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Esophageal cancer (EC) is the eighth most common type of cancer and the sixth leading

cause of cancer-related deaths worldwide. At present, the clinical treatment for EC is

based mainly on radical surgery, chemotherapy, and radiotherapy. However, due to

the limited efficacy of conventional treatments and the serious adverse reactions, the

outcome is still unsatisfactory (the 5-year survival rate for patients is less than 25%).

Thus, it is extremely important and urgent to identify new therapeutic targets. The

concept of tumor microenvironment (TME) has attracted increased attention since it was

proposed. Recent studies have shown that TME is an important therapeutic target for

EC. Microenvironment-targeting therapies such as immunotherapy and antiangiogenic

therapy have played an indispensable role in prolonging survival and improving the

prognosis of patients with EC. In addition, many new drugs and therapies that

have been developed to target microenvironment may become treatment options in

the future. We summarize the microenvironment of EC and the latest advances in

microenvironment-targeting therapies in this review.

Keywords: esophageal cancer, tumor microenvironment, vascular endothelial growth factor, PD-1/PD-L1, cancer

associated fibroblasts

INTRODUCTION

Esophageal cancer (EC) is one of the most common malignancies and is a major global health
challenge. In 2018, new cases of EC accounted for 3.2% of the total cancer cases and EC-related
deaths accounted for 5.3% of the total cancer deaths (Bray et al., 2018; Wang L. et al., 2021). EC
consists of two main pathologies—esophageal squamous cell carcinoma (ESCC) and esophageal
adenocarcinoma (EAC). ESCC is the most common, mainly in East Asia and Africa, while EAC
is mainly prevalent in North America and Europe (Arnold et al., 2015; Torre et al., 2015).
Geographical distribution of EC is associated with diet and genetics (Smyth et al., 2017). More
than half of patients with EC are often at an advanced stage when first diagnosed, and extensive
metastasis makes radical surgery, which is currently the only cure for EC, impossible (Ohashi
et al., 2015). At present, the treatment for advanced EC include chemotherapy, radiotherapy, and a
few targeted drugs. Although great strides have been made in diagnosis and treatment, the 5-year
survival rate for patients with advanced EC is still very poor; no more than 25% (Enzinger and
Mayer, 2003). The high mortality rate in EC patients indicates that better treatment methods and
targets are needed.

The “seed and soil” hypothesis proposed by Paget (1989) is the prototype for the tumor
microenvironment (TME). Subsequent complementary studies have found that TME is composed
of a variety of different cells and proteins, including immune cells, extracellular matrix (ECM), and

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 August 2021 | Volume 9 | Article 684966

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.684966
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.684966
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.684966&domain=pdf&date_stamp=2021-08-26
https://www.frontiersin.org/articles/10.3389/fcell.2021.684966/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Wang et al. Microenvironment Targeting Therapy

tumor blood vessels (Polyak et al., 2009). In addition,
TME has several important characteristics, including hypoxia,
acidosis, chronic inflammation, and immunosuppression, which
are associated with tumor proliferation, migration, apoptosis,
immune evasion, and angiogenesis (Sung and Chung, 2002;
Whiteside, 2008). Moreover, TME is not invariant, but involves
constant remodeling of cells and their secretions to make them
more suitable for tumor survival (Han et al., 2020). This is partly
responsible for the development of resistance to conventional
treatments (Luan et al., 2021). All these indicate that the “soil”
of EC is important for tumor survival and may be an avenue for
overcoming neoplastic disease.

Cells in the microenvironment have better gene stability,
suggesting that TME-targeted treatments may have better effects
and lower chances of drug resistance. To date, the most popular
therapies targeting TME in EC include antiangiogenic therapy
(anti-VEGF) and immunotherapy (PD-1/PD-L1 inhibitors)
(Kojima et al., 2020; Yang Y. M. et al., 2020; Zhang B. et al., 2020).
Both monotherapy and combination therapies further improved
treatment efficacy and prolonged survival in patients with EC.
In addition, anti-inflammatory reoxygenation combined with
radiotherapy or photodynamic therapy, tumor vaccine, blocking
microenvironment signal transduction, and other new therapies
prevent occurrence and improve the prognosis of EC (Huang
and Fu, 2019; Liu J. et al., 2020; Yamamoto and Kato, 2020;
Yang Y. M. et al., 2020). Moreover, many cells and factors in
the microenvironment can be used as important indicators to
judge the prognosis of EC (Lin et al., 2016; Han et al., 2020).
This review summarizes the EC microenvironment and related
targeted therapies.

SUPPRESSING INFLAMMATION
PREVENTS ESOPHAGEAL CANCER

The relationship between inflammation and cancer has been a
key focus of research, and long-term inflammatory stimulation
is an important inducer of EC (Coussens and Werb, 2002).
The EC microenvironment is filled with a variety of pro-
inflammatory cytokines and inflammatory substances, all of
which are closely associated with tumor occurrence, proliferation,
and migration (Bhat et al., 2021). Systematic activation of
inflammatory pathway signals promotes the progression of
EC. Nuclear factor-kappa B (NF-κB) consists of a family of
structurally related transcription factors (Zhang et al., 2019), and
its elevated expression is considered a marker of inflammation-
induced tumorigenesis (Karin et al., 2002; Izzo et al., 2006).
In addition to the NF-κB signaling pathway, interleukin-6 (IL-
6)/STAT3 signaling pathway was also found to be upregulated in
EC (Wang et al., 2004; Groblewska et al., 2012a). IL-6 is a cytokine
that signals by binding to gp130 via its receptor, IL-6Rα, to
trigger downstream pathways and activate important molecules
such as Ras-MAPK, SHP2, PI3K, STAT1, and STAT3. Activation
of these pathways gives tumor cells the ability to survive in a
highly toxic inflammatory environment and inhibits the effects
of immunotherapy (Karin et al., 2002; Hodge et al., 2005).

