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Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to selectively induce apoptotic cell death in

various tumor cells by engaging its death-inducing receptors (TRAIL-R1 and TRAIL-R2). This property has led to the development

of a number of TRAIL–receptor agonists such as the soluble recombinant TRAIL and agonistic antibodies, which have shown

promising anticancer activity in preclinical studies. However, besides activating caspase-dependent apoptosis in several cancer

cells, TRAIL may also activate nonapoptotic signal transduction pathways such as nuclear factor-kappa B, mitogen-activated

protein kinases, AKT, and signal transducers and activators of transcription 3, which may contribute to TRAIL resistance that is

being now frequently encountered in various cancers. TRAIL resistance can be overcome by the application of efficient TRAIL-

sensitizing pharmacological agents. Natural compounds have shown a great potential in sensitizing cells to TRAIL treatment

through suppression of distinct survival pathways. In this review, we have summarized both apoptotic and nonapoptotic pathways

activated by TRAIL, as well as recent advances in developing TRAIL–receptor agonists for cancer therapy. We also briefly discuss

combination therapies that have shown great potential in overcoming TRAIL resistance in various tumors.
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Introduction: Discovery and structure of
TRAIL

Generally, in normal tissues, a tight balance exists between
self-renewal and cell death, and it aims to maintain the tis-
sues’ integrity. Once this balance is broken, cells might grow
out of control and exhibit resistance to cell death.
Uncontrolled growth and apoptosis resistance are two crit-
ical hallmarks for cancer initiation as well as progression1;
therefore, therapies targeting these two important aspects
might be ideal modalities for cancer treatment.
Furthermore, in comparison to proliferation inhibition,
which only stops tumor growth without removing cancer
cells, apoptosis induction might be a more potent therapy
because it is also able to completely eliminate the cancer
cells that have accumulated diverse mutations over a
period of time.

There are two major pathways involved in the process of
apoptosis: the intrinsic and extrinsic. The intrinsic pathway
depends on mitochondria2; it can eliminate damaged cells
via sensing cell damage such as oxidative stress and DNA
damage.3 The tumor-suppressor protein p53 is critical in
this pathway, as many intrinsic pathways are dependent
on this molecule. Thus, p53 is considered as a potential
target for cancer therapy. However, mutation or inactivation
of p53 is commonly found in tumor cells, leading to the
development of resistance to p53-dependent radio- and
chemotherapy.4 The extrinsic apoptosis pathway is depend-
ent on death ligands binding to the death receptors (DRs).
With ligand engagement to the transmembrane receptors, a
death signal is transmitted from the outside to the inside of
cells. The first cell death ligand used for anticancer treat-
ment was tumor necrosis factor (TNF), which was dis-
covered in 1975.5 Although TNF showed apoptotic effect
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in some cancer types, its major function was later found
to be involved in the pro-inflammatory process.
Subsequently, the DR FAS/APO-1 (CD95) was found to
be another anticancer target since antibodies targeting
this receptor were able to induce apoptosis in a wide
range of cancer cells.6,7 However, stimulation of CD95
also showed acute and lethal hepatic toxicity during its
anticancer therapy.8 A few years later, TNF-related apop-
tosis-inducing ligand (TRAIL) was identified based on its
sequence homology to TNF and CD95L.9,10 TRAIL has
similar apoptotic effects as CD95L, but it does not
affect normal cells,11,12 which makes TRAIL a promising
therapeutic for cancer therapy.

