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1. Introduction 

Chronic Myeloid Leukemia (CML) is a clonal myeloproliferative disorder of pluripotent 
hematopoietic stem/progenitor cells that has been paradigmatic to our understanding of the 
molecular and cellular basis of human malignancies. It has provided an excellent example of 
how a specific molecular abnormality can be targeted therapeutically to transform a life-
threatening malignancy into a chronic disease. The study of CML has been characterized by 
a number of ‘firsts’. CML was the first malignancy to be: (i) associated with a specific 
chromosomal abnormality, (ii) associated with a specific molecular alteration (BCR-ABL) 
and (iii) successfully treated with a specifically designed targeted therapeutic agent. As such 
it seems natural that CML should be the first human malignancy in which a complete 
medical cure is achieved through the eradication of cancer stem cells. This should be 
realizable through combining the specific targeting of BCR-ABL and CML stem cells. Once 
this has been achieved, the challenge will be to successfully transfer the lessons learned from 
this relatively simple and well-characterized model system to the eradication of cancer stem 
cells in more complex malignancies. 
The treatment of CML has changed dramatically following the introduction into the clinic of 
the tyrosine kinase inhibitor (TKI) imatinib mesylate and second generation TKIs. These 
agents directly target the BCR-ABL oncoprotein product of the constitutively active BCR-
ABL tyrosine kinase. The specific targeting of BCR-ABL induces durable clinical remission 
in a high proportion of chronic phase CML (CP-CML) subjects (5 year survival of 89%) 
(Druker et al, 2006). Although a major molecular response (defined as a 3-log reduction in 
BCR-ABL mutant allele burden) is obtained in many CP-CML patients, only a small number 
attain PCR negativity as determined by the absence of residual BCR-ABL transcripts 
(Hughes et al, 2003). This is because TKI therapy does not specifically target or eliminate 
leukemia stem cells (LSCs). Indeed TKI therapy alone is unlikely to ever be curative, as 
following treatment with TKIs LSCs persist in bone marrow (BM) stem cell niches where 
they harbor the potential for relapse. The emergence of resistance to TKI monotherapy 
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through the accumulation of somatic kinase domain mutations that interfere with the 
binding of TKIs to the BCR-ABL ATP-binding site accounts for around 60-90% of relapses 
(O’Hare et al, 2006). There is consequently a significant unmet medical need for more 
effective therapeutic strategies that following effective tumor debulking are able to: (i) 
inhibit the molecular mechanisms responsible for generating the LSC genomic instability 
phenotype, (ii) target the essential components of the stem cell niche and the BM 
microenvironment that generate, protect, and nurture LSCs and (iii) efficiently eradicate 
LSCs. The micro-evolution of TKI resistance in CML is driven by the intrinsic genomic 
instability of the LSC, which in the presence of the selective pressure of drug, results in the 
expansion of a relatively predictable and invariant quasispecies of somatic mutants, which 
have differing degrees of intrinsic and acquired TKI resistance. The frequency of each of 
these clones oscillates with time, with a unitary or oligoclonal set eventually dominating the 
structure of the population and the clinical response to TKI therapy. The spectrum of 
mutants in any individual may be characterized through mutational analysis and 
subsequently used to select the most appropriate TKI therapy. The persistence of LSCs, 
however, allows additional drug-resistant mutants to arise, creating a new repertoire of 
diversity from which the most resistant and fastest growing clones are selected. As a result 
the therapeutic effects of first- and second-line TKI therapy are eventually circumvented. 
Clearly the eradication of the LSCs must form both a necessary and essential component of 
any therapeutic strategies that aim to achieve a deep and sustained molecular and clinical 
response, and ultimately a cure. In what follows we outline a number of approaches to the 
characterization of the CML LSC. The profiling and characterization of the LSC phenotype is 
expected to contribute to the rational design of LSC-targeted therapy, and as such presents 
an opportunity to establish a general paradigm for the development of cancer stem cell-
directed cures for human malignancies.  

2. Clinical and therapeutic challenges in the management of CML  

CML is a clonal, multi-step and multi-lineage myeloproliferative disease that typically 
evolves through three phenotypically and clinically distinct stages (Goldman & Melo, 2003;  
Jiang X. 2007; Savona & Talpaz, 2008; Sloma et al., 2010). The first of these is an indolent 
chronic phase (CP) characterized at the time of diagnosis by the presence of a deregulated 
BCR-ABL+ clone. This expands inappropriately and comes to dominate the population of 
BM progenitor cells, while at the same time continuing to produce phenotypically normal 
mature blood cells. There is, as a result, an excessive output of myeloid precursors and 
mature granulocytes into the BM and peripheral blood (PB). The second stage is an 
accelerated phase (AP) characterized by an incremental increase in the disease burden as 
demonstrated by an increased frequency of leukemic myeloid progenitor/precursor cells. 
The third stage is a rapidly fatal acute blast crisis phase (BC) characterized by increased 
genomic instability, deregulated proliferation and loss of differentiation. BC-CML may be 
categorized as myeloid or lymphoid (pre-B) by the appearance of increased numbers of 
differentiation-arrested blast cells that reflect the growth of sub-clones of early myeloid or 
pre-B cells respectively that have acquired additional somatic mutations (Goldman & Melo, 
2003;  Jiang X. 2007; Savona & Talpaz, 2008; Sloma et al., 2010). The canonical feature of 
CML is the presence in hematopoietic stem cell (HSC) derived progeny of a Philadelphia 
chromosome (Ph+) containing a reciprocal t(9;22)(q34;q11) translocation, which generates a 
clone-specific BCR-ABL fusion oncogene. This encodes a chimeric BCR-ABL oncoprotein 
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that has significantly enhanced and constitutive tyrosine kinase activity, which drives the 
pathogenic features of the disease (Druker et al., 1996; Lugo et al., 1990). It produces a range 
of biochemical changes that impact the growth-factor dependence, turnover, and genomic 
stability of primitive CD34+ leukemic cells, whilst at the same time having little impact on 
their ability to differentiate according to predefined molecular programs (Holyoake et al., 
2002; Jiang et al., 2007b; Penserga & Skorski, 2007; Sloma et al., 2010; Valent, 2008). 
The identification of an invariant molecular genetic alteration (BCR-ABL) in the vast 

