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Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR)

pathway is a key signaling pathway that has been linked to both tumorigenesis and

resistance to therapy in prostate cancer and other solid tumors. Given the significance of the

PI3K/Akt/mTOR pathway in integrating cell survival signals and the high prevalence of

activating PI3K/Akt/mTOR pathway alterations in prostate cancer, inhibitors of this pathway

have great potential for clinical benefit. Here, we review the role of the PI3K/Akt/mTOR

pathway in prostate cancer and discuss the potential use of pathway inhibitors as single

agents or in combination in the evolving treatment landscape of castration-resistant

prostate cancer.
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Introduction
Prostate cancer is the second most common cancer and

sixth leading cause of cancer-related mortality in men,

accounting for 903 500 new diagnoses and 258 400 deaths

per year worldwide (Jemal et al. 2011). Although the

prognosis for patients with localized or regional disease

is good, for patients in the United States who develop

metastatic disease, the 5-year survival rate is only 29%

(Siegel et al. 2012). Currently, androgen deprivation

therapy through either chemical or surgical castration is

the first-line therapy for metastatic disease. Response to

therapy, however, is temporary, and patients invariably

progress to castration-resistant prostate cancer (CRPC;

Rini & Small 2002). The TAX327 trial established

docetaxel plus prednisone as the standard-of-care first-

line chemotherapy for CRPC (Berthold et al. 2008), and

until recently, treatment of CRPC was limited, with only

docetaxel-based regimens offering a survival benefit
(Petrylak et al. 2004, Berthold et al. 2008). Recently, several

new therapies have emerged, including the novel taxane

chemotherapeutic cabazitaxel (de Bono et al. 2010), the

androgen synthesis inhibitor abiraterone acetate (de Bono

et al. 2011), the novel androgen receptor (AR) inhibitor

enzalutamide (Scher et al. 2012), the immunotherapeutic

sipuleucel-T (Kantoff et al. 2010), and the bone micro-

environment-targeted radiopharmaceutical alpharadin

(Radium-223; Parker et al. 2012), leading to approval or

submission for approval to regulatory agencies. While

these therapies have established androgen synthesis and

AR signaling, microtubule dynamics, and the bone

microenvironment as targets for therapeutic intervention

and have provided clinical benefit to men with metastatic

CRPC, the survival rate of patients with metastatic CRPC

remains poor and additional therapeutic approaches

are needed.
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The phosphatidylinositol 3-kinase (PI3K)/Akt/mam-

malian target of rapamycin (mTOR) pathway is a key

oncogenic signaling pathway that has been linked to

tumorigenesis and resistance to both conventional and

targeted anticancer therapies in a wide variety of tumor

types (Courtney et al. 2010, McCubrey et al. 2011). In

prostate cancer, activation of the PI3K/Akt/mTOR

pathway has been strongly implicated in prostate cancer

progression (Pourmand et al. 2007, Reid et al. 2010,

Taylor et al. 2010). Here, we review the role of the

PI3K/Akt/mTOR pathway in prostate cancer and discuss

the potential of PI3K/Akt/mTOR pathway inhibitors as

single agents or in combination with other agents in

the currently evolving treatment landscape of CRPC.
The PI3K/Akt/mTOR signaling pathway

The PI3K/Akt/mTOR signaling pathway has a diverse array

of functions, including the regulation of cellular survival,

differentiation and stem cell-like properties, growth,

proliferation, metabolism, migration, and angiogenesis

(Guba et al. 2002, Dubrovska et al. 2009, Liu et al. 2009,

Courtney et al. 2010, Furic et al. 2010, Hsieh et al. 2012).

There are three classes of PI3K that are differentiated

by their structural characteristics and substrate specifi-

cities (Courtney et al. 2010). Class I PI3Ks are activated by

receptor tyrosine kinases (RTKs), G-protein-coupled

receptors, and some oncogenes, such as rat sarcoma

oncogene (RAS), and can be further subdivided into class

IA and IB, of which class IA PI3Ks are most frequently

implicated in cancer. Class IA PI3Ks consist of two

subunits: a regulatory subunit, p85, and a catalytic

subunit, p110. There are three isoforms of p85 (p85a,

p85b, and p55g) encoded by the genes PIK3R1, PIK3R2,

and PIK3R3 respectively and three isoforms of class IA

p110 (a, b, and d) encoded by the genes PIK3CA, PIK3CB,

and PIK3CD respectively (Courtney et al. 2010). Activation

of PI3K leads to the phosphorylation of phosphatidyl-

inositol 4,5-bisphosphate [PI(4,5)P2] to phosphatidyl-

inositol 3,4,5-trisphosphate [PI(3,4,5)P3] and subsequent

recruitment of Akt to the plasma membrane where Akt

is activated (Liu et al. 2009, Courtney et al. 2010). Akt

activation is mediated through phosphorylation at two

residues: T308 by phosphoinositide-dependent kinase-1

and S473 by the mTOR complex 2 (TORC2). Both

phosphorylation events are required for full activation of

Akt (Sarbassov et al. 2005). Upon activation, Akt phos-

phorylates a host of other proteins including glycogen

synthase kinase 3 (GSK3), FOXO transcription factors, and

tuberous sclerosis complex (TSC) and thereby regulates
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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a range of cellular processes, including protein synthesis,

cell survival, proliferation, and metabolism (Fig. 1; Liu

et al. 2009, Courtney et al. 2010). In prostate cancer, PI3K

signaling has been shown to repress AR transcriptional

activity, illustrating the lineage-specific complexity of this

pathway (Fig. 2; Carver et al. 2011).

mTOR is a serine threonine kinase and is the catalytic

subunit of the functionally distinct TORC1 and TORC2.

TORC1 is a major downstream effector of Akt signaling

and is activated via Akt-mediated inhibition of TSC.

Depending on available nutrients and the cellular

environment, TORC1 controls the growth of the cell

through phosphorylation of S6K and the eukaryotic

initiation factor 4E-binding protein 1 (4E-BP1; Sparks &

Guertin 2010). TORC2 does not bind to and is generally

insensitive to rapamycin and has been shown to signal

independently of TORC1. TORC2 is believed to mediate

cell proliferation and cell survival through phosphoryl-

ation of its substrates, which include Akt, serum-, and

glucocorticoid-induced protein kinase (SGK), and protein

kinase C (Sparks & Guertin 2010).

