β1, α5β1, and αIIβ3 can also recognize the RGD 
site in the LAP region of TGF-β. This RGD recognition 
mechanism regulates the growth and differentiation fac-
tors of the TGF-β family to maintain morphogenesis and 
homeostasis [46].

However, the presence of integrin alone is insufficient 
for TGF-β activation. Considerable studies have sug-
gested that actin-myosin contraction and mechanical 
deformation are of great importance for TGF-β activa-
tion. In addition, scientists widely believed that the con-
traction of the actin cytoskeleton previously generated 
integrin-mediated TGF-β activation by physical force. 
Furthermore, a study by Melody G. Campbell recently 
indicated that integrin αvβ6, along with its entire ecto-
domain, activates GARP to locate latent TGF-β without 
the release and diffusion of mature TGF-β [47]. In gen-
eral, identifying a complete regulatory pathway would 
facilitate the development of more effective therapeutic 
strategies.

TGF‑β signaling pathways
The low-affinity heteromeric receptor complex (tβR I 
with tβR II) conducted by activated TGF-β stimulates dif-
ferent downstream signaling pathways (SMAD pathways 
and no-SMAD pathways) to regulate context-dependent 
transcription (Fig.  2). Under different physiological and 
pathological conditions, different kinases or signaling 
pathways adjust the SMAD pathway to regulate protein 
expression [48].
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The canonical pathway—SMAD pathway
SMAD is a canonical pathway in which TGF-β is iden-
tified by TβR II equipped with an intracellular kinase 
domain, which recruits and phosphorylates TβR I with 
a conversed Gly/Ser-rich "GS sequence" from serine/
threonine kinases. TβR II and TβR I then become a het-
eromeric complex [49]. Activated TβR I phosphoryl-
ates receptor-SMAD (R-SMAD) protein and promotes 
R-SMAD complex binding to Co-SMAD/SMAD4, form-
ing a trimeric complex. The trimeric complex is then 
translated into and aggregates in the nucleus as a tran-
scription factor to regulate target gene expression from 
embryonic development to adult organisms [48, 50].

In addition to being regulated by other signaling path-
ways or cytokines, TGF-β signaling is also automated. 
Downstream factors of SMAD signaling, especially 
Smad2/Smad3, are considered crucial mediators of 
TGF-β signaling in tissue fibrosis and tumorigenesis. At 
the same time, Smad6 and Smad7 are regarded as nega-
tive regulators to improve TGF-β-mediated fibrosis and 

tumorigenesis. For example, SMAD3-induced the upreg-
ulation of TSP-4, which stimulates tumor growth by 
mediating TGF-β-induced angiogenesis [51].

Noncanonical pathway—non‑SMAD pathway
All the pathways and downstream cascades activated by 
TGF-β through phosphorylation, acetylation, sumoyla-
tion, ubiquitination, and protein–protein interactions 
are collectively referred to as non-SMAD signaling path-
ways [53, 54]. These interactions mediate the intracel-
lular responses of TGF-β and/or its related factors are 
collectively referred as non-SMAD signaling pathways 
[52, 53]. Mature TGF-β activates the mitogen-activated 
protein kinase (MAPK) pathway [54], extracellular 
signal-regulated kinases 1/2 (Erk1/2) pathways, Rho-
like signaling pathways, phosphatidylinositol-3-kinase 
(PI3K)/AKT pathways, c-Jun amino-terminal kinase 
(JNK), and p38 mitogen-activated protein kinase (p38/
MAPK) signaling pathways [55]. The Erk signaling path-
way (Fig.  3) is essential for embryonic development in 

Fig. 2 SMAD and non-SMAD pathways Schematic of the TGF-β-induced canonical SMAD and noncanonical non-SMAD signaling pathways Mature 
TGF-β phosphorylates TβR II, which recruits TβR I to phosphorylate receptor-SMAD proteins. Then, co-SMAD with the R-SMAD complex translates 
into the nucleus to regulate CAGA gene transcription. TGF-β actives non-SMAD pathways when connected to other downstream factors, such as 
SHC/GRB2/SODS, TRAF4/6, PAR6, and PI3K
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adult organisms. For instance, it affects the develop-
ment of embryos, especially nerves, and EMT to pro-
mote fibrosis and cancer metastasis in geriatric diseases 
[56–59]. Accumulating evidence has shown that diverse 
TGF-β signaling responses are related to the combina-
torial usage of core pathway components, including 
ligands, receptors, SMADs, and transcription factors by 
cross interacting with other pathways to regulate target 
gene transcription [52].

TGF‑β in fibrosis
Fibrosis is a pathological process in which organ paren-
chyma cell necrosis and ECM deposit excessively, caus-
ing connective tissue hyperplasia, fibrosis, or even 
significantly producing organ sclerosis. In addition, 
fibrosis is usually accompanied by the transformation 
of fibroblasts into myofibroblasts, even CAFs. Nor-
mal fibroblasts are components of the paraneoplastic 
stroma, which are critical in supporting the homeosta-
sis of tissue-resident cells and define the architecture 
of organs. Several cytokines and chemokines (miR-214 

[60], IL-1 [61], α-SMA, integrin β-1), and signaling 
pathways (EGFR, Wnt/β-catenin, Hippo, TGF-β, and 
JAK/STAT cascades) reprogram normal fibroblasts into 
CAFs [62, 63]. However, the mechanisms underlying 
the transformation of CAFs are rarely known.