majority of cases of CML has facilitated the development of rational targeted therapy 

focused on the selective inhibition of the dysregulated tyrosine kinase activity of the 

encoded BCR-ABL oncoprotein (Druker et al., 1996; Shah et al., 2004; Weisberg et al., 2005). 

Imatinib mesylate (IM, Novartis, Basel, Swizerland) was the first tyrosine inhibitor to be 

developed as a molecular targeted drug (Druker et al., 1996). It is a competitive inhibitor of 

the ATP-binding site of the ABL-kinase domain, and prevents a conformational change of 

the oncoprotein to its active form, resulting in the elimination of most BCR-ABL+ cells 

(Druker et al., 1996). This relatively selective agent (it also recognizes the ATP-binding site 

of the c-Kit and platelet-derived growth factor receptors) has been immensely effective in 

the treatment of subjects with CP-CML (Druker et al., 2006; Druker et al., 2001; Kantarjian et 

al., 2002; O'Brien et al., 2003). Nevertheless, early relapse and the emergence of IM resistance 

are observed in 10-20% of subjects in early CP-CML, and up to 40% of those with advanced 

phase disease including 1-3% of newly diagnosed CML patients that develop sudden blast 

crisis (Apperley, 2007; Deininger et al., 2005; Forrest et al., 2008; Kantarjian et al., 2003; 

O'Hare et al., 2006; Valent, 2008). The inability to successfully discontinue IM therapy 

following at least five years of therapy, the persistence of a reservoir of clonal leukemic stem 

cells following the attainment of a complete molecular response (CMR), and the uncertain 

safety profile of long-term TKI treatment, has led to differing views on the most appropriate 

choice of therapy in CP-CML (Mahon et al., 2010; Ross et al., 2010a; Ross et al., 2010b; 

Rousselot et al., 2007; Sobrinho-Simoes et al., 2010).  Recently, second-line TKIs including 

Dasatinib (DA,Bristol-Myers Squibb, New York, NY, USA) and Nilotinib (NL, Novatis) have 

been licensed for use in this indication and represent alternative therapeutic options either 

first-line or for resistant or intolerant cases. Both drugs have increased potency against the 

BCR-ABL kinase domain mutants most commonly associated with IM resistance. This along 

with their differing spectrums of inhibitory activity across the human kinome, has translated 

into increased clinical efficacy in subjects with IM-resistant disease (Carter et al., 2005; Shah 

et al., 2004; Weisberg et al., 2005). The major cytogenetic response (MCyR) rate following 

therapy with DA or NL in subjects with IM-resistant CP-CML is approximately 60%, with a 

complete cytogenetic response (CCyR) rate of 50% (Hochhaus et al., 2008; Kantarjian et al., 

2007). Two recent Phase 3 randomized trials in subjects with treatment naïve early stage CP-

CML demonstrated that both drugs are more effective than IM at inducing MCyR and major 

molecular (MMR) responses (Kantarjian et al., 2010; Saglio et al., 2010). DA and NL were 

subsequently approved by the U.S. Food and Drug Administration (FDA) as first-line 

therapies in CP-CML. Clinical experience, however, has shown that some subjects 

experience inadequate responses to all existing TKI therapies, or have an initial response but 

then progress rapidly (Kantarjian et al., 2006; Talpaz et al., 2006). As is the case in 60% of 

subjects with IM-resistant disease, the recalcitrant T315I mutation also routinely dominates 

the observed resistance with DA and NL (Apperley, 2007; Goldman, 2007).  As a result these 

agents have no benefit over IM in subjects whose resistance is thought to be mediated 
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principally by T315I somatic mutants. In spite of this, each TKI has a unique spectrum of 

activity with respect to most of the other commonly encountered mutations that confer 

resistance to TKI therapy. Subjects with the V299L, T315A, and F317L/V/I/C mutations, for 

example, are less sensitive to DA (Muller et al., 2009; Soverini et al., 2011; Soverini et al., 

2006), whereas the Y253H, E255K/V and F359V/C/I mutations are less sensitive to 

treatment with NL (Hughes et al., 2009; Soverini et al., 2011). Several third-generation 

tyrosine kinase inhibitors have been developed, including ponatinib (AP24534, ARIAD, 

Cambridge, Massachusetts, US) (O'Hare et al., 2009), which is an orally active multi-targeted 

kinase inhibitor that targets both the wild type and a broad spectrum of mutant forms of 

BCR-ABL. It was specifically designed to inhibit the autophosphorylation of wild-type and 

T315I mutant BCR-ABL and is active against most of the commonly encountered IM-

resistant mutations including G250E, Y253F and E255K (O'Hare et al., 2009). In a phase 1 

study 38 patients with CP-CML, 66% achieved a MCyR and 53% a CCyR. Most significantly, 

a total of 89% (nine subjects) of the subjects harboring a T315I mutation attained a CCyR 

(Santos & Quintas-Cardama, 2011). The effectiveness of long-term therapy with ponatinib in 

IM-resistant patients, however, has yet to be determined. Allogeneic hematopoietic stem cell 

transplantation (allo-HSCT) is currently the only therapeutic option for CML that has 

curative potential. Its use, however, is restricted to subjects of less than 50 years that have a 

suitable donor, and even this highly selected group has a high risk of procedure-related 

morbidity and mortality (Forrest et al., 2008). The salvage rate for subjects with advanced 

phase disease, especially BC-CML, is poor even with allo-HSCT, with the vast majority 

dying as a result of their disease within a few years. There is consequently a significant 

unmet medical need for therapeutic options that prevent the emergence of resistant sub-

clones and that can be administered with curative intent as a result of the selective targeting 

of LSCs. 

