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Abstract

Approximately 5% to 10% of patients with asthma have severe disease that is refractory or poorly

responsive to inhaled corticosteroid therapy. These patients represent an important unmet clinical

need because they experience considerable morbidity and mortality and consume a

disproportionately large amount of health care resources. TNF-α is a proinflammatory cytokine

that has been implicated in many aspects of the airway pathology in asthma. Evidence is emerging

to suggest that it might play an important role in severe refractory disease. The development of

novel TNF-α antagonists has allowed us to test the role of this cytokine in vivo. Preliminary

studies have demonstrated an improvement in asthma quality of life, lung function, and airway

hyperresponsiveness and a reduction in exacerbation frequency in patients treated with anti–TNF-

α therapy. However, there is marked heterogeneity in response, suggesting that benefit is likely to

be reserved to a small subgroup. Importantly, where efficacy is reported, this also needs to be

considered in the context of concerns about the safety of anti–TNF-α therapies. Therefore the

challenge for clinicians is to evaluate the risk/benefit ratio of these therapies in individual patients

with asthma.
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Asthma is a common disease that is increasing in prevalence worldwide.1 Its prevalence is

highest in industrialized countries, where it affects about 15% of the adult population.2 The

mainstay of therapy is inhaled corticosteroids, and the majority of asthma symptoms are

controlled with inhaled corticosteroids alone or in combination with long-acting β-agonists.3

However, 5% to 10% of the asthmatic population have severe refractory disease.4-6 This

group is important because they are responsible for a disproportionate share of the health
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care costs and morbidity associated with this disease. This group of patients represents a

significant unmet need, and novel therapies are urgently required.

Evidence supports a role for anti–TNF-α as a potential new therapy in severe refractory

asthma.7,8 Initial enthusiasm fueled by these early studies has been dampened by concerns

over safety,9 and its efficacy is likely to be confined to a small subgroup of patients with

severe asthma. There is an increasing recognition that there is considerable phenotypic

heterogeneity in severe refractory asthma,10,11 and it is therefore perhaps predictable that the

efficacy of novel specific therapies will be limited to subphenotypes.

In this review we acknowledge the importance of heterogeneity in asthma, summarize the

biology of TNF-α with particular reference to its role in asthma and the development of

airway hyperresponsiveness (AHR), and review the findings of currently published clinical

trials of anti–TNF-α therapy in asthma.

TNF-α BIOLOGY AND SIGNALING

TNF-α is the most widely studied pleiotropic cytokine of the TNF superfamily. TNF-α is an

important cytokine in the innate immune response, which plays a key role in the immediate

host defense against invading microorganisms before activation of the adaptive immune

system.12 It is principally produced by macrophages in response to activation of membrane-

bound pattern-recognition molecules, such as Toll-like receptors, which detect common

bacterial cell-surface products, such as LPSs. TNF-α is also produced by several other

proinflammatory cells, including monocytes, dendritic cells, B cells, CD4+ cells,

neutrophils, mast cells and eosinophils, and the structural cells (ie, fibroblasts, epithelial

cells, and smooth muscle cells).13 TNF-α is initially produced as a biologically active, 26-

kd, membrane-anchored precursor protein (membrane TNF-α [mTNF-α]),14 which is

subsequently cleaved by TNF-α–converting enzyme15 to release the 17-kd free protein.

These proteins form biologically active homotrimers16 that act on the ubiquitously

expressed TNF-α receptors 1 and 2.17 This receptor–ligand interaction causes intracellular

signaling without internalization of the complex, leading to phosphorylation of IκBa and

thus activation of the nuclear factor κB (p50-p65) heterodimer, which then interacts with the

DNA chromatin structure to increase transcription of proinflammatory genes, such as IL1B,

IL6, IL8, and TNFA itself. The response to TNF-α activation is balanced by shedding of the

extracellular domain of the TNF-α receptors. The mechanisms involved in TNF-α biology

and signaling are summarized in Fig 1.

