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Nuclear factor-κB (NF�κB) transcription factors represent a conserved family of proteins that 
regulate not only immune cells, but also heart cells, glial cells and neurons, playing a 
fundamental role in various cellular processes. Due to its dysregulation in certain cancer types as 
well as in chronic inflammation and autoimmune diseases, it has recently been appreciated as an 
important therapeutic target. The aim of this study was to investigate the binding pocket of 
NF�κB (p50/p65) heterodimer complex in association with NF�κB inhibitor IκBα to identify 
potent ligands via fragment-based e-pharmacophore screening. The ZINC Clean Fragments (~2 
million) and the Schrodinger’s medically relevant Glide fragments library (~670) were used to 
create the e-pharmacophore models at the potential binding site of the target which was validated 
by site mapping. Glide/HTVS docking was conducted followed by re-docking of the top 20% 
fragments by Glide/SP and Glide/XP protocols. The top-85000 Glide XP-docked fragments were 
used to generate the e-pharmacophore hypotheses. The Otava small molecule library (~260000 
drug-like molecules) and additional 85 known NF�κB inhibitors were screened against the 
derived e-pharmacophore models. The top-1000 high-scored molecules, which were well aligned 
to the e-pharmacophore models, from the Otava small molecule library, were then docked into 
the binding pocket. Finally, the selected 88 hit molecules and the 85 known inhibitors were 
analyzed by the MetaCore/MetaDrug™ platform, which uses developed binary QSAR models 
for therapeutic activity prediction as well as pharmacokinetic and toxicity profile predictions of 
screening molecules. Ligand selection criteria led to the refinement of 3 potent hit molecules 
using molecular dynamics (MD) simulations to better investigate their structural and dynamical 
profiles. The selected hit molecules had a low toxicity and a significant therapeutic potential for 
heart failure, antiviral activity, asthma and depression, all conditions in which NF�κB plays a 
critical role. These hit ligands were also structurally stable at the NF‑κB/IκBα complex as per 
the MD simulations and MM/GBSA analysis. Two of these ligands (Otava IDs: 1426436 and 
6248112) were energetically more favorable and therefore are hypothesized to be more potent. 
Identifying new potent NF�κB/IκBα inhibitors may thus present a novel therapy for 
inflammation-mediated conditions as well as cancer, facilitating more efficient research, and 
leading the way to future drug development efforts. 
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Introduction 

The transcription factor nuclear factor kappa B (NF�κB) has now been appreciated as a master 

regulator of the body’s innate and adaptive immune systems1. It represents a family of 

transcription factors that has played a fundamental role in the defense and protection of homo 

sapiens against injury and infections throughout evolution1. First discovered in B cells, NF�κB 

has proved to be an important family of conserved transcription factors that plays a critical role 

for the functioning of not only immune cells, but also heart cells, glial cells and neurons2,3. It has 

an essential role in various cellular processes including signaling, autophagy, cellular 

senescence, tissue regeneration and repair and cellular metabolism2. Triggering the NF�κB 

classical/canonical signaling pathway can be activated by certain stimuli such as 

proinflammatory cytokines, tumor necrosis factor (TNF) and pathogen-associated molecular 

patterns (PAMPS) such as lipopolysaccharides in gram-negative bacteria1,2,4. A second 

alternative, the non-canonical pathway, which activates p52-RELB dimers of NF�κB is 

triggered by different stimuli2. These signals lead to the phosphorylation of IκBα, targeting it for 

degradation by the ubiquitin-proteasome pathway5,6. Consequently, the p50-p65 subunits of 

NF�κB, which are mainly found in the cytoplasm bound to IκB proteins in its latent state, are 

free to translocate to the nucleus and bind DNA to enhance the expression of over 500 genes1,6,7. 

The complexity of NF�κB and its variable functions in different cell types is perhaps mediated 

by the crosstalk with other signaling pathways, signaling proteins and other transcription 

factors2. 

There is now clear evidence about the pivotal role of NF�κB in linking chronic inflammation 

and persistent infections to the increased risk of cancer upregulation and development2,8. NF�κB 

is dysregulated not only in certain cancers9-11, but also in chronic inflammation, autoimmune 

diseases as well as neurodegenerative and heart diseases2,12,13. While the differential and multi-

faceted role of NF�κB in the heart is complex and currently under investigation, it has been 

found that prolonged NF�κB activation is associated with heart failure by promoting chronic 

inflammation, endoplasmic reticulum stress responses, apoptosis and adverse remodeling post-

myocardial infarction14,15 as well as the development of inflammatory cardiomyopathy16. NF�κB 

is released cyclically in the heart and thus, it is also important for cardiac pathophysiology16. 
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Various research studies have, on the other hand, showed that corticosteroids, mediate their 

strong anti-inflammatory effect via NF�κB inhibition, potentially by increasing IκBα and thus 

inhibiting NF�κB translocation to the nucleus, however this is still not clearly understood 7,17,18. 

NF�κB is majorly activated in asthma in response to IL-1 and TNFα; exacerbation of asthma 

attacks may be related to induced activation of NF�κB via the stimulation of TLRs by bacterial 

or viral infections18. A variety of antioxidants such as vitamin E derivates can also inhibit 

NF�κB activation17. Getting insight into the complexity of NF�κB signaling pathways thus 

requires an integration of many biochemical, molecular and computational studies conducted so 

far since its discovery about 30 years ago.  

Finding potent inhibitors that could act more selectively in the NF�κB pathway may present a 

novel therapeutic strategy for cancer as well as other inflammatory conditions and lead the way 

to future drug design efforts and experimental studies. The complexity of NF-κB signaling in 

inflammation and cancer has been comprehensively reviewed by Hoesel and Schmid19. NF�κB 

inhibitors represent a new therapeutic alternative and may also play a significant role in treating 

corticosteroid-resistant asthma and COPD20. While a large number of NF-κB inhibitors are 

known13, compounds specifically designed as NF-κB inhibitors are not in clinical use yet, but 

will be addressed as treatments for certain cancers, neurodegenerative and inflammatory 

diseases. NF-κB activation can be inhibited by classical chemotherapeutic IKKβ-selective 

inhibitors21. Also, certain natural compounds like plant-derived substances have been evaluated 

as inhibitors of the NF-κB pathway22. 

Few molecules that target NF�κB have been tested so far; among these, DHMEQ, a known 

potent NF�κB inhibitor, was shown to reduce eosinophil-mediated airway inflammation and 

remodeling in experimental mice models of asthma23. In addition to asthma and COPD, NF�κB 

has also been found to play a critical role in depressive behavior mediated by acute and chronic 

stress and IL-1β and IL-6 signaling24-26, highlighting the importance of NF�κB signaling in 

neuronal survival, development, growth and degeneration, circadian sleep rhythms and mood-

related behavior12,26,27. Administration of an NF�κB inhibitor blocked the inhibition of 

neurogenesis in the hippocampus which is responsible for the pro-depressive behaviors, 

particularly anhedonia24. Recently, it is shown that inhibition of NF�κB was effective at 

restoring the sensitivity of drug-resistant prostate cancer to current anti-androgen therapy28. 
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NF�κB dysregulation has also been associated with various other conditions such as AIDS, viral 

infections, inflammatory bowel disease and arthritis29.  