3. Properties of CML stem/progenitor cells that generate TKI resistance   

Primitive quiescent CML stem cells are relatively unresponsive to TKIs (Copland et al., 2006; 

Graham et al., 2002; Jorgensen et al., 2007) and possess unique features that predispose them 

to intrinsic and acquired resistance to BCR-ABL targeted therapeutics (Chu et al., 2005; Jiang 

et al., 2007a; Jiang et al., 2007b; Jiang et al., 2007c; Konig et al., 2008; Sorel et al., 2004). 

Evidence further suggests that LSCs are responsible for relapse following the 

discontinuation of IM therapy (Mahon et al., 2010; Ross et al., 2010a; Ross et al., 2010b; 

Rousselot et al., 2007; Sobrinho-Simoes et al., 2010). The elimination of the LSCs responsible 

for disease perpetuation and for the intrinsic and acquired TKI resistance observed in CML 

therefore represents the next logical step in the treatment of CML. An essential component 

of this enterprise, involves the molecular characterization of the CML stem cell phenotype, 

BM microenvironment and the stem niche that foster the origin, development, growth and 

survival of LSCs. 

The relative insensitivity of primitive CML cells to treatment with IM was first reported in a 
quiescent subset of CD34+ CML cells using a carboxy-fluorescein diacetate succinimidyl 
diester (CFSE) staining cell division tracking assay (Graham et al., 2002; Holyoake et al., 
1999). This demonstrated that 3 days of exposure of CML cells in vitro to concentrations of 
IM that were several-fold higher than those achieved in the plasma of subjects treated with 
400 mg IM daily, failed to eliminate most of the primitive quiescent CML cells (Graham et 
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al., 2002). In contrast, cells with replicative competency during the same interval were 
eliminated. A similar insensitivity of this subset of cells to DA and NL has also been 
demonstrated (Copland et al., 2006; Jorgensen et al., 2007). Subsequent studies using assays 
for long-term culture-initiating cells (LTC-ICs) and colony forming assays (CFCs) have  
 

 

Fig. 1. Unique features of CML stem cells promoting their resistance to BCR-ABL-targeted 
therapies. (A) Suspension cultures were initiated with FACS-purified lin-CD34+CD38- and lin-

CD34+CD38+ CML cells and maintained for 3 weeks in the presence or absence of growth 
factors and variable concentrations of imatinib (IM). The differential IM sensitivity of lin-

CD34+CD38- and lin-CD34+CD38+ CML cells to IM in vitro is markedly enhanced under 
growth factor-deprived conditions. (B) BCR-ABL transcript levels relative to BCR were 
measured in RNA isolated from different subsets of cells. Expression of BCR-ABL is highly 
deregulated in lin-CD34+CD38- stem-cell enriched population as compared to their more 
mature progenitor cells (lin-CD34+CD38+) and differentiated cells (lin+CD34-). (C) OCT1, 
ABCB1 and ABCG2 transcript levels relative to GAPDH were measured in different subsets of 
CP-CML and normal BM cells. A reduced level of OCT1 and elevated levels of ABCB1 and 
ABCG2 were detected in lin-CD34+CD38- stem-cell enriched population as compared to their 
more mature progenitor cells. The combination of very low expression of OCT1 (low IM 
uptake), highly elevated expression of ABCB1 and ABCG2 (high efflux of IM and other drugs) 
and elevated expression of BCR-ABL in CML stem cells indicates that their general insensitivity 
to IM and other therapeutics is likely to be explained by multiple abnormal mechanisms.  
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indicated that although IM is able to inhibit the proliferation of primitive CML cells in vitro, 

it does not induce concurrent apoptosis (Holtz et al., 2005; Holtz et al., 2002). We have 

shown that the ability of IM to inhibit primitive CML cells depends on their differentiation 

status (Jiang et al., 2007c). In these experiments, stem cell and progenitor cell enriched CML 

cell fractions (lin-CD34+CD38- and lin-CD34+CD38+ cells, respectively) were isolated and 

cultured in the presence of varying concentrations of IM for a more prolonged period than 

in the earlier studies with primary quiescent CML cells (3 weeks vs. 3 to 12 days). The 

inhibitory effect of IM on the yield of viable cells following a 3 week exposure period was 

found to be much less (~10- to 20-fold) pronounced in cultures initiated with more primitive 

lin-CD34+CD38- CML cells as compared with the more differentiated lin-CD34+CD38+ cells 

(Figure 1A). Taken together, these findings suggest that the most primitive CML cells are 

much less sensitive to IM than the differentiated bulk population. The fact that Ph+CD34+ 

CFCs and LTC-ICs remain detectable in subjects with CML that have achieved 

hematological remission following treatment with IM, suggests that these in vitro findings 

are likely to translate into the clinic (Bhatia et al., 2003; Chu et al., 2005). They are further 

supported by a recent report revealing the presence of BCR-ABL+ cells in LTC-ICs of CML 

patients that have achieved prolonged clinical remission following treatment with either 

interferon-alpha, IM or DA (Chomel et al., 2011). However, whereas most CML cells are 

oncogene addicted and sensitive to TKI treatment, the growth and survival of CML LSCs do 

not appear to be BCR-ABL tyrosine kinase activity dependent (Corbin et al., 2011). This 

suggests that alternative pathways may be active in CML LSCs that drive their proliferation 

and self-renewal in a BCR-ABL independent manner. Combination therapies aimed at 

targeting critical components of these pathways are likely to be of key importance in the 

derivation of a logical CML LSC eradication strategy.  