PI3K/Akt/mTOR signaling is negatively regulated by

the tumor suppressor phosphatases and tensin homolog

(PTEN) and inositol polyphosphate-4-phosphatase, type II

(INPP4B), which convert PI(3,4,5)P3 to PI(4,5)P2 and

PI(3,4)2 to PI(3)P respectively. TORC1-activated S6K has

also been shown to negatively regulate PI3K/Akt/mTOR

by phosphorylating TORC2, resulting in a reduction in

TORC2-dependent S473 phosphorylation of Akt (Dibble

et al. 2009). In addition, S6K negatively regulates RTK

signaling and hence PI3K/Akt/mTOR and RAS/RAF/MEK

signaling by phosphorylating and causing the degradation

of insulin receptor substrate 1 (IRS-1; O’Reilly et al. 2006,

Carracedo et al. 2008, Rodrik-Outmezguine et al. 2011).
The PI3K/Akt/mTOR signaling pathway in prostate cancer

In prostate cancer, alterations of components of the

PI3K/Akt/mTOR pathway, including mutation, altered

expression, and copy number alterations, have been

reported in 42% of primary prostate tumors and 100% of

metastatic tumors (Taylor et al. 2010). These alterations

lead to increased PI3K/Akt/mTOR signaling activity, and

the constellation of abnormalities include decreased

expression of the inhibitory phosphatases PTEN, INPP4B,

and PH and leucine-rich repeat protein phosphatase

(PHLPP; a negative regulator of Akt); activating mutations

in the PI3K catalytic gene PIK3CA; and decreased

expression of the PI3K regulatory genes PIK3R1 and

PIK3R3 (Fig. 3). Furthermore, androgens cause the
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The PI3K/Akt/mTOR pathway. IRS-1, insulin receptor substrate 1; PDK,

phosphoinositide-dependent protein kinase; PI3K, phosphatidylinositol

3-kinase; PKC, protein kinase C; PTEN, phosphatase and tensin homolog;

Rheb, RAS homolog enriched in the brain; S6K, S6 kinase; SGK, serum and

glucocorticoid-regulated kinase; TORC, target of rapamycin complex;

TSC, tuberous sclerosis protein; 4E-BP1, eukaryotic initiation factor

4E-binding protein 1.
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TORC2 complex components, rapamycin-insensitive

companion of mTOR, and stress-activated protein

kinase-interacting protein 1 to accumulate in the nucleus,

which stimulates TORC2 to activate Akt (Fang et al. 2012).

Prostate cancer development in the setting of PTEN loss

requires TORC2 activity (Guertin et al. 2009). Both PTEN

loss and Akt activation have been associated with poor

clinical outcome (Kreisberg et al. 2004), biochemical

recurrence after radical prostatectomy (Ayala et al. 2004,

Bedolla et al. 2007), and resistance to radiation (Skvortsova

et al. 2008) and chemotherapy (Grunwald et al. 2002, Qian

et al. 2010). In addition, PTEN loss has also been shown

to predict for shorter time to metastasis (Lotan et al. 2011),

and castration-resistant growth has been shown to be

an intrinsic property of PTEN-null prostate cancer cells,

independent of cancer developmental stage (Mulholland

et al. 2011). Preclinical studies suggest that the

PI3K/Akt/mTOR pathway is important in maintaining a
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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cancer stem cell population (Dubrovska et al. 2009) and is

involved in epithelial-to-mesenchymal transition (EMT)

in prostate cancer cells (Lim et al. 2011, Mulholland et al.

2012). Furthermore, the loss of PTEN results in upregula-

tion of the transforming growth factor b/SMAD4 pathway

and subsequent silencing or loss of SMAD4 may contribute

to the metastatic propensity of PTEN-null prostate cancer

(Ding et al. 2011). Taken together, these data suggest

that the PI3K/Akt/mTOR pathway is fundamental to the

metastatic potential of prostate cancer and provide a

strong rationale for targeting the PI3K/Akt/mTOR

pathway in this disease.
Cross talk with other signaling pathways

In addition to its direct effects, the PI3K/Akt/mTOR

pathway contributes to prostate cancer development and

progression through interacting with other cell signaling
Published by Bioscientifica Ltd.
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The PI3K/Akt/mTOR pathway and cross talk with the AR signaling and

RAS/RAF/MEK pathways. AR, androgen receptor; ARE, androgen-

responsive element; DHT, dihydrotestosterone; 4E-BP1, eukaryotic

initiation factor 4E-binding protein 1; ERK, extracellular signal-related

kinase; FKBP5, FK506-binding protein 5; HSP, heat-shock proteins; IRS-1,

insulin receptor substrate 1; MEK, mitogen-activated protein/ERK kinase;

PHLPP, PH and leucine-rich repeat phosphatase; PI3K, phosphatidylinositol

3-kinase; PTEN, phosphatase and tensin homolog; RAS, rat sarcoma

oncogene; Rheb, RAS homolog enriched in the brain; S6K, S6 kinase; TSC,

tuberous sclerosis protein; TORC, target of rapamycin complex; C/K, Akt

activity can both enhance and suppress AR signaling. Possible mechanisms

of Akt-mediated regulation of AR activity include direct phosphorylation

of AR (Wen et al. 2000, Lin et al. 2001); Akt-mediated regulation of a variety

of transcription factors, including FOXO3a, and NF-kb; and Akt-mediated

regulation of b-catenin via GSK3b (Li et al. 2008, Sarker et al. 2009).
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pathways important for cellular survival, growth, and

differentiation, including the AR and the RAS/RAF/MEK

signaling pathways (Fig. 2).

AR signaling is critical for the development and

function of the normal prostate gland and remains

important upon neoplastic transformation, which is the

basis for androgen deprivation therapy (Chen et al. 2008).