TGF-β I- III all have fibrogenic effects and share 
70–82% homology at the amino acid level [64]. TGF-β 
I is considered as the primary factor in liver, kidney, 
and lung fibrosis through canonical and noncanoni-
cal signaling pathways. Usually, the cytokine TGF-β is 
up-regulated in tissue injury, inflammation, and wound 
healing [65]. The longer-term contractile state of the 
wound helps accelerate the expression of ECM pro-
teins. Dysregulated TGF-β signaling promotes patho-
logical fibrosis and tumorigenesis by excessive ECM 
deposition (Fig. 4). The abnormal accumulation of ECM 
triggers the process of fibrosis and immunosuppression 
by linking SMAD4, BRAF, and TP53 mutations and 
MYC amplification [6] and contributes to the cancer-
associated fibroblast (CAF) phenotype. Scientists found 
that inhibiting TGF-β signaling and its downstream 

Fig. 3 TGF-β activated the Erk MAPK pathway. Activated TβR I recruits and phosphorylates the Shc adaptor protein ShcA. Actived TGF-β promotes 
the formation of the ShcA/Grb2/SOS complex, Ras connects, and degrades SPSB1 via mono- and deubiquitination. TGF-β-induced GTP loading on 
Ras helps recruit Raf to the plasma membrane, resulting in the activation of Erk1/2 through MEKs. The activated Erk MAPK signaling pathway further 
influences the SMAD signaling pathway
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signaling pathways could significantly reduce fibrosis 
[66–68].

TGF‑β in hepatic fibrosis
Acute and chronic liver injuries promote excessive 
expression of TGF-β from various cell types and acti-
vation of TGF-β in the ECM. Then, activated TGF-β 
promotes collagenase deposition and EMT to induce 
fibroblast mesenchymal transformation and the acti-
vation of HSCs. In addition, increased TGF-β can be 
directly generated in liver injury [69].  Hepatic stellate 
cells (HSCs) are turned into hepatocellular carcinoma 
(HCC) cells [70, 71]. The activated HSCs express α-SMA 
but do not have lipid droplets. In addition, they give rise 
to myofibroblasts (MFBs), which represent the primary 
producer of collagen and other ECM proteins [71, 72]. 

The composition of the hepatic ECM changes during 
liver fibrosis and interacts with factors in TGF-β signal-
ing to regulate hepatic fibrosis. For instance, the disrup-
tion of SMAD2 and the composition of SMAD3 promote 
the transcription of type II collagen toward type I and 
III collagen [72–74]. Meanwhile, the phosphorylation 
of Smad2/3 also encourages the acceleration of MMP1, 
α-SMA, and collagen type I, which results in the over-
expression of lysyl oxidase-like 1 (LOXL1) to promote 
liver fibrosis [75]. Despite SMAD pathways, TGF-β also 
promotes HSC activation through non-SMAD pathways 

(MAPK, ERK, p38, and JNK pathways). For instance, 
activated TGF-β increases the expression of kindlin-2 via 
p38 and MAPK signaling, and overexpressed kindlin-2 
positively feedbacks the TGF-β pathway by up-regulating 
Smad2 and Smad3 phosphorylation [76, 77].

Given the vital role of TGF-β in liver fibrosis, base-
line TGF-β is always regarded as a biomarker of prog-
nostic indicators. Nevertheless, clinical trials targeting 
TGF-β for HCC have been rare in recent years. It may be 
because dysregulated TGF-β cascades are not the domi-
nate factors for HCC occurrence [78]. Galunisertib, a 
small-molecule selective inhibitor of TβR I, has been 
shown to prolong overall survival when administered 
with sorafenib [79]. However, it is worth noting that not 
all combination drug therapies help to improve HCC 
(NCT00557856).

TGF‑β in kidney fibrosis
Robust evidence suggests that TGF-β is a well-estab-
lished central mediator of renal fibrosis. TGF-β can pro-
mote the accumulation of ECM proteins in progressive 
chronic kidney disease (CKD) [8, 80]. Similar to hepatic 
fibrosis, the development of renal fibrosis is also com-
pleted with phenotypic plasticity processes and migra-
tion, as well as invasion of epithelial cells [81], in which 
TGF-β has a central role. TGF-β causes progressive 
forms of human kidney disease by regulating apoptosis, 

Fig. 4 Essential functions of TGF-β in fibrosis Under pathological conditions, many different cell types, including macrophages, epithelial cells, 
lymphocytes, fibroblasts, and endothelial cells, can produce and secrete more TGF-β to mediate fibroblasts through SMAD and non-SMAD 
pathways. Although TGF-β plays a vital role in promoting fibrosis, few antifibrosis therapies target it in clinical practice
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activating ECM synthesis, and inhibiting ECM degrada-
tion through metalloproteinase inhibition [80]. TGF-β 
can also activate fibroblasts and translate other cell types 
into fibroblast-type cells directly or indirectly by SMAD 
or non-SMAD pathways [82, 83]. In addition, TGF-β can 
directly act on mesangial cells and fibroblasts to regulate 
cell proliferation, migration, and activation. TGF-β also 
mediates the accumulation of profibrotic molecules in 
ECM. Profibrotic molecules contain collagens, fibronec-
tin, and plasminogen activator inhibitor-1 (PAI-1) [40, 
84]. In contrast, overexpressed TGF-β indirectly pre-
vents fibrosis. A recent study by Su J showed that TGF-
β-stimulated human tubular epithelial cells and fibrotic 
kidneys express TGF-β/Smad3-interacting long noncod-
ing RNA (lnc-TSI) to antagonize renal fibrosis [5].

