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Abstract

Background: During its developmental cycle within the sand fly vector, Leishmania must survive an early proteolytic attack,
escape the peritrophic matrix, and then adhere to the midgut epithelia in order to prevent excretion with remnants of the
blood meal. These three steps are critical for the establishment of an infection within the vector and are linked to
interactions controlling species-specific vector competence. PpChit1 is a midgut-specific chitinase from Phlebotomus
papatasi presumably involved in maturation and degradation of the peritrophic matrix. Sand fly midgut chitinases, such as
PpChit1, whether acting independently or in a synergistic manner with Leishmania-secreted chitinase, possibly play a role in
the Leishmania escape from the endoperitrophic space. Thus, we predicted that silencing of sand fly chitinase will lead to
reduction or elimination of Leishmania within the gut of the sand fly vector.

Methodology/Principal Findings: We used injection of dsRNA to induce knock down of PpChit1 transcripts (dsPpChit1) and
assessed the effect on protein levels post blood meal (PBM) and on Leishmania major development within P. papatasi.
Injection of dsPpChit1 led to a significant reduction of PpChit1 transcripts from 24 hours to 96 hours PBM. More importantly,
dsPpChit1 led to a significant reduction in protein levels and in the number of Le. major present in the midgut of infected P.
papatasi following a infective blood meal.

Conclusion/Significance: Our data supports targeting PpChit1 as a potential transmission blocking vaccine candidate
against leishmaniasis.
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Introduction

Emerging and reemerging vector-borne diseases pose significant

threats to human and animal health [1]. The emergence of

insecticide resistance as well as the lack of other efficient

insecticidal tools to control disease vectors imply that new

methodologies need to be developed in order to reduce vector-

borne disease transmission [1]. For this, the study of vector-

pathogen interaction pinpointing factors underlying vector

competence can reveal new molecular targets to be disrupted,

preventing pathogen transmission [2,3].

In sand flies, midgut molecules are known or believed to be

involved in defining a species ability to transmit Leishmania in

nature. For a successful development within the midgut of the sand

fly vector, Leishmania must overcome several barriers that include

an early proteolytic attack [4,5,6,7,8], the need to escape the

peritrophic matrix (PM) [8,9,10,11,12], and attachment to the

midgut epithelia to prevent excretion with the remnants of

the blood meal [13,14,15,16].

Attachment to midgut epithelia has long been associated with

the type of lipophosphoglycan (LPG) present on the surface of

Leishmania, and is associated with defining sand fly-Leishmania pairs

in nature [15,16,17]. For Leishmania major V1 strain, with LPG

displaying highly decorated side chains with prominent galactose

residues, we demonstrated that PpGalec, a P. papatasi galactose-

binding protein, is the docking site for Le. major on the midgut

epithelium of Phlebotomus papatasi [14]. Recently, LPG-independent

midgut binding has been associated with the degree of glycosyl-

ation detected on proteins expressed by midgut epithelial cells

[18].

For events leading up to the midgut binding, such as early

parasite survival during the proteolytic attack and escape of the

endoperitrophic space, some investigators suggested that midgut

proteases, such as trypsins and chymotrypsins, also are responsible

for defining vector-Leishmania specificity [4,5,6,7]. Such proteases

were shown to be specially harmful to transitional stages

amastigotes [8].

A role of the PM on sand fly vector competence was suggested

through comparisons of Leishmania development in different sand

fly species displaying different PM degradation rates [9,10,11].

Studies later revealed a dual role for the sand fly PM in parasite

development; protecting Leishmania from digestive enzymes in the
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beginning of blood digestion, yet becoming a barrier to parasite

escape when mature [8]. Recent data also indicate that an anterior

PM plug located at the junction between the anterior and posterior

midgut acts as a barrier to Leishmania migration towards the

stomodeal valve [12].

Regarding Leishmania escape from the PM, it was firstly

proposed to be solely accomplished by a parasite chitinase [19].