Amplification of AR signaling, mutations in the ligand-

binding domain of AR, and induction of AR splice variants

have been shown to promote castration-resistant pro-

gression (Watson et al. 2010, Mostaghel et al. 2011). In

addition, prostate cancer cells can develop the machinery

necessary for autocrine androgen production that is

capable of activating AR in the face of low serum

testosterone levels (Montgomery et al. 2008). These data
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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support the importance of active hormonal signaling

in CRPC progression and explain the success of novel

androgen synthesis inhibitors, such as abiraterone acetate,

and AR antagonists, such as enzalutamide, even in the

castrate-resistant state. However, responses to abiraterone

acetate and enzalutamide are not universal, and when

present, are often short-lived, lasting w6–8 months in the

post-docetaxel CRPC setting (de Bono et al. 2011, Scher

et al. 2012).

The PI3K/Akt/mTOR and AR signaling pathways have

recently been shown to regulate each other through

complex reciprocal feedback mechanisms (Fig. 2; Wen

et al. 2000, Lin et al. 2001, Li et al. 2008, Sarker et al. 2009,

Carver et al. 2011, Mulholland et al. 2011). PI3K/Akt/

mTOR signaling inhibits AR signaling via feedback
Published by Bioscientifica Ltd.
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Alteration of the PI3K/Akt/mTOR pathway in primary and metastatic prostate cancer (Taylor et al. 2010). INPP4B, inositol polyphosphate-4-phosphatase,

type II; PHLPP, PH domain and leucine-rich repeat protein phosphatases; PTEN, phosphatase and tensin homolog.
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inhibition of human epidermal growth factor 2/3

(HER2/3) kinases, which have been shown to promote

AR stability and transcriptional activity (Carver et al.

2011). In addition, PTEN increases the transcriptional

activity of AR by negatively regulating the expression of

the transcription factors Egr1 and c-JUN, which inhibit

AR-targeted gene expression (Mulholland et al. 2011).

Meanwhile, AR signaling downregulates PI3K/Akt/mTOR

signaling through FK506-binding protein-5 (FKBP-5)-

mediated stabilization of the Akt phosphatase PHLPP

(Carver et al. 2011). Activation of the PI3K/Akt/mTOR

pathway as a result of treatments targeting AR signaling or

due to PTEN loss may, therefore, enable prostate cancer

cells to survive and proliferate in androgen-reduced

conditions. Conversely, PTEN controls the transcription

of NKX3.1, which negatively regulates the AR promoter

and reduces AR pathway signaling. When PTEN is lost, this

brake on AR signaling is also lost (Lei et al. 2006).

Therefore, inhibition of the PI3K/Akt/mTOR pathway

may lead to a compensatory increase in AR activity

and may promote prostate cancer progression and

development of resistance to single-agent PI3K pathway

inhibitor therapy. This concept of reciprocal inhibition

is further supported by the recent finding that use of
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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antiandrogens for chemoprevention actually accelerates

progression to invasive prostate cancer in a PTEN-null

mouse model (Jia et al. 2013). Thus, blockade of both the

AR and PI3K/Akt/mTOR signaling pathways may lead to

more effective anticancer activity than targeting either

pathway alone.

The RAS/RAF/MEK pathway is also involved in

extensive cross talk with the PI3K/Akt/mTOR pathway

(Fig. 2), and activation of this pathway has been associated

with decreased sensitivity to PI3K/Akt/mTOR pathway

inhibitors (Ihle et al. 2009). Recently, a study of prostate

cancer tissue microarrays found that the RAS/RAF/MEK

pathway was significantly elevated in both primary and

metastatic lesions (Mulholland et al. 2012). In murine

models, PTEN deletion results in the development of

prostate cancer (Wang et al. 2003); however, the com-

bination of PTEN deletion and RAS activation significantly

accelerated prostate cancer progression caused by PTEN

loss, and this was accompanied by EMT and macrometas-

tasis (Mulholland et al. 2012). Furthermore, inhibition of

the RAS/RAF/MEK pathway with a MEK inhibitor

(PD325901) significantly reduced metastatic progression

initiated by PTEN-deficient and KRAS-activated stem/

progenitor cells (Mulholland et al. 2012). Thus, cross talk
Published by Bioscientifica Ltd.
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between the PI3K/Akt/mTOR pathway and the RAS/RAF/

MEK pathway in prostate cancer is likely clinically

important in promoting metastasis.

RTKs, which activate both the PI3K/Akt/mTOR and

the RAS/RAF/MEK pathways, are in turn negatively

regulated by TORC1 activity; inhibition of TORC1 leads

to a relief of an inhibitory signal from S6 to IRS-1,

a receptor substrate for multiple cell surface receptors,

such as insulin and IGF, HER2/3 and epidermal growth

factor receptor (EGFR), and others (O’Reilly et al. 2006,

Carver et al. 2011, Rodrik-Outmezguine et al. 2011). Relief

of this feedback inhibition with single-agent rapamycin

analogs may lead to rapid compensatory PI3K and Akt

re-activation and limit the pharmacodynamics and

clinical impact of these agents on tumor cell survival

and invasion/metastasis (Rodrik-Outmezguine et al. 2011).

Combined inhibition of cell surface receptors with

TORC1 inhibitors has demonstrated an ability to over-

come this feedback loop and is an area of ongoing

investigation. Whether combination therapy with PI3K,

AR, cell surface receptor, and/or RAS/RAF/MEK pathway

inhibition is needed for optimal therapy in preclinical

or clinical prostate cancer is not known at this time.
Inhibiting the PI3K/Akt/mTOR pathway in
prostate cancer

Given the importance of the PI3K/Akt/mTOR pathway

in integrating cell survival signals and the high prevalence

of activating PI3K/Akt/mTOR pathway alterations in

prostate cancer, inhibitors of this pathway have great

potential to deliver clinical benefit for men with CRPC.

