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Abstract: Autophagy is an evolutionarily conserved self-degradation system that recycles cellular
components and damaged organelles, which is critical for the maintenance of cellular homeostasis.
Intracellular reactive oxygen species (ROS) are short-lived molecules containing unpaired electrons
that are formed by the partial reduction of molecular oxygen. It is widely known that autophagy and
ROS can regulate each other to influence the progression of cancer. Recently, due to the wide potent
anti-cancer effects with minimal side effects, phytochemicals, especially those that can modulate ROS
and autophagy, have attracted great interest of researchers. In this review, we afford an overview of
the complex regulatory relationship between autophagy and ROS in cancer, with an emphasis on
phytochemicals that regulate ROS and autophagy for cancer therapy. We also discuss the effects of
ROS/autophagy inhibitors on the anti-cancer effects of phytochemicals, and the challenges associated
with harnessing the regulation potential on ROS and autophagy of phytochemicals for cancer therapy.
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1. Introduction

As early as 1963, Christian de Duve found that heterogenic intracellular cargoes could
be transported to lysosomes for degradation and named this phenomenon “autophagy” [1].
The detailed regulatory mechanism of autophagy has been discovered and displayed since
the 1990s. Today, it is well known that autophagy is a cellular self-degradative progress
that delivers cytosolic components and damaged organelles to the lysosomes for hydrolytic
enzyme-mediated digestion and subsequently recycles the generated catabolites to support
anabolic metabolism. The autophagy progress is evolutionarily conserved in eukaryotes,
which involves many complex molecular pathways and various ATG proteins encoded
by more than 40 genes [2]. Under starvation, hypoxia, and other stress conditions, ATG
proteins associated with autophagy initiation will assemble on the endoplasmic reticulum
(ER) to form a double membrane structure, named a phagophore. Next, the phagophore
surrounds cellular macromolecules in a selective or nonselective way and expands con-
stantly to take the shape of a closed autophagosome. The autophagosome vesicle can then
be transported to and fused with the lysosome to form the autolysosome, in which the
lysosomal hydrolase will then degrade internal components for catabolite reutilization [3].
Generally, cells often perform basal level autophagy to maintain intracellular homeostasis;
however, overactivation of excessive autophagy may disturb this homeostasis, cause cell
damage, and even result in cell death. Disorder of autophagy has been reported to be in-
volved in different pathologies, such as neurodegenerative disorders, metabolic syndromes,
and cancers [4]. When it comes to cancer, it is currently believed that autophagy operates
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as a tumor suppressor in healthy cells but promotes cancer development in transformed
cells [5–7].

Aerobic respiration is a highly efficient form of energy production that can support the
development of eukaryotes. However, ROS, the byproduct of aerobic respiration, can cause
damage to biomacromolecules such as lipids, nucleic acids, and proteins, thereby changing
their functions and causing oxidative stress. However, recent studies demonstrated that
ROS can also act as a signaling molecule to regulate various signaling pathways to maintain
normal development of cells [8]. It has been widely accepted that ROS can be both beneficial
and lethal for cancer cells. On the one hand, ROS can reversibly oxidize cysteine residues of
many proteins to regulate their function and promote cancer cell proliferation, metabolism,
and metastasis [9]. On the other hand, high levels of ROS can suppress cancer development
by provoking oxidative stress, inducing cell death and senescence [10]. Notably, ROS
can induce autophagy by modulating different signaling pathways, either inhibiting or
enhancing the development of cancers. For instance, autophagy can specifically eliminate
damaged mitochondria to reduce ROS accumulation, thus inhibiting the deleterious effect
of ROS on DNA and suppress cancer initiation. In the development of cancer, one of the
effects of autophagy is to remove excessive ROS caused by hypoxia or damaged organelles,
thus maintaining the survival of cancer cells [11]. What we can conclude is that the mutual
regulation between autophagy and ROS complicates their roles in cancer.

Cancer is a public health problem worldwide because of its high morbidity and mor-
tality [12]. Traditional therapies for cancer, such as chemotherapy and radiotherapy, have
obvious adverse treatment-related effects. Chemotherapy is the main treatment approach
for numerous cancers because it can influence all the stages of cell development by regulat-
ing various signaling pathways. However, the therapeutic effect of traditional chemical
drugs varies depending on the types and stages of tumors. In addition, tumors can become
resistant to chemical drugs in the later stages of treatment. Meanwhile, chemotherapy
can seriously reduce a patient’s quality of life because of its highly toxic effects [13–15].
Therefore, it is urgent to find new anti-cancer drugs with lower toxicity and higher thera-
peutic effect. Phytochemicals, extracted from various medicinal plants, or their synthetic
analogues, can prevent tumor proliferation, invasion, and migration by modulating various
signaling pathways [16–18]. Furthermore, some natural bioactive products coming from
food exhibit relatively low toxicity and potent chemo-preventive properties [19]. Thus,
phytochemicals have attracted much attention for cancer treatment in recent years [20].

Various phytochemicals have been found to possess potent anti-cancer effects, but their
anti-cancer mechanism is unclear, which limits their clinical application. Nowadays, studies
have increasingly paid attention to exploring the anti-cancer mechanism of phytochemicals,
among them, the regulation of autophagy and ROS have been widely investigated. In this
review, we expounded the interplay between autophagy and ROS, and introduced some
phytochemicals that can treat cancer by modulating autophagy and ROS.