Further work demonstrated that a Le. mexicana chitinase-overex-

pressing strain had an accelerated escape from the PM in Lutzomyia

longipalpis [20]. However, since the characterization of a blood

induced chitinolytic system in the sand fly midgut [21], it became

apparent that the parasite must take advantage of the sand fly peak

chitinolytic activity within midgut, approximately 40–48 hours

after a blood meal, for their escape [12,21].

PpChit1 is presumably involved in PM maturation/degradation

in P. papatasi [8]. Based on the fact that Leishmania must escape the

PM, and that this escape may be aided by the vector’s own

chitinase, we predicted that PpChit1 knock down (via RNAi) would

interfere with Le. major development. Our data indicates that

dsRNA-mediated silencing of PpChit1 transcripts leads to a

reduction in the parasite load within the midgut of P. papatasi,

pointing to the role of this molecule in P. papatasi vector

competence and its potential for the development of a transmis-

sion-blocking vaccine.

Methods

Ethics statement
The use of animals during this study was reviewed and

approved by the Kansas State University Institutional Animal

Care and Use Committee (KSU-IACUC).

Sand fly rearing, dissection, and infection with Le. major
P. papatasi (Israeli strain -PPIS) was reared in the Department of

Entomology, Kansas State University, according to conditions

described [21]. For all experiments, three-to-five day old female

sand flies were used. Blood feeding was performed through a

chicken skin membrane attached to a feeding device. Prior to sand

fly feeding, fresh mouse blood was heat inactivated for 30min at

56uC and supplemented with 50 ml/ml of Pen/Strep solution (MP

Biomedicals, Solon, OH, USA) as well as 1 mM ATP (MP

Biomedicals). Sixteen to twenty four hours after blood feeding,

fully engorged females were separated from partially engorged and

non-blood fed by anesthetizing flies with CO2 and examining the

midgut distension under a stereoscope microscope. Only fully fed

individuals were maintained for further analyses.

Fully engorged sand fly midguts were individually dissected on

RNAse free (cleaned with ELIMINase, Fisher Scientific, Pitts-

burgh, PA, USA) glass slides, transferred to 50 ml of 16PBS buffer

(RNase free, pH 7.4; Fisher Scientific), and thoroughly homoge-

nized using a hand held tissue homogenizer and RNAse-free

pestle. Half the homogenate volume (25 ml) was transferred to

350 ml of RLT buffer (supplemented with 1% b-mercaptoethanol)

provided by the RNA extraction kit (RNAeasy mini kit, Qiagen,

Valencia, CA, USA) and stored at 280uC for quantitative real-

time PCR assays. The remaining 25 ml of midgut homogenate was

used in Western blot assays, as described below.

Infections of sand flies with Le. major amastigotes V1 strain were

done by addition of 56106 parasites/ml into the blood meal. Le.

major amastigotes were harvested from BALB/c mouse footpads

lesions formed roughly 30 days after inoculation with 56105

parasites from late phase culture according to [22].

dsRNA synthesis and injection
dsRNA for PpChit1 were synthesized using the primers

PpChit1/T7i_2–F (59–TAATACGACTCACTATAGGGAGAA-

TGAAGATATCATTGTGTGC-39) and PpChit1/T7i_2–R (59–

TAATACGACTCACTTAGGGAGATCAGCATTGGACCAG-

GAAGG-39), which contain the complete T7 promoter and

amplify the full length sequence encoding the mature PpChit1.