There are a number of agents under investigation and in

the clinic today that target the PI3K/Akt/mTOR pathway

for the treatment of advanced cancers. Many of these

are oral agents, some are administered intravenously, and

all are associated with some degree of reversible metabolic

toxicity such as hyperglycemia and hyperlipidemia

(Busaidy et al. 2012). Inhibition of various components

of the PI3K/Akt/mTOR pathway results in differing side

effect and efficacy profiles, as discussed below.
mTOR inhibitors: early clinical experience

The allosteric TORC1 inhibitor rapamycin and its analogs

(rapalogs), including everolimus, temsirolimus, and rida-

forolimus, were the first inhibitors of the PI3K/Akt/mTOR

pathway to enter clinical development. In preclinical

studies, these early TORC1 inhibitors were shown to revert

prostatic intraepithelial neoplasia in a mouse model
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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overexpressing human Akt (Majumder et al. 2004) and to

inhibit tumor growth in mouse xenograft models derived

from PTENK/K PC-3 and PTENC/K DU145 cells (Wu et al.

2005). Despite these promising preclinical results and the

success of rapalogs in the treatment of patients with

metastatic renal cell carcinoma (Motzer et al. 2008,

Kwitkowski et al. 2010) and pancreatic neuroendocrine

tumors (Yao et al. 2011), the clinical experience of single-

agent TORC1 inhibition in men with CRPC has been

disappointing, with few (if any) clinical, radiographic, or

prostate-specific antigen (PSA) responses, and a relatively

short time to clinical progression (2–3 months; Amato

et al. 2008, George et al. 2008, Templeton et al. 2011).

Moreover, in a pharmacodynamic study of rapamycin in

men with intermediate- to high-risk localized prostate

cancer treated before radical prostatectomy, inhibition of

the TORC1 target phospho-S6 was clearly demonstrated,

but no significant effects on tumor cell proliferation

(Ki-67), induction of apoptosis (caspase-3 cleavage), post-

treatment tumor grade or stage, or PSA levels were

observed (Armstrong et al. 2010). In addition, upregula-

tion of Akt activity was seen in some men, but again

changes in Akt activity after rapamycin exposure did not

correlate with any indication of treatment benefit. These

data, which are supported by our observations with the

TORC1 inhibitor temsirolimus in a phase II trial of men

with CRPC (NCT00887640) and a single-arm study of oral

rapamycin (Amato et al. 2008), establish that rapalogs are

able to inhibit the intended target (TORC1) in human

prostate cancer at standard dosing but do not elicit striking

pathological or clinical benefits as single agents.

Several explanations likely underlie the lack of clinical

activity of rapamycin analogs in advanced prostate cancer.

One reason is that rapalogs do not inhibit TORC2, which

activates Akt in prostate cancer cells (Sarbassov et al. 2006).

This, combined with loss of S6K-mediated negative

regulation of TORC2 as a result of TORC1 inhibition

(Dibble et al. 2009), may therefore explain the increases in

Akt activity and lack of clinical activity seen with rapalogs

in prostate cancer and suggests that combined TORC1/2

inhibition may be required. In addition, paradoxical

activation of cell surface receptors (such as HER2/3), AR,

or RAS pathway, as discussed earlier, may explain

treatment resistance. Finally, other TORC1 downstream

targets, such as the eukaryotic initiation factor 4E-BP1

and the eukaryotic translation initiation factor 4E

(eIF-4E) complex, are not inhibited by these agents

(Furic et al. 2010). 4E-BP1 regulates translation elongation

of a discrete set of key oncogenic proteins related

to de-differentiation and EMT and has been directly
Published by Bioscientifica Ltd.
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implicated in prostate cancer invasion and metastatic

progression. Inhibition of 4E-BP1 has been reported with

TORC1/2 kinase inhibitors and more upstream pathway

inhibitors (Hsieh et al. 2012). Thus, while first-generation

signaling inhibitors of TORC1 left this key translational

oncogenic apparatus unsuppressed, second-generation

TORC1/2 kinase inhibitors and further upstream PI3K

pathway inhibitors may have a greater clinical impact.
Dual TORC1/2 inhibitors

By inhibiting both mTOR complexes, ATP-competitive

dual TORC1/2 inhibitors should prevent the upregulation

of Akt seen with rapalogs and lead to more complete

suppression of the PI3K/Akt/mTOR pathway. Indeed,

these agents have been shown to possess a greater ability

to inhibit 4E-BP1 and protein synthesis and induce cell

cycle arrest in several cell lines (Sparks & Guertin 2010).

Furthermore, in prostate cancer, the TORC1/2 inhibitor

MLN0128 was superior to TORC1 inhibition alone, as it

not only prevented prostate cancer invasion and meta-

stasis but also induced apoptosis (Hsieh et al. 2012). This

improved efficacy may not simply reflect the ability of

dual TORC1/2 inhibitors to inhibit both TORC1 and

TORC2 but may be due to more complete inhibition of

TORC1 downstream effectors, such as the eIF–4E complex.

A possible caveat to improved inhibition of TORC1 is that,

even in the context of TORC2 inhibition, the loss of

S6K-mediated negative feedback may still activate PI3K/

Akt/mTOR signaling via activation of RTKs. Supporting

this view is the fact that at low concentrations (50 nM),

the TORC1/2 inhibitor Torin was shown to activate Akt,

and only at high concentrations (250 nM) did Torin

inhibit TORC2 (Peterson et al. 2009). Despite these

concerns, the TORC1/2 inhibitors MLN0128, AZD2014,

DS-3078a, and OSI-027 are currently in early-stage clinical

trials in solid tumors, including prostate cancer.
Pan-PI3K inhibitors

Pan-PI3K inhibitors target the catalytic subunits of all

three isoforms of class IA PI3Ks (p110a, b, and d) and the

class IB PI3K catalytic subunit p110g. In preclinical

studies, an early pan-PI3K inhibitor, LY294002, was

shown to suppress cell invasion and motility in the highly

metastatic androgen-independent Dunning rat prostate

cancer MLL cell line; however, this agent lacked favorable

pharmacological properties and had many off-target

effects (Prawettongsopon et al. 2009). Meanwhile, the

PI3K inhibitors GDC-0941 and BKM120, which have
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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improved pharmacological properties, have been shown

to inhibit proliferation in the androgen-independent

metastatic PC-3 cell line and halt tumor growth in

xenograft mice harboring PC-3M cells (Raynaud et al.

2009, Maira et al. 2012b).