2. The Process of Autophagy and Its Role in Cancer

Classic autophagy is a multi-step process that involves the consecutive and selective
aggregation and interaction of various ATG proteins. When the cells are subjected to stim-
ulation, the first protein to respond is the ULK1 (Unc-51-like kinase 1). Signal molecules
can activate ULK1, which can phosphorylate ATG13 and FIP200 to form the ULK1 com-
plex (consisting of ULK1, ATG13, and ATG101). The ULK1 complex is anchored to the
pre-autophagosomal structure (PAS, a special ER domain, also named the omegasome) to
form the PAS scaffold complex (Figure 1). The class III phosphatidylinositol 3-kinase (PI3K)
complex, ATG9A system, ATG12-conjugation system, and LC3-conjugation system are then
engaged hierarchically to the PAS by the scaffold FIP200 [21,22]. Following the gathering
of the ULK1 complex, it facilitates the activation of the autophagy-specific class III PI3K
complex (including PI3K, VPS15, Beclin 1, and ATG14L) by phosphorylating Beclin 1. Sub-
sequently, PI3K will phosphorylate phosphatidylinositol (PI) to form phosphatidylinositol
3-phosphate (PtdIns(3)P or PI3P) at the omegasome [23–25]. Next, WD-repeat domain
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phosphoinositide-interacting proteins (WIPIs) and double FYVE domain-containing pro-
tein 1 (DFCP1) successively assemble at the omegasome via their PI3P-binding domain to
form phagophores. WIPI2 can interact with ATG16L to recruit the ATG12-ATG5-ATG16L
complex to the PSA [26–29]. The ATG12-ATG5-ATG16L complex is one of the ubiquitin-like
conjugation systems for autophagosome formation, and another is the LC3 conjugation
system. Neonatal LC3 is a soluble protein that can be catalyzed by ATG4 to expose a glycine
residue [30,31]. The decorated LC3, also named LC3-I, is bound to E1-like enzyme ATG7,
and is subsequently transferred to the E2-like enzyme ATG3. LC3-I is then conjugated to
phosphatidylethanolamine (PE) by ATG3 to form membrane-bound LC3-II [32,33], which
serves as a well-known autophagosome marker. The conjugation of LC3-I with PE can
also be enhanced by the ATG12-ATG5-ATG16L complex, which acts as the E3-like enzyme.
LC3-II is embedded in the membrane of phagophores to promote membrane extension
(Figure 1). In addition, autophagy receptors can interact with LC3-II via the LC3-binding
motif to transfer special cargos to the LC3-II-containing phagophores [34–36]. Up to now,
several autophagy receptors, including p62, chaperonin containing TCP1 subunit 2 (CCT2),
nuclear dot protein 52 kDa (NDP52), optineurin (OPTN), BNIP3-like (BNIP3L)/ NIX, and
neighbor of BRCA1 gene 1 (NBR1), have been identified, which mediate the selective
autophagy of cargos. The phagophores then extend continuingly until forming a sealed
double-layered vesicle, called the autophagosome. During this process, Atg2 and Atg9 can
transport lipids from the cytoplasmic leaflet of the ER or the cytoplasmic to omegasome,
thereby providing materials and enabling the expansion of the autolysosome [37–41]. The
intact autophagosome can fuse with the lysosome to form the autolysosome, where the
substrates will be degraded by hydrolytic enzymes (Figure 1).
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Figure 1. The progress of autophagy. Various stress conditions such as nutrient starvation, infec-
tion, oxidative stress, and chemical drugs lead to an increase in mTORC1 suppression and AMPK
activation. This can activate the ULK1 complex through a number of phosphorylation cascades.
Subsequently, phagophores are formed at the autophagy initiation site of the endoplasmic reticulum,
and the phagophores envelop substrates and extend continuingly until forming a double-layered
vesicle named autophagosomes with the participation of various autophagy proteins. Finally, in-
tact autophagosomes fuse with the lysosomes to form autolysosomes where the substrates will be
degraded by hydrolytic enzymes.

Because autophagy can maintain homeostasis against internal and external stresses, it
is important for cells to maintain a basal level of autophagy. Disorders of autophagy are
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associated with many diseases, such as cancer. Autophagy plays an indispensable and
double-edged sword role in cancer. In the early stages of tumor development, autophagy
is commonly considered to be a tumor-suppressive, owing to its ability to clear damaged
intracellular component and maintain genetic stability to prevent tumorigenesis [42–44].
For instance, the Beclin 1 haploid-insufficient mouse was more likely to develop a malig-
nant tumor [45,46]. Mice with ATG5 homozygote deletion have a higher probability of
live tumors [47]. These evidences prove that autophagy could suppress tumorigenesis.
However, the aggregation of p62 has been detected in gastrointestinal cancer, hepatocellular
carcinoma, breast cancer, and lung adenocarcinoma [48–52]. In Kras-driven lung cancer
models, a deficiency in Atg7 decreases the amino acid substrate supply to mitochondria,
resulting in extreme fatty acid oxidation, which consumes lipid stores and promotes energy
crisis [53]. Therefore, autophagy can also promote tumor cell survival and growth by
providing metabolic substrates.

3. The Interplay between Autophagy and ROS in Cancer
3.1. The Regulation of Autophagy Machinery

Autophagy in cancer can be precisely regulated by a serious of signaling molecules
and regulatory pathways in response to intracellular and extracellular stimuli, such as
starvation, oxidative stress, ER stress, and alteration of the AMP/ATP ratio. Mechanistic
target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) are two primary
regulators for initiating autophagy.

mTOR, an evolutionarily conserved serine/threonine kinase, can be regulated by nu-
tritional status, growth factor, and stress signals. mTOR contains two different complexes,
named mTORC1 and mTORC2, out of which mTORC1 is sensitive to rapamycin and has
the ability to impact cell growth and proliferation by regulating anabolic and catabolic
metabolism, including autophagy [54]. mTORC1 can negatively regulate autophagy. When
mTORC1 is activated, it connects to the ULK1 complex by Raptor and inhibits the kinase
activity of the ULK1 complex by phosphorylating ULK1 at Ser758 and Ser638, as well as
ATG13 at Ser258 [55–57]. On the contrary, inactivated mTORC1 will dissociate from the
ULK1 complex, and then phosphatases, such as protein phosphatase 2A (PP2A) and protein
phosphatase 1D magnesium-dependent delta isoform (PPM1D), relieve the phosphory-
lation status of ULK1 and ATG13 [58–60]. ULK1 then undergoes autophosphorylation at
Thr180 and subsequently phosphorylates ATG13, FIP200, and ATG101, and eventually,
the ULK1 complex can be activated and then transferred to phagophores to support the
initiation of autophagy [61]. In addition to direct regulation, mTORC1 can also indirectly
intercept autophagy initiation by inhibiting ULK1 stability and activity. In detail, mTORC1
can suppress the activation of TNF receptor-associated factor 6 (TRAF6) an E3 ubiquitin
ligase, through phosphorylating AMBRA1, and thus prevent ubiquitination of ULK1 [62].

In addition, mTORC1 can be regulated by various upstream signaling molecules. When
G protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs) are phosphorylated
and activated, the regulatory subunit p85 is recruited to the vicinity of the plasma membrane to
activate PI3K. The activated PI3K can catalyze the phosphorylation of phosphatidylinositol-4,5-
bisphosphate (PIP2) to form phosphatidylinositol-3,4,5-triphosphate (PIP3). PIP3 will promote
the recruitment of protein kinase 3-phosphoinositidedependent protein kinase-1 (PDK1) and
AKT. Subsequently, PDK1 can activate AKT by phosphorylation at Ser308, pleading to the
heterodimerization and inhibition of tuberous sclerosis 1 (TSC1) and TSC2. Inactivation
of the TSC1-TSC2 complex holds RHEB in its GTP-bound state, thereby activating its
GTPase activity to enable mTORC1 activation. AKT can also phosphorylate and dissociate
the mTORC1 inhibitor PRAS40 from Raptor to activate mTORC1 [63–65]. The regulation
autophagy by AKT has also been reported to be mTOR-independent. In detail, AKT
can phosphorylate and inactivate FOXOs, which are the transcription factors in charge
of the transcription of some autophagy-related genes, including Beclin 1, ATG12, and
GABARAPL1 [66]. Notably, the tumor suppressor phosphatase and tensin homolog (PTEN)
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can promote the conversion of PIP3 to PIP2 to inhibit AKT, thereby favoring the initiation
of autophagy [67,68].