PCR reactions were performed with 0.5pmoles of each primer

along with 1 ml of cDNA (synthesized from midgut dissected at

72 h post-blood meal, PBM), and 10 ml of GoTaq PCR master

mix (Promega, Madison, WI, USA). The 20 ml PCR reactions

were carried according to the conditions: 10 cycles of 95uC for

1 min, 55uC for 1 min, and 72uC for 1 min and 15 sec, followed

by 35 cycles 95uC for 1 min, 65uC for 1 min, and 72uC for 1 min

and 15 sec. The reaction products were purified and concentrated

using the YM-100 filters (Millipore, Billerica, MA, USA), and 1 mg

DNA was used for dsRNA synthesis using the Megascript RNAi

kit (Ambion, Austin, TX, USA). dsRNA synthesis reactions were

performed for four hours at 37uC, and the products were further

purified following manufacturer’s recommendations. Thereafter,

dsRNAs were suspended in ultra-pure water and further purified

and concentrated to approximately 3.5 mg/ml or 4.5 mg/ml

using the YM-100 filters (Millipore). The positive control provided

by the Megascript RNAi kit (Ambion; used in Real-Time PCR

and Western blot assays) or a dsRNA specific to a green

fluorescence protein gene (dsGFP [23]; for parasite counting

assays) was used as controls for dsRNA injection assays.

For dsRNA injections, individual females were anesthetized

with CO2, kept on a cold dish, and injected intra-thoraxically with

either 23 nl (3.5 mg/ml, 80.5 ng) or 32 nl (4.5 mg/ml, 144 ng) of

dsRNA using Nanoject II microinjector (Broomall, PA, USA).

Immediately following injection, flies were transferred to a 500 ml

plastic container, provided with 30% sugar embedded cotton, and

maintained inside a high humidity chamber (85–95% humidity at

25uC). Flies were allowed to recover for 48 hours and blood fed on

an uninfected blood meal through a chicken membrane, as

described above.

RNA isolation and cDNA synthesis
Total RNA was isolated from individual midguts dissected as

described above. RNA extraction was carried out using the

Author Summary

For a successful development within the midgut of the
sand fly vector, Leishmania must overcome several barriers
which are imposed by the vector. The ability to overcome
these barriers has been associated with species specificity,
and interference with the sand fly vector-parasite balance
can change the outcome of the infection in the vector.
Recently, our group has carried out a transcriptome
assessment of the sand fly Phlebotomus papatasi midgut,
uncovering many transcripts possibly associated with the
barrier to Leishmania development. In order to validate the
role of such genes, we have developed a dedicated RNA
interference (RNAi) platform to assess whether RNAi
targeting such genes can reduce Leishmania major
development. PpChit1 is a midgut-specific chitinase
presumably involved in the maturation/degradation of
the peritrophic matrix in the gut of the sand fly after a
blood meal. Our results show that knockdown of PpChit1
via RNAi led to a significant reduction of Le. major within
the gut, supporting the potential use of PpChit1 as a
target for transmission blocking strategies against sand fly-
transmitted leishmaniasis.

PpChit1 Silencing and Leishmania Development
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RNAeasy mini kit (Qiagen) following manufacturer’s instructions.

Following extraction, the Turbo DNA-free kit (Ambion) was used

to eliminate DNA contamination. After quantification, 25 ng total

RNA was used for cDNA synthesis using 200 units of SuperScript

III Reverse Transcriptase (200 u/ml), 2.5 mM Oligo (dT)20 primer,

and 0.5 mM dNTPs (10 mM). These reagents were incubated at

65uC for 5 minutes (min) and kept in ice for at least 1 min. This

step was followed by addition of a mix containing 4 ml 56
SuperScript III Reverse Transcriptase First-Strand Buffer, 5 mM

DTT (0.1 M), 20 Units of RNaseOUT to the reaction. The

mixture was incubated for one hour at 50uC and stored at 220uC.

All the reagents for cDNA synthesis were purchase from

Invitrogen (Carlsbad, CA, USA).