There are five types of TRAIL receptors. They are four-
membrane receptors TRAIL-R1 (DR4), TRAIL-R2 (DR5),
TRAIL-R3 (DcR1), and TRAIL-R4 (DcR1), and one soluble
receptor called osteoprotegerin. Among them, TRAIL-R1
(DR4) and TRAIL-R2 (DR5) mediate the apoptosis pathway,
and hence are termed DRs, while the others protect cells
from apoptosis, and are called decoy receptors (DcRs).
With ligand binding to the DR, TRAIL apoptotic signaling
is initiated and further induces caspases or mitochondrial-
dependent death. Various agents such as recombinant
human soluble TRAIL and selective agonistic antibodies
targeting TRAIL-R have been developed. Their robust anti-
tumor activities have been demonstrated in a number of
preclinical studies. However, subsequent clinical trials
revealed only limited therapeutic benefit. This sobering per-
formance might be due to the resistance to TRAIL therapy
in most primary cancer cells, since major cell survival sig-
naling cascades including nuclear factor-kappa B (NF-kB),
mitogen-activated protein kinases (MAPKs), and phospha-
tidylinositol-3-kinases (PI3K/AKT) could also be activated
by TRAIL. Therefore, besides the TRAIL apoptotic signal-
ing pathway, this review also describes the nonapoptotic
signaling pathways that can be induced upon TRAIL treat-
ment. An update on the potential anticancer effects of
TRAIL in both preclinical and clinical studies is also sum-
marized in this review. The role of few selected, natural
compounds that can sensitize tumor cells to TRAIL treat-
ment has been also highlighted briefly.

TRAIL-induced apoptotic signaling cascades

TRAIL interacts with five distinct receptors that are
encoded by separate genes, but share high sequence hom-
ology in the extracellular domains. However, only DR4 and
DR5, which contain an intracellular death domain, can pro-
duce apoptotic signals.13 The apoptotic signaling pathway
of TRAIL is triggered by trimerized TRAIL binding to DR4
and DR5, which enables the receptors to homotrimerize,
thereby driving formation of the death-inducing signaling
complex (DISC).14 Upon ligand stimulation, DR4 and DR5
recruit Fas-associated death domain protein (FADD)
through death domain interactions. FADD then recruits
pro-caspase-8 and 10, and/or the cellular FLICE (caspase-
8)-like inhibitory protein (c-FLIP) to the DISC (Figure 1).
c-FLIP competes with caspase-8 for FADD binding in the
DISC and inhibits the apoptosis signal.15 Following recruit-
ment, procaspase-8 comes into contact with the ubiquitin E3

ligase subunit (CUL3), which catalyzes polyubiquitylation
of caspase-8 on its C-terminal region. Polyubiquitylated
caspase-8 binds with the ubiquitin-binding protein p62,
which promotes the translocation of caspase-8 from the
DISC into intracellular ubiquitin-rich foci and subsequently
leads to the cleavage and activation of caspase-8.16

Activation of caspase-8 at the DISC transfers the apoptosis
signal to executioners of apoptosis either directly via the
extrinsic or indirectly via the intrinsic–mitochondrial path-
way. In the extrinsic pathway, the DISC activates sufficient
caspase-8 to stimulate the effector caspases 3, 6, and 7, and
directly induce apoptosis. In the intrinsic–mitochondrial
pathway, active caspase cleaves the BH3-interacting
domain death agonist (Bid) to truncated Bid (tBid). tBid
rapidly translocates to the mitochondria and drives perme-
abilization of the outer mitochondrial membrane by bind-
ing with Bax and Bak, releasing mitochondrial cytochrome
c and mitochondria-derived activator of caspase
(Smac).17,18 This process can be blocked by overexpression
of X-linked inhibitor of apoptosis protein (XIAP), B-cell
lymphoma 2 (Bcl-2), and B-cell lymphoma-extra-large
(Bcl-xL).19,20 Once in the cytosol, cytochrome c conjugates
with ATP and apoptotic peptidase-activating factor-1
(Apaf-1) to recruit the initiator caspase-9 into a signaling
complex called the apoptosome. Activated caspase-9 then
cleaves and activates the effector caspases-3, -6, and -7 to
induce apoptosis.18