Multiple drugs, including monoclonal antibodies (FG-
3019, FG-4019), siRNAs (RXI-109, OLX-101, OLX-201), 
peptides (BLR-100/BLR-200), and antisense oligonu-
cleotides, are under clinical trials, and other preclinical 
studies are trying to investigate more effective targets 
and therapies [85–87]. Furthermore, hepatocyte growth 
factor (HGF), BMP-7, SMAD7, and lnc-TSI can also be 
treated as antifibrotic targets. To date, scientists have 
identified multiple therapeutic targets for TGF-β-induced 
renal fibrosis, including microRNAs, proteins, genes, and 
transcription factors. For example, disrupting the recom-
bination signal binding protein-Jκ (RBP-Jκ) could block 
Notch signaling, which regulates bone marrow-derived 
macrophages (BMDMs) to attenuate TGF-β-induced 
renal fibrosis [88]. MicroRNAs (miRNAs) containing 
21–24 nucleotides (miR-34a, miR-30c, miR21, miR29, 
miR-101a, miR-34a, etc.) have been proved to play 
essential roles in the regulation of renal fibrosis through 
TGF-β signaling [89, 90]. Zhao et al. found that miR-30c 
inhibited the Snail 1-TGF-β axis in tubular epithelial cells 
to attenuate EMT, which was similar to paricalcitol [89].

TGF‑β in lung fibrosis
Idiopathic pulmonary fibrosis (IPF) is a chronic and 
fibrotic lung disease with a periphery to center pro-
gression, characteristic imaging, irreversible structural 
alterations, and tissue stiffening [91]. The observation 
that alveolar epithelial cells (AECs) and fibroblasts in 
IPF produce aberrant ECM is implicated in the TGF-β 
signaling pathway [92]. TGF-β is mainly derived from 
alveolar macrophages and metaplastic type II AECs 
and driven by sustained elevated mechanical ten-
sion in IPF [93]. Scientists identified the up-regulated 
mature TGF-β and SMAD3, SMAD4, CTGF, together 
with the deregulated SMAD7 in IPF [92]. Through a 
study of fibrotic development and glutamate metabo-
lism, scientists found that the connection between 
epigenetic and transcriptional processes was almost 

in a TGF-β-dependent manner [94]. Despite α-SMA, 
TGF-β-induced integrins, MMPs, protease inhibitors, 
tumor necrosis factor-α (TNF-α), and regulators of 
small GTPases are also participated in cell-ECM inter-
actions [95, 96]. Meanwhile, TGF-β can not only inhibit 
the production of antifibrotic molecules [97] but also 
induce serum KL6/mucin 1 (MUC1) activation [98].

TGF-β is a key profibrotic factor in IPF, but inhibiting 
TGF-β causes multiple side effects due to its pleiotropic 
effects. Though not reported in clinical trials, some TβRI 
kinase inhibitors showed cardiac toxicity and skin toxic-
ity when administrated at high dose [99]. Thus, searching 
downstream effectors of TGF-β signaling appears to be a 
new research direction. Long noncoding RNAs such as 
RNA H19X, dynamin three opposite strand (DNM3OS), 
and miRNAs including 199a-5p, miR-199-3p, and miR-
214-3p are all crucial to TGF-β-mediated lung fibro-
sis [100–103]. DNM3OS is a fibroblast-specific critical 
downstream effector of TGF-β-induced lung fibrosis, and 
interfering with it may present new effective therapeutic 
targets [101]. In addition, TGF-β interacts with periostin 
to promote lung fibrosis through the αVβ3/β5-Smad3 
pathway, which can be attenuated by the integrin low-
molecular-weight inhibitor CP4715 [104].

TGF‑β in cancer
TGF-β has been shown to play a crucial role in develop-
ing cancer by TGF-β pathway knockout in mice. Several 
experiments have demonstrated that TGF-β plays a dual 
role (a tumor suppressor in premalignant cells and a 
tumor promoter in carcinoma cells) in the process of can-
cer by modulating the cellular context and other effects 
of the cytokine [2]. TGF-β acts as a tumor suppressor by 
inhibiting proliferation and inducing apoptosis during 
the early stages of tumorigenesis [105]. Generally, TGF-β 
inhibits proliferation and promotes apoptosis through 
overexpressed cyclin-dependent kinase (CDK) inhibi-
tors [106] and downregulated MYC expression [107]. 
Under this condition, premalignant cells become dissem-
inated cancer cells, can self-impose a slow-cycling state 
to remain latent for extended periods [108]. The specific 
mechanism of how TGF-β promotes the immune escape 
of carcinoma cells will be described below.

Tumor cells escape antitumor surveillance of TGF-β by 
accumulating mutations in the TGF-β signaling cascades 
[109]. Examples of such escape include the mutation of 
SMAD4 in pancreatic ductal adenocarcinoma (PDAC) 
and gastric cancer (GC) [110, 111], the TβR I muta-
tion in colon cancer [112], and even mutations in genes 
that encode TGF-β ligands (BMP5), receptors (TβR II, 
AVCR2A, BMPR2), and SMADs (SMAD2 and SMAD4) 
[113, 114]. Mutations in the TGF-β pathway in the head 
and neck, bladder, and endometrial adenocarcinomas 
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occur in 10% to 20% of cases, compared to 25% to 50% 
of subjects in gastrointestinal cancer (esophageal, CRC 
and PDA) [111, 112, 115, 116]. Although a loss of TGF-β 
function mutation components is insufficient for tumor 
initiation, it promotes the transition of premalignant cells 
to a more overly malignant phenotype [2, 117].

In addition to the accumulated mutations of TGF-β 
signaling cascades, TGF-β-regulated immunosuppres-
sive microenvironment also promotes tumor escape 
indirectly [118]. Adaptive immunity is one of three 
critical immune pathways implicated in disease, which 
is also regulated by TGF-β signaling [105, 114]. TGF-β 
signaling can not only control adaptive immunity by 
promoting the expansion of Treg cells directly, regulat-
ing the regulatory CD4 + T cell response, but also by 
controlling the function of effector T cells. In addition, 
TGF-β similarly controls the development and func-
tions of the innate immune system by inhibiting natural 
killer (NK) cells [119] and regulating the proliferation of 
macrophages, antigen-presenting dendritic cells (DCs), 
and granulocytes [120]. Mutations of SMAD4 promote 
dysregulation of NK cell homeostasis and augment 
tumor cell metastases [121]. Actions on both adaptive 
immunity and innate immunity form a network of nega-
tive immune regulatory inputs. Luckily, scientists have 
indicated that TGF-β-induced immune tolerance and 
inflammatory responses can be flexibly treated by ion-
izing radiation combined with hyperthermia and check-
point inhibitor therapies [122].