Autophagy can also be regulated by AMPK, which senses the cellular energy sta-
tus through the alteration of the AMP/ATP ratio. AMPK can be phosphorylated at
Thr172 and activated by AMP or the upstream kinases such as the liver kinase B1 (LKB1),
calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2), and the MAPKKK
family [69–72]. Upon energy starvation, activated AMPK can induce autophagy by in-
creasing ULK1 activity through direct phosphorylation at Ser317, Ser777, and Ser555 [73].
Furthermore, AMPK can negatively regulate mTORC1 activity through phosphorylat-
ing and inactivating Raptor at Ser722 and Ser792 or activating TSC2 by phosphorylating
Thr1227 and Ser1345 [74,75], thereby initiating autophagy.

In addition, several transcriptional factors have been reported to regulate autophagy
in cancer. Transcription factor EB (TFEB), the regulator of lysosomal biogenesis, can
enter the nucleus to promote transcription of autophagy-related genes, such as ATG16,
ATG4, p62, WIPI proteins, LC3, ULK1, and several cathepsins [76,77]. Hypoxia-inducible
factor 1 (HIF-1), which is affected by the extent of hypoxia, promotes the transcription
of Bcl-2 interacting protein 3 (BNIP3) and BNIP3L, which competitively interrupts the
Bcl-2-Beclin-1 complex, resulting in the association of Beclin-1 with PI3K for autophagy
activation [78,79]. Severe hypoxia also activates transcription factor 4 (ATF4), which can
translocate into the nucleus to promote the transcription of ATG5, ULK1, and LC3, thereby
promoting the autophagy process [80–82]. In addition, p53 has the function of regulating
autophagy. Nuclear p53 can induce autophagy by transcriptionally upregulating the
expression of AMPK, damage-regulated autophagy modulators (DRAMs), sestrin 1 and
2, and DAPK1 (death-associated protein kinase 1). Meanwhile, the transcription of ATG4,
ATG7, ATG10, and ULK1 can also be promoted by nuclear p53. However, other studies
showed that the cytoplasmic p53 can inhibit autophagy through directly interacting with
FIP200 [83–85]. Similarly, NF-κB also play a dual role in the regulation of autophagy. It has
been demonstrated NF-κB can induce autophagy by directly promoting the transcription
of ATG genes, such as Beclin 1, ATG5, and LC3, or can inhibit autophagy by increasing the
expression of autophagy repressors such as Bcl-2 family members and PTEN/mTOR or
suppressing the expression of autophagy inducers like BNIP3 and JNK1 [86–88].

3.2. The Relationship between Autophagy and ROS in Cancer

Basal levels of ROS play an important role in regulating cell proliferation, immune
response, and differentiation, but superfluous ROS cause damage to biomolecules, such
as proteins, lipids, and nucleic acids, resulting in various diseases including cancer. Au-
tophagy is one of the most crucial processes that can be regulated by ROS, serving as a signal
molecule [89,90]. Firstly, numerous studies suggest autophagy can be regulated by ROS
through mTOR-dependent pathways. On the one hand, high levels of ROS can promote the
inactivation of PTEN by direct oxidation [91], which can increase PIP3 to activate AKT and
inhibit mTORC1 signaling [92,93]. On the other hand, the activation of mTOR can be im-
pacted by MAPK subfamilies, such as c-Jun N-terminal kinase (JNK), p38, and extracellular
signal-regulated kinase (ERK), which could be regulated by ROS. It has been reported that
accumulation of ROS can regulate autophagy by the MAPK/JNK/mTOR pathway [94–96].
Otherwise, MAPK/JNK can modulate autophagy by directly phosphorylating ULK1 or
promoting the transcription of autophagy gene like Beclin 1 [97]. Secondly, ROS can also
activate AMPK, which releases the inhibition of autophagy by directly phosphorylating
and activating ULK1 or inhibiting mTORC1 [90,98]. It has been proven that ROS can inhibit
mTOR or enhance AMPK signal pathways to induce autophagy in various cancer cells,
impacting cancer progression [99,100]. In addition, transcription factors that modulate
the expression of ATG genes, such as TFEB, HIF-1α, p53, NF-κB, FOXO3, ATF4, and Nrf2,
can be activated by increased levels of ROS. For example, ROS was reported to directly
oxidize the Cys211 of TFEB. Cys211 oxidation inhibited the association of TFEB with Rag
GTPases and promoted the nuclear translocation of TFEB, which in turn led to an increased
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gene expression level in the autophagy-lysosome system [101]. Furthermore, under some
circumstances, high levels of ROS can cause mitochondrial dysfunction, leading to the se-
lective removal of damaged mitochondria (called mitophagy) [102,103]. Furthermore, it has
been proven that ER stress can be activated to trigger the unfolded protein response (UPR)
in response to ROS accumulation, and autophagy can be induced by the ROS-mediated
ER stress [104,105]. Elevated levels of ROS are thought to induce autophagy by activating
these transcription factors, resulting in the degradation of damaged mitochondria, thereby
maintaining homeostasis and promoting cancer cell growth (Figure 2).
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Figure 2. Relationship between ROS and autophagy. ROS can regulate autophagy in different ways.
ATG4 and p62 can be oxidized directly by ROS to induce autophagy; ROS can activate the AMPK
signaling cascade or inhibit the mTOR pathway, resulting in autophagy initiation; transcription factors
such as Nrf2 can also be activated by ROS, which will promote the transcription of various ATG
proteins. Autophagy can also decrease the generation of ROS by pexophagy, mitophagy, and CAM.

Apart from the mechanisms mentioned above, ROS can regulate autophagy by directly
oxidizing autophagy-related proteins. For example, ATG4 is inactivated by ROS-mediated
oxidization of a critical catalytic site, Cys78. Oxidized ATG4 loses its delipidation ability
for LC3, thereby increasing LC3 lipidation for autophagosome formation and autophagy
induction [106]. Recently, it was proposed that autophagy receptor p62 was sensitive to
oxidative stress, and its Cys105 and Cys113 can be oxidized by ROS to form p62 oligomers.
Oxidized P62 oligomers were capable of engaging substrates to nascent autophagosomes
and assisting biogenesis of autophagosomes [107,108]. Recently, it has been proven that
increased expression of ATG4 and p62 can promote the growth of cancer cells [109–111]
(Figure 2).