There are several differences in the inflammatory
microenvironment of ESCC and EAC. ESCC is the most
common pathological type of EC in East Asia (Smyth et al.,
2017), and several well-known carcinogenic factors, such
as alcohol and smoking (Enzinger and Mayer, 2003; Rustgi
and El-Serag, 2014), cause chronic irritation and subsequent
inflammation of the esophageal epithelium through direct
toxic effects and reactive oxygen species (ROS) production
(Radojicic et al., 2012; Kubo et al., 2014). Epidemiological
studies of high-risk populations in China have found that
frequent consumption of superheated foods also increases the
incidence of ESCC, which is thought to damage the esophageal
epithelium and lead to increased inflammation (Shen et al.,
2020). Thus, there is little doubt that chronic inflammation is
a risk factor for ESCC. Barrett’s esophagus is a precancerous
lesion of EAC in which chronic gastroesophageal reflux (GERD)
causes esophageal epithelial cells to be replaced by goblet cells
(Dvorak et al., 2007). Gastric acid reflux directly damages
the esophagus and promotes ROS production. Direct injury
can trigger sonic hedgehog (SHH) signaling between the
damaged epithelium and adjacent stroma, leading to intestinal
metaplasia (Wang et al., 2010). Infiltrating inflammatory cells
also produce high quantities of ROS to promote epithelial cell
transformation and the production of ROS directly leads to
DNA damage, causing tumor-initiation mutations (Poulsen
et al., 1998; Farhadi et al., 2002). Epidemiological studies have
linked obesity to EC (Kamat et al., 2009; Rustgi and El-Serag,
2014). Obesity is in fact a systemic inflammation and a metabolic
disorder, which is thought to play an important role in the
origin of malignant diseases (Bianchini et al., 2002). There are
several mechanisms that can explain the association between
obesity and EC, including increased incidence of GERD,
increased secretion of proinflammatory adipocytokines in the
serum, causing insulin and insulin-like growth factor secretion
disorder, and leptin (Eusebi et al., 2012; Greer et al., 2012;
Mokrowiecka et al., 2012). In addition to obesity, microbes are
also important factors. The imbalance in the oral and intestinal
flora can lead to inflammation and gastroesophageal reflux.
Based on analysis of high-risk populations, this imbalance is
mainly manifested as a decrease in gram-positive bacteria and
an increase in gram-negative bacteria (Yang L. et al., 2012;
Walker and Talley, 2014).

Normal cells are more likely to mutate in an environment
filled with inflammatory cells and cytokines, leading to the
development of tumors (Coussens and Werb, 2002). Therefore,
anti-inflammatory therapy is a very effective preventive measure.
Primary prevention of EC involves improving lifestyle, that is,
keeping away from the risk factors for inflammation, including
avoiding smoking, consuming moderate quantities of alcohol,
and maintaining a healthy weight. For patients with esophagitis
or Barrett’s esophagus, secondary prevention includesmedication
with proton pump inhibitors (PPIs) and prokinetics (e.g.,
Domperidone and Itopride). Anti-reflux surgery is also a form
of primary prophylaxis. Some meta-analyses and cohort studies
have shown that patients with Barrett’s esophagus who were
treated with PPIs had a lower incidence of dysplasia and EAC
compared with those patients who were not treated with PPIs
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(Nguyen et al., 2009; Kastelein et al., 2013). Several drugs have
also been shown to inhibit the production of inflammatory
factors, thereby inhibiting inflammation. Curcumin, which is
found in the household spice turmeric, can inhibit acid-induced
IL-6 and IL-8 production by inhibiting activation of the MAPK
and PKC signaling pathways, as well as NF-κB (Rafiee et al.,
2009). This drug is expected to treat esophagitis caused by
GERD. In addition to prevention, inhibition of inflammation can
increase the sensitivity of radiation and chemotherapy in vivo and
in vitro and forms one approach for comprehensively treating EC
(Li et al., 2018; Liao et al., 2020).

ANTI-ANGIOGENESIS IS A CLASSIC
MICROENVIRONMENT-TARGETING
THERAPY

Angiogenesis plays an essential role in the development of
most solid tumors, including EC, by delivering oxygen and
nutrients to the tumor. Tumor angiogenesis is regulated by a
variety of angiogenic factors such as vascular endothelial growth
factor (VEGF), hepatocyte growth factor (HGF), transforming
growth factor-beta (TGF-β), and hypoxia-inducible factor-1
(HIF-1) (Ladeira et al., 2018). Hypoxia, acidosis, and nutritional
deficiency can all upregulate the expression of VEGF and
promote angiogenesis. Distant metastasis through blood vessels
is an additional pathway for tumor progression. As early
as Folkman (1971) speculated that blocking tumor blood
vessels could inhibit tumor growth. Anti-angiogenic therapies,
particularly VEGF inhibitors, have gradually improved following
years of research and have played an important role in
clinical treatment.

The key mediator of angiogenesis is VEGF, including VEGF-
A/B/C/D/E and placental growth factor (PIGF) (Roskoski,
2007). As shown in Figure 1, activation of VEGF/VEGFR
and VEGF/NRP pathways not only promote the proliferation
of vascular endothelial cells and accelerate angiogenesis but
also play an important role in promoting lymphangiogenesis
(Ding et al., 2006). VEGFR is also expressed in tumor cells.
The binding of VEGF to VEGFR triggers multiple downstream
signaling pathways, such as ERK1/2 and PI3K/Akt, to promote
cell proliferation (Olsson et al., 2006; Chrzanowska-Wodnicka
et al., 2008). Therefore, the VEGF/VEGFR signaling pathway
is an effective target for the treatment of EC. A variety
of VEGF/VEGFR inhibitors have been developed, including
anlotinib, apatinib, sorafenib, sunitinib, ramucirumab, and
bevacizumab (Table 1). Of these, anlotinib, apatinib, sorafenib,
and ramucirumab have been shown to have clinical benefits in
patients with EC during clinical trials (Wilke et al., 2014; Xu et al.,
2014; Janjigian et al., 2015; Moehler et al., 2016; Cunningham
et al., 2017; Liu G. et al., 2020; Yang Y. M. et al., 2020;
Huang et al., 2021). The positive effect of Endostar combined
with radiotherapy and chemotherapy in the treatment of ESCC
has been reported and similar clinical trials are ongoing (Xu
et al., 2014). Anlotinib and apatinib are included in the Chinese
Society of Clinical Oncology (CSCO)-EC guidelines as important
treatments for EC. Ramucirumab is also included in the National