Quantitative real-time PCR analyses
Real-Time PCR reactions were performed using BioRad SYBR

green and BioRad iCycler (BioRad, Hercules, CA, USA). The

reactions were carried out in duplicate using 0.5 ml cDNA,

6pmoles of each primer (10 mM), 10 ml of 26 SYBR green, and

8.3 ml of Ultra Pure DNase/RNase-Free Water (Invitrogen). The

primers used for chitinase amplification were PpChit_137F (59 -

ATGATCTGCATGGTTCTTGG - 39) and PpChit_137R (59 -

GGAGCTCCATTTCGAATCC - 39) while the S3 primers

(Pp40S_S3_136F: 59 - GGACAGAAATCATCATCATG – 39

and Pp40S_S3_136R: 59 – CCTTTTCAGCGTACAGCTC – 39)

were used for amplifications of the housekeeping control gene

(encoding the protein S3 of ribosomal subunit 40S). The reaction

Figure 1. dsRNA effect on PpChit1 RNA levels. Real-Time PCR comparing the mRNA level of PpChit1 between flies injected with 80.5 ng (A) or
144 ng (B) of dsPpChit1 (dsChit1) or dsControl (dsCtr) double-strand RNAs. Significant PpChit1 transcript reduction was exhibited by dsPpChit1
injected flies at 24 h (A and B), 48 h, 72 h, and 96 h PBM (A). PpChit1 mRNA levels were normalized with the S3 housekeeping gene. Results are
presented as a percent of PpChit1 expression levels in dsPpChit1 injected flies over the mean of PpChit1 expression levels in dsControl injected flies
(considered as 100%) for each time point. The variance in PpChit1 expression in dsControl injected flies is also shown. Each dot represents PpChit1
RNA levels in a single fly. Horizontal bars indicate mean expression level. *: Statistically significant at p,0.05.
doi:10.1371/journal.pntd.0000901.g001
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cycle of 94uC for 1 min, 57uC for 1 min, and 72uC for 30 sec was

repeated 40 times, and the amplification profiles were assessed

using the BioRad iCycler software (BioRad).

PpChit1 anti-sera and Western blot analyses
Polyclonal anti-PpChit1 sera were obtained by injecting three

month old female BALB/c mice subcutaneously into the ears.

Mice were injected three times in two weeks intervals with

approximately 10 mg of purified VR2001 plasmid [24] encoding

the mature chitinase protein [21] per mouse ear. Blood was

collected from the submandibular vein (‘‘cheek bleed’’) of injected

animals and antibody levels accessed via Easy-Titer IgG Assay Kit

(Pierce, Rockford, IL, USA). Sera were maintained at 220uC until

used. For Western blots, seven midgut extracts from flies injected

with dsPpChit1 and dsControl were pooled together in RNasefree

microcentrifuge tubes containing 1 ml of complete protease

inhibitor (Thermo Scientific, Rockford, IL, USA) and concentrat-

ed using the YM-10 filters (Millipore). Total protein concentration

in midgut extracts was quantified using BCA Protein Assay Kit

(Thermo Scientific). Similar proteins amounts (5 mg per lane) from

midguts of dsPpChit1 and dsControl injected sand flies were

fractionated on 10% Bis-Tris NuPAGE gels (Invitrogen). Proteins

were transferred to a nitrocellulose filter (Whatman, Dassel,

Germany), incubated with PpChit1 antisera (1:100 dilution)

overnight at 4uC, washed three times in TBS-T (16 TBS buffer

with 0.1% tween-20) for 15 minutes each time. Blot was incubated

with anti-mouse conjugated to alkaline phosphatase (1:10,000 in

TBS-T) antibodies (Promega) for one hour at room temperature

and washed in TBS-T as indicated above. The protein bands

(56 kDa, [21]) were visualized using the Western Blue substrate for

Alkaline Phosphatase (Promega). Alternatively, Western blot was

incubated with anti-mouse-Horseradish Peroxidase secondary

antibody (1:10,000) and detected with SuperSignal West Pico

Chemiluminescence Substrate (Thermo Scientific) in chemilumi-

nescence assays. Densitometry analysis was performed using the

TotalLab TL100 software (Nonlinear Dynamics, Durham, NC,

USA).