Other studies have shown that CML stem/progenitor cells have multiple unique features 
that would be expected to contribute to the observed intrinsic and acquired resistance to 
BCR-ABL directed therapeutics (Copland, 2009; Engler et al., 2010; Jiang et al., 2007a; Jiang et 
al., 2007b; Jiang et al., 2007c). These include: (i) elevated levels of BCR-ABL expression and 
kinase activity in CML stem cells as compared with their more mature progeny (Figure 1B) 
in a manner that is cell cycle status independent (Barnes et al., 2005; Copland et al., 2006; 
Jamieson et al., 2004; Jiang et al., 2007b; Jiang et al., 2008; Jiang et al., 2007c), (ii) a 
corresponding reduced (almost undetectable) level of the transporter gene OCT1 that is the 
principal regulator of IM uptake (Figure 1C) (Thomas et al., 2004; White et al., 2006) and 
whose decreased levels would be expected to reduce the ability of cells to take up IM 
(Engler et al., 2010; Jiang et al., 2007c) and (iii) elevated levels of expression of the ABC 
transporter genes ABCB1(MDR) and ABCG2 (Figure 1C) which enhance the cellular efflux of 
IM and other drugs (Jiang et al., 2007c; Jordanides et al., 2006; Lepper et al., 2005). The 
combination of an exceptionally low level of OCT1 expression which impedes cellular IM 
uptake, a highly elevated expression of ABCB1 and ABCG2 which produces a high rate of 
cellular IM efflux, and elevated expression of the BCR-ABL oncogene in CML stem cells, 
indicates that their insensitivity to IM and other therapeutics is in part explained by a 
unique portfolio of protective mechanisms (Jiang et al., 2007b; Jiang et al., 2007c). 
Interestingly studies in a cohort of 30 CML patients have shown that IM-non-responders 
have lower OCT1 transcript levels than IM-responders (Crossman et al., 2005), and that the 
functional activity of the encoded OCT1 protein, as measured by the OCT1-mediated influx 
of IM into primary CML cells, is predictive of the long-term outcome of CP-CML subjects 
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treated with IM (White et al., 2010; White et al., 2006). This suggests that measurement of 
OCT1 expression might provide a useful predictor of the long-term risk of resistance 
acquisition in subjects with IM-treated CML.    
In order to determine whether the unique properties of CD34+ stem/progenitor cells 
derived from treatment-naïve CML patients correlate with the subsequent clinical response 
of the patients to IM therapy, we conducted a retrospective analysis of pre-treatment CD34+ 
PB cells obtained from 25 IM-treated CP-CML subjects with documented clinical outcomes 
(Jiang et al., 2010). Following the isolation of CD34+ cells from pre-treatment samples, we 
measured their in vitro CFC sensitivity to IM, expression levels of BCR-ABL, OCT1, 
ABCB1/MDR, and ABCG2, and the frequency of BCR-ABL tyrosine kinase domain somatic 
mutations. The data were segregated and analyzed according to whether they were from the 
11 clinically defined IM-responders or the 14 IM non-responders. This confirmed the 
reported features of CD34+ CML cells, and identified two further features that differed 
significantly between the two groups. These were the responses of the pre-treatment CFCs 
to IM exposure in vitro (P<0.0001) and the frequency of mutant BCR-ABL transcripts in 
CD34+ cells (P=0.0025) suggesting that these parameters might form the basis of a 
prospective test for the optimization of CP-CML management (Jiang et al., 2010). 

4. Genomic instability and a mutator phenotype as an invariant feature of 
CML LSCs   

The genomic instability of primitive CML cells induced by the presence of the BCR-ABL 

fusion oncogene has long been thought to be a critical feature of CML. However, it is only in 

the last decade that data from CML cell lines and transgenic mice have provided definitive 

evidence that the BCR-ABL oncogene is necessary for the induction of genomic instability in 

hematopoietic cells (Brain et al., 2002; Brain et al., 2003; Canitrot et al., 1999). BCR-ABL is 

able, for example, to induce a mutator phenotype in BCR-ABL transfected murine cells. It 

also produces elevated levels of reactive oxygen species (ROS)-dependent DNA damage as 

compared with non-transfected controls. This damage to genomic DNA is likely to 

contribute to the accumulation of the somatic point mutations found in the ATP-binding site 

of the constitutively expressed BCR-ABL tyrosine kinase, and which are responsible for 

most cases of TKI resistance (Koptyra et al., 2006; Skorski, 2008). Interestingly, the ROS-

dependent mutations in BCR-ABL transfected cells were principally detected in a gene 

encoding the Na+K+ATPase Atp1a1 (Koptyra et al., 2006). Mutant ATP1A1 transcripts 

including those containing point mutations, insertions and deletions have been reported at 

high frequency (15-34%) in CD34+ CML cells rescued from IM nonresponders, a mutational 

rate similar to that observed in the BCR-ABL kinase domain of CML subjects. These 

mutations are not seen in CD34+ BM cells derived from healthy controls (Jiang et al., 2010). 