In addition to ROS-mediated regulation of autophagy, autophagy can in turn scav-
enge ROS and oxidized proteins through lysosome-dependent pathway during oxidative
stress, leading to the maintenance of redox homeostasis of cancer cells. Mitochondria is
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the primary place of oxidative phosphorylation in eukaryotic cells, and the vast majority
of intracellular ROS are derived from the electron transport chain (ETC) of the inner mi-
tochondrial membrane (mtROS) under normal conditions [112,113]. However, defective
mitochondria can bring devastation to cancer cell by producing a large amount of ROS,
and the dysregulated ROS-generating mitochondria can be obliterated by mitophagy to
resist mtROS-mediated oxidative stress [114,115]. Peroxisomes are involved in fatty acid
beta-oxidation (FAO) and catabolic reactions of some lipids such as oleic acid, which can
contribute to the production of ROS. Meanwhile, peroxisomes can eliminate ROS by gener-
ating various antioxidant enzymes. Thus, the selective degradation of ROS-generating or
damaged peroxisomes can reduce the generation of ROS and contributes to the intracellular
oxidative homeostasis [116,117]. Moreover, chaperone-mediated autophagy (CMA) can
be activated by oxidative stress to maintain redox homeostasis [118]. Oxidized protein
aggregates that cannot be degraded by proteasomal pathway can be recognized by the
chaperone protein Heat-shock cognate protein 70 (Hsc70), to form a chaperone-substrate
complex together with co-chaperones (such as 90 KD heat shock protein, Hsp90). This
complex can then connect with lysosome-associated membrane protein type 2A (LAMP2A)
through which the cargo is transported to lysosome for digestion [11,119]. It has been
firmly established that the Nrf2-Kelch-like ECH-associated protein 1 (Keap1)-antioxidant
response element (ARE) pathway is an adaptive cellular response conferring protection
against oxidative and xenobiotic stress [120]. Phosphorylated p62 could directly bind with
Keap1, then interrupt the Nrf2-Keap1 interaction and segregate Keap1 into autophago-
somes, resulting in Nrf2 stabilization. Nrf2 is then translocated into the nucleus to promote
the transcription of antioxidant genes [121,122] (Figure 2).

4. Phytochemicals Targeting ROS and Autophagy for Cancer Therapy

Phytochemicals are valuable sources of drug discovery for multitudinous diseases
including cancer due to their various sizes, complex structures, and low toxicity. Notably,
great advances have been made in uncovering phytochemicals that can target the interplay
of ROS and autophagy. Considering this, we introduce the phytochemicals that are identi-
fied to target the interplay of ROS and autophagy for cancer therapy over the recent years
(Table 1).

Table 1. Mechanisms of action of phytochemicals that can regulate autophagy and ROS.

Phytochemicals Mechanism of Autophagy
Regulation by ROS Cancer types References

Carnosol ROS/Beclin1 Triple negative breast cancer [123]

Celastrol ROS/JNK;
ROS/PI3K/Akt/mTOR

Osteosarcoma;
Glioma

[124]
[125]

Erianin ROS/JNK Osteosarcoma [126]

Pristimerin ROS/JNK Chronic myeloid leukemia;
Breast cancer [127,128]

Juglanin ROS/JNK Breast cancer [129]

Neohesperidin ROS/JNK Osteosarcoma [130]

Polyphyllin VI ROS/JNK Osteosarcoma [131]

Polyphyllin VII ROS/JNK Osteosarcoma [132]

Actein ROS/JNK Bladder cancer [133]

Magnoflorine ROS/JNK Gastric cancer [134]

Ampelopsin ROS/JNK Glioma [135]

Baicalin ROS/AMPK/mTOR/ULK1 Breast cancer;
Osteosarcoma [136,137]
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Table 1. Cont.

Phytochemicals Mechanism of Autophagy
Regulation by ROS Cancer types References

Bigelovin ROS/PI3K/Akt/mTOR Liver cancer [138]

Diosgenin ROS/PI3K/Akt/mTOR Chronic myeloid leukemia cells [139]

Beta-Lapachone ROS/PI3K/Akt/mTOR Nasopharyngeal cancer cells [140]

Chrysin ROS/PI3K/Akt/mTOR Endometrial cancer [141]

6-Methoxydihydrosanguinarine ROS/PI3K/Akt/mTOR Breast cancer [142]

Neferine ROS/PI3K/Akt/mTOR Lung cancer [143]

Eldecalcitol ROS/PI3K/Akt/mTOR Osteosarcoma [144]

Momordin Ic ROS/PI3K/Akt/mTOR Hepatoblastoma cancer [145]

Capsaicin ROS/PI3K/Akt/mTOR Prostate cancer [146]

Artesunate ROS/AMPK/mTOR/ULK1 Bladder cancer; [147]

Dendrobium ROS/AMPK/mTOR/ULK1 Colon cancer [148]

Daphnetin ROS/AMPK/mTOR/ULK1 Ovarian cancer [149]

beta-Elemene ROS/AMPK/mTOR/ULK1 Colorectal cancer [150]

Britannin ROS/AMPK/mTOR/ULK1 Liver cancer [151]

Betulinic acid ROS/AMPK/mTOR/ULK1 Bladder cancer [152]

Trichosanthin ROS/NF-κB Gastric cancer [153]

Cryptotanshinone ROS/NF-κB Colon cancer [154]

Piperlongumine ROS/ERK Biliary cancer [155]

Allicin ROS/p53 Osteosarcoma; Lung Cancer;
Thyroid cancer; Liver Cancer [156–159]

Isoorientin ROS/p53; ROS/PI3K/AKT;
ROS/JNK Liver cancer [160]

Alantolactone ROS/AKT/PINK1/mitophagy Hepatoblastoma cancer [103]

Sanguinarine ROS/mitophagy Hepatocellular carcinoma [161]

TEOA ROS/mitophagy Colorectal cancer [162]

Corilagin ROS/autophagy Gastric cancer [163]

Curcumin ROS/autophagy Cervical cancer [164]

Anthocyanin ROS/autophagy Liver cancer [165]

4.1. Celastrol

Celastrol (also known as tripterine), a widely studied quinine methide triterpenoid, is
deemed to be the most active and prospective component of Tripterygium wilfordii Hook F
(TWHF), which has a long history of treating rheumatoid arthritis (RA) [166,167]. Numer-
ous studies have demonstrated that celastrol has potent anti-inflammation and anti-diabetes
activities. For example, celastrol mitigated the inflammation of colitis by decreasing the
colon myeloperoxidase concentration and colonic pro-inflammatory cytokines or inacti-
vating the NLRP3 inflammasomes to reduce IL-1β secretion [168,169]. Meanwhile, its
anti-cancer potential has aroused great interest recently. Treatment with celastrol inhibits
the growth and proliferation of various cancer cells, such as colorectal, gastric, breast, lung,
pancreatic, skin, prostate, and blood cancer cells. Mechanistically, celastrol can induce
apoptosis, promote cell cycle arrest, and suppress metastasis and angiogenesis, etc. [170].
According to a recent paradigm, celastrol has also been shown to exhibit anti-cancer effects
by inducing autophagy through ROS accumulation. For instance, Li et al. demonstrated
that celastrol induced ROS generation and promoted JNK phosphorylation and activation,
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leading to the initiation of autophagy. The autophagy triggered by celastrol-induced ROS
accumulation contributed to apoptosis in osteosarcoma cells. In vivo, celastrol could signif-
icantly suppress the growth of human osteosarcoma xenograft at doses of 1 and 2 mg/kg,
with 5.7 and 9% of weight loss in mice, respectively, suggesting that a high dose of celas-
trol had some side effects [124]. In addition, another study found that celastrol initiated
autophagy via the ROS/JNK signaling pathway, but that celastrol-mediated autophagy
promoted the survival and inhibited apoptosis in glioma cells [125]. This discrepancy might
be due to the cell-type-dependent effect of celastrol.