P. papatasi dissection and parasite counting
In order to assess the PpChit1 knockdown effects on Le. major

development, 80.5 ng of dsRNA was injected intra-thoraxically

into P. papatasi, and flies were fed on an infected blood meal as

described above. Midguts from fully engorged-only flies were

dissected at 48 h and 120 h after the infective blood meal and

Figure 2. dsRNA effect on PpChit1 protein levels. (A). Western blot assay pointing to PpChit1 knock down in dsPpChit1 injected flies (80.5 ng
dsRNA) at 48 h PBM. (B). Midgut extracts from flies injected with 144 ng dsPpChit1 (dsChit1) displayed weaker bands (56 kDa) than dsControl (dsCtr)
injected flies at 48 h and 72 h PBM. A–B, Colorimetric development. (C). Western blot assay depicting strong PpChit1 expression reduction in flies
injected with 144 ng dsPpChit1 (dsChit1) compared with dsCtr injected ones at 48 h PBM (Chemiluminescence development). (D). Densitometry
analysis of PpChit1 protein bands obtained in the chemiluminescence assay revealing 95% reduction in PpChit1 expression between dsPpChit1 and
dsControl injected flies.
doi:10.1371/journal.pntd.0000901.g002
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homogenized in 30 ml of PBS buffer (pH 7.4). Parasites were

counted with a hemocytometer. Two independent experiments

were carried out for each time point.

Statistical analysis
Mann-Whitney U test was performed to compare expression

profiles as well as parasite numbers between sand flies injected with

either dsRNA targeting PpChit1 transcripts (dsPpChit1) or the

dsRNA control (dsControl) injected flies. D’Agostino & Pearson

omnibus normality test was performed to assess whether parasite

numbers followed a normal distribution. The Chi-square test (or

Fisher’s exact test) was performed in order to assess whether

dsPpChit1-injected flies exhibit altered Le. major load compared to

the dsControl-injected flies. Parasite infection load in flies dissected

at 48 h post infection was scored according to parasite numbers in

the sand fly midgut as no parasite, light infection (1–1,000 parasites),

moderate infection (1,001–10,000), or heavy infection (.10,000), in

accordance to [25]. For flies dissected at 120 h PBM parasite loads

were categorized in two groups: zero or light infections (0–1,000

parasites) was arranged as one group, and moderate infection

(.1,000 parasites) as another. Differences were considered

statistically significant at p,0.05, and tests were carried out using

GraphPad Prism v. 5.01 software (GraphPad Software, Inc).

Results

dsPpChit1 effects on mRNA levels
Injection of 80.5 ng of dsRNA into the sand fly thorax targeting

the midgut expressed PpChit1 gene led to a significant decrease in

PpChit1 mRNA levels in comparison with the control dsRNA-

injected flies (Figure 1). Reduction of PpChit1 expression after a

blood meal varied over time. Twenty four hours after blood meal

(and 72 h after injection of dsPpChit1), a 27% reduction of PpChit1

transcripts was detected (Figure 1A). At 48 h PBM (previously

shown to be the maximum activity for PpChit1 [21]) and at 72 h

PBM, reductions of 58% and 53% on average of the PpChit1

expression were observed (Figure 1A). Finally, at 96 h PBM (120 h

after dsRNA injection), when no chitinolytic activity was detected

[21], the reduction in PpChit1 expression was 72%.

On the other hand, injection of 144 ng of dsPpChit1 into P.

papatasi thorax displayed a weaker reduction in PpChit1 expression

levels than injection of 80.5 ng (Figure 1B). Although similar

expression reduction at 24 h PBM was exhibited (26%, Figure 1B),

expression differences between dsPpChit1 and dsControl injected

flies at 48 h and 72 h PBM were lower (13% and 43%,

respectively) than detected at the same time points when 80.5 ng

of dsRNA was injected (Figure 1B). These differences could be

occurring due to a still obscure feedback loop for transcription

activation upon knock down, as proposed elsewhere [26].