The largest clinical experience to date of a pan-PI3K

inhibitor is a phase I first-in-man study of BKM120, which

defined the maximum tolerated dose of BKM120 as

100 mg/day. Overall, treatment with BKM120 was well

tolerated, and treatment-related adverse events included

rash, hyperglycemia, diarrhea, anorexia, mood alteration

(37% each), nausea (31%), and fatigue (26%). Of the 31

evaluable patients, one patient (3%) had a confirmed

partial response, 16 patients (52%) had stable disease for

at least 6 weeks, and seven patients (23%), including

one patient with prostate cancer, remained on study for

8 months (Bendell et al. 2012). Neuropsychiatric adverse

events, including reversible and generally mild-to-moderate

mood alterations and depression were seen with

BKM120 treatment and are thought to reflect the ability

of BKM120 to cross the blood–brain barrier and inhibit the

PI3K/Akt/mTOR pathway in the brain (Maira et al. 2012a,

Nanni et al. 2012). In support of this, low/dysfunctional

PI3K/Akt/mTOR signaling has been shown to reduce the

concentration of the neurotransmitters GABA and seroto-

nin in anxiety-related brain regions such as the amygdala

and has been linked to anxiety and depression

(Ackermann et al. 2008). Mood alterations observed in

this phase I study of BKM120, therefore, highlight the

need for close monitoring for psychiatric symptoms in

patients treated with PI3K/Akt/mTOR inhibitors. Other

PI3K inhibitors including GDC-0941, SAR245408, and the

irreversible PI3K inhibitor PX-866 have also been shown

to be well tolerated and have demonstrated signs of

preliminary activity in patients with advanced solid

tumors (Edelman et al. 2010, Jimeno et al. 2010, Von

Hoff et al. 2010). Common adverse events included

nausea, diarrhea, vomiting, fatigue, decreased appetite,

dysgeusia, and rash with GDC-0941 (Von Hoff et al. 2010);

skin rash with SAR245408 (Edelman et al. 2010); and

nausea, vomiting, and diarrhea with PX-866 (Jimeno et al.

2010). BKM120 (as a single agent and in combination with

abiraterone acetate) and PX-866 are currently under

investigation in metastatic CRPC (Table 1). A limitation

of single-agent PI3K pathway inhibition, as with single-

agent TORC1/2 inhibition, is the possible relief of

reciprocal feedback pathways that inhibit cell surface

receptor, AR, and RAS pathway activation (Carver et al.

2011, Rodrik-Outmezguine et al. 2011). Thus, careful

clinical pharmacodynamic studies are needed to
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Table 1 PI3K/Akt/mTOR pathway inhibitors currently in clinical development in advanced prostate cancer.

Agent Manufacturer Phase Regimen Population Registry

Pan-PI3K
inhibitors

BKM120 Novartis I C Abiraterone acetate
(CYP17A1 inhibitor)

CRPC that has progressed on
abiraterone acetate

NCT01634061

I C Abiraterone acetate Metastatic CRPC NCT01741753
II Monotherapy Metastatic CRPC that has

progressed following ADT
and chemotherapy

NCT01385293

PX866 Oncothyreon II Monotherapy Metastatic CRPC that has
progressed following ADT

NCT01331083

Dual PI3K/mTOR
inhibitors

BEZ235 Novartis I C Abiraterone acetate
(CYP17A1 inhibitor)

CRPC that has progressed on
abiraterone acetate

NCT01634061

GDC-0980 Genentech II C Abiraterone acetate CRPC previously treated with
docetaxel-based
chemotherapy

NCT01485861

Akt inhibitors
MK2206 Merck II C Bicalutamide

(anti-androgen)
Patients with rising PSA at
high risk of progression
after primary therapy

NCT01251861

GDC-0068 Genentech II C Abiraterone acetate and
prednisone (glucocorticoid)

Metastatic or advanced prostate
adenocarcinoma that has
progressed on one hormonal
treatment

NCT01485861

TORC1 inhibitors
Everolimus Novartis II Monotherapy Metastatic CRPC NCT00629525

II C Pasireotide (somatostatin) Chemotherapy-naı̈ve CRPC NCT01313559
I/II C Docetaxel, bevacizumab

(VEGF inhibitor)
Metastatic CRPC NCT00574769

I/II C Docetaxel Metastatic CRPC NCT00459186
II C Carboplatin, everolimus,

and prednisone
Metastatic CRPC cancer that has
progressed after docetaxel

NCT01051570

II C Bicalutamide Recurrent or metastatic CRPC
after first-line ADT

NCT00814788

Temsirolimus Wyeth I/II C Temsirolimus (mTOR
inhibitor) and bevacizumab

Chemotherapy-treated
metastatic CRPC

NCT01083368

II Monotherapy Chemotherapy-treated
metastatic CRPC

NCT00887640

II Monotherapy Chemotherapy-naı̈ve CRPC NCT00919035
I C Vorinostat (HDAC inhibitor) Metastatic CRPC NCT01174199
I/II C Docetaxel CRPC receiving first-line docetaxel NCT01206036
I/II C Cixutumumab Metastatic CRPC NCT01026623

ADT, androgen deprivation therapy; CRPC, castration-resistant prostate cancer; HDAC, histone deacetylase inhibitor; MEK, mitogen-activated
protein/extracellular signal-related kinase; mTORC, mammalian target of rapamycin complex; VEGF, vascular endothelial growth factor.
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determine whether resistance mechanisms observed pre-

clinically (Carver et al. 2011) are also clinically relevant.