This and other data suggest that BCR-ABL induces a mutator phenotype, which results in 

the genome-wide instability of primitive CML cells.  

Investigations into the cellular and molecular causes of IM resistance have shown that the 
acquisition of somatic mutations in the BCR-ABL kinase-encoding domain that reduce the 
efficiency of IM binding to the ATP binding site represents the most common mechanism of 
resistance (accounting for 60-80% of relapses) (Deininger et al., 2005; O'Hare et al., 2006; 
Soverini et al., 2011; Valent, 2008). Copy number amplifications of BCR-ABL in contrast are 
rare (<10% of cases) (Gorre et al., 2001; Hochhaus et al., 2002; Tauchi & Ohyashiki, 2004). 
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More than 90 different BCR-ABL kinase domain point mutations have been reported at 
varying frequencies in IM-resistant subjects (Apperley, 2007; Hughes et al., 2006; Shah et al., 
2002; Soverini et al., 2011). Of these 15 specific amino acid substitutions account for more 
than 85% of the mutations at the protein sequence level. The mutations responsible for 66% 
of reported cases, furthermore, have been shown to occur at only six different positions 
(G250E, Y253F/H, E255K/V, T315I, F359V, H396R/P). The T315I mutation, which confers 
resistance to IM, DA and NL, is the most frequently detected mutation in IM-resistant 
patients and is the hardest mutant to treat (Apperley, 2007; Carter et al., 2005; Shah et al., 
2004; Soverini et al., 2011; Weisberg et al., 2005). BCR-ABL kinase domain mutations are 
found in IM-naïve patients but not in the germline of healthy controls, indicating that at 
least some of the mutations are somatically generated prior to the presence of drug 
selection, and that the increased frequency of mutations observed following TKI therapy 
occurs as a result of drug-induced selection and associated clonal expansion (Roche-
Lestienne et al., 2003; Roche-Lestienne et al., 2002; Willis et al., 2005). The somatic mutations 
themselves arise as a consequence of underlying genomic instability, which may reflect 
impaired processes of DNA repair in LSCs. Although some of the mutants are adaptive 
under the selective pressure of drug exposure, the majority diminish in frequency in the 
presence of TKI selection. We and others have demonstrated that the BCR-ABL fusion gene 
in CD34+ leukemic progenitor cells (Chu et al., 2005; Jiang et al., 2010) and CD34+CD38- stem 
cell-enriched cells is itself highly unstable (Jiang et al., 2007a) This is reflected in the 
unusually high frequency of BCR-ABL mutations that accumulate in the CD34+CD38- 
compartment in the presence or absence of IM selection. The rapid acquisition of somatic 
mutations in BCR-ABL is also observed in the progeny of CML cells stimulated to proliferate 
and differentiate in vitro (Figure 2) (Jiang et al., 2007a). The rapid and prolific generation of 
BCR-ABL somatic mutants in primary CML cells in vitro extends recent findings in BCR-
ABL-transduced murine BaF3 cells (von Bubnoff et al., 2005), and adult BM cells (Flamant & 
Turhan, 2005) and indicates that primitive leukemic CML cells have an intrinsically high 
rate of mutation, and a tendency to fix new somatic point mutations irrespective of the 
presence or absence of drug. The nature and timing of these apparently stochastic events 
relative to the size of the primary LSC clone at the time diagnosis and the timing, nature and 
extent of TKI therapy, may to some extent explain the variable clinical responses observed in 
different subjects (Jiang et al., 2007a; Roche-Lestienne et al., 2003; Shah et al., 2002; Sorel et al., 
2004). A recent study shows that CML subjects defined retrospectively as either IM responders 
or IM non-responders display significant differences in the frequency of mutant BCR-ABL 
transcripts present in their pre-treatment CD34+ cells (P=0.0025), with some of the highly 
resistant BCR-ABL kinase domain somatic mutants such as T315I being amplified from the 
CD34+ cells of IM non-responsive subjects (Jiang et al., 2010). Overall this suggests that 
primary CML stem/progenitor cells have a high degree of focal and possibly genome-wide 
instability, emphasizing the importance of taking the properties of these cells into account 
when considering new therapeutic approaches. The unique properties of leukemia 
stem/progenitor cells may, furthermore, help predict individual responses to TKI therapies 
and in so doing improve clinical management by facilitating personalized treatment decisions.   
One approach to targeting the LSC involves defining and inhibiting the generative 

mechanism causal to the observed genomic instability in LSCs. The ROS that are induced by 

BCR-ABL are known to cause many types of DNA damage including double-strand breaks 

(DSBs). It has been shown that the error-prone repair of DSBs by non-homologous end-

joining (NHEJ) may be responsible for at least some of the somatic point mutations observed 
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Fig. 2. CML stem cells are highly unstable and generate a high frequency of BCR-ABL kinase 
domain mutations both in vitro and in vivo.  (A) Suspension cultures were initiated with 
FACS-purified lin-CD34+CD38- stem cell-enriched population and maintained for 3 weeks in 
the presence or absence of growth factors and IM. The cells harvested from the 3-week 
cultures were then assayed for CFCs. Mutational analysis was then performed for the 
detection of BCR-ABL kinase domain mutations in freshly isolated lin-CD34+CD38- cells and 
their CFC progenies. (B) Pre-existing BCR-ABL kinase domain mutations could be detected 
in freshly isolated lin-CD34+CD38- stem cells and new mutations appeared during the 
growth of primitive CML cells in vitro. (C) Chromosomal abnormalities, such as 17 p+, could 
be observed from single colonies generated from the cells present after 3 weeks in culture 
with IM.    