TGF‑β in melanoma
Melanoma is the most aggressive type of skin cancer, 
accounting for 7% of all diagnosed cancers in men and 
4% in women, with approximately 7,230 fatalities in 2019 
[123]. Like other cancers, as a tumor suppressor, TGF-β 
exerts an anti-proliferative powerful impact in normal 
melanocytes. As a tumor promoter, TGF-β promotes 
EMT, proliferation, metastasis, and immune tolerance 
[124, 125]. The opposite effects of TGF-β in melanoma 
is associated with the deregulation of cytokines (TNF-
α, VEPH1, SMAD4, INF-γ, SKI) and signaling pathways 
(Notch1, IL-6, and Erk/MAPK pathway), which in return 
regulate TGF-β signaling [121, 126–133].

Adipocyte-created IL-6 and TNF-αmiR-211 pro-
mote the miR-211-repressed translation of TβR I 
mRNA to enhance the cellular responsiveness and 
metastasis of melanoma [129]. The poorly expressed 
ventricular zone expressed PH domain-containing 1 
(VEPH1) and up-regulated upstream transcription fac-
tor 1 (USF1) in melanoma tissues promoted EMT [127, 
130]. TGF-β-induced transcription sustains actomyosin 
force is independent of EMT [134]. TGF-β-associated 
VEPH1 induces proliferation, migration, and invasion 

of conditioned medium (CM) cells by up-regulating 
the expression of E-cadherin and down-regulating the 
expression of N-cadherin, Vimentin, and SMAD4 [130, 
135]. Notably, SMAD4 suppresses tumor metastasis and 
promotes antitumor immunity through up-regulated 
IFN-γ and granzyme B (GZMB) by non-SMAD in NK 
cells at early stages [119, 121]. Immune cells, such as 
TGF-β-sustained effector T cells, secrete CD73 to facili-
tate tumor resistance of anti-CD137 therapy [136]. In 
BRAF (V600E)-mutant melanoma, the sex-determining 
region Y-box 10 (SOX10) is suppressed, and BRAF sign-
aling-activated TFEB S142 phosphorylation is promoted. 
Both of them help increase melanoma metastatic poten-
tial and drug resistance [137, 138].

Therapies targeting these deregulated cytokines and 
signaling pathways combined with radiation, chemother-
apy, and other targeted therapies become revolutionary 
therapeutic strategies. In addition to MECOM and BMP5 
in BRAF-mutated melanoma, GNAQ or CNA11 muta-
tions in uveal melanoma are also associated with TGF-β 
signaling [139]. Furthermore, GNAQ or CNA11 muta-
tions demonstrate low sensitivity or resistance to specific 
treatments [140, 141]. They indicate a suite of rationally 
designed clinical trials and potentially clinical targets. 
Scientists indicated that hydrophobic TGF-β inhibitor 
(SB-505124) and an adenoviral vector expressing IL-12 
increase animal survival [142]. PD-1/PD-L1 antigen-
specific checkpoints block siRNA entry into antigen-pre-
senting cells. In addition, PD-1/PD-L1 antigen-specific 
checkpoints are associated with lipid-coated calcium 
phosphate (LCP) mRNA vaccine, which indicates a 
more robust immune response to melanoma growth and 
metastasis [143]. Overall, the rational development of 
multiple anticancer therapies, such as the combination of 
TGF-β inhibitors with checkpoint inhibitors and/or other 
biological treatments, holds excellent prospects.

TGF‑β in pancreatic ductal adenocarcinoma
Pancreatic ductal adenocarcinoma (PDAC) is the most 
aggressive type of gastrointestinal tumor due to its rapid 
progression and resistance to traditional chemoradio-
therapy [144]. Studies have shown that whether TGF-β 
acts as a tumor suppressor or a tumor promoter depends 
on the tumor microenvironment [145]. In the early stage 
of pancreatic cancer, TGF-β promotes apoptosis via ID1 
[146], regulates cell cycle progression through G1 arrest 
[147], and inhibits the growth of epithelial cells. In addi-
tion, a decrease in VEGF and an increase in TSP-1 caused 
by TGF-β help inhibit pancreatic cancer [148]. However, 
during the advanced stage of PDAC, genetically inac-
tivated TGF-β signaling has a potent growth promotor 
effect [149, 150]. Of note, TGF-β does not only promote 
evasion and metastasis in all advanced pancreatic 
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cancer. Overexpressed TGF-β drives tumor suppression 
in SMAD4-positive PDA cells by repressing KLF5 [151].

More evidence is emerging that at least one mutation 
in the TGF-β signaling genes (TGFβRI, TGFβRII, Smad2, 
and Smad4 genes) occurs in all PDAC [152, 153]. SMAD 
mutation occurs in 60% of pancreatic cancer patients. An 
increased KRAS mutation and SMAD mutation in PDAC 
patients drive early tumorigenesis and metastasis. [154–
156]. The mutated TGF-β signaling pathway has a much 
stronger ability to inhibit proliferation, promote angio-
genesis and immune escape than simply shutting down 
the TGF-β signaling pathways [157, 158]. SMAD4 dele-
tion leads to up-regulation of the oncogene (PGK1) [159]
and down-regulation of the anticancer gene (SMAD4/
DPC4). Such regulation promotes cell metastasis [148]. 
Meanwhile, deregulated TGF-β signaling leads to ECM 
deposition and immunosuppressive cell infiltration [160–
162]. This kind of deposition and infiltration accelerates 
the metastasis of pancreatic cancer cells and rationalizes 
early PDAC dissemination [163, 164].