ROLE OF TNF-α IN THE ASTHMA PARADIGM

TNF-α has been implicated in the pathophysiologic mechanisms of several chronic

inflammatory diseases, including inflammatory bowel disease and rheumatoid arthritis.18 In

patients with rheumatoid disease, antagonism of TNF-α through treatment with either

recombinant soluble receptors or neutralizing antibodies leads to improvement in disease

activity scores.19 Similarly, positive results are seen after treatment of other conditions that

are thought to be mediated by TNF-α.
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The possibility that TNF-α contributes to the inflammatory response seen in the asthmatic

airway is supported by observations that TNF-α mRNA20 and protein21 levels were

increased in the airways of patients with asthma. Importantly, the administration of inhaled

recombinant TNF-α to normal subjects led to the development of AHR and airway

neutrophilia.22,23 The mechanisms driving TNF-α–induced AHR have not been fully

elucidated. AHR could be caused by a direct effect of TNF-α on airway smooth muscle

(ASM), as outlined in detail below, or indirectly by the release of the cysteinyl leukotrienes

C4 and D4.24 In addition to its effects on AHR, TNF-α has several other actions that might

be relevant to asthma. TNF-α is a chemoattractant for neutrophils and eosinophils,25

increases the cytotoxic effect of eosinophils on endothelial cells,26 is involved in the

activation of T cells,27 and increases epithelial expression of adhesion molecules, such as

intercellular adhesion molecule 1 and vascular cell adhesion molecule 1.28 The upregulation

of adhesion molecules might also promote migration of inflammatory cells to the lung and

therefore indirectly affect the development of AHR.29 In addition to its relevance to asthma

in general, TNF-α has several properties that might be relevant to severe refractory asthma,

including recruitment of neutrophils,22 induction of glucocorticoid resistance,30 myocyte

proliferation,31 and stimulation of fibroblast growth and maturation into myofibroblasts by

promoting TGF-β expression.32,33 Therefore in severe refractory asthma, in addition to

promoting airway inflammation and AHR, TNF-α might play a central role in airway

remodeling. The role of TNF-α in the development of several characteristics of the asthma

paradigm is summarized in Fig 2.

DIRECT MODULATION OF ASM CONTRACTILE FUNCTION BY MAST

CELL–DERIVED TNF-α: AN EMERGING MECHANISM INVOLVED IN AHR IN

ASTHMA

A novel aspect of asthma pathogenesis has been uncovered by the observation that mast

cells are localized within the ASM bundle in patients with asthma.34-37 Mast cell number

correlated positively with the degree of AHR34 and with the bronchoconstrictor response to

a deep inspiration,38 suggesting that mast cell–ASM cell interactions are likely to be central

in the development of the disordered physiology in asthma. The strength of this assertion

was underpinned by the paucity of mast cells within the ASM bundle in patients with

eosinophilic bronchitis. This is a condition that presents with chronic cough and shares

many of the immunopathologic features of asthma but is not associated with airflow

obstruction or AHR.34,39-41 One postmortem study of fatal and nonfatal asthma has shown

that there was a marked increase in mast cell degranulation in the ASM bundle in both the

large and small airways,42 and another demonstrated that increased numbers of mast cells

(degranulated and intact) are associated with increased ASM shortening in fatal asthma,43

suggesting that mast cell infiltration is also an important component of the progression of

the disease. Mast cells are the major source of TNF-α in the airways. Therefore it is likely

that the close proximity of these cells will facilitate mast cell–derived TNF-α activation of

ASM and contribute to the development of AHR.