in early CML and also the large deletions seen in later-stage CML. This is supported by 
evidence which suggests that key protein components of the major NHEJ pathway, WRN 
and DNA ligase IIIǂ that form a molecular complex which is recruited to DSBs, are up-
regulated in CML (Sallmyr et al., 2008). There is also evidence that ROS-induced DSBs are 
repaired, at least to some extent, by single-strand annealing (SSA). This is a rare and very 
unfaithful repair mechanism whose activity has been shown to be stimulated by BCR-ABL. 
Interestingly the activation of this repair mechanism is attenuated by IM therapy (Cramer et 
al., 2008). The presence of multiple alternative error-prone mechanisms for repairing DSBs, 
raises the possibility that the differential recruitment of these alternative repair pathways 
itself evolves as the disease progresses from CP to BC. 
One approach to identifying the generative mechanism that underlies the observed genomic 
instability in CML, is to generate a compendium of BCR-ABL kinase domain somatic 
mutations to determine if the mutator phenotype observed in LSCs is associated with a 
distinct mutational signature. In order to establish whether CML is characterized by a 
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distinct mutational imprint, we analyzed BCR-ABL tyrosine kinase domain sequence data 
from 15 IM-naïve and 316 IM-resistant CP-CML subjects (Grant et al., 2010). This revealed a 
distinct and non-random distribution of BCR-ABL kinase domain mutations with apparent 
hot spot regions located at codon positions 1 and 2, and several other distinct features that 
are commensurate with the activity of a distinct mutator. These include a propensity for 
transitions relative to unselected regions of the human genome across all codon positions, a 
T-to-C mutational hotspot at codon position 2, a near lack of mutations at codon position 3, 
and an overall under-representation of C-to-T mutations. These results provide evidence for 
the activity of a distinct mutator that is active in LSCs, and it is interesting that the 
frequently observed M244V and D276G mutations arise from T-to-C transitions, both of 
which are predicted consequences of putative CML LSC mutator activity. The clinically 
most problematic mutation, T315I, is interestingly generated by a C-to-T transition, 
indicating the imprint of intense drug-mediated selection. This characteristic mutational 
signature may provide insights into the mechanism that contributes to the observed 
genomic instability in LSCs, and which may act in concert with the error-prone repair of 
DSBs. Candidate mutators include the MYC oncogene, which is known to result in aberrant 
DNA synthesis and which has been shown to be over-expressed in CML subjects at the time 
of diagnosis. Higher expression levels have, furthermore, been shown to correlate with a 
poor clinical response to IM.  Interestingly MYC levels do not directly correlate with BCR-
ABL levels in subjects treated with IM (Albajar et al., 2011). 