dsPpChit1 effects on protein levels
Silencing of the PpChit1 message RNA produced a concomitant

reduction in the amount of PpChit1 protein as determined by

Western blots (Figure 2). Similar to the Real-Time PCR data,

reduction in PpChit1 protein levels in dsPpChit1 injected flies was

detected at 48 h and 72 h PBM (Figures 2A–C) when either

80.5 ng or 144 ng of dsRNA was injected. No PpChit1 expression

was detected at 24 h PBM (Figure 2B). Likewise, densitometry

analysis of blot developed using a chemiluminescence method

displayed 95% reduction in PpChit1 protein levels at 48 h PBM

when 144 ng dsPpChit1 (Figure 2C and D). Interestingly, the

corresponding time point only led to 13% reduction of PpChit1

mRNA levels, as shown in Figure 1B.

dsPpChit1 effects on Le. major development within P.
papatasi midgut

As injection of either 80.5 ng or 144 ng of dsRNA targeting

PpChit1 transcripts are capable of significantly reducing PpChit1

expression levels in the midgut of P. papatasi (Figure 1 and 2), we

assessed the effects of injecting 80.5 ng of the dsRNA on Le. major

development within the injected flies. Following the injection of

the PpChit1 dsRNA, flies were provided an infective blood meal,

and dissected at different time points after feeding. Our results

demonstrate that dsPpChit1-targeted knock-down resulted in

significant reductions in parasite load within the sand fly midgut

as the numbers of Le. major were reduced by 46% (or 1.85 fold) at

48 h post infection (Figure 3A) and by 63% (or 2.70 fold) at 120 h

PBM post infection (Figure 3B).

The injection of dsPpChit1 also affected the range of parasite

loads. An analysis of the range of parasite load at 48 h and 120 h

post infection points to a normal distribution of parasite numbers

in the dsControl-injected flies (48 h PBM, p = 0.51, and 120 h

Figure 3. dsRNA effect on Le. major development. Intra-thoracic
injections of dsPpChit1 (80.5 ng) reduce Le. major load in P. papatasi
midgut. (A). At 48 h PBM, Le. major density was reduced on average
46% in dsPpChit1 (dsChit1) injected compared with dsControl (dsCtr)
injected. (B). Le. major parasites per midgut were further reduced at
120 h PBM in dsPpChit1 injected flies, reaching on average 63%
reduction over the dsControl injected ones. Each dot represents
parasite number in a single P. papatasi midgut. Horizontal bars display
mean parasite numbers. n: Number of flies analyzed. *: Statistically
significant at p,0.05. Graphs represent one similar result of two
independent experiments.
doi:10.1371/journal.pntd.0000901.g003
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Figure 4. Effect of dsRNA injection on Le. major infection level in P. papatasi. Parasite load was categorized according to the number of Le.
major per midgut. (A) Percentage of sand flies injected with either dsCtr or dsChit1 exhibiting no infection (0 parasites), as well as light (1–1,000
parasites), moderate (1,000–10,000 parasites), or heavy (.10,000 parasites) infection at 48 h PBM. Differences are statistically significant (Chi-square,
p = 0.01). (B) Percentage of sand flies injected with either dsCtr or dsChit1 exhibiting either no parasites or light infection (0–1000 parasites), or
moderate infection (.1,000 parasites) at 120 h PBM. Differences are statistically significant (Fisher’s exact test, p = 0.04). n: Number of flies dissected.
doi:10.1371/journal.pntd.0000901.g004
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PBM, p = 0.26, D’Agostino & Pearson omnibus normality test),

whereas for dsPpChit1-injected flies this distribution was signifi-

cantly affected (48 h PBM, p = 0.004, and 120 h PBM, p,0.0001,

D’Agostino & Pearson omnibus normality test).