Understanding such resistance mechanisms will aid in

the selection of optimal partners for combination.
Isoform-specific PI3K inhibitors

As each isoform of p110 has a distinct role (Jia et al. 2009),

targeting the p110 isoform involved in a particular cancer

may therefore have the advantage of an improved safety

profile. PIK3CA, which encodes p110a, is mutated in 6%
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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of primary and 16% of metastatic prostate cancers (Taylor

et al. 2010), and the PIK3CA H1047R mutation has been

shown to be predictive of response to pan-PI3K inhibitors

(Janku et al. 2012), suggesting that p110a-specific

inhibition may be effective treatment in tumors with

activating PIK3CA mutations. Indeed, both the p110a

isoform-specific inhibitors BYL719 (Fritsch et al. 2012) and

the MLN1117 (Jessen et al. 2011) have demonstrated

antitumor activity in tumor cell lines with PIK3CA

mutations. However, in a PTEN-null prostate tumor

model, ablation of p110b, but not p110a, impeded
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tumorigenesis (Jia et al. 2008). Similarly, the activity of

MLN1117 was much lower in cells with PTEN deficiency

(Jessen et al. 2011). Therefore, b-specific inhibitors such

as GSK2636771 are in early-stage development, and it is

likely that the efficacy of these inhibitors will depend on

whether tumorigenesis is driven by PIK3CA mutation or

loss of PTEN. A potential limitation of isoform-specific

inhibition is the possibility of functional redundancy

between isoforms. In PC-3 cells, for example, the

combination of an a/d PI3K inhibitor with a b-specific

inhibitor (TGX-221) resulted in increased suppression of

the pathway compared with inhibition of a/d and b

isoforms independently (Edgar et al. 2010).
Dual PI3K/TORC1/2 inhibitors

Dual PI3K/TORC1/2 inhibitors are ATP-competitive

inhibitors that target all four p110 isoforms and both

mTOR complexes and should lead to a more complete

blockade of the PI3K/Akt/mTOR pathway. Indeed, the

dual PI3K/TORC1/2 inhibitors GDC-0980 and BEZ235

inhibited PI3K/Akt/mTOR signaling and induced G1

arrest across a broad panel of cancer cell lines (Maira

et al. 2008, Wallin et al. 2011). Greatest sensitivity to

GDC-0981 was observed in breast, prostate, and lung

cancer cells, and in contrast to the TORC1 inhibitors,

GDC-0980 was also shown to induce apoptosis in cells

with direct pathway activation via PIK3CA mutation or

PTEN loss (Wallin et al. 2011). Furthermore, the effects of

the dual PI3K/TORC1/2 inhibitor PI-101 on PC-3 cells

were enhanced through combination with rapamycin or

everolimus, as indicated by phosphorylated-Akt levels

in vitro and tumor growth in vivo, suggesting that

combining competitive and allosteric inhibition leads to

improved suppression of the pathway (Mazzoletti et al.

2011). In the clinic, GDC-0980 and BEZ235 have

been well tolerated in patients with solid tumors, with

common adverse events including nausea, vomiting,

diarrhea, and fatigue (Burris et al. 2010, Wagner et al.

2011). With BEZ235, partial responses were observed in

two patients (4%), and 14/51 (27%) of evaluable patients

had stable disease for at least 4 months (Burris et al.

2010). Issues surrounding the formulation of BEZ235

have delayed drug development to date for this agent,

which remains in phase I testing at present. Phase I/II

clinical trials of GDC-0980 and BEZ235 are ongoing in

metastatic CRPC, alone and in combination with

abiraterone acetate, as is a combination of BEZ235 with

everolimus in advanced solid tumors (Table 1).
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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Akt inhibitors

As an important central regulator of PI3K/Akt/mTOR

signaling, Akt has been a long-standing focus for

therapeutic inhibition, but due to the homology between

Akt and other kinases, Akt-selective drug development has

been difficult. Preclinical studies with the allosteric Akt

inhibitor perifosine have shown that it can induce cell

cycle arrest and cell death in both PC-3 (Floryk &

Thompson 2008) and PTEN-deficient CaP cells (Festuccia

et al. 2008). However, despite a good safety profile in early

clinical trials (the most common adverse events were

diarrhea, nausea, fatigue, and vomiting), no evidence of

radiographic or PSA response (O50% decline in PSA) was

observed in patients with CRPC (Posadas et al. 2005, Chee

et al. 2007). More recently, ATP-competitive selective Akt

inhibitors such as GSK690693 and GDC-0068 have

demonstrated antitumor activity in prostate cancer

xenograft models (Rhodes et al. 2008, Lin 2011). It remains

to be seen whether the ATP-competitive Akt inhibitors will

have clinical benefit, but a lack of clinical efficacy of

perifosine suggests that Akt-independent PI3K signaling

may be important in prostate cancer. For example, it has

been shown that tumors with PIK3CA mutations rely on

the Akt-independent target SGK3 for tumorigenesis

(Vasudevan et al. 2009), suggesting that targeting of PI3K

may be more effective than targeting Akt in some tumors.

Alternatively, dosing of perifosine may not have led to

sufficient inhibition of key Akt effectors, such as the eIF–4E

complex. These results suggest the need for careful

pharmacokinetic–pharmacodynamic studies in patients

to determine optimal dosing and resistance mechanisms.
Combining PI3K/Akt/mTOR pathway
inhibitors with other therapies

Similar to complex infectious diseases such as tuberculosis

and HIV/AIDS, in which combination approaches

revolutionized therapy and transformed a life-threatening

illness into a curable or controllable illness with an

excellent long-term prognosis, combination therapies,

based on knowledge of feedback resistance pathways

inherent to the cancer cell and the tumor microenviron-

ment that are activated during single-agent therapy, are

an emerging and necessary step in oncology (Glickman &

Sawyers 2012). With PI3K/Akt/mTOR pathway inhibitors,

use of combination partners may be particularly import-

ant due to the large degree of cross talk and reciprocal

feedback regulation between the PI3K/Akt/mTOR

pathway and other signaling pathways highlighted earlier.
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Combination strategies in preclinical models have turned

previously cytostatic activity into cytocidal activity and

more durable remissions.
Combination with anti-androgen therapy

The clinical results of the aromatase inhibitor exemestane

in combination with everolimus in metastatic estrogen

receptor/progesterone receptor-positive breast cancer are

testament to the power of rationale combination

approaches (Baselga et al. 2012). Similar to the AR signaling

pathway in prostate cancer, in breast cancer, there is

evidence that the estrogen receptor signaling pathway

interacts with the PI3K/Akt/mTOR pathway. Specifically,

phosphorylation of the estrogen receptor by S6K1, down-

stream of TORC1, leads to ligand-independent signaling

and may be a mechanism of resistance to endocrine

therapy (Yamnik et al. 2009). In a large phase III study of

patients with breast cancer who had progressed on an

aromatase inhibitor, the addition of the mTOR inhibitor

everolimus to exemestane resulted in a 6-month improve-

ment in progression-free survival (Baselga et al. 2012).