Comprehensive Cancer Network (NCCN) guidelines for the
treatment of gastroesophageal junction (GEJ) adenocarcinoma
(Bang et al., 2020). In addition to monotherapy, combination
with chemotherapy, immunotherapy, or radiotherapy can result
in a better curative effect. Researchers successfully treated a
patient with advanced ESCC using apatinib in combination
with the PD-1 inhibitor camrelizumab (Yan et al., 2020).
Li et al. (2019) showed that the combined use of apatinib
and docetaxel significantly prolonged patients’ survival and
had controllable side effects. Currently, additional studies
are exploring the use of combinations of anti-angiogenesis
therapy and traditional therapies such as radiotherapy and
chemotherapy. On the other hand, tumor blood vessels are
structurally and functionally abnormal. This abnormality makes
effective drug delivery become difficult and creates an abnormal
microenvironment (e.g., hypoxia) that reduces the effectiveness
of radiotherapy and chemotherapy. Researchers have found that
using anti-angiogenic drugs can induce normalization of blood
vessels, then making patients more sensitive to chemotherapy
(Batchelor et al., 2007).

However, anti-angiogenesis therapy has some limitations.
In addition to several manageable side effects such as
hypertension, renal dysfunction, thrombosis, and wound-
healing complications, anti-angiogenic drugs are suspected of
affecting the spread of other chemotherapeutic drugs in vivo
(Ye, 2016). Using positron emission tomography (PET), Van
der Veldt and others observed that anti-angiogenic drugs could
inhibit the delivery of cytotoxic drugs to the tumor site (Van der
Veldt et al., 2012). This is not consistent with our previous theory
that anti-angiogenic therapy induces structural and functional
changes in tumor blood vessels that make them more similar
to normal blood vessels, leading to increased blood flow and
easier access of cytotoxic drugs into tumors (Batchelor et al.,
2007). Zhao et al. (2019) found that small doses of apatinib could
regulate TME, alleviate hypoxia, and increase the number of T
cells at tumor sites, then enhance the efficacy of PD-1/PD-L1
inhibitors. Excessive doses do not have this effect. This theory has
not yet been tested in EC, but it shows that adjusting the order
and dosage of medication during treatment is necessary to obtain
better efficacy. Current research suggests that anti-angiogenesis
therapy combined with other treatments can achieve better
therapeutic effects; thus, actively developing new angiogenesis
inhibitors and exploring additional drug combination regimens
is still the main focus of research efforts.

MATURATION OF IMMUNOTHERAPY

Immunotherapy may be the most significant breakthrough
in the history of tumor treatment. In-depth study of the
immune microenvironment of EC and accurate intervention
has become a consensus among most people. The components
of the immune microenvironment of EC are complex and
diverse. As shown in Figure 2, tumor cells can inhibit the anti-
tumor immune response by recruiting a variety of immune
cell populations or expressing inhibitory molecular factors
(Lin et al., 2016). Smart tumor cells disguise themselves and
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FIGURE 1 | Classification and function of vascular endothelial growth factors.

TABLE 1 | Vascular endothelial growth factor inhibitors applied to esophageal cancer.

Molecule NCT Target Strategy Type Result References

Bevacizumab NCT00450203 VEGF-A Combination EAC Failure Cunningham et al., 2017

Ramucirumab NCT01170663 VEGFR2 Combination GEJ Success Wilke et al., 2014

NCT01246960 VEGFR2 Combination EAC/GEJ Failure Yoon et al., 2016

NCT02314117 VEGFR2 Combination GEJ Failure Fuchs et al., 2019

Sunitinib NCT00702884 VEGFRs Monotherapy GEJ Failure Wu et al., 2015

NCT00730353 VEGFRs Combination EC/GEJ Failure Schmitt et al., 2012

Sorafenib NCT00917462 VEGFRs Monotherapy GEJ Success Janjigian et al., 2015

NCT00253370 VEGFRs Combination GEJ Success Sun et al., 2010

Apatinib NCT03274011 VEGFR2 Monotherapy ESCC Ongoing U.S. National Library of Medicine, 2021a

NCT03603756 VEGFR2 Combination ESCC Success Zhang B. et al., 2020

NCT02942329 VEGFR2 Combination GEJ Success Xu et al., 2019

Anlotinib NCT02649361 VEGFRs Monotherapy ESCC Success Huang et al., 2021

Endostar NCT03797625 VEGFs Combination ESCC Ongoing U.S. National Library of Medicine, 2021b

secrete a variety of cytokines to escape attack by T cells.
Immunotherapy suppresses the expression of related pathways or
provides immune system-specific tumor antigens that restore the
immune system function and eliminates tumor cells. Mainstream
immunotherapies include inhibition of immune checkpoints
(PD-1/PD-L1), tumor vaccination, and adoptive T-cell therapy.
These are described in detail below.