Changes in P. papatasi infection levels following silencing of

PpChit1 were further confirmed by comparing infection preva-

lence. For instance, injection of dsPpChit1 reduced the prevalence

of heavy infection from 47% (dsControl-injected) to 19%, and of

light infection from 19% (dsControl-injected) to 6% at 48 h post

blood feeding (Figure 4A). Likewise, moderate infections levels

were reduced from 57% (dsControl-injected) to 14% at 120 h post

infection (Figure 4B).

Discussion

After a blood meal, sand flies synthesize a PM type 1 that is fully

developed at approximately 36–40 h PBM [27]. In addition to

compartmentalizing the blood meal and protecting the epithelia,

the sand fly PM serves an additional dual role regarding Leishmania

infection: as a barrier to these parasites but also as protection

against proteolytic attack on transitional-stage amastigotes

[8,20,28,29,30]. In order to successfully complete its cycle within

the sand fly, Leishmania nectomonads must escape from endoper-

itrophic space, through the PM, to prevent being passed together

with remnants of the digested blood meal [8].

We have previously characterized a functional, blood-induced

chitinolytic system, in the midgut of P. papatasi and L. longipalpis

sand flies [21,31]. We also demonstrated that polyclonal

antibodies to PpChit1 inhibit the midgut chitinolytic activity in

vitro, and this effect also was shown across different sand fly species

[21]. PpChit1 is presumably involved in the maturation and

degradation of P. papatasi PM (as is its ortholog in L. longipalpis,

LlChit1) [21,31], and addition of allosamidin, a chitinase inhibitor

to the infective blood meal of this sand fly led to entrapment of Le.

major within the peritrophic space [8]. Although allosamidin may

have also inhibited chitinase secreted by Leishmania, taken together,

these data suggested that PpChit1 also can be involved with

Leishmania escape from the endoperitrophic space.

To address whether silencing of PpChit1 transcripts via RNAi-

induced pathway would affect Le. major development within its

natural vector, P. papatasi, we synthesized a dsRNA specifically

targeting PpChit1.

Injection of dsRNA targeting specific transcripts has now been

widely applied in disease vectors and proven an invaluable tool for

the understanding of underlying events in pathogen-vector

relationships [32,33,34]. In sand flies, gene silencing with dsRNA

was first applied to L. longipalpis cell culture [35], inducing a non-

specific antiviral response. Recently, dsRNA injection of adult

sand flies led to a specific reduction of Xanthine dehydrogenase

expression [36], and to an effect on Le. mexicana development when

a midgut trypsin produced by L. longipalpis was silenced [30].

The midgut chitinase PpChit1 is only expressed following a

blood meal [21]. Thus, following injection of dsPpChit1 double-

stranded RNA, sand flies were blood fed and midguts dissected at

different intervals after feeding. Specific silencing of PpChit1

transcripts was detected by quantitative real-time PCR analyses

(Figure 1), with concomitant knock down of PpChit1 protein levels

assessed by Western blots (Figure 2).

Based on the presumptive role of PpChit1 in the maturation

and degradation of the PM1, we expected that silencing of this

gene would lead to entrapment of Leishmania within the

endoperitrophic space. Our results are consistent with this

hypothesis, as Le. major load was reduced 120 h PBM in midguts

of dsPpChit1 injected P. papatasi (Figures 3 and 4) suggesting that

PpChit1 is indeed involved in PM1 degradation. Moreover,

reduction of the Le. major load at 48 h PBM in dsChit1 compared

to control-injected flies might have been caused by at least two

scenarios: 1) a reduction in nutrient availability in the endoper-

itrophic space as the PM may be less permeable to proteolytic

enzymes, or in the contrary, 2) to inability of parasites to escape

leading to longer exposure to digestive enzymes inside the

peritrophic space. Regardless of the mechanism, it still remains

to be determined.

Future studies will assess whether this is a feasible approach in

preventing transmission from an infected animal to a naı̈ve host.

Moreover, the results support the targeting of PpChit1 as a mean

to interfere with Leishmania development within the sand fly – a

candidate transmission-blocking vaccine.
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