Effect of TRAIL on other cell survival signaling
cascades

Although TRAIL exerts a remarkable effect in apop-
tosis induction, it has been also reported to activate
anti-apoptotic pathways such as NF-kB, MAPKs (c-Jun
NH2 terminal kinases [JNK], p38, and extracellular signal-
regulated kinases [ERK]1/2), PI3K/AKT, and signal trans-
ducers and activators of transcription (STATs), which may
repair TRAIL-induced apoptosis. The mechanism(s) under-
lying stimulation of these anti-apoptosis pathways are still
not well understood. For example, Eugene et al. have indi-
cated that, subsequent to assembly of the DISC, a secondary
complex is formed that may stimulate the nonapoptotic sig-
naling pathways. The secondary complex contains
FADD, caspase-8, receptor-interacting protein (RIP1), TNF
receptor associated factor-2 (TRAF2), and NF-kB essential
modulator (NEMO). The association of the secondary com-
plex might be dependent on formation of the primary com-
plex, but also requires its dissociation. The specific
localization of the TRAIL receptor complex may be another
mechanism involved in the TRAIL-induced anti-apoptotic
signaling events. Moreover, the TRAIL receptor localized in
membrane lipid rafts activates apoptosis signaling, while
the TRAIL receptor complex outside the rafts enables acti-
vation of nonapoptotic pathways. Other possible early
molecular events for nonapoptotic pathways include
the DISC inhibitor cFLIP and modification of TRAIL RIPs.
We briefly discuss below few important cell survival path-
ways that can be activated upon exposure of tumor cells
to TRAIL.
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NF-iB

NF-kB is a transcription factor that is involved in inflam-
mation and cell survival. The NF-kB family has five mem-
bers: p65, Rel B, cRel, p50, and p52. In the TRAIL/TRAIL-R
system, NEMO/IKKg in the secondary complex recruits
IKKa/b, which phosphorylates IiBa and induces its ubiqui-
tination and degradation. Degradation of IiBa activates
NF-kB, and allows its nuclear translocation. NF-kB then
binds to the DNA and induces transcription of anti-apop-
totic genes such as Bcl-xl, Mcl-1, cFLIP, and cIAPs. Inhibition
of NF-kB by using either an IiB dominant negative version
or selective chemical factor was found to enhance TRAIL-
induced apoptosis in several preclinical tumor models such
as leukemia, neuroblastoma, pancreatic cancer, and non-
small cell lung carcinoma (NSCLC).21–25 Interestingly, a
pro-apoptotic effect was also reported in TRAIL-induced
NF-kB activation. For example, deficiency of cRel resulted
in resistance to TRAIL treatment in glioma cell lines,26 and a
similar anti-apoptotic effect was also observed in human b
islets cells.27 The mechanism(s) for the pro-apoptotic role of

NF-kB are still elusive. However, it was found that NF-kB
can help recruitment of FADD and caspase 8, and facilitate
DISC formation. Few other evidences further indicates that
a pro-apoptotic role of NF-kB might be related to the rela-
tive amount of RelA and cRel in activated NF-kB, as cRel
upregulation was found to enhance the expression levels of
TRAIL1 and TRAIL2 receptors,28 while Rel A overexpres-
sion had opposite effects.29 Besides above described apop-
tosis-related roles, NF-kB activation was also reported to be
involved in the TRAIL-enhanced invasion of apoptosis-
resistant pancreatic ductal adenocarcinoma cells.30

MAPKs

The MAPKs are kinases that control different cellular pro-
cesses such as immunoregulation, inflammation, cell
growth, cell differentiation, and cell death. This family con-
sists of six members: the ERK1/2, ERK3/4, ERK5, ERK7/8,
JNK1/2/3, and the p38-MAPK. Among them, TRAIL can
significantly activate JNK, p38, and ERK1/2 in diverse

Figure 1 A schematic diagram of TRAIL-induced apoptotic signaling cascades. Binding of TRAIL to TRAIL death receptors results in recruitment of the FADD and

caspase-8 to form DISC. DISC leads to the cleavage and activation of caspase-8, which can activate caspase effectors and the BH3-only protein Bid. In the extrinsic

pathway, activation of caspase-8 is sufficient to activate downstream caspases-3, -6, and -7, leading to cell death. However, in the intrinsic pathway, cleavage of Bid

into its truncated form (tBid) is essential to induce cell death. tBid can rapidly translocate to the mitochondria and drive (through Bax and Bak) permeabilization of the

outer mitochondrial membrane, releasing mitochondrial cytochrome c and Smac. This process can be blocked by overexpression of Bcl-2 and Bcl-xL. Once in the

cytosol, cytochrome c binds to the adaptor Apaf-1 to recruit the initiator caspase-9 into the apoptosome, which can activate caspase-9 and the effector caspases.