Immune Checkpoint Blockade
Programmed death-1 (PD-1) is an immune checkpoint for T cells
that can deactivate their immune function. Two ligands, PD-
L1 and PD-L2, bind to PD-1 receptors, induce PD-1 signal and
associated T-cell depletion, and reversibly inhibit T-cell activation
and proliferation (Zou et al., 2016). Activation of the PD-1/PD-
L1 signaling pathway can inhibit the function of CTL, while
inhibition of this signaling pathway can restore T lymphocyte
function and enhance the immune response (Chen andMellman,
2017). Based on this principle, PD-1/PD-L1 blockers were

developed for the treatment of tumors and have shown promise

in the treatment of multiple malignancies (Topalian et al., 2012).
Programmed death-1 inhibitors such as pembrolizumab and

camrelizumab have recently been approved for the treatment
of EC following extensive clinical trials. KEYNOTE-181 is
a global multicenter, randomized, controlled, open, phase
III clinical trial including 628 patients with advanced or
metastatic EC. Final experimental results showed that, compared
with chemotherapy, pembrolizumab prolonged overall survival
when used as a second-line therapy for advanced EC in
patients with PD-L1 ≥ 10, with fewer treatment-related adverse
events being reported (Kojima et al., 2020). In the latest
KEYNOTE-590 study, pembrolizumab combined with cisplatin-
fluoropyrimidine chemotherapy as first-line therapy significantly
improved overall survival in patients with EC compared with
placebo (Smyth et al., 2021). Another PD-1 inhibitor invented
in China, camrelizumab, was approved for the treatment of
advanced ESCC in 2019 (Zhang B. et al., 2020). In addition to
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FIGURE 2 | The immune landscape of esophageal cancer. MDSC, myeloid-derived suppressor cell; DC, mature dendritic cell; NK, natural killer cell; Treg, regulatory

T cell; M1, tumor suppressor macrophages; M2, tumor-promoting macrophages; CAF, cancer-associated fibroblasts.

the two PD-1 inhibitors mentioned above, there are multiple
PD-1/PD-L1 inhibitors undergoing experimental verification,
which will provide more options for immunotherapy in EC
patients (Yamamoto and Kato, 2020). Compared with traditional
chemotherapy, PD-1/PD-L1 inhibitors have fewer side effects and
are more effective.

In clinical practice, most patients do not get better survival
outcomes following the administration of PD-1 inhibitors.
Therefore, predictive biomarkers are needed to determine
whether patients are more likely to respond to PD-1/PD-
L1 inhibitors. In KEYNOTE-181, researchers found that,
compared with chemotherapy, pembrolizumab significantly
increased overall survival in PD-L1-positive patients. This may
indicate that PD-L1 expression is a direct biological predictor.
Disappointingly, PD-L1 status was not associated with objective

response rates (ORR) in Chinese ESCC patients (Huang et al.,
2018). Thus, we cannot predict therapeutic effect based only
on the expression of PD-L1 in patients. Mismatch repair
(MMR) defect, tumor mutation load (TML), and microsatellite
instability (MSI) have been identified as predictive biomarkers
in non-small cell lung cancer, but their role in EC needs to
be validated (Yang H. et al., 2020). Li et al. (2021) recently
found that upregulation of Laminin γ2 (Ln-γ2) resulted in
worse anti-PD-1 treatment outcome, which could be an effective
biological predictor in the future. CAF-derived TGF-β1 signaling
leads to T-cell exclusion by increasing the expression of Ln-
γ2 in ESCC cells, thereby constructing a protective barrier
to the tumor, preventing immune cells from penetrating into
tumor parenchyma, and weakening the response to anti-PD-
1 therapy. In addition, analysis of 260 patients with ESCC
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showed that Ln-γ2 is also an independent prognostic predictor.
Furthermore, biometric analysis of several serological indicators
and a variety of genes including HSPA6, CACYBP, DKK1, EGF,
FGF19, GAST, OSM, and ANGPTL3 has also been implicated
in having predictive significance (Guo et al., 2020). In fact,
it is not very accurate to use a single indicator to predict
the efficacy of immunotherapy. Lee and Ruppin found that
comprehensive analysis of CD8 T-cell abundance, TML, and PD-
1 gene expression can give a more accurate prognosis (Lee and
Ruppin, 2019). Whether the comprehensive use of the above
indicators can accurately screen out immunotherapy-sensitive
populations requires further exploration.

The expression of cytotoxic T-lymphocyte-associated antigen
4 (CTLA4) reduces T-cell activity by inhibiting T-cell receptor
(TCR) signaling. A number of studies have shown that
overexpression of CTLA4 can block the T-cell cycle, thereby
reducing the body’s specific immune function and leading to
immune evasion of cancer cells (Krummel and Allison, 1995).
Interestingly, CTLA4 is not only expressed by tumor infiltrating
immune cells (TIICs) in EC, but is also expressed on cancer cells,
which is an important part of tumor cell immune escape (Huang
and Fu, 2019). Several studies have proven that CTLA4-targeted
therapy can produce good survival benefits and fewer side
effects. Currently available drugs for CTLA4 include ipilimumab
and tremlimumab, of which tremlimumab has been proven
to have a therapeutic effect on EC in clinical trials (Ralph
et al., 2010). PD-1 and CTLA4 have different mechanisms for
reducing T-cell activation and the combined use of these two
immune checkpoint inhibitors may yield better results. This
synergistic effect (ipilimumab-nivolumab combination) has been
demonstrated in melanoma; it is unproven but promising in EC
(Weber et al., 2015).

Cancer Vaccines
Tumor-testicular antigens (TTA) are the most well-studied
tumor-associated antigens (TAA) that are highly expressed in
EC, including New York esophageal squamous cell carcinoma 1
(NY-ESO-1), melanoma-associated antigen-A (MAGE-A), TTK
protein kinase (TTK), and Cancer-testis antigen 2 (CTAG2;
also known as LAGE1) (Huang and Fu, 2019). Cancer vaccines
induce an immune response through these specific antigens,
stimulating CTLs to recognize and attack tumor cells. Several
peptide vaccines are already in clinical trials (Kantoff et al.,
2010; Kageyama et al., 2013). Cancer vaccines containing a
combination of multiple peptides derived from TTK, lymphocyte
antigen 6 complex locus K (LY6K), and insulin-like growth
factor-II mRNA binding protein 3 (IMP3) were tested in phase II
clinical trials for treatment of advanced EC (Kono et al., 2012).
Results demonstrated that vaccine-induced immune responses
in patients with advanced ESCC are associated with better
outcomes, suggesting that tumor vaccine therapy using multiple
epitope peptides asmonotherapymay provide clinical benefits for
EC patients. Another vaccine is DC vaccine pulsed with peptides.
The powerful antigen-presenting function of DC cells enables
the body to produce a stronger immune response which kills
the tumor. Sadanaga et al. generated autologous DCs ex vivo
and pulsed them with MAGE-3 peptide (Sadanaga et al., 2001).