A number of lines of evidence support the view that TNF-α–induced AHR is mediated by

direct effects on ASM. Early studies performed in guinea pig44 and ovine45 tracheal tissues
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demonstrated that incubation with TNF-α increased the contractile responses to

methacholine. Similarly, murine isolated tracheal rings incubated with TNF-α became

hyperresponsive to additional G protein–coupled receptor agonists, including carbachol,46

bradykinin,47 and serotonin.48 Only 2 studies, possibly because of the difficulty in obtaining

and working with human tissues, showed that TNF-α alone or in combination with IL-1β
exerted similar effects in human bronchi by enhancing electric field stimulation– or

acetylcholine-associated contractile responses.49,50 Therefore TNF-α can promote a

hypercontractile phenotype in isolated ASM to a variety of bronchoconstrictor agonists.

The pathways by which TNF-α modulates the contractility of ASM have not been clearly

established, but possibilities include changes in receptor expression, affinity for

bronchoconstrictor, or both47; impaired response to bronchorelaxant agonists46; and

alteration in calcium influx or altered calcium sensitivity.51 These are summarized in Fig 3.

We and now others identified that TNF-α potentiated calcium signals in response to

different G protein–coupled receptor agonists.52 Ca2+ plays a central role in regulating ASM

contractile function. Therefore it is likely that alterations in Ca2+ regulatory mechanisms

induced by TNF-α will lead to impaired ASM contractility. The small monomeric G protein

RhoA can enhance ASM contractility to any agonists by increasing levels of myosin light

chain phosphorylation through the Rho-activated kinase–dependent suppression of myosin

light chain phosphatase.53 Importantly, this Rho-dependent calcium sensitization can be

activated by TNF-α.54 An alternative mechanism by which TNF-α can modulate calcium

sensitivity is through the upregulation of CD38, an ectoenzyme that stimulates calcium

signaling.55,56 This effect is modulated by IFN-β (Amrani Y, unpublished observations),

which we have previously reported to regulate the inflammatory responses of the ASM

treated with TNF-α.57,58

These different studies lead to several conclusions: (1) TNF-α enhanced in vitro ASM

responsiveness to a variety of different contractile agonists, an observation that closely

resembles the in vivo manifestation of AHR; (2) the effects of TNF-α are confirmed in both

human and animal species; (3) TNF-α action results in either augmenting ASM reactivity

characterized by an upward shift of the dose-response curve (called hyperreactivity),

increased ASM sensitivity evidenced by a leftward shift of the curve (also called

hypersensitivity or excitability), or both; and (4) the underlying mechanisms by which TNF-

α plays a role of in AHR are complex and poorly understood, but experimental evidence

tends to implicate an alteration of the ASM at 2 molecular levels: calcium signaling, Rho-

dependent increased sensitivity of the calcium apparatus to calcium, or both.

UPREGULATED TNF-α AXIS IS A FEATURE OF SEVERE REFRACTORY

ASTHMA

The view that TNF-α might be of particular relevance in severe refractory asthma is

supported by expression studies that have included this group of asthmatic patients. Howarth

et al7 reported that TNF-α concentration in bronchoalveolar lavage fluid and TNF-α protein

and mRNA expression in bronchial biopsy specimens were increased in patients with severe

asthma compared with expression in those with mild disease. We found that increased

expression of mTNF-α and TNF-α receptor 1 in peripheral blood assessed by means of flow
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cytometry was only noted in patients with severe disease.8 Thus upregulation of TNF-α is a

feature associated with severe refractory disease, suggesting that this phenotype might be

particularly responsive to anti-TNF-α therapies.

CLINICAL TRIALS OF ANTI–TNF-α THERAPY IN ASTHMA

A number of strategies to block the TNF-α axis are available, including infliximab (a

chimeric mouse/humanized mAb), etanercept (a soluble fusion protein combining 2 p75

TNF receptors with an Fc fragment of human IgG1), and adalimumab (a fully human mAb).