TGF-β plays a crucial role in the process and metastasis 
of PDAC, and therapies targeting TGF-β signaling hold 
great promise. Several strategies relevant to TGF-β sign-
aling have been investigated in preclinical and clinical 
researches and have shown efficacy partially [165–167]. 
Therapeutic approaches are always associated with three 
levels of ligand, ligand-receptor binding, and intracel-
lular transduction to disrupt TGF-β signaling. These 
approaches contain TβR II antagonists, sequence-tar-
geted antifibrosis nanoparticles, anti-TGF-β recombinant 
protein, and DC vaccines [168–170]. Lipoxin A4 (LXA4), 
a metabolite derived from arachidonic acid, could signifi-
cantly inhibit TGF-β signaling in PDAC [171]. Strategies 
targeting ligand-receptor binding levels, such as TGF-β 
inhibitors and monoclonal blocking antibodies, also 
show robust performance against PDAC [172]. TGF-β 
inhibitors are primarily TβR-targeted and SMADs-
associated kinases at signal cell level. The most effective 
treatment is the combination of TGF-β inhibitors with 
chemotherapy and other biological agents. For example, 
vactosertib (activin receptor-like kinase 5 inhibitor) [173] 
in combination with nal-IRI plus 5-Fluorouracil/Leu-
covorin improved overall survival rates compared with 
vactosertib alone [174, 175]. Nanotargeted relaxin, an 
endogenous hormone, has also been shown to enhance 
the efficacy of gemcitabine in  vivo [176]. Furthermore, 
the selection of correct dosage form and the establish-
ment of a demonstration drug delivery system are criti-
cal for the treatment of desmoplastic tumors. Compared 
with traditional Chinese medicine dosage forms (decoc-
tion and powder), the targeted administration of nano-
preparations (α-mangostein and triptolide) can overcome 

the permeation obstacles in PDAC and improve thera-
peutic effects. [176].

TGF‑β in colorectal cancer
Colorectal cancer (CRC) is the leading cause of death 
among cancers of the digestive system (101,420 esti-
mated new cases and 51,020 estimated deaths in 2019) 
[123], the poor prognosis of which is mainly associ-
ated with colorectal cancer metastasis and immune 
evasion. Many studies have indicated that malignant 
CRC is characterized by high stromal infiltration with 
innate immune cells, fibroblasts, and TGF-β activation 
[177]. TGF-β is involved in regulating CRC metastasis, 
tumor stroma, microenvironment, and immune sys-
tem resistance.

Colorectal cancer is driven by the accumulation of 
mutations in APC, KRAS, TβR II, Trp53 [178–182], car-
cinoembryonic antigen-associated cell adhesion mol-
ecules (CEACAM) [183] and R-spondins (RSPOs) [184]. 
The four primary [185]mutations in intestinal tumors 
promote CRC metastasis, indicating a negative prognos-
tic effect for recurrence of CRC [186–188] and regulat-
ing the tumor microenvironment [112, 189]. Despite 
these mutations demonstrate worse clinical outcomes, 
they also predict neoantigen-specific immunotherapeutic 
anti-TGF-β strategies [187].

It has been confirmed that inhibiting TGF-β signaling 
pathways in the preclinical and clinical treatment of CRC 
are effective [190]. However, anti-TGF-β therapy alone 
is insufficient to mediate antitumor immunity in CRC. 
In contrast, the combination of other biological agents 
or irradiated tumor vaccine with anti-TGF-β treatment 
can reduce CRC metastasis. Chemotherapies ginsenoside 
Rb2 [191] and tanshinone II A [192] showed therapeutic 
effects on CRC by inhibiting TGF-β-induced EMT and 
angiogenesis, respectively [193]. Nevertheless, the effect 
was mild. Monotherapy with galunisertib (LY2157299), 
an oral small-molecule inhibitor of the TβR I kinase, was 
also not significant [194]. Coadministration of TGF-β 
blocking agents and anti-PD-L1 antibodies indicated a 
dramatic response by promoting CD8 + T cells penetra-
tion into the tumor [189].

TGF‑β in breast cancer
Along with lung and colon cancer, breast cancer is one 
of the most common cancers worldwide and is more 
malignant in females than in males. Although the mortal-
ity rates of breast cancer are decreasing in some devel-
oped countries, there are approximately 500,000 deaths 
because of breast cancer every year [195, 196]. Further 
understandment of the development, progression, and 
treatment of breast cancer is emergency.
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The TGF-β signaling pathway is well known to play 
a vital role in cancer regulation, and breast cancer is 
no exception [115, 157]. TGF-β regulates the survival 
of cancer cells to influence breast cancer progres-
sion. On the one hand, TGF-β can induce the anti-
apoptotic effects of mouse mammary carcinoma cells 
through up-regulated chondrocytes 1. Chondrocytes 1 
is a basic helix-loop-helix (bHLH) transcription factor, 
which is tightly related to breast carcinomas [197]. On 
the other hand, the TGF-β signaling pathway can also 
disturb the immune system to induce immune evasion. 
In breast cancer, the lack of TβR III and its shed extra-
cellular domain (sTβR III) will enhance TGF-β signal-
ing within DCs. It finally results in Tregs infiltration 
and immune suppression [198]. In addition, TGF-β 
can also transactivate EGFR through the Smad3 and 
ERK/Sp1 signaling pathways to promote the migration 
and proliferation of breast cancer cells [199].