This was the first report of DC vaccination of EC patients with
MAGE-3 peptide. No toxicity was observed in vivo, and tumor
regression was induced by an immune response to MAGE-3
peptide. At present, tumor vaccines are not formally used in
clinical practice, but their strong and specific anti-tumor function
requires further study.

Chimeric Antigen Receptor T-Cell
Therapy
Chimeric antigen receptor-T cell therapy refers to the
modification of T cells into chimeric antigen receptor (CAR)
T cells through genetic engineering to specifically recognize
and attack tumor cells. CAR-T cell therapy is more commonly
used in hematologic tumors such as leukemia and lymphoma.
In recent years, CAR-T cells have been explored as a therapy
against solid tumors, including EC (Kiesgen et al., 2018). Studies
have shown that ephrin type A receptor 2 (EphA2) and human
epidermal growth factor receptor 2 (HER2) are highly expressed
in ESCC which are common targets for CAR-T cell therapies (Shi
et al., 2018; Yu et al., 2020). Both CAR-T cell therapies have been
demonstrated to effectively identify, bind, and destroy ESCC
cell lines and release high levels of pro-inflammatory cytokines
(Shi et al., 2018; Yu et al., 2020). Kagoya et al. (2018) recently
designed a new generation of CAR-T cells with enhanced
specificity, persistence, and anti-tumor ability by modifying the
previous domain. Based on the CAR-T cell design described
above, Zhang H. et al. (2020) designed enhanced MUC1-CAR-T
cells for eliminating EC, which were shown to have significant
antitumor activity. This enhanced MUC1-CAR-T cells have a
longer survival time in mice, which means that they can have
sustained anti-tumor ability. The enhanced CAR-T cells seem to
be able to overcome the limitations of traditional CAR-T cells.
The application of CAR-T cells in solid tumors still has certain
limitations, including in the selection of solid tumor-specific
antigens and the delivery of CAR-T cells (Akhoundi et al., 2021).
Therefore, additional breakthroughs are needed in these areas.

Oncolytic Viruses
Recently, Challenor and Tucker (2021) reported the case of one
patient with Hodgkin’s lymphoma whose tumor disappeared
after being infected with SARS-CoV-2. They hypothesized that
the SARS-CoV-2 triggered a tumor immune response that
allowed T cells to attack cancer cells. This is a special case,
but it suggests that viral therapy may be effective. Oncolytic
viruses are potential antitumor agents with unique therapeutic
mechanisms, including the ability to directly lyse tumors and
induce antitumor immunity. Since the first oncolytic virus
(Talimogene laherparepvec) was approved for the treatment of
melanoma, its use has been broadened, including in multiple
experiments on EC (Andtbacka et al., 2015). Ma et al. (2012)
confirmed that trichostatin enhanced the antitumor activity
of oncolytic adenovirus H101 by activating the MAPK/ERK
pathway. Another study used radiotherapy in combination with
OBP-301, an attenuate type 5 adenovirus with oncolytic potential
that contains the human telomerase reverse transcriptase
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promoter, to regulate viral replication, which is important for the
treatment of EC (Kuroda et al., 2010).

EXTRACELLULAR MATRIX AND SIGNAL
TRANSDUCTION ACCELERATE TUMOR
PROGRESSION

The ECM is an important component of the TME, a network of
proteins and glycosaminoglycan (Aguado et al., 2016; Hoshiba
and Tanaka, 2016). ECM continues to be remodeled to adapt
to the survival and progression of tumors. Easily occurring
metastasis is one of the characteristics of malignant tumors
and one of the reasons why tumors cannot be cured. Many
studies have shown that the dynamic changes in ECM promote
tumor metastasis.

Stromal Components
The most abundant component in ECM is type I collagen, which
is secreted by tumor-associated fibroblasts (TAFs) or cancer-
associated fibroblasts (CAFs), fills the gaps between cancer cells,
and enhances the stiffness of the tumor (Kai et al., 2019). Dense
ECM can inhibit the diffusion, penetration, and transportation
of therapeutic drugs; thus, ECM becomes an obstacle to drug
delivery (Cun et al., 2015; Jena et al., 2016). Another very
important molecule is glycoproteins, which are involved in cell-
to-cell adhesion and which can be altered to facilitate migration
of cancer cells (Palumbo et al., 2020). For example, deletion
of E-cadherin, which is responsible for cell-cell adhesion and
communication, has been shown to be associated with increased
aggressiveness of tumor cells (Canel et al., 2013). Integrins are
a family of transmembrane glycoprotein adhesion receptors that
regulate extracellular matrix and cellular adhesion. Kwon et al.
(2013) inhibited the proliferation and invasion of EC cells by
knocking out integrin alpha 6 (ITGA6) in vitro, proving that
ITGA6 could be a new therapeutic target. So, it is generally
believed that the improvement in tumor stiffness and structure
is directly associated with tumor invasion.