Given the known cross talk between the AR and

PI3K/Akt/mTOR pathways (Carver et al. 2011), this study

provides a rationale for combined AR and PI3K/Akt/mTOR

targeted therapy and suggests that a clinical benefit with a

combination approach may be possible for patients with

prostate cancer as well. In support of this, combined

targeting of the AR and PI3K/Akt/mTOR pathways with the

PI3K inhibitor BEZ235 and the AR signaling inhibitor

enzalutamide in PTEN-deficient cell lines resulted in a

profound increase in apoptotic cell death, while only

modest cytostatic activity was observed with each agent

individually (Carver et al. 2011). Furthermore, com-

bination of the mTOR inhibitor rapamycin with either

chemical or surgical castration resulted in additive

antitumor effects in a PTEN-deficient prostate cancer

mouse model (Zhang et al. 2009), and the addition of

everolimus to bicalutamide in a xenograft model harbor-

ing LN-CaP cells significantly reduced tumor growth rates

compared with bicalutamide alone (Schayowitz et al.

2010). However, clinical results of the combination of

the anti-androgen bicalutamide with the mTOR inhibitor

everolimus in patients with CRPC have been conflicting. In

a phase II trial, low activity was observed: two (6%) patients

had a confirmed PSA response (R50% reduction in PSA)

and median time to progression was 8.7 weeks (Nakabayashi

et al. 2012). Meanwhile, in a phase I/II study, partial

responses (R30% decline in PSA) were observed in nine

patients (69%) compared with only one patient (20%) in
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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the placebo-plus-bicalutamide arm (Pan et al. 2012). These

variable results may be due to incomplete suppression of

the PI3K/Akt/mTOR pathway with everolimus or due to

inadequate activity of bicalutamide in patients with CRPC

who have amplification of AR in their tumors (Chen et al.

2004). Further evaluation of four patients who responded

to treatment vs four patients who did not revealed that

responders had significantly elevated HER3 levels (Pan

et al. 2012), and HER3 levels are now being investigated as

a predictive biomarker for response to everolimus in

hormone-treated prostate cancer patients. Combination

studies of PI3K/Akt/mTOR pathway inhibitors with novel

androgen synthesis inhibitors, such as abiraterone acetate

or orteronel, or with novel anti-androgens, such as

enzalutamide or ARN-509, may be more effective and are

eagerly awaited. Currently, there are phase II studies

investigating the combination of BKM120 and BEZ235

with abiraterone acetate (Table 1).
Combination with chemotherapy

Activation of the PI3K/Akt/mTOR pathway has recently

been implicated in resistance to docetaxel (Qian et al.

2010), and combining PI3K/Akt/mTOR pathway inhibitors

with docetaxel has demonstrated enhanced activity in a

variety of preclinical models (Morgan et al. 2008, Fung et al.

2009, Dubrovska et al. 2010, Qian et al. 2010, Maira et al.

2012b, Morikawa et al. 2012). The enhanced efficacy of

BEZ235 with docetaxel was shown to be a result of BEZ235-

induced reduction of CD133C/CD44C tumor progenitor

cells, and docetaxel-induced reduction of the tumor bulk,

which resulted in near complete tumor regression in a

mouse prostate cancer xenograft model (Dubrovska et al.

2010). Phase I/II clinical trials of everolimus or temsir-

olimus in combination with docetaxel in CRPC have been

completed and results are anticipated shortly. Phase I trials

of BKM120 or GDC-0068 in combination with docetaxel

in advanced solid tumors are ongoing.
Combination with MEK inhibitors

As activation of the RAS/RAF/MEK pathway has been

implicated in conferring resistance to PI3K/Akt/mTOR

pathway inhibition (Ihle et al. 2009), and significant

activation of this pathway has been observed in both

primary and metastatic prostate cancer (Mulholland et al.

2012), the combination of PI3K/Akt/mTOR inhibitors with

inhibitors of the RAS/RAF/MEK pathway is a rationale

approach. The combination of the mTOR inhibitor

rapamycin with the MEK inhibitor PD325901 resulted in
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synergistic growth inhibition in the androgen-responsive

cell lines CWR22Rv1 (Gioeli et al. 2011) and CASP 2.1

(Kinkade et al. 2008) and the androgen-independent cell

line CASP 1.1 (Kinkade et al. 2008). While in vivo, the

combination displayed potent antitumorigenic activity in

a mouse model of CRPC (Gioeli et al. 2011). In a phase

Ib study in patients with advanced solid tumors, the

combination of the MEK inhibitor GDC-0973 and the PI3K

inhibitor GDC-0941 was shown to be well tolerated with

a safety profile similar to that observed with either agent

alone. Furthermore, decreases in RECIST-measurable

target lesions were observed in five patients: two patients

with melanoma (K75 and K25%); one patient with

prostate cancer (K21%); and two patients with non-

small-cell lung cancer (K18 and K13%) (Shapiro et al.

2011). In preclinical prostate cancer model systems driven

by PTEN loss and RAS pathway activation, the inhibition of

MEK reduced invasion and metastasis and reverted EMT,

suggesting the importance of RAS pathway activation to

invasiveness in prostate cancer (Mulholland et al. 2012).
Combination with RTK-targeted therapies

The EGFR family tyrosine kinases, including HER2 and

HER3, play a role in the growth and survival of prostate

cancer cells (Renner et al. 2008), and modulation of AR

function by HER2/3 signaling has been documented

(Mellinghoff et al. 2004). Specifically, HER2/3 signaling is

required for AR function at reduced androgen concen-

trations (similar to concentrations achieved during andro-

gen deprivation therapy). Under these conditions, HER2/3

increases binding of the AR to androgen response

elements in the promoters of AR target genes and stabilizes

the AR protein. To date, however, EGFR and HER-targeted

therapies have not demonstrated significant clinical

efficacy in prostate cancer either as single agents (Ziada

et al. 2004, Small et al. 2007, Pezaro et al. 2009, Sridhar et al.