Clinical trials in asthma of anti–TNF-α therapy are summarized in Table I7,8,59-61

Enthusiasm for anti–TNF-α in severe asthma was first derived from an uncontrolled study

of etanercept for 12 weeks in patients with severe (Global Initiative for Asthma stage V)

asthma. Howarth et al7 reported a significant (2.5 doubling concentration) improvement in

methacholine AHR, a 240-mL improvement in FEV1, and an improvement in asthma quality

of life. These findings were replicated in a randomized, placebo-controlled study in which

10 weeks of treatment with etanercept led to a similar improvement in PC20 and FEV1, as

well as an improvement in asthma-related quality of life.8 One of the most striking aspects

of this study was that the clinical response correlated closely with the expression of mTNF-

α and TNF-α receptor 1 on monocytes. This suggests that measurement of TNF-α
expression in monocytes might be a useful biomarker of responsiveness but also suggests

that anti–TNF-α approaches will only be effective in a subgroup of asthmatic patients.

Another interesting aspect of the study was that there was no effect of etanercept therapy on

the number of sputum eosinophils or neutrophils, but there was a reduction in sputum

histamine concentration. One intriguing possible explanation for this apparent lack of effect

on airway inflammation by anti–TNF-α in contrast to a marked effect on AHR is that TNF-

α derived from mast cells within the ASM bundle might play a critical role in the

development of AHR. Similar beneficial effects, albeit less profound, have been reported in

patients with moderate asthma. Erin et al59 performed a randomized placebo-controlled

study with infliximab in patients with moderate asthma. No improvement in morning peak

flow occurred with infliximab, but there was an improvement in peak flow variability and a

50% reduction in the number of mild exacerbations encountered. The relatively poor effect

on lung function in this study might reflect either the selection of patients with less severe

disease or a therapeutic difference between etanercept and infliximab. In an earlier

segmental allergen challenge study, anti–TNF-α therapy had no effect on AHR.60

Preliminary data from another study of etanercept in patients with severe asthma

demonstrated no beneficial effect,61 supporting the view that if anti–TNF-α is to be

effective in asthma, it will only be on a relatively small subgroup of patients, possibly

defined by an increased TNF axis. To date, there is a paucity of published long-term studies

of anti–TNF-α in asthma. However, the authors are aware of 2 unpublished longer-term,

randomized, placebo-controlled, parallel-group studies in patients with moderate-to-severe

asthma, with the first using etanercept and the second using golimumab. These studies have

questioned the efficacy of anti–TNF-α in asthma. The latter study included a total of 231

subjects treated with golimumab across 3 doses and 78 subjects treated with placebo. The

study was terminated after 24 weeks by an independent safety-monitoring committee
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because there were no improvements in the primary outcomes (the number of severe

exacerbations and lung function) or secondary outcomes. Subgroup analysis did suggest that

benefit was observed in certain phenotypes, and further detailed analysis is eagerly awaited.

ANTI-TNF-α: RISK/BENEFIT BALANCE IN ASTHMA

The safety of biologic therapies in chronic disease has been questioned, and therefore even

in patients in whom anti–TNF-α therapy has efficacy, this needs to be considered in light of

the potential risks. A recent report on the administration of infliximab for 6 months in

patients with chronic obstructive pulmonary disease showed no benefit and recorded 9

malignancies in 157 treated patients compared with 1 malignancy in 77 placebo-treated

subjects, together with an increased risk of pneumonia.62 In the unpublished golimumab

study, after 24 weeks of therapy, the incidence of malignancy was increased in the treatment

groups compared with that seen in the placebo-treated group. Similarly, there has also been

an excess of malignancy and infection reported in patients treated with anti–TNF-α for

rheumatoid arthritis.9 Therefore clinicians need to be cognizant of the balance between

benefit and risk in their patients on an individual basis, and it is likely that anti–TNF-α
therapy will be valuable in the management of some patients with severe refractory asthma,

albeit in a small select subphenotype.