Remodeling of ECM is dependent on matrix degradable
proteolytic enzymes, which mainly include matrix
metalloproteinases (MMPs), plasminogen activators, atypical
proteinases (e.g., intracellular cathepsin), and glycolytic enzymes
(heparinase and hyaluronidase) (Piperigkou et al., 2021).
MMPs are characterized by multi-domain zinc-dependent
endopeptidases, which play an indispensable role in the
continuous remodeling of ECM (Lei et al., 2020). Through
ECM remodeling, MMPs regulate the proliferation, migration,
and angiogenesis of tumor cells. More than 30 types of MMP
have been identified, among which MMP-2 and MMP-9 are
the most closely related to EC (Groblewska et al., 2012b).
Overexpression of MMP-2 and MMP-9 results in poor prognosis
in EC patients due to type IV collagen basement membrane
rupture and is associated with advanced tumor stage, local
invasion, and metastasis (Groblewska et al., 2012b). MMPs are
regulated by their endogenous natural inhibitors (TIMPs), but
in EC, this regulation mechanism is abnormal. The decrease in
TIMPs expression and the increase in MMPs expression indicate

poor prognosis in patients with EC (Groblewska et al., 2012b).
Researchers are currently trying to synthesize exogenous MMP
inhibitors (MMPIs) that inhibit tumor progression. Thanks to
progress in drug technology, MMPIs now have higher specificity
and lower toxic and side effects, and their related therapeutic
effects have been verified in the treatments of periodontal
disease, multiple sclerosis, and gastric cancer and may also be
a new target for the treatment of EC (Fields, 2019). Another
very important enzyme is lysyl oxidase (LOX), which catalyzes
the cross-linking of collagen and elastin. Kalikawe et al. (2019)
found that silencing LOX could inhibit the proliferation of
ESCC cells and reduce their invasion and migration ability.
Understanding the mechanism of these enzymes will benefit our
clinical treatment.

Cancer-associated fibroblast is involved in the development
of cancer (Figure 3). In Barrett’s esophagus, reflux of stomach
acid can stimulate the production of IL-6 by esophageal
fibroblasts and increase inflammation (Rieder et al., 2007).
CAFs are activated by cytokines secreted by tumor cells such
as TGF-β. More importantly, fibroblast-derived factor can
induce esophageal epithelial metaplasia (Eda et al., 2003). CAFs
can secrete a variety of important cytokines, including HGF,
fibroblast growth factor (FGF), CXCL12, and TGFβ1, which
play an important role in promoting the progression of EC.
Subsequent studies confirmed that CAFs can also express VEGF,
suggesting that it may be involved in EC angiogenesis (Nie
et al., 2014). CAFs are also promoters of tumor invasion and
metastasis. They produce factors such as Wnt2 that induce
epithelial-mesenchymal transformation (EMT) of EC cells and
thus increase cell motility (Fu et al., 2011). CAFs are strongly
implicated in tumor progression; thus, eliminating CAFs as a
way of inhibiting tumor progression may be a good idea. In vitro
and animal model studies showed that EC cells co-cultured with
CAFs were more prone to metastasis and that cell migration
reduced after removal of CAFs (Kashima et al., 2019). In
recent years, researchers have tried to inhibit tumor progression
by eliminating or inhibiting CAFs. For example, near-infrared
photoimmunotherapy (NIR-PIT) was proposed by Mitsunaga
et al. (2011) as a new cancer treatment method using highly
selective monoclonal antibody (mAb)-photosensitizer conjugate
(APC). CAF elimination using CAF-targeted NIR-PIT effectively
interferes with the progression of EC and overcomes therapeutic
resistance (Katsube et al., 2021). Combining the new CAF-
targeted NIR-PIT with traditional anticancer drugs is expected to
provide a more effective treatment strategy.

Important Signaling Pathways
FGF/FGFR Pathway

Fibroblast growth factors are known to play a crucial role in
regulating excessive development during the embryonic and
adult stages of life. When FGF binds to FGFRS, the downstream
Ras-MAPK, PI3K-Akt, and PLC-γ-PKC pathways are activated,
inducing cell proliferation, differentiation, and tumor formation
(Liu G. et al., 2021). Analysis of the ESCC gene database
showed that FGF12 expression was elevated, meaning that it
can be used as a biomarker (Bhushan et al., 2017). Analysis
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FIGURE 3 | Cancer-associated fibroblasts secrete a variety of cytokines that promote tumor proliferation, invasion, and angiogenesis and aggravate inflammation.

of ESCC samples also showed that the level of FGFR3IIIC,
an FGF receptor, was elevated and tumor cell proliferation
was increased (Ueno et al., 2016). In conclusion, systemic
activation of the FGF/FGFR signaling pathway is important
for the progression of EC. FGF/FGFR signaling plays a role
in tumorigenesis, and a large number of drugs targeting this
signaling pathway have been developed. Erdafitinib, a potent
tyrosine kinase inhibitor of FGFR1/2/3/4, has been approved for
the treatment of metastatic urothelial carcinoma (Loriot et al.,
2019). Another FGFR inhibitor, pemigatinib, has also been shown
to prolong survival in people with advanced cholangiocarcinoma

(Abou-Alfa et al., 2020). A phase 2 clinical trial in EC patients
using brivanib (FGF and VEGF inhibitors) showed an objective
therapeutic effect on gastroesophageal cancer, but the data was
insufficient to support the application of this drug in clinical
treatment (Jones et al., 2019). Additional data is therefore needed
to verify the effectiveness of FGF/FGFR inhibitors in EC.

HGF/c-Met Pathway

The binding of HGF to its high-affinity receptor, c-Met, can
initiate the proliferation, migration, and angiogenesis of various
tumors and promote tumor progression (Wang et al., 2020).
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TABLE 2 | Factors and cells associated with poor esophageal cancer prognosis and their mechanisms of action.