4.2. Curcumin

Curcumin, a chemical class of polyphenols, is the active ingredients obtained from
the extract of Curcuma longa L. (also named turmeric belonging to Zingiberaceae family).
Turmeric, commonly regarded as a condiment and pigment, has been used for traditional
Chinese medicine in Asia for thousands of years [171,172]. Although curcumin has some
unfavorable galenic properties such as variable solubility and low bioavailability, its medic-
inal value has attracted much attention. Recently, it has been demonstrated that curcumin
displays extraordinary anti-cancer effects in colorectal, leukemia, cervical, prostate, and
breast cancer. For example, curcumin suppressed the breast cancer cell proliferation and
invasion by regulating NF-κB and Nrf2, inhibiting the human epidermal growth factor
receptor 2 (HER2) and EGFR signaling, or modulating miRNAs [173]. To increase the
solubility and bioavailability, researchers encapsulated curcumin in natural excipients
gum acacia (GA) microspheres and then conjugated folic acid on the surface of these
curcumin-GA microspheres. The curcumin-loaded GA microspheres could obviously re-
duce tumor volume and caused no significant toxicity in a triple negative breast cancer
animal model [174]. Recently, curcumin has been proven to scavenge electrons and ROS in
multiple in vitro models, which give the credit to its phenolic analogs serving as electron
receptors to destabilize ROS [175,176]. In addition, there are many reports demonstrating
that curcumin induced or inhibited autophagy by employing different molecular mech-
anisms in diversified in vitro or in vivo models [177]. Noteworthy, Lee et al. found that
treatment of colon cancer cells with curcumin led to an increase of LC3 conversion, de-
crease in p62 levels, and ultimately, cell death, which could be almost completely blocked
by the antioxidant N-acetylcystein (NAC) [178]. Similar results were further obtained
in curcumin-treated cervical cancer [139]. These reports indicate that curcumin induces
autophagy-mediated cell death by promoting ROS accumulation. However, the mecha-
nisms underlying ROS-induced autophagy and the role of curcumin-induced autophagy in
cell death remain largely elusive.

4.3. Allicin

In 1893, Fernie’s group firstly reported the benefits of functional foods, such as garlic
and onion, for human health [179]. Garlic has been used as a spice since ancient times,
and a wide range of ancient tests described its extensive use in the treatment of various
diseases. Allicin is the main bioactive ingredient in garlic and is responsible for the typical
taste and smell of crushed garlic. It was proved that allicin is a thioester of sulfenic acid
generated by an enzymatic reaction after injury of the garlic tissue [180]. Till now, allicin
has been shown to display extensive biological actions and pharmacological functions,
including antimicrobial, anti-inflammatory, anti-cancer, and immune-modulatory activi-
ties [181,182]. Allicin exhibits superior anti-cancer effects for a variety of cancers, covering
leukemia, lymphoma, cholangiocarcinoma, gastric, hepatic, breast, lung, prostatic, renal,
colon, endometrial, cervical, and bladder cancer [183]. On a molecular level, allicin can
regulate many signaling pathways such as p53, STAT3, JNK, Nrf2, and MAPK. In addition,
allicin suppresses cancer cell proliferation by modulating the interplay between ROS and
autophagy. Namita’s group found allicin treatment led to the accumulation of ROS, the
activation of MAPK/JNK, and the induction of autophagy in non small cell lung cancer
(NSCLC) cells. The use of ROS eliminators could rescue allicin-induced MAPK/JNK acti-
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vation and autophagy induction, indicating that allicin can induce MAPK/JNK-mediated
autophagy by promoting ROS accumulation [157]. Meanwhile, authors further interpreted
that ROS-mediated autophagy at a low dose of allicin is cytoprotective, whereas a high
dose of allicin leads to autophagic cell death. In addition, it was found that allicin could
considerably induce oxidative stress and autophagy to suppress osteosarcoma growth
via inactivating the MALAT1-miR-376a-Wnt/β-catenin axis, or promote ROS production
and p53-dependent autophagy in live cancer, but it is not clear whether autophagy was
regulated by ROS [156,184].

4.4. Erianin

Erianin is a low-molecular-weight bibenzyl natural product extracted from Dendro-
bium chrysotoxum Lindl, a traditional Chinese medicine with extensive clinical applications
due to its tonic, analgesic, astringent, and anti-inflammatory properties [185]. Modern
pharmacological studies have shown that erianin have various biological activities, such
as anti-cancer activity. For instance, erianin could induce apoptosis by reducing Bcl-2
expression and activating caspase signaling in T47D human breast cancer cells, or via
inhibiting ERK1/2ERKsignaling and activating p53 in cervical cancer cells [186,187]. Mean-
while, treatment with erianin could arrest the cell cycle at the G2/M phase by regulating
the expression of p53, p27, and p21 in cancers, including gastric cancer, colon cancer,
and osteosarcoma. Cancer migration and angiogenesis could also be inhibited by erianin
through modulating the expression of ERα, p-ERK1/2, MMP2, MMP9, TIMP1/2, COX-2,
HIF-1α, and IL-6, or the activation of JAK2/STAT3 [187]. Moreover, erianin was found to
promote ROS accumulation, JNK activation, apoptosis, and autophagy. Pretreatment with
antioxidant NAC evidently reversed these consequences, implying that erianin induces
autophagy through the ROS-dependent JNK/c-Jun pathway [126].

4.5. Chrysin

Chrysin (5,7-di-OH-flavone) is a natural dietary flavonoid compound that exists abun-
dantly many plant extracts such as honey, blue passion flower (Passiflora caerulea), Radix
scutellariae, and Pleurotus ostreatus. Though the therapeutic application of chrysin in the
clinic is still incipient on account of its low bioavailability and absorption, the diverse phar-
macological activities of chrysin have attracted a lot of attention. Chrysin improved glucose
and lipid metabolism disorders by activating the AMPK/PI3K/AKT signaling pathway in
insulin-resistant HepG2 Cells [188]. In an animal model of agitated depression induced by
olfactory bulbectomy (OB), chrysin had the ability to attenuate the depressant-like behav-
ior and hippocampal dysfunction depressant-like behavior, similarly to fluoxetine [189].
Increasing evidence also demonstrates that chrysin exhibits anti-cancer effects [190,191].
In terms of molecular regulation, ROS was generated following treatment with chrysin
to induced ER stress and apoptosis in bladder cancer cells [192]. Chrysin-treated anaplas-
tic thyroid cancer (ATC) tumors revealed increased protein levels of Notch1 and Hes1
(hairy/enhancer of split 1), and activated Notch1 might induce cleaved Poly ADP ribose
polymerase (PARP) protein, indicating that apoptosis could be induced to inhibit cancer
cells [193]. A study also found that chrysin promoted the production of intracellular ROS,
which inactivated AKT/mTOR signaling pathway and induced autophagy in endometrial
cancer. Inhibition of ROS-mediated autophagy further sensitized cancer cells to chrysin
treatment, suggesting that chrysin induces ROS-mediated cytoprotective autophagy in
endometrial cancer [141].