5. Strategies for the eradication of leukemic stem cells   

The existence of both intrinsic and acquired resistance to TKIs in CML stem cells has 
prompted considerable interest in identifying multi-targeted therapeutic strategies able to 
combat the emergence of resistant clones by eliminating the LSCs that generate them. It has 
been hypothesized that combination strategies able to target both proliferating and 
primitive quiescent leukemic cells will significantly improve clinical outcomes in CML 
(Jiang X. 2007; Savona & Talpaz, 2008; Sloma et al., 2010). There is no doubt that the 
development of stem cell-directed therapies will be critical to the attainment of prolonged 
remission and ultimately TKI cessation and cure. As expected, the use of molecularly 
targeted agents such as IM results in the elimination of the majority of the more 
differentiated leukemic cells, but leaves primitive stem cells largely untouched. So although 
able to effect a significant initial reduction in leukemic cells of a more mature differentiation 
stage, LSCs eventually repopulate the malignant cell population following or during 
ongoing TKI therapy, generating new resistant mutants that leads to disease persistence and 
clinical recurrence. This situation recapitulates the elimination of rapidly cycling cells and 
sparing of quiescent leukemic stem cells seen in the deployment of conventional 
chemotherapeutics. Whereas monotherapy using agents that directly target LSCs may result 
in only a minimal observable initial response, in the absence of LSCs the leukemia is not 
expected to be maintained or expanded. Most importantly, the micro-evolutionary process 
that continuously and dynamically generates a spectrum of mutant clones will be disabled. 
As a result the disease burden would be expected to decline incrementally, providing 
significantly improved long-term outcomes. Combination with TKIs or other agents that 
target proliferating cells of a more mature phenotype will though continue to be essential for 
debulking. In the situation where resistant clones with BCR-ABL kinase domain mutations 
and/or other critical mutations are already present at high frequency, the simultaneous 
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targeting of the mutant clonal population with a second generation TKI will be necessary if 
molecular cure is to be achieved. This process will be facilitated by the development of new 
and more effective classes of debulking agents. A switch pocket inhibitor DCC-2036, for 
example, has been developed which targets the hydrophobic pockets distant from the 
catalytic region that regulate the transition between the active and inactive state of BCR-
ABL. This drug appears to successfully inhibit the majority of TKI-resistant mutants, 
including the critically important T315I gatekeeper mutation (Chan et al., 2011). DCC-2036 
inhibits the BCR-ABL oncoprotein in both its active and inactive conformation by inducing 
and stabilizing the type II inactive conformation. It is highly effective in suppressing the 
growth of transduced wild-type BCR-ABL murine cells, including cells transduced with the 
T315I mutant both in vitro and in vivo (Chan et al., 2011). A phase I trial of DCC-2036 in IM 
resistant subjects carrying either the T315I mutation or two or more alternative TKI 
mutations is currently underway. However, although useful in the management of TKI-
resistant mutations, DCC-2036 alone is unlikely to target LSCs.  
Global gene expression analysis and transcriptome profiling, including the identification of 
deregulated micro-RNAs (miRs) and the genes they target using next-generation sequencing 
technologies, have been applied in order to facilitate the identification of new molecular 
targets and biomarkers able to predict TKI responsivity in primary CML cells, IM resistant 
cells and BCR-ABL-transduced cells. Several studies have compared the transcriptome of 
CD34+ progenitor cells and CD34+CD38- stem cell-enriched leukemic cells with their healthy 
counterparts. These studies have confirmed the functional relevance of the activation of the 
JAK/STAT, PI3K/AKT, RAS/MAPK and NFκB pathways in LSCs (Janssen et al., 2005; 
Jongen-Lavrencic et al., 2005; Kronenwett et al., 2005; Nowicki et al., 2003; Radich et al., 
2006; Salesse & Verfaillie, 2003; Yong et al., 2006; Zhao et al., 2008). These studies have also 
identified differentially expressed genes that are involved in the regulation of DNA repair, 
cell cycle control, cell adhesion, and homing, as well as genes and transcription factors 
involved in drug metabolism (Diaz-Blanco et al., 2007; Kronenwett et al., 2005; Salesse & 
Verfaillie, 2003; Yong et al., 2006; Zhao et al., 2008). Several miRs and their target genes, 
including miR-203, miR-328 and miR-17-92 cluster, have been shown to regulate BCR-ABL 
and the expression of other genes known to be critical to the generation and maintenance of 
the CML phenotype (Bueno et al., 2008; Eiring et al., 2010; Venturini et al., 2007), indicating 
the potential utility of Micro-RNA profiling in the identification of novel targets for LSC-
directed therapies. Of note, several new potential targets have been identified which 
regulate the maintenance of self-renewal, quiescence and expansion of CML stem and 
progenitor cells. These include promyelocytic leukemia protein (PML), ǃ-Catenin, RNA-
binding proteins (RBPs) and the BMI1 and FOXO transcription factors, suggesting that the 
specific targeting of these proteins in conjunction with TKIs, may help eliminate residual 
CML LSCs (Copland, 2009; Eiring et al., 2008; Hu et al., 2009; Ito et al., 2008; Naka et al., 
2010; Park et al., 2003; Rizo et al., 2010; Zhao et al., 2007). 
The systematic applications of these and other new technologies have resulted in significant 
advances in our understanding of the molecular properties of CML stem and progenitor 
cells. They are also helping to define the nature of the BM microenvironment and stem cell 
niche that support the growth and differentiation of LSCs. The specific targeting of the BM 
microenvironment and stem cell niche represent alternative and indirect strategies for the 
elimination of LSCs (Figure 3). The chemokine receptor CXCR4, for example, which is 
central to stem cell localization and a known chemo-attractant for hematopoietic cells, is 
induced by IM and causes CML cell migration to the BM and promotes the survival of 

www.intechopen.com



 
Myeloid Leukemia – Basic Mechanisms of Leukemogenesis 

 

96

quiescent CML progenitors (Jin et al., 2008). This suggests a possible mechanism of IM 
resistance working through the cross-talk between CML stem/progenitor cells and their BM 
microenvironment niches, and suggests a rationale for the combination of CXCR4 
antagonists with TKIs so as to more effectively eliminate IM-resistant LSCs.  
 

 

Fig. 3. Targeting the CML stem cell.  Schematic diagram of the stem cell compartment and 
stem cell niche, indicating the specific targets of conventional first line TKI drugs, second 
and third generation TKIs, and the opportunities for targeting the CML stem cells either 
directly, or through the targeting and manipulation of the stem cell niche or bone marrow 
microenvironment. 

Components of the sonic hedgehog signalling pathway, including the smoothened 

transmembrane protein (SMO), have similarly been shown to play a critical role in normal 

and leukemic stem cell development, proliferation and self-renewal, including the 

regulation of the epithelial-mesenchymal transition (Varjosalo & Taipale, 2008). Knockdown 

or inhibition of SMO impairs HSC self-renewal and abrogates or delays the appearance of 

CML in several in vitro and in vivo models (Dierks et al., 2008; Zhao et al., 2009). Conversely, 

SMO over-activity has been demonstrated in CML cells, with their proliferation being more 

SMO-dependent than that of healthy HSCs. Clinical trials evaluating the effects of SMO 

pathway antagonists developed by a number of different pharmaceutical companies and the 

relevance of this pathway are currently under way in a range of different malignant 

indications. The combination of NL with the SMO inhibitor LDE225 and DA with PF-

04449913 has been reported as having additive effects on the inhibition of primitive CML 

cells in vitro and in vivo (Mar et al., 2011). Another study indicates that a combination of 

histone deacetylase inhibitors (HDACis, e.g. LAQ824) with IM is effective in targeting 
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quiescent CML stem cells (Figure 3). This study also suggests that an IM/HDAC 

combination inhibits several genes that regulate hematopoietic stem cell maintenance and 

survival (Zhang et al., 2010). Another study demonstrates that the targeting of autophagy, a 

process that allows cells to adapt to environmental stresses, enhances the effects of TKIs in 

BCR-ABL+ cell lines and in primary CML stem and progenitor cells (Bellodi et al., 2009). IM 

induces autophagy in BC-CML cell lines and in primary CML cells, and is associated with 

endoplasmic reticulum (ER) stress that is mechanistically non-overlapping with IM-induced 

apoptosis. Combination treatment with TKIs and inhibitors of autophagy such as 

chloroquine, is more effective in eliminating CML stem and progenitor cells in vitro than 

TKIs or autophagy inhibitors alone (Bellodi et al., 2009). The effectiveness of this 

combination treatment in eliminating primary CML stem and progenitor cells in vivo, 

however, remains to be seen. Other promising therapeutic strategies include the induction 

of protein phosphatase-2A activation by FTY720, which inhibits the survival and self-

renewal of CML progenitor cells (Neviani et al., 2007; Neviani et al., 2005). A 

farnesyltransferase inhibitor (BMS-214662) was also found to target primitive quiescent 

CML cells, indicating a possible role for this class of inhibitors (Copland et al., 2008).  