Moreover, we should highlight the contribution of 
TGF-β to breast cancer metastasis because breast can-
cer can quickly metastasize to the lung, brain, bone, 
and liver, which is lethal [200]. In addition to breast 
cancer, TGF-β is also critical in the metastasis of other 
cancers including bone, and gastric cancer [201–203]. 
TGF-β participates in breast cancer metastasis by up-
regulating CXCR4 in monocytes. These attracted and 
differentiated tumor-associated macrophages (TAMs) 
assist tumor cell extravasation [204]. Additionally, 
miR-190 and OTU domain-containing protein 1 are 
two inhibitors of TGF-β signaling that target SMAD2 
and SMAD7, respectively. The expression of SMAD2 
and SMAD7 is associated with outcomes in breast can-
cer patients, for downregulated SMAD2 and SMAD7 
promote breast cancer metastasis [205, 206].

The mechanism of TGF-β promoting breast cancer is 
manifold. Therefore, targeting TGF-β signaling is prob-
ably an effective way to treat breast cancer. Artemisinin 
derivatives, like artesunate (ARS) and dihydroarte-
misinin (DHA), are effective in suppressing TGF-β 
signaling and CAF activation. Breast cancer will be in 
remission because of the reduced interaction between 
the tumor and tumor microenvironment [207]. In addi-
tion, a bispecific receptor decoy containing TGF-β neu-
tralizing the TβR II extracellular domain was designed. 
This decoy and ibalizumab were intended recently 
to inhibit TGF-β signaling in TH cells and decrease 
tumor burden in a breast cancer mouse model [208]. 
Due to the deficiency of SIRT7 in breast cancer metas-
tasis mice, TGF-β signaling is activated to promote 
metastasis. It is already clear that resveratrol can acti-
vate SIRT7, regulate SMAD4 deacetylation, and most 
importantly inhibit metastasis [209].

TGF‑β in glioma cancer
Glioma is a malignant primary brain tumor divided into 
four categories, including circumscribed gliomas (WHO 
grade I) and diffusely infiltrating gliomas (WHO grade 
II-IV). Diffusely infiltrating gliomas are more malignant 
than circumscribed gliomas, in which glioblastoma is 
the most lethal glioma, with a median overall survival of 
14–17 months [210, 211].

Among the numerous signaling pathways that play 
a role in glioma, TGF-β signaling is being noted. The 
related mechanism and therapeutic strategies have been 
gradually clarified. It has already been found that the 
high proliferation and invasion of gliomas and the poor 
prognosis in glioma patients are usually accompanied 
by SMAD signaling in early studies, and Sox9 becomes 
an important regulatory target when TGF-β works in 
glioma progression [212, 213]. TGF-β plays an essen-
tial role in glioma progression by inducing the prolifera-
tion, invasion, EMT, and migration of glioma cells and 
depressing immune effector cells [214–216]. Further-
more, three kinds of TGF-β are all related to glioma. In a 
study of the relationship between TAMs and the progres-
sion of tumors, Z. Liu et al. found M2 phenotype TAMs 
to promote the stemness and migration of glioma cells 
by secreting TGF-β [217]. In addition, TGF-βII affects 
autophagy, a vital process connected with tumor growth, 
promoting glioma cells’ invasion through the SMAD and 
non-SMAD pathways [218, 219]. Among those three iso-
forms, the expression of TGF-βIII was lower than that of 
the other two isoforms. However, it has an essential effect 
on SMAD phosphorylation and tumor invasiveness [220].

Previous studies have shown that overexpressed TGF-β 
in the glioma is involved in angiogenesis, tissue inva-
sion, and cancer progression. Therapies targeting TGF-β 
are divided into three levels: TGF-β mRNA translation 
inhibitors, TGF-β neutralizing antibodies and recep-
tor inhibitors, and regulators of TGF-β signaling path-
way downstream factors. In a phase II clinical study 
(NCT00431561), intratumorally administered AP12009 
alone exhibits one-third of the efficacy population [221]. 
AP12009 is a phosphorothioate antisense oligodeoxy-
nucleotide specific for the mRNA of human TGF-βII 
[221]. RGFP966, along with an HDAC3 inhibitor, regu-
lated SMAD7 acetylation rather than ubiquitination to 
promote gastric stump carcinoma (GSC) differentia-
tion [222]. There appeared to be no difference in efficacy 
between monotherapy of TGF-β antibodies (GC1008, 
NCT01472731) or small-molecule TβR I inhibitors 
(LY2157299, NCT01220271), and their combination 
with chemotherapy (Table  1) [223]. The exploration of 
appropriate combination therapy is still the mainstream 
direction.
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Table 1 Therapies targeting TGF-β signaling under clinical trials in the past 3 years

Drug Mechanism Indication Development stage ClinicalTrials.gov identifier

SAR439459 Pan- TGFβ neutralizing antibody Advanced Malignant Solid 
Neoplasm/Metastatic Malignant 
Solid Neoplasm/Unresectable 
Malignant Solid Neoplasm

Phase 1 NCT04729725

Plasma Cell Myeloma Refractory Phase1/Phase 2 NCT04643002

Advanced Liver Cancers Phase1/Phase 2 NCT04524871

NIS793 Fully human anti-TGF-β IgG2 
monoclonal antibody

Metastatic Pancreatic Ductal 
Adenocarcinoma

Phase2/Phase 3 NCT04390763/NCT04935359

Myelofibrosis Phase1/Phase 2 NCT04097821

Myelodysplastic Syndromes Phase 1 NCT04810611

ABBV151 Humanized monoclonal antibody 
inhibitor of GARP- TGF-β1

Advanced Solid Tumors Cancer Phase 1 NCT03821935

AVID200 Engineered TGF-β ligand trap Malignant Solid Tumor Phase 1 NCT03834662

Primary Myelofibrosis/Post-
essential Thrombocythemia 
Myelofibrosis/Post-polycythemia 
Vera Myelofibrosis