Targeting the NF-κB pathway by computational approaches has so far been mostly addressed by 

mathematical, dynamic pathway modeling using ordinary differential equations (ODEs) of the 

signaling pathway30, but the structural biology has not been fully exploited yet. Computational 

studies have proven to play an integral role in linking theoretical biophysics to the fields of 

experimental cell biology, clinical pharmacology and medicine. Molecular docking has been 

appreciated as a powerful tool in structure-based drug discovery31. In addition, pharmacophore 

modeling has become an essential part of lead discovery, an area that is evolving rapidly and 

used extensively by academic and industry researchers32. This method provides a way to 

elucidate chemical features that are common and essential for the biological activity of high 

affinity ligands33,34. A fragment-based energy-optimized pharmacophore (e-pharmacophore) 

approach was developed which combines both the computational efficiency of virtual 

pharmacophore library screening as well as the accuracy of structure-based molecular docking33. 

In comparison to ligand-based methods, fragment-based pharmacophore models are built based 

on chemical fragments opposed to ligands34. This is particularly advantageous as prior 

information on known active ligands at the target complex is not necessary, thereby providing an 

unbiased way to explore challenging target proteins via thorough sampling of the chemical 

space32. The fragments are docked onto the protein complex and common chemical features 

which maximize the interactions that satisfy both positions and directions are discovered35. Once 

these pharmacophore models are generated, they can be used for database screening, hit 

identification, and as a framework for future drug discovery efforts.  

Literature provide only few details on the specific mechanism of action and interaction sites of 

known inhibitors in the NF�κB pathway. While there are now more than 785 known NF�κB 

inhibitors, these inhibitors target different steps in the pathway including IkB kinases (IKK), 

IκBα, the cytoplasmic retention of the NF�κB/IκBα complex, the nuclear translocation and DNA 

binding13. Therefore, a fragment-based pharmacophore model generation is an appropriate 

approach for investigating and analyzing small molecule binding to the NF�κB/IκBα complex. 

Thus, herein we present an in silico study to investigate the NF�κB/IκBα p50/p65 (RelA) 

heterodimer complex to discover potent ligands with strong binding affinities via fragment-based 

virtual e-pharmacophore screening, molecular docking and molecular dynamics (MD) 
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simulations followed by therapeutic activity, pharmacokinetic and toxicity predictions using a 

binary QSAR platform (MetaCore/MetaDrug). 

 

 

 

Methods 

Protein Preparation 

There is no full-length NF�κB/IκBα (p50/p65) complex structure from protein crystallography. 

Available structures of the protein-protein complex are missing the N-terminal signal receiving 

domain (SRD) which is essential in the non-canonical activation pathway by IKK. The SRD 

displays an additional 1.5 ankyrin repeat units which additionally stabilize the complex. The full 

length protein-protein complex model was taken from our previous study36 and prepared using 

the protein preparation module of Maestro molecular modeling tool37 to add hydrogen atoms, fix 

side chains and loops and to generate disulfide bonds38. The protonation states of amino acids at 

pH 7.4 were generated using PROPKA to mimic physiological conditions39,40. The OPLS3 

forcefield was finally used for the structural optimization of the protein41. 

Fragment and Ligand Preparation 

The ZINC Clean Fragments library (~2 million fragments) and the Schrodinger medically 

relevant Glide Fragment Library (~667) were downloaded from zinc.docking.org/subsets/clean-

fragments and www.schrodinger.com/glide#block-2974, respectively. The Otava Drug-Like 

Green Collection (~176000 small molecules) was downloaded from 

http://www.otavachemicals.com/. These downloaded libraries were prepared using the LigPrep 

module of the Maestro molecular modeling package with the OPLS3 forcefield41,42 (after ligand 

preparation, total number of molecules reached to ~260000 due to different combinations of 

enantiomers and tautomers of molecules).  Epik was used to apply the protonation states to the 

fragments and ligands at pH 7.443,44. Sampling of large rings was enhanced using MacroModel45.  

Site Mapping 

SiteMap module of Maestro was used to delineate the protein binding sites of the complex 

target46,47. A grid was placed over the whole target protein by SiteMap. Vertices were allocated 

inside concavities, but not in the protein itself, and were called as site points. Furthermore, all the 

points present in the neighborhood were clustered to characterize a binding site. Hydrophilic and 
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hydrophobic surfaces were mapped out by electrostatic and van der Waals probes present at site 

points.  The regions of hydrogen bonds and metal chelation were also accommodated. Druggable 

sites were identified according to the SiteScore. The SiteScore is an empirical function 

containing weighted sum of hydrogen bonding, enclosure/exposure, contact, and 

hydrophilic/hydrophobic terms. According to the knowledgebase metrics in SiteMap, a SiteScore 

of > 1.0  is associated with a site which is considered as druggable; a score between 0.8 and 1.0 

indicates that the region is difficult for binding, and a score below 0.8 denotes a site which is 

considered as non-druggable48. On the basis of Sitescores (>1.0), top-binding sites were selected 

for screening of compounds. The potential protein binding sites were identified using SiteMap 

via a more restrictive definition of hydrophobicity and standard grid47. At least 15 site points per 

reported site were used as criteria for the definition of the binding sites.  

Molecular Docking  

Algorithms used in the docking studies included Glide/HTVS, Glide/SP and Glide/XP in 

Maestro with flexible ligand sampling49-52. A receptor grid box was generated and certain amino 

acids were allowed to rotate their side chains to add flexibility to the used target: Ser51, Thr78, 

Ser180, Ser240, Ser276, Thr219, Thr247, Tyr251, Ser252, Tyr254, Thr257, Thr273, Ser283, 

Ser288, Tyr289, Thr291 and Glu292.  