2010, Whang et al. 2011) or in combination with

docetaxel (Gross et al. 2007), likely in part because PTEN

loss is known to mediate resistance to EGFR family

tyrosine kinase inhibitors (TKIs; Mellinghoff et al. 2007),

or due to the lack of upregulation of these receptors when

AR is not sufficiently blocked. This, combined with the

fact that mTOR inhibition relieves negative feedback

inhibition on and so upregulates HER2/3 signaling

(Rodrik-Outmezguine et al. 2011), provides a robust

rationale for co-targeting of RTKs and the PI3K/Akt/mTOR

and/or AR pathways in prostate cancer. In preclinical

studies, the combination of EGFR and Akt inhibition had

synergistic anticancer activity in PTEN-deficient prostate
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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cancer cells (Festuccia et al. 2008), while the dual EGFR

and vascular endothelial growth factor (VEGF) TKI AEE788

combined with the mTOR inhibitor everolimus pro-

foundly reduced tumor-endothelium and tumor-matrix

contacts and suppressed cell growth in a variety of prostate

cancer cells (Wedel et al. 2011a). Moreover, the triple

combination of everolimus, AEE788, and the histone

deacetylase inhibitor valproic acid demonstrated

enhanced anticancer activity compared with each agent

alone in PC-3, LN-CaP, and Du-145 cells (Wedel et al.

2011b). In the clinical setting, early results from a phase

I/II clinical trial of cixutumumab, an anti-IGF-1R mono-

clonal antibody, in combination with temsirolimus in

patients with chemotherapy-naı̈ve metastatic CRPC have

been encouraging; the combination was well tolerated,

and for the seven evaluable patients, median time to

progression was 32 weeks, with a range of 11–60 weeks

(Rathkopf et al. 2011).
Future clinical perspectives

It is clear from autopsy studies of men with lethal prostate

cancer that pathway-activating genomic aberrations in

the PI3K pathway occur with a near 100% prevalence. This

is accompanied by frequent aberrations in AR signaling

and RAS pathway signaling, illustrating that mutational

activation of PI3K does not exist in isolation and requires

partners to create a lethal genotype/phenotype. Preclinical

studies and early clinical data support the clinical

investigation of PI3K/Akt/mTOR pathway inhibitors in

combination with other active systemic agents in patients

with prostate cancer. Recently, the novel androgen-

depriving agents abiraterone acetate and enzalutamide

have been shown to improve survival of patients with

prostate cancer, even after the emergence of castration

resistance (de Bono et al. 2011, Scher et al. 2012).

Combining these therapies with PI3K/Akt/mTOR

inhibitors may further enhance their clinical activity

and/or reverse de novo and acquired resistance. Given

the likely rapid emergence of resistance to single-

agent therapies, initiating therapy with combination

approaches would be the preferred route of clinical

investigation. Conversely, in order to minimize cost or

toxicity with long-term combination approaches, the

sequential addition of PI3K inhibition to AR pathway

inhibitors upon progression is also worthy of study.

A careful analysis of resistance and progression mecha-

nisms in the clinical setting is required through a

systematic analysis of circulating and tumor tissue bio-

markers relevant to key oncogenic pathways such as
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AR splice variants, RAS pathway activation, and other key

oncogenic drivers such as EMT and stemness pathways.

Another important clinical question is the pre-

dictive nature of PI3K/Akt/mTOR pathway activation

and response to treatment. While there is a wealth of

preclinical data implicating the activation of the

PI3K/Akt/mTOR pathway in resistance development and

enhanced sensitivity to PI3K/Akt/mTOR pathway

inhibitors, the clinical validation of the predictive nature

of PI3K/Akt/mTOR pathway alterations has been compli-

cated. Obtaining tumor samples for molecular diagnostics

is often impractical, and the range of aberrancies in this

pathway, including kinase activation and phosphatase

inactivation, is complex. Ideally, tumor sampling would

occur each time a new treatment is considered, as archival

tumor tissue from localized disease may not capture the

acquisition of oncogenic events that lead to recurrence

and tumor heterogeneity (Gerlinger et al. 2012). To this

end, circulating tumor cells (CTCs) and CTC biomarkers

may provide an opportunity for the relatively noninvasive

molecular assessment of a patient’s tumor. AR amplifi-

cation (Shaffer et al. 2007, Attard et al. 2009, Leversha

et al. 2009) and PTEN loss (Attard et al. 2009) have been

identified in the CTCs of patients with metastatic CRPC,

highlighting the potential for the use of CTCs in

biomarker-driven therapy decisions. It should be noted,

however, that the only Food and Drug Administration-

cleared CTC detection method, CellSearch (Veridex), fails

to identify CTCs in as many as 50% of chemotherapy-

naı̈ve men with progressive metastatic disease (Dash et al.

2002, de Bono et al. 2008, Scher et al. 2011). Furthermore,

due to the use of an epithelial biomarker to capture cells,

the CellSearch system is unable to identify cells that have

undergone EMT or developed stem cell-like properties

(Armstrong et al. 2011). Therefore, improvements in the

detection of CTCs may first be necessary before such

diagnostic tools can reliably be used for molecular

diagnosis of PI3K/Akt/mTOR pathway activation. Tech-

nologies that allow for the high-throughput sequencing of

CTCs or circulating tumor DNA, RNA, or microRNA are

emerging that may permit this personalized biomarker-

driven precision algorithm to proceed more rationally

(Diaz et al. 2012).
Conclusions

The high prevalence of PI3K/Akt/mTOR pathway altera-

tions in prostate cancer, combined with evidence for the

involvement of this pathway in the development of

castration-resistant disease, has led to the intensive
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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investigation of PI3K/Akt/mTOR pathway inhibitors in

CRPC. While several inhibitors have demonstrated anti-

tumor activity in preclinical models, cross talk and

feedback inhibition along parallel pathways may mean

that the success of these inhibitors will be dependent on

their combination with other targeted or conventional

therapies. Clinical trials investigating PI3K/Akt/mTOR

pathway inhibitors as single agents and in combination

are ongoing in CRPC, and investments are needed to

determine predictive biomarkers and the early and late

pharmacodynamic effects of these therapies in the clinic.
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