CONCLUSIONS

In conclusion, TNF-α is a potentially important cytokine in patients with asthma, in

particular in those with severe refractory disease. There is a very strong biologic rationale to

support a central role for TNF-α in the development of AHR and other features of the

asthma paradigm. It is also plausible that mast cells localized within the ASM bundle might

be a particularly important source of TNF-α. Preliminary studies on small numbers of

patients have demonstrated an improvement in lung function, AHR, asthma quality of life,

and exacerbation rate after treatment with anti-TNF therapy. However, whether these

findings are consistently reproducible has been questioned. Any potential efficacy also

needs to be balanced against drug safety, particularly with respect to susceptibility to severe

infection and the potential of solid organ malignancy. Heterogeneity in response to TNF-α
antagonism is an important consideration, and the identification and further validation of

biomarkers, such as mTNF-α expression, by peripheral blood monocytes need to be fully

addressed in future studies.
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Summary: In severe asthma, TNF-α expression is increased. Heterogeneity of the

response and concerns over safety limit the use of anti–TNF-α therapies in severe

asthma.
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FIG 1.
Summary of TNF-α biology and signaling. The cascade of events involved in TNF-α
signaling and receptor function is shown. See text for details. TACE, TNF-α–converting

enzyme; NFκB, nuclear factor κB.
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FIG 2.
Role of TNF-α in the pathogenesis of asthma. TNF-α plays a central role in many of the

features of the asthma paradigm by exerting important effects on both inflammatory and

structural cells. See text for details.
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FIG 3.
Molecular mechanisms activated in ASM induced by TNF-α–activated molecular

mechanisms in ASM possibly contributing to AHR in asthma. TNF-α might modulate AHR

through a number of possible mechanisms: (1) enhanced receptor-associated calcium signals

as a result of an increased expression, function, or both of the receptor G protein (Gaq or

Gai); (2) altered signal transduction, such as increased phospholipase C (PLCβ) expression,

activity, or both; (3) abnormal calcium handling by exerting effects on key enzymes that

regulate inositol-1,4,5-trisphosphate (IP3) metabolism, such as 5-phosphatase I and II,

effects on function, and/or the expression of Ryanodine receptors (RyR), IP3 receptor

(IP3R), or calcium ATPases called sarcoendoplasmic calcium ATPases (SERCA), which

regulate calcium fluxes, or calmodulin (CaM); and (4) changes in calcium sensitivity

mediated by effects on RhoA expression or increases in both myosin light chain kinase

(MLCK) or myosin light chain phosphatase (Pase) content, activity, or both. See text for

details.
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TABLE I

Summary of clinical trials of anti–TNF-α therapy in asthma

No./severity Design Treatment Outcome Result

Howarth et al7 15/GINA V Open label uncontrolled Etanercept 12 wk 1° ACQ Improvement
ACQ, FEV1, AHR

2° FEV1, AHR

Berry et al8 10/7 GINA V, 3 GINA IV Randomized placebo
controlled crossover

Etanercept 10 wk 1 ° AHR and
AQLQ

Improvement
AQLQ, FEV1,
AHR

2° FEV1,
eNO, sputum
cell counts

↓ sputum histamine

Morjaria et al61 39/21 GINA V, 18 GINA IV Randomized placebo
controlled parallel group

Etanercept 12 wk 1 ° AQLQ No benefit
compared with
placebo

2° ACQ,
FEV1, PEF,
AHR,
exacerbations

Erin et al59 38/inhaled corticosteroids only Randomized placebo
controlled parallel group

Infliximab 6 wk 1 ° morning
PEF

No change in
morning PEF

2° FEV1,
exacerbations,
sputum
markers

↓ PEF variability

↓, exacerbations

Rouhani et al60 21/β-agonist only Segmental allergen challenge Etanercept 2 wk Markers of
inflammation
AHR

Increased TNFR2
in BAL, no change
in AHR

GINA, Global Initiative for Asthma; 1°, primary outcomes; 2°, secondary outcomes; ACQ, asthma control questionnaire; AQLQ, asthma quality-of-
life questionnaire; eNO, exhaled nitric oxide; PEF, peak expiratory flow; BAL, bronchoalveolar lavage; TNFR2, TNF receptor 2.
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