Both the ZINC Clean Fragments (~2 million) and the Schrodinger’s Glide Fragments (~670) 

libraries were used to create the e-pharmacophore models at the potential site found from 

SiteMap. Glide’s high-throughput virtual screening (HTVS) docking module was conducted 

followed by re-docking of the top 20% scoring fragments using Glide’s standard precision 

(Glide/SP) then extra precision (Glide/XP). Input partial charges were used; scaling factor of van 

der Waals radii was set as default as 0.80 with a partial charge cutoff of 0.15. Glide/XP docking 

used flexible ligand sampling; nitrogen inversions and ring conformations were sampled. Post-

docking minimization was performed. Non-planar conformations were penalized. The Glide/XP 

docking was also conducted with expanded sampling with modified settings as described by 

Loving et al33. Accordingly, the number of poses per ligand for the initial phase of docking was 

set to 50000. The scoring window for keeping the initial poses was set as 500, and the best 1000 

poses per ligand were kept for energy minimization33.  The energy minimization protocol used a 

distance-dependent dielectric constant ε of 2 and 100 maximum minimization steps.  OPLS3 

force field was used for these calculations41. 
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Fragment Library-Based e-Pharmacophore Model Generation 

The use of modified Glide XP-docking allowed us to thoroughly sample all of the fragments in 

the binding sites while keeping the top-1000 poses for each fragment33. The hypotheses were 

then generated using PHASE based on the e-pharmacophore model generation protocol 

performed by the post-processing docking script which was previously described by Salam and 

Dixon34,53. Essentially, in this approach, energies derived from Glide/XP scores are mapped onto 

all atoms that define each pharmacophore chemical feature53. Accordingly, the pharmacophore 

sites are ranked and the best-scoring, most favorable sites are thus identified. The top-85000 

Glide XP-docked fragments were used to generate the e-pharmacophore hypotheses. The 

hypothesis generation also applies rules to prevent overlapping features – any two features are 

set at least 2 Å apart, while 4 Å is set as the minimum distance if two features are of the same 

type. For fragment-based pharmacophore model generation, six chemical features were analyzed 

in the hypothetical binding pocket:  hydrogen bond acceptor (A), hydrogen bond donor (D), 

hydrophobic (H), negative ionizable (N), positive ionizable (P), and aromatic ring (R) features. 

The hydrogen bond acceptors and donors were assigned based on vectors or pure projected 

points, leading to different vector-based and projected points-based hypotheses53. In the 

projected points approach, hydrogen bonds can be made by dissimilar active molecules 

regardless of their direction and point of origin, providing a more flexible approach53.  

E-Pharmacophore-based Virtual Screening  

The Otava Drug-Like Green collection includes around 176000 compounds which fits Lipinski’s 

rule of 5 (i.e., logP from -1 to 5, molecular weight from 160 to 500 Da, number of H-bond 

donors from 0 to 5, number of H-bond acceptors from 0 to 10, and number of NO2 groups from 0 

to 2). Compounds with reactive groups, biologically unstable compounds, and compounds 

containing any atom different than O, N, C, H, Br, Cl, F, or S are removed. These 176000 

compounds were enriched to around ~260000 after ligand preparation (due to different 

combinations of enantiomers and tautomers of molecules). Thus, ~260000 small molecules from 

the Otava library and 85 known NF�κB inhibitors were screened at each of the derived e-

pharmacophore models. The known NF�κB inhibitors from previous studies were included as a 

positive control group. The NF�κB inhibitors database compiled by Boston University (available 

from http://www.bu.edu/NF�κB/physiological-mediators/inhibitors/) was used for this purpose. 

The chemical structures were downloaded from PubChem and other open-source chemistry 
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online resources. All known inhibitors and molecules were prepared using Maestro's LigPrep 

module, and energy-minimized using the previously described algorithms42. Only ligands that 

matched at least 4 chemical features in each e-pharmacophore model were considered for the 

next stage in analysis. The top-1000 screened molecules based on fitness score from Otava were 

later docked onto the binding site using Glide/SP and Glide/XP protocols for further 

investigation.  

MetaCore/ MetaDrug Analysis 

The structure of the top 88 screened molecules from the e-pharmacophore screening from Otava, 

based on fitness and docking scores, and 85 known inhibitors were submitted to 

MetaCore/MetaDrug for analysis of therapeutic activity properties, metabolites, pharmacokinetic 

properties and toxicity effects. MetaCore/MetaDrug provides a comprehensive tool to analyze 

compounds and their biochemical and pharmacological behaviors in the field of drug design and 

development. MetaCore/MetaDrug can predict both the first-pass (pre-systemic elimination 

which describes the metabolism of drugs before it reaches the systemic circulation) and the 

second pass metabolites. In addition, phase 1 and phase 2 metabolites are predicted by using a 

database which contains more than 10000 xenobiotic reactions, and more than 2500 combined 

substrates and enzyme inhibitors. There are also over 89 rules used to predict whether the 

metabolites are reactive or not.  MetaDrug uses the property of Tanimoto Prioritization (TP) to 

find the similarity between analyzed compounds and compound sets in the quantitative structure-

activity relationships (QSAR) models based on elements found in the structure. These models 

were prepared with a diverse set of compounds based on experimental evidence of their 

activity/function on a certain protein of interest, and then tested with validation sets. The 

accuracy of each model depends on the number of compounds used to create it and can be 

estimated by the correlation coefficient (R2) and root mean squared error (RMSE), where a 

higher R2 and low RMSE indicate higher model accuracy. The QSAR model with the highest 

specificity, sensitivity, accuracy and the Matthews Correlation Coefficient (MCC) was selected 

in MetaDrug for each particular activity or toxicity tested. The prediction of a therapeutic 

activity or toxic effect is calculated based on the ChemTree ability to correlate structural 

descriptors to that property using the recursive partitioning algorithm. The ChemTree parameters 

that gave the best results were as follows: path length – 5, max segments – 3, p-value threshold 

Bonnferoni – 0.99, p-value multiway split – 0.99 and number of random trees – 50. The training 
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set used in MetaCore/MetaDrug includes molecules that possess the property (positives) and 

chemicals that do not have such property (negatives) in approximately equal numbers. The 

marketed drugs were used if their number was greater than 100 in the disease QSAR models; 

drug candidates in clinical trials and preclinical compounds with in vivo activity have been added 

to the training set. The drugs that have been annotated to cause a particular toxic effect were used 

for the prediction of toxic effects. 

 

Molecular Dynamics (MD) simulations  

The criteria to select screened ligands to advance into the MD simulations phase was not only 

based on docking scores but also on fitness scores, pharmacophore features, low toxicity (i.e., 

selecting the compounds that show no toxicity in any of the 26 different toxicity models, 

however we also further investigated molecules that have high therapeutic activity (>0.75) and 

showing low toxicity (values not greater than 0.60) in 1 to 3 models). Three candidate ligands 

were thus filtered from the Otava Drug-Like Green Collection (Compound IDs: 6248112, 

7132624, and 1426436). Classical MD simulations were used to study the structural and 

dynamical behavior of the NF�κB/IκBα complex bound to the known and three selected hit 

ligands. This exploration of the conformational behavior of the screened ligands with the 

complex is the key to understanding their biological, chemical and physical behaviors and 

structural stability at the binding cavity. MD simulations were performed using the Desmond 

program with the OPLS2005 force field and RESPA integrator54,55. Explicit water molecules 

(SPC) and 0.15 M NaCl ion concentration were used to prepare the system and neutralize the 

complex. The total number of atoms was between 82228 and 103209 atoms at the simulation 

boxes. The NPT ensemble at 310 K with Nose-Hoover temperature coupling56 and at constant 

pressure of 1.01 bar via Martyna−Tobias−Klein pressure coupling57 were used. Other settings 

were used as default. Trajectory analysis was carried out for 100 ns with 2 fs time steps from 

each of the MD simulations. Triplicate MD simulations were performed for the most potent 

ligands 1426436 and 6248112.  