Phase 1 NCT03895112

Scleroderma, Diffuse Phase 1 NCT03831438

M7824 (bintrafusp alfa) Bifunctional anti-PD-L1/TGF-βRII 
Trap fusion protein

Thymic Epithelial Tumor/Recur-
rent Thymoma/Thymic Cancer

Phase 2 NCT04417660

Metastatic Colorectal Cancer/
Advanced Solid Tumors With 
Microsatellite Instability

Phase1/Phase 2 NCT03436563

HPV Positive Cancer Phase1/Phase 2 NCT04432597

Urothelial Cancer Phase 2 NCT04501094

Kaposi Sarcoma Phase1/Phase 2 NCT04303117

Urothelial Cancer/Bladder Cancer/
Genitourinary Cancer/Urogenital 
Neoplasms/Urogenital Cancer

Phase 1 NCT04235777

Advanced Pancreas Cancer Phase1/Phase 2 NCT04327986

Mesothelioma; Lung Phase 2 NCT05005429

Stage II-III HER2 Positive Breast 
Cancer

Phase 1 NCT03620201

Relapsed Small Cell Lung Cancers Phase1/Phase 2 NCT03554473

Unresectable Stage III Non-Small-
Cell Lung Cancer

Phase 2 NCT03840902

Advanced Stage Breast Cancer Phase 1 NCT04296942

Prostate Neoplasms Phase1/Phase 2 NCT04633252

Metastatic Triple-Negative Breast 
Cancer

Phase 1 NCT03579472

Advanced Solid Tumors Phase1/Phase 2 NCT04574583

Metastatic Prostate Cancer/
Advanced Solid Tumors

Phase1/Phase 2 NCT03493945

Advanced HPV Associated Malig-
nancies

Phase1/Phase 2 NCT04287868

Metastatic Checkpoint Refractory 
HPV Associated Malignancies/
Microsatellite Stable Colon Cancer 
(MSS)

Phase 1/Phase 2 NCT04708470
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Table 1 (continued)

Drug Mechanism Indication Development stage ClinicalTrials.gov identifier

Triple-Negative Breast Neoplasms Phase 2 NCT04489940

Small Bowel Cancers/Colorectal 
Cancers

Phase 2 NCT04491955

Esophageal Squamous Cell 
Carcinoma

Phase 2 NCT04595149

Untreated Resectable Non-Small-
Cell Lung Cancer

Phase 2 NCT04560686

Cancers With Brain Metastases Phase1/Phase 2 NCT04789668

Recurrent Head and Neck Squa-
mous Cell Carcinoma/Second Pri-
mary Squamous Cell Carcinoma 
of the Head and Neck

Phase1/Phase 2 NCT04220775

Metastatic or Locally Advanced 
Urothelial Cancer

Phase 1 NCT04349280

Squamous Cell Carcinoma of 
Head and Neck

Phase 2 NCT04428047

Biliary Tract Cancer/Cholangio-
carcinoma

Phase 2 NCT04727541

Advanced Non-small-Cell Lung 
Cancer

Phase 2 NCT04396535

Locally Advanced or Metastatic 
Tyrosine Kinase Inhibitor-Resistant 
EGFR-Mutant Non-small-Cell 
Lung Cancer

Phase 2 NCT04971187

GFH018 Inhibitor of TGF-βRI Advanced Solid Tumor Phase1/Phase 2 NCT04914286

SHR-1701 Bifunctional anti-PD-L1/TGF-βRII 
agent

Pancreatic Cancer Phase1/Phase 2 NCT04624217

Metastatic or Locally Advanced 
Solid Tumors

Phase 1 NCT03710265/NCT03774979

Advanced Solid Tumors Phase1/Phase 2 NCT04856774

Nasopharyngeal Carcinoma Phase 1 NCT04282070

Advanced Solid Tumors Phase 1 NCT04324814

Metastatic Colorectal Cancer Phase2/Phase 3 NCT04856787

Advanced Solid Tumors and B-cell 
Lymphomas

Phase1/Phase 2 NCT04407741

JS201 Recombinant PD-1 monoclonal 
antibody/TGF-βRII bifunctional 
fusion protein

Advanced Malignant Tumors Phase 1 NCT04956926

Small-cell Lung Cancer Phase 2 NCT04951947

TST005 Bispecific antibody consisting of 
a PD-L1 monoclonal antibody 
(mAb) and a TGF-β trap

Locally Advanced or Metastatic 
Cancers/Metastatic Human 
Papillomavirus-Related Malignant 
Neoplasm

Phase 1 NCT04958434

TASO-001 Antisense oligonucleotide against 
TGF-β2

Advanced or Metastatic Solid 
Tumor

Phase 1 NCT04862767

TEW-7197 (Vactosertib) TGF-β receptor ALK4/ALK5 
inhibitor

Metastatic Pancreatic Cancer Phase1/Phase 2 NCT03666832

Advanced Stage Solid Tumors Phase 1 NCT02160106

Myeloproliferative Neoplasm Phase 2 NCT04103645

LY2157299 (galunisertib) Small molecule antagonist of the 
tyrosine kinase TGFBR1

Nasopharyngeal Carcinoma Phase 2 NCT04605562

LY3200882 Inhibitor of TGFβRI Solid Tumor Phase 1 NCT02937272

TRK250 siRNA-based oligonucleotide 
selectively suppressing TGFβ1

Idiopathic Pulmonary Fibrosis Phase 1 NCT03727802
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Clinical applications of TGF‑β‑targeting therapies
Extensive evidence suggests that targeting TGF-β cas-
cades has the potential to treat patients with fibrosis and 
cancers. Numerous anti-cancer and anti-fibrosis pharma-
cological interventions targeting TGF-β have undergone 
pre-clinical and clinical stages. TGF-β-targeted drugs 
are mainly divided into neutralizing antibodies, small-
molecule TGF-β inhibitors, ligand traps, antisense oligo-
nucleotides, and vaccines (Table 1) [224]. Among all the 
TGF-β targeting drugs, Fresolimumab (GC1008), Gal-
unisertib (LY2157299), Trabedersen (AP12009), and Vac-
tosertib are the most striking drugs [224–226]. Moreover, 
Trabedersen, a TGF-βII specific phosphonothioate anti-
sense oligodeoxynucleotide, also demonstrated a thera-
peutic effect on COVID-19 (NCT04801017).