Predictor Mechanism Expression References

NF-κB Induces the expression of IL-8 and IL-1β, intensifies inflammation, and

inhibits tumor immunity

Up Izzo et al., 2007, 2009

C-reactive protein Directly reflect the degree of inflammation in the body Up Suzuki et al., 2020

Gram-negative bacteria Its increase produces more lipopolysaccharides, which leads to

increased inflammation and reflux

Down Yang L. et al., 2012

IL-6 IL-6 activates downstream STAT3 expression after binding to its

receptor. This allows tumor cells to survive in a highly toxic inflammatory

environment

Up Oka et al., 1996; Maeda et al., 2020

STAT3 Up Hodge et al., 2005

IL-1β It is two important pro-inflammatory cytokines, which promote tumor

invasion and tumor-mediated immunosuppression

Up Fitzgerald et al., 2002

IL-8 Up Ogura et al., 2013

COX-2 COX-2 is an inflammatory enzyme responsible for the production of

prostaglandin, which is associated with inflammation associated with

gastrointestinal cancer

Up Akutsu et al., 2011

MDSCs MDSCs directly inhibits T cell activation, NK cell killing, and secretion of

a large number of inflammatory cytokines to inhibit tumor immunity

Up Chen et al., 2014

Tregs Tregs may play a dual role in the occurrence of tumors, inhibiting

inflammation in the early stage and inhibiting cytotoxic T cell function in

the late stage, leading to immune escape

Up Nabeki et al., 2015

M2 macrophage Macrophages can differentiate into two completely different functional

cell types: tumor-suppressing macrophages (M1) and tumor-promoting

macrophages (M2). M1 macrophages play a role in tumor rejection,

while M2 macrophages promote tumor progression

Up Shigeoka et al., 2013

Th17 Th17 can directly or indirectly promote tumor growth. Th17 can express

extracellular nucleotide enzymes CD39 and CD73, release adenosine,

and inhibit CD8+T cells

Up Chen et al., 2012

PD-L1 When they bind to PD-1, they inhibit T cell activation and promote

immune escape

Up Ohigashi et al., 2005

PD-L2 Up

CAFs CAFs secrete a variety of factors to promote tumor invasion and

angiogenesis and promote immune evasion

Up Underwood et al., 2015

TGF-β (Later stage) TGF-β signaling appears to have a dual role in regulating tumorigenesis:

in early stages it is a growth suppressor, but in later stages it promotes

EMT and metastasis

Up von Rahden et al., 2006

HGF HGF induces the activation of oncogene signaling pathways by binding

to its receptor c-Met and promotes tumor cell invasion and

angiogenesis

Up Takada et al., 1995

VEGFs Trigger endothelial cell proliferation, migration, and breakdown of ECM

to build new blood vessels

Up Lord et al., 2003

MMP-2/7/9 Participate in extracellular matrix remodeling and promote tumor

invasion

Up Gu et al., 2005

CXCL12 The binding of its receptors CXCR4 and CXCR7 to tumor cells can

induce tumor cell growth and promote angiogenesis and invasion

Up Kaifi et al., 2005

HGF secreted by mesenchymal cells is also considered an
important angiogenic factor. It binds to c-Met (mainly expressed
in epithelial cells) exclusively and induces the activation of
oncogenic pathways, angiogenesis, and scattering of cells, leading
to metastasis (Ladeira et al., 2018). Additionally, upregulation
of the HGF/c-Met signaling pathway can lead to activation of
the β-catenin and PI3K/Akt pathways and deactivation of the
E-cadherin pathway, promoting tumor invasion (Anderson et al.,
2006). Several HGF/c-Met inhibitors which inhibit downstream
signaling by either blocking HGF binding to c-Met or directly
targeting c-Met are currently in clinical trials. Obinutuzumab and
rilotumumab are humanized monoclonal antibodies that target

HGF and inhibit its binding to c-Met (Shah et al., 2016; Catenacci
et al., 2017). Unfortunately, using rilotumumab combined with
cisplatin, capecitabine, and epirubicin as first-line treatment
for MET-positive gastroesophageal adenocarcinoma did not
give survival benefits (Catenacci et al., 2017). Obinutuzumab
also failed in Phase III clinical trials. However, several c-Met
inhibitors have been shown to be effective at inhibiting
HGF/c-Met signaling by directly targeting c-Met. For example,
AMG337, a highly selective small-molecule MET inhibitor,
can effectively prevent c-Met/HGF binding. In a multi-center
phase II study, AMG337, used as a single agent, showed
significant anti-tumor activity in MET-amplified EAC patients
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(Van Cutsem et al., 2019). Additional data is needed to verify the
effectiveness of HGF/c-Met inhibitors.

TGF-β Pathway

Many studies have clarified the important role of TGF-β in tumor
regulation, including proliferation, angiogenesis, immune escape,
and cell differentiation (Derynck et al., 2001). Interestingly, TGF-
β plays a dual role in tumor progression, acting as a negative
regulator in the early stage of tumor development but inducing
epithelial mesenchymal transformation (EMT) and promoting
migration in the late stages of development (Wojtowicz-Praga,
2003). Typically, TGF-β blocks the normal cell cycle in the
G1 phase by inhibiting c-Myc and increasing the expression of
P21 and P15, which are considered major regulators of the cell
cycle (Wang L. et al., 2021). Activation of TGF-β/Smads inhibits
the expression of cyclin-dependent kinase (CDK) inhibitors in
advanced tumor cells and simultaneously activates the PI3K/Akt
pathway, thereby preventing FoxO and Smad3 recombination.
Ras/MAP kinases are also activated to induce EMT by bypassing
TGF-β inhibition (Haque and Morris, 2017). As mentioned
above, activation of the TGF-β signaling pathway can promote
tumor progression and is therefore a potential therapeutic target.
The most common inhibitors use the following mechanisms:
(1) interferes with TGF-β synthesis, (2) blocks TGF-β signaling
and downstream regulatory molecules, and (3) increases TGF-
β endogenous or exogenous inhibitors. There are currently
multiple TGF-β inhibitors in clinical trials. For example,
Galunisertib, a small molecule inhibitor that directly targets
TGFBR1 kinase, has shown satisfactory therapeutic effects in
phase I clinical trials of advanced liver, pancreatic, breast, and
colorectal cancers (Ahmadi et al., 2019). Unfortunately, TGF-
β inhibitors have not been reported for EC. Moreover, TGF-
β’s complex regulatory signals and dual effects also present
challenges in its targeted therapy. However, TGF-β has shown
anti-tumor effects in other cancer types, leading us to believe that
it has great potential for use in the treatment of EC.