The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) Continuum 

Solvation Calculations 
The MM/GBSA approach has been proven to be a feasible approach to predict the free binding 

energy of biological systems, thus allowing a post-MD evaluation of the protein-protein and 

protein-ligand interactions58. This method was implemented to study our structure with DHMEQ 
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and with each of the novel hit molecules. The energetic calculations were performed using 

Schrodinger’s Prime module. The complete details and applicable thermodynamic equations 

were described by Miller et al.58 For this purpose, 51 trajectory frames were considered from the 

last 50 ns of the MD simulations. The OPLS2005 forcefield and VSGB 2.0 solvation model59 

were applied. Triplicate MM/GBSA analysis were conducted for the most potent ligands 

1426436 and 6248112. The study’s full methodology is summarized in Scheme 1.  

 

Results and Discussion 

 

Protein Structure Analysis  

The NF�κB/IκBα complex investigated in this study is a heterodimer complex made up of the 

p50 and p65 subunits mostly found in the cytoplasm (Figure 1). Its N-terminal domain (NTD) 

and C-terminal domain (CTD) are part of the conserved Rel homology region (RHR) necessary 

for dimerization, nuclear translocation and DNA and IκB binding4. While NTD is important for 

specific interactions with DNA bases and non-specific interactions with the phosphate backbone, 

CTD is important for dimerization and also contacts DNA non-specifically1. All IkB proteins 

have ankyrin repeats (ARs) which are key for interacting with NF�κB proteins. ARs 4, 5 and 6 

interact with the RHR-CTD of NF-κB, while AR-6 and the C-terminal PEST residues interact 

with the p65 RHR-NTD4.  

Bound IκBα to NF�κB has a half-life of more than 24 hours, suggesting the extremely high 

binding energy, compared to less than 10 minutes for the free unbound IκBα60. Free IκBα 

degradation requires no phosphorylation or ubiquitination as is required for the bound IκBα. 

Upon binding of NF�κB, the previously highly dynamic ARs 5 and 6 form an organized folded 

structure, while the middle ARs such as AR-3 go from a well-folded state to a disordered state, 

implying compensation for the energy required for folding60,61. Analysis of various IkB mutant 

proteins shows that the process of NF�κB inhibition requires the C-terminal PEST sequence and 

the weakly folded ARs 5 and 64. 

Structural and experimental studies have shown that there are two key regions at opposite ends 

of the interface between NF�κB and IκBα which are important for their binding interaction 

energy62. The two regions that majorly contribute to the high binding affinity of IκBα and 

NF�κB include the nuclear localization signal (NLS) sequence (residues 305–321 in NF�κB 
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p65) which contacts the first ankyrin repeat of IκBα, as well as the IκBα PEST sequence 

(residues 276–287) which contacts the DNA-binding dimerization domain of NF�κB (p65)62,63. 

Hence, the NF�κB/IκBα large interface of more than 4000 Å2 contains two hot spots at opposite 

ends which are particularly significant for their high binding affinity, suggesting a squeeze 

mechanism of binding that may add further to the stability of the ARs62. Mutation of residues in 

these regions, but not the contacting residues interestingly, leads to a significant decrease of 

more than 500-fold and 5000-fold in the binding energy for the NLS and PEST sequences, 

respectively62. This indicates that the PEST sequence (residues 276–287) is more important for 

identifying the high affinity ligands. The PEST sequence is a negatively charged acidic sequence 

found at the carboxyl end of IκBα and is rich in Pro, Glu, Ser and Thr residues63.  The PEST 

sequence is also known to be a site for post-translational phosphorylation by casein kinase II. 

However, it was found that phosphorylation of the PEST sequence is not critical for the binding 

affinity, but only slightly increase the association rate between NF�κB and IκBα by perhaps 

enhancing the folding mechanism of binding64. Casein kinase II is known to phosphorylate 

residues Ser283, Ser288, Thr291, Ser293, and Ser29964.  

The interaction between NF�κB and IκBα is limited here to the binding site containing the C-

terminal PEST sequence (Figure 1). SiteMap from Maestro which has been effectively used to 

find target sites that have potential biological activity was used for confirmation. SiteMap has a 

correct identification of known binding sites in more than 96% of the cases, while more than 

98% were chosen based on tight binding46,65. A SiteScore of more than 1 suggests a site of 

promising biological activity46. When combined with literature findings from experimental work 

discussed above, this suggested a highly promising potential binding site. While two sites were 

found to have a score of over 1, Site-2 with a score of 1.099 also contained most of the amino 

acid residues found in the PEST sequence (Figure 2). Also, although site-1 (SiteScore: 1.006) 

had a larger volume than site-2, the structure of the binding site was more diffuse opposed to a 

more pocket shape in site-2. Thus, site-2 is mainly considered for further investigations. 

Fragment-based e-Pharmacophore Modeling Studies   

Two fragment libraries were used to create the e-pharmacophore models at site-2 of 

NF�κB/IκBα complex which was given by SiteMap. The e-pharmacophore hypothesis models 

were created using the top 85000 Glide/XP docked fragments.  The hypothesis models were 

generated via both the vector-based and the projected points donor methodologies (Figures 3 and 
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4). Both the ZINC Clean Lead library (around 2 million) and the Schrodinger’s medical fragment 

library (667) were used. Glide/HTVS was conducted by docking the top 20% fragments in Glide 

SP then XP modes. Excluded volumes which are shown as blue spheres, in Figures 3, 4 and 

Figure S1 in the supplementary information, are part of the derived binding site models. These 

excluded volumes help to reduce false positives by preventing overlapping and clashing of 

fragments with the protein complex, as well as eliminate inactive molecules that cannot match 

the features of the hypothesis53. Nevertheless, a loose excluded volume surface still allows small 

overlaps in order to account for more flexibility and better induced fit of the molecules with the 

binding site53.  