4.6. Isoorientin

Isoorientin [160] is a glucoside composed of luteolin with a β-D-glucosyl residue
at C-6, which was first discovered in rooibos by Koeppen’s group in 1962 [194]. Mean-
while, accumulating evidence has revealed that isoorientin is a kind of flavonoid and
is sourced from a wide array of edible plants, such as fenugreek seeds and buckwheat
groats. Isoorientin has a series of pharmacological activities including antioxidant, anti-
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inflammatory, and anti-cancer activities [195]. It has been proven that isoorientin could
suppress epithelial-to-mesenchymal processes and cancer stem-cell-like features by inhibit-
ing the Wnt/β-catenin/STAT3 pathway in oral squamous cell carcinoma [196]. Treatment
with isoorientin could induce apoptosis in lung cancer cells through the ROS-mediated
MAPK/STAT3/NF-κB signaling pathway [197]. Li Y et al. demonstrated that isoorientin
could also inhibit the PI3K/AKT, p53, and NF-κB signal pathway and activate the JNK
and p38 pathway by increasing ROS levels, leading to the induction of autophagy and
apoptosis, thereby inhibiting the proliferation of liver cancer cells [160].

4.7. Capsaicin

Pepper, one of the most popular vegetable crops in the world, is rich in minerals,
vitamins, carotenoids, and capsaicinoids. One of the important compounds extracted from
pepper is capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), which is responsible for
the irritant and burning consequences [198]. During the last couple of years, increasing
evidence has demonstrated that capsaicin is a biologically active phytochemical that pos-
sesses multifarious pharmacological activities. It possesses an intensive pain relief function
and early studies established fundamental concepts in pain neurobiology using capsaicin.
The capsaicin 8% was proven to reduce spontaneous pain, mechanical allodynia, and
cold-evoked pain in chemotherapy-induced peripheral neuropathy (CIPN) [199,200]. More-
over, it has anti-oxidant, anti-diabetes, weight loss, blood pressure falling, and anti-cancer
activities [201]. The anti-cancer activity of capsaicin has been observed in various cancers.
Mechanistically, treatment with capsaicin could inhibit breast cancer proliferation by down-
regulating the NF-κB pathway [202], and attenuated bladder cancer cell migration via SIRT1
inhibition to enhance cortactin and β-catenin acetylation [203]. Moreover, capsaicin can
also induce apoptosis and cell cycle arrest through the suppression of EGFR and activation
of the AMPK pathway [204]. In addition, capsaicin can also induce autophagy and ROS to
inhibit the growth of cancer cells. For example, capsaicin inhibited PI3K/AKT pathways
by inducing ROS generation to block autophagy, thus contributing to the inhibition of pro-
liferation in prostate cancer cells [146]. In another study, capsaicin was reported to induce
autophagy by enhancing ULK1 acetylation through reducing the deacetylase activity of the
tumor-associated NADH oxidase-sirtuin 1 (tNOX-SIRT1) complex. Meanwhile, capsaicin
provoked the generation of ROS, which may play an important role in capsaicin-mediated
suppression of SIRT1 activation and subsequent autophagy induction in melanoma cancer
cells [205].

4.8. Pristimerin

Pristimerin is a quinone methide triterpenoid that was firstly extracted from Pristimerae
indica in 1951 [206]. Emerging evidence has demonstrated that pristimerin is a biologically
active phytochemical possessing various biological effects, including anti-inflammatory,
anti-bacterial, insecticidal, anti-viral, anti-fungal, and anti-cancer effects. Pristimerin could
inhibit Wnt/β-catenin signaling by activation of GSK3β, thereby suppressing Wnt target
gene expression to suppress the growth of colon cancer cells [207]. In addition, ROS accu-
mulation could be caused by pristimerin treatment to induce ER stress, resulting in the
activation of JNK signaling and induction of apoptosis in colon cancer cells [208]. Increasing
evidence shows that pristimerin exerts an anti-cancer effect through modulating the rela-
tionship between autophagy and ROS. In detail, pristimerin could activate JNK signaling
by promoting ROS accumulation in chronic myeloid leukemia (CML) cells. ROS-mediated
JNK activation then triggered autophagy and apoptosis to inhibit cancer growth [127]. A
similar effect of pristimerin on ROS and autophagy was also recapitulated in breast cancer
cells [128].

4.9. Neohesperidin

Neohesperidin is a flavanone glycoside isolated from citrus fruits and is commonly
used in the food industry, such as in the synthesis of neohesperidin dihydrochalcone
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(NHDC). Neohesperidin administration could attenuate obesity, low-grade inflammation,
and insulin resistance by reversing high-fat diet (HFD)-induced intestinal microbiota dys-
biosis in mice fed a HFD [209]. The combination of neohesperidin dihydrochalcone and
empagliflozin inhibited oxidative stress liberation, inflammatory mediator production, and
apoptotic reactions to protect against methotrexate (MTX)-induced renal injury [210]. Other
pharmacological activities of neohesperidin have also been observed, including cardio-
vascular protection and suppression of osteoclast differentiation activity [211]. Moreover,
neohesperidin has been proven to block the growth of cancer cells generally by inducing
cell cycle arrest and promoting apoptosis. Notably, neohesperidin-treated cells exhibited
higher levels of ROS, leading to the activation of JNK signaling and subsequent induction
of autophagy, thereby provoking apoptosis in osteosarcoma cells [130].

4.10. Polyphyllins

The rhizome of Paris polyphylla, named Chong-lou in traditional Chinese medicine,
has been used to make various trademarked herbal regimes, such as “Yunnan Baiyao”
and “Jidesheng Sheyaopian”. Chong-lou is applied to treat parotitis, mastitis, snakebite,
fractures, throat, abscess convulsion, and various human malignancies [212]. It mainly
contains steroidal saponins, phytoecdysones, phytosterols, and flavonoids, among which
steroidal saponins are the major bioactive components [213]. Increasing evidence has
shown that polyphyllins, a class of steroidal saponins, regulated redox homeostasis and
autophagy to inhibit cancer cell growth. For example, poplyphylla VI (PPVI) treatment
led to an elevation of ROS levels, which triggered autophagic cell death by inactivating
the mTOR signaling pathway in NSCLC [214]. It has also been reported that PPVI could
promote ROS generation to activate the JNK signaling pathway, resulting in the induction
of autophagy and apoptosis in glioma and osteosarcoma cells [131,215]. In addition to PPVI,
polyphyllin VII (PPVII) was found to promote ROS accumulation to inhibit AKT/mTOR
signaling, thereby inducing cytotoxic autophagy in glioma cells [216].