Release of Smac augments apoptosis by antagonizing the inhibitory effect of XIAP on the various effector caspases. (A color version of this figure is available in the

online journal.)
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tumor cell lines. For example, TRAIL-induced JNK activa-
tion requires both RIP and TRAF2 in the secondary
complex,31–33 and JNK might be activated through the
TRAF2–MEKK1–MKK4 signaling pathway.32 Different
mechanisms are involved in JNK-mediated apoptosis
induced by TRAIL. Bim is a pro-apoptotic Bcl-2 family
member, which can mediate lysosome permeabilization
and induce cell death through activating Bax. It was found
that TRAIL can enhance Fas-induced cell death through acti-
vating JNK and its downstream substrate Bim in isolated
murine hepatocytes34; and the pharmacological JNK inhibi-
tor SP600125 can attenuate TRAIL-induced lysosomal per-
meabilization and cell death in cholangiocarcinoma.35

Stimulation of autophagic cell death might be another mech-
anism contributing to JNK-mediated cell death, because
Beclin 1 (which is an important autophagy regulator),
could be phosphorylated by TRAIL-induced JNK activa-
tion.36 In addition, JNK was found to have dual activity as
inhibition of JNK-enhanced TRAIL-induced apoptosis in
hepatocellular carcinoma cells,37 and this dual effect might
be due to the magnitude of signal transduction and the iso-
forms involved. For example, prolonged JNK activation or
long isoforms of JNK such as JNK1a2 and JNK1b2 induce
cell apoptosis, while transient activation or short isoforms
(JNK1a2 and JNK1b2) prevent apoptosis.38,39 Therefore,
JNK may act as a pro- and/or anti-apoptotic molecule in
different cell types and experimental systems.

TRAIL-induced p38 activation is RIP1 and TRAF2
dependent,31 and it has been reported that TRAIL-induced
p38 activation through upstream kinases such as TGF-b
activated kinase-1 (TAK1) and MKK4/MKK6.40 The roles
of p38 in TRAIL-induced apoptosis are also controversial.
In Hela cells, p38 activation was found to be responsible for
TRAIL-induced apoptosis, because specific p38 kinase
inhibitor SB203580 prevented apoptosis.41 TRAIL-induced
reactive oxygen species (ROS) production may also contrib-
ute to p38 activation. Pretreatment with antioxidants such
as glutathione attenuated p38 kinase activation as well as
TRAIL-induced apoptosis. Meanwhile, TRAIL-induced p38
activation has also shown an anti-apoptotic effect. Son et al.
reported that TRAIL can induce p38 activation in prostate
cancer cells, and activated p38 can further upregulate the
expression of Mcl-1 gene, which can suppress the intrinsic
apoptosis pathway by inhibiting mitochondrial membrane
permeabilization.40 In addition, p38 inhibition sensitized
breast carcinoma cells to TRAIL treatment.42 However, in
some other tumor cells such as the human colorectal cancer
cell line DLD1, p38 did not play a major role in TRAIL-
mediated apoptosis.43 For example, although p38 was
activated in TRAIL-sensitive DLD1 cells but not in
TRAIL-resistant DLD1 cells, p38 inhibition did not block
TRAIL-mediated cell death. Therefore, the role of p38 in
TRAIL-induced apoptosis might also be cell-type dependent.

On the other hand, ERK1/2 activation has been mainly
implicated in cell survival and proliferation. The activation
of ERK1/2 by TRAIL has been reported in a number of cell
types,44,45 and the mechanism may be Mst1 (mammalian
sterile 20-like kinase 1) dependent, as a caspase-3-generated
36 kDa form of Mst1 was found to activate ERK1/2.46

ERK1/2 protects cells from TRAIL-mediated apoptosis.