IMPROVING THE HYPOXIC
MICROENVIRONMENT

Hypoxia and acidosis are common phenomena in a variety of
solid tumors, including EC, and lead to a series of physiological
changes. Tumor cells rapidly proliferate and consume large
volumes of oxygen. In addition, solid tumors compress blood
vessels around the tumor and cause blood vessel blockages,
which results in insufficient oxygen supply to the center of
the tumor (Masoud and Li, 2015; Bhattarai et al., 2018).
Normally differentiated cells rely mainly on the oxidative
phosphorylation of mitochondria to provide energy for the
cells, while most tumor cells depend on aerobic glycolysis,
a phenomenon called Warburg effect (Vander Heiden et al.,
2009). This phenomenon exacerbates hypoxia and lactic acid
accumulation in solid tumors and promotes tumor metastasis.
Under hypoxic conditions, the functional inactivation of prolyl-
hydroxylase 2 (PHD-2) leads to reduced degradation of HIF-1,
which is an important regulator of hypoxic microenvironments

(Masoud and Li, 2015). Overexpression of HIF-1α upregulates
GLUTs, hexokinase isoform 2 (HK2), pyruvate kinase isoform M
(PKM), and other key factors, leading to tumor aerobic glycolytic
metabolism (Kato et al., 2018; Sormendi andWielockx, 2018; Han
et al., 2020). The phenomenon is also applicable to EC, where
several important regulatory factors such as HIF-1α, GLUT-1,
and PKM2 have been found to be elevated (Xiaoyu et al., 2018).
Another endogenous hypoxia marker, Carbonic anhydrase IX
(CAIX), is also overexpressed in EC (Jomrich et al., 2014). In
addition, the increased expression of HIF-1α can also directly
upregulate VEGF and PD-L1, which are associated with tumor
angiogenesis and immune escape, respectively (Augustin et al.,
2020). In the hypoxic microenvironment, many immune cells
are affected by HIF-1α, which reduces the immune response and
promotes the proliferation of tumors. Moreover, hypoxia can also
lead to genetic mutations that inhibit the effects of radiotherapy;
downregulation of homologous recombinant proteins BRCA1
and BRCA2 in EC cells promoted G0-G1 cell cycle arrest and
thus reduced the response to radiotherapy (Nguyen et al., 2013).
A recent study using single-cell sequencing showed that HIF-
1 expression decreased in paclitaxel-resistant EC cells, but this
phenomenon was reversed with carfilzomib (Wu et al., 2018).

Hypoxia is one of the characteristics of solid tumors and
is therefore a potential therapeutic target. Several approaches
have been targeted at the hypoxic microenvironment, including
HIF-1α targeted therapy, CAIX antagonists, nanomedicine, and
traditional Chinese medicine (Wang et al., 2016; Wigerup et al.,
2016; Chen et al., 2018; Li et al., 2018; Pan et al., 2018; Yu et al.,
2018). Dihydroartemisinin, which is a derivative of artemisinin,
can enhance the sensitivity of other treatments by inhibiting
the expression of HIF-1α (Li et al., 2018). Chinese herbal
medicine has thus proved unique in improving the hypoxic
microenvironment and treating EC, but the specific underlying
mechanism still requires in-depth analysis. EC can also be
treated using phototherapy (Wang B. et al., 2021; Xiang et al.,
2021). Recently, Liu J. et al. (2020) designed a cage-like carbon-
manganese nanozyme which can not only improve the hypoxic
microenvironment but also deliver a lot of photosensitizers to
the tumor site, making it useful for real-time tumor imaging and
enhancing the efficacy of phototherapy. This new nanomedicine
has been verified in both in vivo and in vitro experiments.
Improving the hypoxic microenvironment is an essential part
of treating EC. At present, there are few treatment methods
targeting the hypoxic microenvironment of EC and most of them
are still in preclinical studies.

RELATIONSHIP BETWEEN
MICROENVIRONMENT INDICATORS
AND PROGNOSIS

Multiple factors in the microenvironment play an indispensable
role in EC development. Therefore, the detection of
microenvironment indicators can predict the prognosis of
patients to a certain extent. These prognostic indicators are
summarized in Table 2.
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CONCLUSION

In this review, we summarized a variety of microenvironment-
targeted therapies. At present, traditional therapies such as
surgery, chemotherapy, and radiotherapy are still the main
treatments for EC. Due to the drug resistance and side effects
of traditional treatment, the current therapeutic effect does
not meet our requirements. In a recent review, Luan et al.
(2021) detailed the relationship between microenvironment
and drug resistance in EC, suggesting that microenvironment-
targeted therapy may be a breakthrough point for drug
resistance. These results highlight the function of TME as a
therapeutic target.

Some microenvironment-targeted drugs, such as PD-1/PD-L1
inhibitors and anti-angiogenesis drugs, have entered the clinic
and shown good outcomes. New immunotherapies, such as CAR-
T therapy, tumor vaccines, and oncolytic viruses, are undergoing
clinical trials and have demonstrated initial therapeutic value. In
addition, inhibition of the inflammatory microenvironment and
improvement of hypoxia are also helpful for patient outcomes.
However, existing treatment regimens have many limitations
and are not sufficient to cure malignancies; thus, additional
research is needed. First, enhancing the effectiveness of existing
drugs, e.g., using biomarkers to identify drug-sensitive patients
or combining drugs to enhance efficacy, is the simplest way of
extending patient survival. Second, many microenvironment-
targeted drugs that have shown significant anticancer effects in
other tumors can also be used to treat EC. For example, TGF-
β pathway inhibitors can not only directly inhibit the tumor
but also enhance human immunity. Tests can be performed

on EC to determine drug efficacy. Finally, in addition to the
targets mentioned above, there are many mechanisms of the
microenvironment that are currently unknown. Further studies
of these mechanisms and active research and development of
new drugs are important for achieving breakthroughs in EC.
We believe that microenvironment-targeted therapy can achieve
greater survival benefits for patients with EC and its specific
mechanism requires further exploration.
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