4.11. Magnoflorine

Magnoflorine is a vital quaternary aporphine alkaloid extracted from various genera
of flowering plant families, such as Menispermaceae, Ranunculaceae, and Magnoliaceae [217].
Increasing studies have revealed that magnoflorine exhibits various pharmacological
activities, including anti-inflammatory, antioxidant, anti-diabetic, antifungal, hypoten-
sive, and immunomodulatory activities. In recent years, the anti-cancer effect of mag-
noflrine has aroused much attention. Magnoflorine has been shown to activate p38 and
inhibit AKT/mTOR signaling pathways to induce autophagy, which further exacerbated
doxorubicin-induced apoptosis, thereby increasing the sensitivity of breast cancer cells to
doxorubicin [218]. In gastric cancer, magnoflorine could promote autophagic cell death
through the generation of ROS and suppression of AKT/mTOR signaling [134].

4.12. Baicalin

The roots of S.baicalensis Georgi, Scutellaria rivularia wall, Scutellaria galericulata, and
Scutellaria lateflora L. belong to Chinese herbal medicine and were once used to cure dysen-
tery, hyperlipidemia, hypertension, atherosclerosis, and respiratory ailments in ancient
China. Baicalin, and its aglycone, baicalein, is a flavonoid and bioactive phytochemical
extracted from these roots. Baicalin and baicalein have been proven to exhibit numerous
pharmacological activities. Baicalin could protect LPS-induced blood-brain barrier damage
and decrease ROS generation by activating the Nrf2 pathway [219]. Baicalin treatment
could effectively attenuate acetaminophen (APAP)-induced liver injury by enhancing the
ERK signaling pathway, so also has hepatoprotective properties. Moreover, baicalin is a
cardioprotective, antiviral, neuroprotective, and antithrombotic agent [220,221]. As early
as 1994, researchers found that baicalin had the ability to inhibit liver cancer growth [222].
Nowadays, it has been demonstrated that the growth of various cancers, such as lung,
breast, bladder, and colon cancers, could also be suppressed by baicalin [223]. For example,
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baicalin was able to induce ROS accumulation to inhibit the PI3K/AKT/mTOR signaling,
thereby triggering cytotoxic autophagy in human osteosarcoma cells [136]. In another study,
baicalin was loaded with folic acid-modified albumin nanoparticles (FA-BSANPs/BA) to
improve its biocompatibility and prolong its circulation time in vivo. The FA-BSANPs/BA
nanoparticles were found to elevate ROS levels, inactivate AKT/mTOR signaling, and
induce cytotoxic autophagy and apoptosis in breast cancer [137]. These results demonstrate
that baicalin can regulate ROS-mediated autophagy in cancer.

4.13. Bigelovin

Bigelovin is a sesquiterpene lactone extracted from Inula helianthus-aquatica and has
been identified as a selective retinoid X receptor α agonist. Several studies have demon-
strated that bigelovin exhibited anti-cancer activities [224,225]. Bigelovin was evidenced
to inhibit the growth of many cancers, including lung cancer, glioma, gastric cancer, and
leukemia. For example, bigelovin treatment promoted ROS generation, leading to the in-
duction of apoptosis and autophagy in liver cancer cells. Inhibition of autophagy sensitized
liver cancer cells to bigelovin treatment, suggesting that bigelovin-induced autophagy is
cytoprotective [138]. However, whether ROS plays a role in bigelovin-induced protective
autophagy requires further investigation.

4.14. Diosgenin

Sapogenins are a series of glycoside chemicals extracted from numerous natural prod-
ucts that are beneficial to health. Diosgenin is a steroidal sapogenin, which is plentiful in
Smilax china, Rhizoma polgonati, Dioscorea villosa, Dioscorea rhizome, and Trigonella foenum-
graecum, and can also be found in the Dioscoreaceae, Liliaceae, Scrophulariaceae, Rhamnaceae,
Solanaceae, Leguminosae, Amaryllidaceae, and Agavaceae families. Diosgenin has been widely
studied for its excellent therapeutic effect on various chronic diseases. Importantly, dios-
genin has been used as a principal precursor compound for the synthesis of several steroidal
drugs by pharmaceutical companies [226]. Multiple investigations suggest that diosgenin
has diverse biological activities, such as antioxidant, hypolipidemic, anti-inflammatory,
anti-proliferative, and hypoglycemic activities. Recently, its anti-cancer effect has drawn
much attention. In a transgenic prostate cancer mouse model, diosgenin could abrogate
NF-κB/STAT3 activation, and this action attenuated cancer cell growth and metastasis [227].
In addition, diosgenin could sensitize HCC and gastric cancer cells to doxorubicin and
inhibitors of the enhancer of zeste homology 2 (EZH2), respectively [228,229]. Specifically,
it has been shown that diosgenin can inhibit mTOR pathway by up-regulating ROS genera-
tion to induce autophagy in chronic myeloid leukemia cells, and inhibiting autophagy can
enhance diosgenin-induced apoptosis [139].

4.15. Trichosanthin

The root tuber of Trichosanthes kirilowii (Gua Lou) from the family of Cucurbitaceae
was used in traditional Chinese medicine as an abortifacient called Tian Hua Fen. Both
Simiao Sun and Shizhen Li recorded that Tian Hua Fen can deal with abortion, abnormal
menstruation, and retained placenta in the traditional medical book Qianjin Yifang and
Compendium of Materia Medica, respectively [230,231]. The precipitated Tian Hua Fen
powder was crystallized in barbitone buffer and acquired as the single protein powder of
trichosanthin in 1982. Trichosanthin is a type 1 ribosome-inactivating protein (RIP), which
can be activated by removing the N-terminal 23 aa signal peptide and C-terminal 19 aa pep-
tide. Activated trichosanthin can cleave the N-glycosidic bond at adenine-4324 of 28S rRNA
to intercept the protein synthesis function of the ribosomes, leading to cell death. Recently,
trichosanthin was found to exhibit anti-virus activity against human immunodeficiency
virus (HIV), herpes simplex virus (HSV), and hepatitis B virus (HBV) [232,233]. Besides, it
has been demonstrated that trichosanthin could also inhibit the growth of cancer cells by
inducing apoptosis, autophagy, and cell cycle arrest [233]. In human gastric cancer cells,
Trichosanthin could induce ROS generation. Trichosanthin-mediated ROS accumulation led
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to increased phosphorylation of NF-κB and p53, which then inhibited cell proliferation by
inducing autophagy [153]. However, how NF-κB and p53 cooperate to induce autophagy
needs to be further investigated. Notably, the half-life of trichosanthin in the body is very
short because it can be easily filtered and cleared by the kidney, which severely limits its
application. In this regard, some studies linked trichosanthin with the albumin binding
domain mutant ABD035 (abbreviated as ABD), and found that trichosanthin-ABD could
bind with endogenous human serum albumin by ABD to prolong its half-life and enhance
the anti-cancer effect in vivo [234].