MetaCore/ MetaDrug Analysis 

The hunt for selective NF�κB inhibitors is expensive and spans various fields of research 

highlighting the relevance of this protein as a therapeutic target. However, these inhibitors face 

various challenges such as specificity and potential toxicities as they may interfere with other 

pathways and cellular processes regulated by NF�κB. For this reason, we have decided to 

evaluate chemical properties, possible metabolites, potential therapeutic values and toxicities of 

selected potent ligands. This allowed us to get a thorough understanding and prediction of their 

biological activity when compared to hundreds of other drugs using MetaCore from Clarivate 

Analytics. With a cutoff value for therapeutic activity of 0.5, the selected hit molecules showed a 

significant therapeutic potential for heart failure, viral infections, asthma and depression, 

conditions in which NF�κB plays a strong role (Figure 5). These ligands also showed the 

potential to be effective (predicted value (PV) >0.50) for allergy, cancer, migraine, pain, 

depression, schizophrenia, psoriasis, thrombosis, hypertension and Parkinson’s and Alzheimer’s 

diseases, all conditions which were not shown for the control inhibitor, DHMEQ (Figure 5). This 

molecule has been shown to be effectively used for asthma23; the PV from MetaCore was 0.64. 

Our selected ligands had a higher prediction for their potential use for asthma (training set 

N=366, test set N=63, sensitivity= 0.92, specificity=0.86, accuracy=0.89, MCC=0.78) with 

ligand 7132624 being the best with a therapeutic activity PV of 0.84, followed by molecules 

1426436 (PV of 0.77) and 6248112 (PV of 0.72). When using a high cutoff value of 0.70, our 

selected ligands were shown to be better in asthma, depression, heart failure, hypertension, 

migraine, obesity and viral diseases. Ligand 6248112 had the highest therapeutic value of 0.88 

for heart failure (training set N=204, test set N=33, sensitivity= 0.78, specificity=0.87, 
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accuracy=0.82, MCC=0.64). Ligand 7132624 was best for asthma (PV of 0.84). Ligand 

1426436 was best equally for depression (training set N=335, test set N=62, sensitivity= 0.93, 

specificity=0.82, accuracy=0.87, MCC=0.75) and antiviral activity (training set N=206, test set 

N=35, sensitivity= 0.92, specificity=0.95, accuracy=0.94, MCC=0.88) with a predicted value of 

0.83, and also showed potential against obesity with a PV of 0.96 ( training set N=472, test set 

N=75, sensitivity= 0.89, specificity=0.97, accuracy=0.93, MCC=0.87).   

Two of the ligands (6248112 and 7132624) were shown to result in metabolites that contain no 

reactive groups (Figure 6). Only ligand 1426436 had reactive metabolites, which suggest that it 

may participate in side interactions other than the intended target, possibly contributing to its 

activity. In comparison with these molecules, the positive control molecule DHMEQ also gave 

reactive metabolites. All ligands including the positive control met Lipinski’s rule of 5 so they 

are all likely to be orally bioavailable (Figure 6). However, it should be noted that the control 

molecule had significantly higher toxicities, both in terms of types and values when compared to 

other molecules in the QSAR models, including kidney necrosis, liver necrosis, kidney weight 

gain, nephron injury, liver cholestasis, carcinogenicity in male rats, neurotoxicity and 

carcinogenicity in male mice, with values ranging from 0.51 to 0.78 in decreasing order (Figure 

6). The selected potent ligands, on the other hand, had significantly lower toxicity effects and 

lower predicted toxicity values. These toxicities were not higher than 0.56 when excluding 

AMES (Model description: N=1780, R
2
=0.69, RMSE=0.29). Ligand 6248112 had predicted 

cardiotoxicity (PV of 0.51) and genotoxicity (PV of 0.55) and an AMES (PV of 0.57). Ligand 

7132624 had only a relatively low predicted kidney necrosis toxicity effect (PV of 0.53) and had 

an AMES score of 0.61. Ligand 1426436, on the other hand, was shown to be related to 

carcinogenicity in male mice models (PV of 0.56) and male rat models (PV of 0.53) and liver 

cholestasis (PV of 0.52). In comparison with the selected hit ligands, the control molecule had a 

predicted higher toxicity in kidney necrosis (PV of 0.78), liver cholestasis (PV of 0.56) and 

carcinogenicity in male rat models (PV of 0.56). Additionally, different types of toxicities which 

were not common among the selected hits, but which were observed in the control molecule 

included liver necrosis (PV of 0.78), kidney weight gain (PV of 0.73), nephron injury (PV of 

0.63) and neurotoxicity (PV of 0.51) as shown in Figure 6.  

First and second pass major metabolites by two of the selected hit ligands and control molecule 

were also re-docked using Glide/SP and analyzed via MetaDrug (Figure 6). The metabolites 
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were shown to have docking scores that ranged between -5.0 to -7.9 kcal/mol for ligand 

7132624, -4.7 to -8.1 kcal/mol for ligand 1426436 and -5.4 to -7.2 to kcal/mol for ligand 

6248112. All of these ligands and their metabolites had a higher docking score compared to the 

control molecule, suggesting their greater biological activity at the NF�κB/IκBα complex 

(Figure S2, supplementary material). Docking scores were highest for the ligand 1426436 (-8.68 

kcal/ mol) followed by 6248112 (-6.41 kcal/ mol) and 7132624 (-6.10 kcal/ mol). The docking 

score of the positive control molecule was -4.26 kcal/mol (Figure S2). The pharmacokinetic 

properties and chemical structures of the three hit ligands as well as the reference (positive 

control) molecule were shown in Figure 7. 

Conformational Analysis and Binding Energy Calculations 

The root mean squared deviation (RMSD) is primarily used to investigate the structural stability 

of the biological system throughout the MD simulations. An essential part of our research efforts 

is to use RMSD terms to elucidate structural and dynamical properties, allowing us to explore the 

structural stability of binding pocket residues as well as used ligands throughout the MD 

simulations. The RMSD values of Cα atoms away from the initial positions are used to describe 

the flexibility of all possible protein conformers along the MD simulations. The “fit on 

protein/profit” and “fit on ligand/ligfit” modes respectively represent the ligand’s translational 

and rotational motion in the binding pocket. The lead ligands 1426436, 6248112 and 7132624 

fluctuated with mean Cα RMSD values of 4.39, 4.21 and 5.26 Å, respectively (Figure 8). Of 

these ligands, it is important to note that the NF�κB/IκBα protein complex was more structurally 

stable with ligand 1426436 for the majority of the simulation time and especially for the last 45 

ns. Although the reference molecule had a mean RMSD of 4.47 Å, there were significant 

fluctuations evident from an increase of RMSDs from 1.54 to 5.88 Å over the 100 ns run time. 

Figure 8 may also suggest that ligand 713262 slightly destabilizes the protein complex 

throughout the simulation. Therefore, based on this analysis, it can be suggested that ligands 

6248112 and 1426436 are more energetically favorable at the binding pocket.  

In the profit mode, the mean values of RMSDs for ligands 1426436, 6248112 and 7132624 were 

found to be 5.75, 7.43 and 8.85 Å as shown in Figure S3 in the supplementary information, 

respectively. It is evident that ligands 6248112 and 1426436 have stable conformations in the 

last 60 ns of the MD simulations. It can also be concluded that molecule 1426436 had the highest 

conformational stability compared to the other hit ligands and the reference molecule. Although 
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the reference molecule has average RMSD of 4.68 Å, it has quite sharp changes in RMSD values 

(8 to 16 Å) especially between 20 to 40 ns simulation time and it has larger RMSD values in the 

last 10 ns. Moreover, molecule 1426436 had the least fluctuations and maintained a stable 

conformation over the last 60 ns. Ligand 6248112 seemed more stable in the last 60 ns of the 

simulation, although here, the RMSDs continued to increase prior to reaching a stable position. 