Smac/direct IAP binding protein with low pI (DIABLO)
release from mitochondria is an important pathway mediating
TRAIL-induced apoptosis. In melanoma cells, it was shown
that release of Smac/DIABLO was downregulated by EKR1/2
activation, thus attenuating TRAIL-induced apoptosis.45

Inhibition of ERK1/2 sensitized cells to TRAIL-induced apop-
tosis in breast cancer cells and HT-29 colon cancer cells, and
further indicates that ERK1/2 is a critical proliferation medi-
ator.47 In NSCLC, which lack caspase-8, TRAIL caused an
increase in proliferation, and the induced proliferation was
mediated by ERK1/2, as ERK inhibition attenuated the
TRAIL-induced proliferation.48 A similar role of ERK1/2
was also observed in TRAIL-resistant human glioma cells, in
which TRAIL-induced ERK1/2 increased cell proliferation via
increasing cell cycle progression and inhibiting c-FLIP(L) (the
long form of the caspase 8 inhibitor).49

PI3K/AKT

Akt is a PI3K-activated protein kinase, which is mainly
involved in regulating cellular functions such as cell
growth, apoptosis, and survival.50 TRAIL-induced Akt acti-
vation has been demonstrated in various cancer types. In
the TRAIL-sensitive prostate cancer cell line DU145, TRAIL
stimulated Akt activation via Rous sarcoma oncogene cel-
lular homolog (Src) and c-Cbl, and suppression of Akt
enhanced the TRAIL-induced apoptosis.51 Akt activation
may also contribute to development of TRAIL resistance,
as inhibition of TRAIL-induced Akt phosphorylation sensi-
tized the TRAIL-resistant NSCLC cells for TRAIL treat-
ment.52 A similar phenomenon was also observed in
TRAIL-resistant ovarian and breast cancer cell lines.53

STAT3

STAT3 is a cytoplasmic transcription factor involved in cell
proliferation, apoptosis, angiogenesis, and immune
response. With the ligands (cytokines or growth factors
such as epidermal growth factor [EGF]) binding to the
receptors, monomeric STAT3 are phosphorylated by the
receptor-associated tyrosine kinases such as JAK and Src,
and then form dimers to migrate into the nucleus and acti-
vate gene transcription. In 2012, Azijli et al.52 found that
TRAIL can enhance cell migration and invasion through
activating the Src-STAT3 pathway in the TRAIL-resistant
NSCLC cells. Inhibition of Src or STAT3 by either a chemical
inhibitor or shRNA-attenuated TRAIL-induced migration
and invasion. Activation of Src and STAT3 is mediated
through RIP1 kinase. Silencing of RIP kinase suppressed
TRAIL-induced Src and STAT3 phosphorylation as well as
TRAIL-induced migration and invasion. TRAIL-R2 might
mediate TRAIL-induced activation of Src and STAT3, as
DHER (D269H/E195R, a selective TRAIL variant against
TRAIL2) significantly enhanced cell migration and inva-
sion. Src activation may also contribute to the apoptosis
resistance, as it was found to impair DR/caspase 8-depen-
dent apoptosis by phosphorylating caspase 8 at tyrosine
380.54 Src also can induce an autocrine or paracrine loop
of TGF-a–EGFR activation.55 Figure 2 summarizes the vari-
ous cell survival pathways activated upon exposure of
tumor cells to TRAIL.
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Anticancer effects of TRAIL

There is strong experimental evidence that the TRAIL path-
way has an important role in the regulation of tumor initi-
ation and development. As detailed below, TRAIL may
contribute to host immune surveillance against tumors.
Moreover, dysfunction of TRAIL-Rs through mutation or
decreased expression may promote tumor progression
and confer intrinsic resistance to TRAIL-induced apoptosis.
TRAIL is expressed by effector lymphocytes, which are well
known to contribute to host immune surveillance against
primary tumor development and metastasis. TRAIL, along
with perforin 1 and CD95L, is constitutively expressed on
murine natural killer (NK) cells in the liver, but not NK T
cells or ordinary T cells, and is responsible for spontaneous
cytotoxicity against TRAIL-sensitive tumor cells in vitro and
in vivo.56,57 Both the mouse and human Apo2L/TRAIL pro-
moters are regulated by interferon-gamma (IFN-g),58,59 and
Apo2L/TRAIL expression and its contribution to prevent-
ing liver metastases depend on IFN-g signaling.60