4.16. Piperlongumine

Piper longum L. is the most famous species of the pepper family and can be used to
make spices such as black pepper. Its seeds, roots, and fruits have been used as herbal
medicine because of the various medicinal properties [235,236]. There are many biologically
active components extracted from Piper longum L. such as piperlongumine. Piperlongumine
is an alkaloid/amide and can also be found in other piper plants such as Piper arborescens
Roxb and Piper chaba Hunter. Chatterjee and co-workers firstly identified the chemical
structure of piperlongumine in the 1960s. Recently, a series of studies have shown that
piperlongumine exhibits various pharmacological activities. For example, piperlongumine
could mitigate hyperglycemia via rescuing pancreatic β cells, and inhibits inflammation
and apoptosis by modulating the GLUT-2/4 and AKT signaling pathway in streptozotocin-
induced diabetic rats [237]. Piperlongumine could also inhibit the NF-κB and MAPK
signaling pathways to protect the brain against ischemic cerebral injury [236,238]. In
addition, piperlongumine was found to exhibit promise anti-cancer activities in various
cancers. In castration-resistant prostate cancer cells, DNA could be damaged persistently
by piperlongumine treatment to inhibit proliferation, migration, and invasion of prostate
cancer cells [239]. Apoptosis and cell cycle arrest can also be induced by piperlongumine
in gastric, cervical, and colorectal cancer cells [240]. San-Yuan Chen et al. proved that
treatment with piperlongumine activated ERK pathway to induce autophagy in biliary
cancer, which can be recovered by NAC. It demonstrated that piperlongumine could induce
autophagy via ROS-mediated REK signaling, but whether autophagy participates in the
anti-cancer of piperlongumine requires further investigation [155].

4.17. Betulinic Acid

Betulinic acid is a naturally pentacyclic triterpenoid that is widely distributed in Betula
species plants and can also be found in various species of the Syzygium, Diospyros, genera
Ziziphus, and Paeonia. It is proven that BA has strong anti-HIV effects. Several derivatives
possessing anti-HIV properties have been synthesized and have entered phase I/II clinical
trials. Pisha et al. firstly found that betulinic acid could selectively inhibit the growth
of human melanoma in 1995. From then on, its anti-tumor activity has been extensively
reported. Betulinic acid can serve as a potential inducer of apoptosis or autophagy in
various cancers. In human cervical cancer cells, treatment with betulinic acid could down-
regulate PI3K/Akt signaling by promoting ROS generation, resulting in the stimulation
of mitochondrial pathway of apoptosis [241]. Besides, Yan Zhang et al. found that BA
could activate the AMPK/mTOR/ULK1 pathway by increasing ROS generation to induce
autophagy in human bladder cancer cells, and inhibition of ROS-mediated autophagy
could restore BA-induced apoptosis [152].

4.18. Rg3-Enriched Red Ginseng Extract (Rg3-RGE)

Panax ginseng, a Chinese herbal medicine, has been applied to treat different diseases
and enhance immunity for more than 2000 years. Ginseng contains various bioactive
compounds, including ginsenosides, peptides, polysaccharides, mineral oils, and fatty
acids [242]. Rg3-enriched red ginseng extract (Rg3-RGE) is a single ginnsenoside extracted
from panax ginseng and is well known for its pharmacological activities, including in-
hibiting platelet activation and thrombus formation, anti-inflammatory, and anti-diabetic
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activities [243]. Increasing studies demonstrated Rg3-RGE could also inhibit the growth
of cancers such as lung cancer. Rg3-RGE treatment led to mitochondrial damage and in-
creased the levels of mitochondrial ROS in lung cancer cells. It then generated ROS-induced
PINK1-Parkin mediated mitophagy to remove damaged mitochondria, suppression of
which by mitophagy inhibitors promoted mitochondrial dysfunction and resultant cell
death [244].

5. Discussion

In this review, we presented a straightforward introduction to the autophagy process
and its role in cancer, explained the reciprocal regulatory relationship between ROS and
autophagy, and illustrated some phytochemicals that can regulate the relationship between
autophagy and ROS through different signaling pathways in cancer. What we can con-
clude is that ROS may activate dormant oncogenes by acting as a signaling molecule, but
beyond that point, ROS also cause DNA damage to induce cancer cell death. Meanwhile,
autophagy inhibits cancer formation in normal tissue while promoting tumor progression
in advanced cancer. In addition, autophagy can regulate ROS levels by removing cellu-
lar oxidized components and ROS can also promote and modulate autophagy through
complex mechanisms. Therefore, ROS and autophagy have diversified impact on cancer
because they can exhibit changeable functions and dynamic processes as well as mutual
regulation depending on cell type and microenvironment. Therefore, understanding and
manipulating the relationship between ROS and autophagy is expected to increase drug
sensitivity and provide new insights into cancer treatment.

Cancer treatment has been regarded as one of the most critical and important topics in
clinical issues. Increased therapeutics have been developed depending on the types and
stages of the cancer, and chemotherapy remains a main therapeutical strategy at present.
However, drug resistance and toxic side effects markedly limit the clinical application of
many existing chemotherapeutic drugs. Considering the extraordinary chemical diversity
and generally acceptable toxicity, natural products are considered as a strong source for
anti-cancer drug discovery. Phytochemicals are biologically active substances found in
plants. Extensive studies have illustrated their anti-cancer activities in various types of
cancers through multiple mechanisms, such as the modulation of autophagy and ROS.
Interestingly, whether autophagy induced by phytochemical-mediated ROS leads to cancer
cell survival or death may depend on the cell type. For example, autophagy induced by
diosgenin-mediated ROS accumulation plays a protective role in chronic myeloid leukemia
cells; the use of autophagy inhibitors can increase diosgenin-induced apoptosis. However,
baicalin-induced autophagy through ROS/AKT/mTOR signaling has a harmful effect
on breast cancer. Furthermore, celastrol was reported to promote apoptosis induction
in osteosarcoma by ROS/JNK-mediated autophagy, whereas the celastrol-mediated ROS
accumulation and autophagy induction promote the survival of glioma cells. Therefore,
using antioxidants or autophagy inhibitors to suppress ROS-mediated protective autophagy
may be a potential therapeutic approach for cancer treatment. However, in some cases, the
use of antioxidants or autophagy inhibitors may also reduce ROS- or autophagy-induced
cell death. Hence, it is necessary to have a broad understanding of the cellular events (such
as tissue, cell, stage, autophagy levels, and ROS levels) occurring in different cancers, which
can enable us to strictly monitor ROS, autophagy, and cancer cell death in vivo, and select
more effective drug combinations for various therapies.

Many phytochemicals are in the relatively early stages of drug development, and
there are several challenges and problems that need to be solved. Firstly, the assessment
of most anti-cancer studies are dependent on in vitro evaluation, and drug-associated
toxicity is an important barrier for currently available chemotherapeutic agents. Thus,
animal studies and preclinical studies need to be conducted to verify their anti-cancer
effects and side effects, as well as the optimal concentration or dose for use. During the
process of animal studies, the control group must be conducted strictly to evaluate the
outcome of experimental conditions. Secondly, the low solubility and poor bioavailability
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of natural extracts limit their further clinical research and development. The development
of biopolymeric materials for gene and agent transport has become a promising area in
biomedical research. Encapsulating the drug in nanoparticles can modulate the speed of
drug release, increase the permeability of biofilm, change the distribution in the body, and
improve the drug bioavailability. Therefore, the studies of phytochemicals delivery and
nanoparticles are expected to solve these problems.
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