Ligand 7132624 had the highest fluctuations in RMSD values, indicating its lower stability, 

which is in line with the previously discussed results. In the ligfit mode shown in Figure S4 

supplementary information, all studied ligands have RMSD values less than 2 Å, which may 

represent that rotational motions of the molecules are limited at the binding pocket, implying that 

their internal conformation was not changed dramatically throughout the simulation. Hit ligands 

6248112 and 7132624 appeared significantly stable with minimal fluctuations (respective 

average RMSD values were 0.50 and 0.68 Å) when in comparison to ligand 1426436 (average 

RMSD, 1.75 Å) and the reference molecule (average RMSD, 0.57 Å).   

Ligand 1426436 made significant interactions with Leu277, Glu282, Glu284, Asp290 and 

Thr291 that were present for 93%, 130%, 96%, 97% and 35% of the MD simulation time 

respectively via hydrogen bonds as well as via water bridges (Figure 9). The fact that Glu284 

maintained interactions for over 100% is due to the fact that it made multiple hydrogen bonds 

one for 98% and the other for 32% of the simulation time as seen in Figure 9. Another feature 

about this ligand is that it made ionic interactions with Glu284. The torsion of the ligand’s 

rotatable bonds in close proximity to Glu282 and Glu284 maintained a prominent angled 

conformation, giving insight about the changes the ligand underwent at the binding pocket 

(Figure S9). The interactions with the residues predicted by the docking protocols were mostly 

maintained in the MD simulations (Figure 9 and Figure S5, supplementary information); these 

were Glu282, Glu284 and Thr291. Other residues that proved to be significant (>10% of the 

interaction fraction) for the ligand-protein interaction were Lys79 and Arg158, present outside of 

the PEST sequence, indicating the potential role that these residues may play in the mechanism 

of this ligand. Hydrophobic interactions were made with Met279 throughout the 100 ns run time.  

For ligand 7132624, significant contacts were maintained with Glu282 for about 45% of the 100 

ns MD simulations via hydrogen bonding. Interactions with the PEST sequence was primarily 

made via hydrogen bonding, hydrophobic contacts and water bridges (Figure 9). The ligand also 

maintained a prominent angled conformation, evident from the torsion of the ligand’s rotatable 
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bonds in close proximity to Glu282, giving insight about the changes this ligand underwent at the 

binding pocket (Figure S9). Other residues which the hit ligand 7132624 made contact with for 

10% to 19% of the run time were in decreasing interaction fractions: Gln255, Ser252, Arg245 

and Asn244. In addition, unlike the other ligands, ligand 7132624 had intramolecular hydrogen 

bonds which may contribute to its binding affinity. The docking results predicted the role of 

Asn276, Glu284, Gln255, Asp290 and Lys79, all of which played a role in the protein-ligand 

interaction in the MD simulation (Figure 9 and Figure S5, supplementary information). 

Significant interactions (> 20% of interaction time) by this ligand with Lys221, Asn244, Val246, 

Ser252, Gln255 and Glu282 were evident throughout the simulations.  

Ligand 6248112 made interactions with the PEST sequence that were primarily made via water 

bridges, hydrogen bonding, hydrophobic contacts as well as ionic bonding with Asn276 (Figure 

9). Additionally, the ligand made significant contacts with Arg158 and Gln255 for over 10% and 

35% of the simulation time, respectively. The torsion of the ligand’s rotatable bonds in close 

proximity to these residues maintained a prominent angled conformation, giving insight about 

the changes the ligand underwent at the binding pocket (Figure S6). The docking results 

predicted the role of Leu277, Gln278, Thr291 and Gln255 (Figure S5, supplementary 

information). Significant interactions (> 10% interaction fraction), however, were noted for 

Arg158, Asn276 and Met279 evident throughout the simulation.  

DHMEQ, on the other hand, made interactions only with Leu277 for 42% of the simulation time 

(Figure 9). Significant interactions (> 20% interaction fraction) were noted for Lys79, Gly250, 

Gln255, Asn276, Leu277 and Met279 evident throughout the simulation. However, the highest 

interaction fraction was made for 60% of the run time compared to hit ligand 1426436 in which 

the interaction fraction with Glu282 was 130%. 

The selected hit molecules were stable throughout the MD simulations and have shown 

persistent interactions with the PEST sequence. Interestingly, residues Lys79, Asp290, and 

Thr291 were important for binding at the identified binding site when analyzing both docking 

and MD simulation studies. This indicates the probable role of these residues for the binding 

interactions between NF‑κB and IκBα. 

Analysis of the MD simulations in different parameters was shown in Figures S7-S9 in the 

supplementary information. Figure S7 shows RMSD evolution over time for the side chains over 

a 100 ns MD simulation with the NF‑κB/IκBα (p50/p65) complex. Highest side chain RMSD 
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values were obtained in the case of presence of ligand 7132624, which may represent the 

perturbation of side chain residues at the binding pocket for the construction/re-construction of 

binding interactions with the ligand. Ligands 1426436 and 6248112 showed similar side chain 

RMSD values with apo-form for the last 10 ns MD simulations. Figure S8 shows root mean 

square fluctuations (RMSF) evolution over time for the Cα atoms and side chains over a 100 ns 

MD simulation with the NF‑κB/IκBα (p50/p65) complex. Reference ligand DHMEQ and hit 

ligand 7132624 showed slightly higher fluctuations at the binding pocket and significant higher 

fluctuations compared to others especially for the region of residue numbers 550 to 650. Figure 

S9 represents solvent accessible surface area (SASA) in Å2 of the three ligands over 100 ns MD 

simulations with the NF‑κB/IκBα (p50/p65) complex. Reference ligand DHMEQ and hit ligand 

7132624 showed higher SASA values compared to other ligands. 

RMSD and RMSF graphs which belong only binding pocket were also investigated. (Figures 

S10 and S11) Residues in binding region shows smaller fluctuations compared to whole protein. 

Apo-form in the binding pocket has slightly larger RMSD values compared to other ligand-

bound systems may indicates the structural stabilities of binding pocket residues with the 

presence of ligand.  