We have been pursuing a strategy based on the targeting of JAK2 with a view to inhibiting 
the activity of a biologically important multi-molecular complex that we have identified 
comprising AHI-1 (a novel signalling molecule encoded by the Abelson helper integration 
site 1 gene), the BCR-ABL fusion oncoprotein and JAK2 kinase (Zhou et al., 2008).  AHI-1 is 
upregulated in highly enriched populations of CML stem cells in which the levels of BCR-
ABL transcripts are also elevated (Jiang et al., 2004; Jiang et al., 2007c). Interestingly, 
overexpression of AHI-1 confers a growth advantage in vitro and results in leukemia in vivo, 
synergizing with BCR-ABL to enhance these outcomes (Zhou et al., 2008). Conversely, the 
stable suppression of AHI-1 in CD34+ CML cells using small interfering RNA, reduces their 
growth autonomy in vitro. Importantly, this newly defined AHI-1-BCR-ABL-JAK2 molecular 
interaction complex appears to mediate leukemic stem cell transformation and plays an 
important role in the TKI response/resistance of primary CML stem and progenitor cells. 
JAK2 itself is known to interact with the C-terminus of BCR-ABL, and is one of the most 
prominent targets of BCR-ABL in BCR-ABL transformed CML cells (Miyamoto et al., 2001; 
Samanta et al., 2006; Xie et al., 2001). BCR-ABL has also been found to interact with the IL-
3/GM-CSF receptor, which subsequently contributes to the downstream activation of JAK2 
(Wilson-Rawls et al., 1997). Furthermore, in primitive CML cells, BCR-ABL expression 
stimulates the production of IL-3, G-CSF and GM-CSF which, following binding to their 
cognate receptors, further contributes to the CML progenitor cell resistance to TKIs via the 
activation of the JAK2/STAT5 pathway (Jiang et al., 1999; Wang et al., 2007). High STAT5 
levels have also been shown to mediate acquired IM-resistance in CML cells and the STAT5 
inhibitor pimozide was shown to reduce their survival (Nelson et al., 2011; Warsch et al., 
2011). Therefore, targeting the activity of JAK2 could provide an excellent strategy to 
complement the inhibition of BCR-ABL kinase activity in primary CML stem cells (Figure 4). 
Indeed, recent studies have demonstrated that JAK2 inhibitors (TG101209, WP1193) and a 
dual kinase inhibitor of JAK2 and ABL kinases (ON044580) induced apoptosis in IM-
sensitive and IM-resistant CML cell lines (Samanta et al., 2011; Samanta et al., 2010) and that 
treatment with TKIs in combination with TG101209 results in greater inhibition of CML 
stem and progenitor cells as compared to when the same cells are treated with either TKIs or 
TG101209 alone or a combination of TKIs (DeGeer et al., 2010; DeGeer et al., 2009). Several 
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JAK2 inhibitors with varying degrees of intra-JAK family and intra-kinome selectivity are 
currently in various stages of clinical development. However, the myelosuppressive effects 
of these inhibitors on normal hematopoietic stem/progenitor cells remain a concern. The 
development of highly selective and less toxic (fewer hits across the kinome) JAK2 inhibitors 
in combination with first or second generation TKIs provides an attractive option for the 
specific targeting of LSCs (Figure 3 and 4). The permanent eradication of the leukemia stem 
cell in conjunction with tumor debulking, is expected to result in a functional cure, and in so 
doing to provide the study of CML with its ultimate crowning achievement. Importantly it 
should also provide molecular medicine with a general paradigm for the medical cure of 
cancer through stem cell eradication that with appropriate modifications should be 
applicable to multiple tumor types.   
 

 

Fig. 4. Model of the targeting of the AHI-1-BCR-ABL-JAK2 complex in CML stem cells by 
combination treatment of TKI and JAK2 inhibitors.  Schematic diagram of the AHI-1-BCR-
ABL-JAK2 interaction complex that regulates constitutive activation of BCR-ABL and 
JAK2/STAT5 and results in increased proliferation and a reduced TKI response in CML 
stem and progenitor cells. Targeting both BCR-ABL and JAK2 activities to destabilize this 
protein interaction complex may represent a potential therapeutic option for CML. 

6. Conclusion 

The discovery of tyrosine kinase inhibitors marked a major advance in CML therapy and 
other cancers. Although highly successful, selective tyrosine kinase inhibition has not 
resulted in a functional cure. As CML is driven by genetically unstable pluripotent leukemic 
stem cells, therapeutic approaches that target these cells will be required for definitive 
curative therapies. The systematic characterization of the unique biological properties of 
CML LSCs promises to deliver new insights into the process of malignant transformation 
and disease progression. As it comprises a relatively simple and well-understood model 
system, it is envisaged that the elimination of LSCs in CML will provide a general paradigm 
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for cancer stem cell eradication and the consequent provision for the basis of medical cures 
across a broad range of different malignancies. 
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