Despite the encouraging potential displayed by TGF-β-
targeted drugs in a part of pre-clinical animal studies, the 
results from subsequent clinical trials of those drugs seem 

to be disappointing. The application of TGF-β inhibition 
strategies in patients with fibrosis is challenging due to the 
systemic effects of TGF-β and the complexity of cancer 
and fibrosis formation [227]. Firstly, although TGF-β cas-
cades are commonly activated to contribute to pathologi-
cal processes, the physiological function of TGF-β cannot 
be ignored. Therefore, the wide defection of TGF-β may 
lead to the disturbance of normal physiological processes, 
which should be treated with caution [228]. Secondly, 
TGF-β modulates a wide range of signaling cascades to 
promote fibrosis and cancers, which increases the diffi-
culty and complexity of the treatment. Exploring precise 
downstream TGF-β-activated factors for each disease is 
necessary. Thirdly, despite the key role of TGF-β in fibro-
sis and tumorigenesis, the onset and development of the 
disease is multifactorial. The combinational therapeutic 
strategies of TGF-β-targeted therapy with other tradi-
tional ones should be studied to achieve an ideal effect.

Table 1 (continued)

Drug Mechanism Indication Development stage ClinicalTrials.gov identifier

STP705 siRNA-based oligonucleotide 
selectively suppressing TGFβ1 
and COX-2

Basal Cell Carcinoma Phase 2 NCT04669808

Bowen’s Disease/Cutaneous 
Squamous Cell Carcinoma in Situ

Phase1/Phase 2 NCT04293679

Keloid Phase 2 NCT04844840

Hepatocellular Carcinoma/Liver 
Metastases/Cholangiocarcinoma

Phase 1 NCT04676633

Squamous Cell Carcinoma in Situ Phase 2 NCT04844983

QLS31901 PDL1/TGFβ antibody Advanced Malignant Tumor Phase 1 NCT04954456

ACE-1334 superfamily based ligand trap of 
TGFβ1 and c3

Systemic Sclerosis With and With-
out Interstitial Lung Disease

Phase 1/Phase 2 NCT04948554

ACE-536 (Luspatercept) TGFβ superfamily ligand trap Myelodysplastic Syndromes Phase2/Phase 3 NCT04477850/
NCT03900715/NCT03682536

Myelodysplastic Syndromes/Β-
thalassemia/Myeloproliferative 
Neoplasm-Associated Myelofi-
brosis

Phase 3 NCT04064060

Myeloproliferative Disorders/
Myelofibrosis/Primary Myelofi-
brosis/Post-Polycythemia Vera 
Myelofibrosis/Anemia

Phase 3 NCT04717414

Β-Thalassemia Phase 2 NCT04143724

Primary Myelofibrosis/Post-Poly-
cythemia Vera/Myelofibrosis

Phase 3 NCT03755518

NNC0361-0041 Recombinant supercoiled plas-
mid encoding PPI, TGF-β1, IL-10, 
and IL-2

Type I Diabetes Phase 1 NCT04279613

PF-06952229 TGFβ1 inhibitor Advanced Solid Tumors Phase 1 NCT03685591

GT90001 Fully human anti-ALK-1 mAb 
(IgG2)

Metastatic Hepatocellular Carci-
noma

Phase1/Phase 2 NCT03893695

Solid Tumors Phase1/Phase 2 NCT04984668

Trabedersen TGFβ2 specific phosphorothioate 
antisense oligodeoxynucleotide

COVID-19 Phase 2 NCT04801017
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Conclusion
TGF-β plays a vital role from early embryonic develop-
ment to adult homeostasis. However, dysregulation of 
TGF-β signaling is significantly associated with tumo-
rigenesis and fibrosis. The exact mechanism is complex 
and mainly involves TGF-β as a tumor suppressor in 
premalignant cells and a tumor promoter in carcinoma 
cells by regulating EMT, ECM accumulation, immune 
invasion, and CAFs activation. TGF-β overexpression 
under pathological conditions directly promotes tis-
sue lesions. In addition, TGF-β signaling cascade group 
mutation accumulation is also closely related to fibrosis 
and tumorigenesis.

The twenty-first century has witnessed a significant 
upgrade of precision medicine, among all, targeted 
therapy as the most promising one. Lots of preclini-
cal researches have demonstrated the efficacy of TGF-β 
related pharmacological agents. In recent years, there 
have been various clinical experiments evaluating TGF-
β-targeted antibody, small molecular receptor inhibitors, 
ligand traps, antisense oligonucleotides, and vaccines. 
Unfortunately, anti-TGF-β approaches achieved subtle 
efficacy due to the systemic biological effects of TGF-β 
and the complexity of fibrosis and tumorigenesis. It is 
known that most cancer patients die of metastasis after 
chemotherapy or radiotherapy, where the immunosup-
pressive TGF-β in the TME might be one of the factors. 
Therefore, the combination therapy of chemotherapy/ 
radiotherapy/targeted therapy with TGF-β-targeted ther-
apies might be developed to achieve an enhanced antitu-
mor efficacy by regulating tumor microenvironment. In 
addition, in future researches, researchers should further 
focus on the optimization of dosing and drug delivery 
systems in TGF-β-related therapies. Above all, the explo-
ration of comprehensive mechanisms of TGF-β in dis-
eases and the development of TGF-β based combination 
therapies might be very crucial for combatting fibrosis 
and cancer in future.
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