The post-MD simulations MM/GBSA calculation were performed to determine the Gibbs free 

energy changes of a reference inhibitor and the 3 hit ligands from our screening protocols. Figure 

10 shows that ligand 6248112 had the lowest average ∆G of −50.54± 4.30 kcal/mol over the last 

50 ns MD simulations, suggesting a more stable ligand conformation and a higher affinity at the 

binding site. Similarly, ligand 1426436 had an average ∆G of −49.54± 2.63 kcal/mol over the 

last half of the MD simulations. Ligand 7132624, on the other hand, had a lower average ∆G  

(−36.92 ± 4.89 kcal/mol), indicating its lower structural stability and affinity compared to the 

other ligands. The reference ligand DHMEQ had an average ∆G value of −16.70± 6.60 kcal/mol 

which shows that the selected three hit ligands were more energetically favorable. This adds 

another level of evidence to indicate the higher stability of our lead ligands at the NF�κB/IκBα 

complex.  

Conclusions 

Inhibition of the NF‑κB pathway is a highly promising strategy for therapeutic use since it 

presents the link between inflammation and cancer. It is a target for cancer, inflammation, 
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autoimmune diseases and even viral infections. A growing list of known inhibitors is available in 

the literature, and the number of experiments is expanding, however, there is no clear consensus 

as to the mechanism or detailed biochemical interactions with the NF‑κB/IκBα complex. In this 

study, the complex of NF‑κB and its inhibitor IκBα were targeted and analyzed in detail. To 

conduct an in-depth in-situ analysis of this complex, it was essential to utilize a full-length 

protein-protein complex structure and known binding ligands to generate energetic-optimized e-

pharmacophore models. This method creates an energetic map emphasizing the potential 

interactions of the complex by utilizing fragments of molecules. By eliminating the need of 

active ligands of the NF‑κB complex, fragment-based e-pharmacophore model generation was 

the most reasonable approach to conduct our study effectively. In addition, this method also 

provided us with detailed information about our complex at the biochemical level including the 

identification of potentially important amino acid residues, chemical bonds and features which 

may prove to be important for future drug design efforts and further wet lab investigations. 

In this study, the main conceptual innovation is the integrated approach to drug discovery that 

combines molecular docking, MD simulations and QSAR models under a single umbrella. Each 

method has its own strengths and weaknesses, and when used alone, is not likely to yield very 

useful results. However, when these methods are combined with positive feedback loops, they 

enhance each other so that one is much more likely to obtain successful drug leads. In more 

detail, the conceptual and methodological innovations in this study are: (i) As it is stated, 2 hits 

were identified and validated using molecular modeling approaches against NF-κB/IκBα 

complex. Thus, this information can be used by medicinal chemists for the designing of new NF-

κB inhibitor analogues with enhanced activity and other tailored properties. (ii) MD simulations 

were performed for the identified hit molecules from small-molecules library for better 

understanding of their dynamical and structural profiles throughout MD simulations. Thus, the 

most important structural and dynamical properties of both ligands and binding pocket residues 

were discussed. (iii) The study does not provides only hit molecules against NF-κB/IκBα 

complex, but also pharmacokinetic and toxicity profiles of all identified hit molecules were 

analyzed using MetaCore/MetaDrug platform. Metacore/MetaDrug is an integrated software 

package having manually curated biological information about small molecules. 25 different 

common disease QSAR models as well as 26 different toxicity-QSAR models were used for the 

estimation of therapeutic activity and toxicity profiles of the studied molecules, which we believe 
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this is the largest amount of therapeutic activity and toxicity models that are used in the 

literature. 

This study highlights the master role of NF�κB not only in cancer, but also in the pathogenesis 

of inflammatory-mediated diseases including cardiomyopathy, asthma, COPD and 

neurodegenerative diseases. NF�κB inhibitors that act more selectively at the investigated 

binding pocket of NF�κB/IκBα complex may thus present a promising therapy for the discussed 

inflammatory conditions and lead the way to future drug design efforts and experimental studies. 

Future efforts for studying the complex requires an integration of all the biochemical and 

computational studies in order to get an insight into the complexity of the NF�κB pathways and 

molecular interactions. We developed e-pharmacophore models for the NF�κB/IκBα complex 

based on 85000 fragments. The derived e-pharmacophore models were used in lead compound 

discovery and screening efforts. The Otava chemicals library containing around 260000 

compounds was screened against the constructed e-pharmacophore models. The constructed 

models are a valuable computational tool that may facilitate more efficient research efforts in the 

search for potent NF�κB inhibitors. The ligands with new scaffolds were identified with 

promising high therapeutic values for inflammatory conditions along with low toxicity effects 

when compared to known inhibitors from the literature. These compounds can now move to the 

next stage of drug design to be tested preclinically.  
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Scheme 1. Fragment-based e-pharmacophore virtual library screening flowchart followed by 
molecular modeling, ADMET and therapeutic analyses for the discovery of potent ligands of the 
NF�κB/IkBα complex.  
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Figures 

 
Figure 1. A ribbon representation of the NF�κB/IkBα complex and the binding site (Site-2) 
which was used for molecular docking and e-pharmacophore model hypotheses generation. IkBα 
(barrel-like shaped protein on left) is in contact with the NF�κB complex formed by the p50 
(blue) and RelA/p65 (yellow) subunits. The binding site is composed majorly of ligand acceptor 
(red) and ligand donor (blue) maps as well as few hydrophobic maps (yellow). This binding site 
was computationally generated by SiteMap and supported by literature findings.  
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Figure 2. The top five potential binding sites derived by SiteMap and their properties. The 
coloring code of the site maps in the table corresponds to the protein illustration above. Chain A 
refers to p65/ RelA; Chain B refers to p50; Chain C refers to IkBα. *The bolded residues in site 2 
indicate residues in the PEST sequence. 
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 Ligand hits  Known NF����κB inhibitors  

Features  

e-Pharmacophore 

hypothesis model 

Glide SP Glide XP Glide SP Glide XP 

7 features 

AAAANRR 

 

 

  

6 features 

AAANRR 

 

  

5 features 

AANRR 

 

  

Figure 3. Fragment-based e-pharmacophore model hypotheses derived for the NF�κB (p50/p65)/IkBα complex. Graphs show the 
fitness and Glide/ XP docking scores of molecules that have successfully met the minimum requirement of matching at least 4 
featured ligand sites for the known NF�κB inhibitors (right) and compounds from the OTAVAchemicals library collection (left). The 
hypothesis models were generated via the vector-based methodology. A/pink = H-bond acceptor; D/blue= H-bond donor; R/orange= 
aromatic ring; N/red= negative ionizable group. Blue circles in the background indicate receptor-based excluded volumes. 
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  Ligand hits Known NF����κB inhibitors 

Features 

e-Pharmacophore 

hypothesis model 

Glide SP Glide XP Glide SP Glide XP 

7 features 

ADDDNRR 

 

 

6 features 

ADDDNR 

 

  

5 features 

ADDNR 

 

 

  

 
Figure 4. Fragment-based e-pharmacophore model hypotheses derived for the NF�κB (p50/p65)/IkBα complex. Graphs show the 
fitness and Glide/ XP docking scores of molecules that have successfully met the minimum requirement of matching at least 4 
featured ligand sites for the known NF�κB inhibitors (right) and compounds from the OTAVAchemicals library collection (left). The 
hypothesis models were generated via the projected points donor methodology. A/pink = H-bond acceptor; D/blue= H-bond donor; 
R/orange= aromatic ring; N/red= negative ionizable group. Blue circles in the background indicate receptor-based excluded volume.
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 Ligand hits Control 
 6248112 7132624 1426436 DHMEQ 

Allergy  0.5 0.53 
Alzheimer  0.53 0.57 0.51 

Angina 
Arthritis  0.58 0.56 0.67 0.58 
Asthma 0.72 0.84 0.77 0.64 

Bacterial 
Cancer 0.55 0.59 

Depression 0.79 0.74 0.83 
Diabetes  0.67 0.53 

HIV 0.67 0.54 0.65 0.6 
Heart failure  0.88 0.66 0.57 0.54 

Hyperlipidemia  0.56 0.57 
Hypertension  0.63 0.76 0.53 
Inflammation  

Migraine 0.72 0.71 0.58 
Mycosis  0.56 
Obesity  0.65 0.96 0.9 

Osteoporosis  
Pain 0.57 

Parkinson 0.52 0.62 
Psoriasis  0.53 0.58 

Schizophrenia 0.5 
Skin diseases 0.64 0.69 

Thrombosis  0.59 
Viral  0.84 0.77 0.83 

 

Figure 5. The therapeutic activity and docking scores of ligands selected from the virtual 
screening compared to a known inhibitor from literature. The ligands were submitted to 
MetaDrug/ MetaCore™. In general, values greater than 0.50 indicate that the molecules are 
active as per the scores from the QSAR models. Only numerical values indicating activity scores 
over 0.50 were presented in the table for clarity and simplicity. The coloring scheme increases in 
intensity with greater therapeutic values.  
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 Ligand hits Control 

 6248112 7132624 1426436 DHMEQ 
AMES 0.57 0.61 

Anemia 
carcinogenicity  

carcinogenicity mouse female 
carcinogenicity mouse male 0.56 0.51 

carcinogenicity rat female 
carcinogenicity rat male 0.53 0.56 

cardiotoxicity  0.51 
Cytotoxicity model, -log GI50 

(M) 
Epididymis toxicity 

Genotoxicity 0.55 
Hepatotoxicity 

Kidney Necrosis 0.53 0.78 
Kidney Weight Gain 0.73 

Liver Cholestasis 0.52 0.56 
Liver Lipid Accumulation 

Liver Necrosis 0.78 
Liver Weight Gain 

MRTD* 0.66 
Nasal pathology 
Nephron Injury 0.63 
Nephrotoxicity 
Neurotoxicity 0.51 

Pulmonary toxicity 
SkinSens, EC3 

Testicular toxicity 

Reactive** OK OK R R 
Ruleof5*** OK OK OK OK 

* Maximum Recommended Therapeutic Dose, log mg/kg-bm/day, range is from -5 to 3. Cutoff is 0.5. Chemicals with high log MRTDs can be classified as mildly 
toxic compounds, chemicals with low log MRTDs as highly toxic compounds.  
** Metabolites contain reactive groups 
** Ruleof5 (likely to be orally bioavailable) 

 
Figure 6. The predicted toxicity effects of ligands selected from the virtual screening compared 
to a known NF‑κB inhibitor from literature. The ligands were submitted to MetaDrug/ 
MetaCore™. In general, values greater than 0.50 indicate that the molecules are toxic as per the 
scores from the QSAR models. Only numerical values indicating toxicity scores over 0.50 were 
presented in the table for clarity and simplicity. Gray boxes indicate no toxicity or toxicity lower 
than 0.50 which is nonsignificant. The coloring scheme increases in intensity with greater 
toxicity values.  
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 Ligand hits Reference 
 1426436 6248112 7132624 DHMEQ 

Chemical 
formula  

C16H18ClN2O2 C14H12N4O3 C16H13N5O2S C13H11NO5 
 

 

 
 

 

 

BBB, log 
ratio 

-0.24  
(44.72) 

-0.33  
(36.33) 

-0.22  
(35.87) 

-0.61  
(40.11) 

 
Prot-bind, 

log t 
-0.25  

(44.72) 
-0.17  

(36.33) 
-0.08  

(35.87) 
-0.33  

(40.11) 
 

Prot-bind, 
% 

38.02  
(50.70) 

43.08  
(36.33) 

40.59  
(35.87) 

56.20  
(46.13) 

 
G-logP 2.26 0.75 1.78 2.77 

 
WSol, log 

mg/L 
1.34 1.92 3.28 2.06 

 
 

Figure 7. The 2D chemical structure and chemical properties of three potential NF‑κB Ikbα 
inhibitors. The ligands were selected after the e-pharmacophore virtual screening and predicted 
ADMET/ therapeutic analyses. Two-digit numbers in brackets indicate the property of Tanimoto 
Prioritization (TP), a score for similarity between the analyzed compounds and compound sets in 
the quantitative structure-activity relationships (QSAR) models.  
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Figure 8. RMSD evolution over time of the C-alpha atoms over a 100 ns MD simulation with 
the NF‑κB-Ikbα (p50/p65) complex. The three ligands from the Otava library were selected 
after e-pharmacophore virtual screening and post-docking MetaCore analysis. DHMEQ is used 
as a control NF‑κB inhibitor. Average values were plotted for the potent ligands 1426436 and 
6248112 from triplicate MD simulations. 
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Figure 9. The protein-ligand interaction profiles of the discovered three ligands and the control molecule in the binding pocket of the 
NF�κB/IkBα complex throughout the 100 ns MD simulations. The three ligands from the Otava library were selected after e-
pharmacophore virtual screening and post-docking MetaCore/ MetaDrug analysis. The interaction fraction indicates the percentage of 
time the contact is made throughout the simulation runtime. The profiles are displayed for a) ligand 1426436 b) ligand 6248112 c) 
ligand 7132624 and d) DHMEQ, the control molecule. 
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Figure 10. MM/GBSA free energy analysis for the hit ligands and known control at the binding 
pocket of NF‑κB/ Ikbα throughout the last half of the MD simulations. Average values were 
plotted for the potent ligands 1426436 and 6248112 from triplicate MD simulations. Average 
values in kcal/mol were: ligand 6248112: −50.54± 4.30; ligand 1426436: −49.54± 2.63; ligand 
7132624: −36.92 ± 4.89; and control ligand: −16.70± 6.60. 
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Highlights 

 

•  e-pharmacophore models were developed for the NF�κB/IκBα complex based on 

85000 fragments. 

•  The Otava chemicals library was screened against the constructed e-pharmacophore 

models. 

•  Three ligands were identified with promising high therapeutic values. 