Furthermore, the IFN-g-induced expression of TRAIL
might change the tumor microenvironment to enable
enhanced antigen presentation and tissue infiltration. The
TRAIL-sensitive tumor cells interaction with TRAIL-
expressing tumor infiltrating immune cells might be
involved in tumor resistance and metastasis.61

In addition to Apo2L/TRAIL’s contribution to immune
surveillance, Apo2L/TRAIL appears to play an important

role in suppressing tumor progression and determining
chemosensitivity. Both neutralization of TRAIL by mono-
clonal antibody and TRAIL knockout mice promoted
tumor development in mice and supported a direct role
for NK cells expressing TRAIL in the suppression of
tumor metastasis, while no metastasis occurred with the
TRAIL-resistant cells.60,62 A more recent study shows that
syngeneic renal cell carcinomas grow faster and shows
increased metastasis to the liver in Apo2L/TRAIL knockout
mice as compared with wild-type controls.63 Furthermore,
metastasis to lymph nodes was significantly enhanced in
TRAIL-R-deficient mice, which indicates that TRAIL-R2 is
a metastasis suppressor in the mouse multistage model of
squamous cell carcinoma.64 Wang and El-Deiry65 showed
that silencing of TRAIL-R2/DR5 in vivo promotes tumor
growth and renders tumor cells resistant to the chemother-
apeutic agent 5-fluorouracil. These findings provide the evi-
dence for the physiological function of TRAIL as a tumor
suppressor.

Ongoing clinical trials with TRAIL alone and in
combination with other pharmacological
agents

Since TRAIL was observed to have promising anticancer
effects in preclinical research, agonists targeting the
TRAIL receptor have been developed and have already
undergone Phase I and Phase II clinical trials. There are

Figure 2 A schematic overview of prosurvival signals elicited by the activation of TRAIL receptors. With agonists binding to TRAIL-R1/R2, a secondary complex can

be formed after receptor activation, leading to the activation of various signaling pathways that are involved in induction of nonapoptotic responses as indicated.

(A color version of this figure is available in the online journal.)
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two categories of clinically tested TRAIL receptor agonists
(TRAs): recombinant forms of TRAIL and agonistic antibo-
dies specific for TRAIL-R1 or TRAIL-R2. Recombinant
forms of TRAIL have a stronger apoptotic effect compared
to agonistic antibodies because they can target and trigger
both apoptosis receptors (TRAIL-R1 and TRAIL-R2).
However, since it has no selectivity, it also increases their
chance to bind the DcRs such as TRAIL-R3 and TRAIL-R4,
and thus attenuates its apoptotic activity. Recombinant
forms of TRAIL were also found to be cleared by the
body within hours, so repeated administration is required
for systemic application.66

Considering the less selectivity of the recombinant forms
of TRAIL, agonistic antibodies specific for TRAIL-R1 or
TRAIL-R2 might be more effective for cancer treatment.
The antibodies can selectively bind to specific apoptotic
TRAIL-Rs, therefore they would not bind to nondeath-
inducing TRAIL-Rs and activate the survival pathway. In
addition, the half-life of agonistic antibodies is in the range
of several days to weeks, which allows a more stable con-
centration within tissues and avoids the need for continu-
ous application.66

Recombinant forms of TRAIL

Dulanermin, which contains the TNF homology domain
within the extracellular domain of human soluble TRAIL,
is the only recombinant TRAIL developed for clinical appli-
cation.11 In several phase I clinical trials, dulanermin has
proved to be a safe and well-tolerated drug in the treatment
of different tumors such as colorectal cancer, lung cancer,
and lymphoma, even when combined with other che-
motherapies (Table 1).67–101 The antitumor activity of dula-
nermin has also been shown in patients for whom partial or
complete clinical responses were observed. To further study
the specific antitumor activity of dulanermin, Phase II b
clinical trials (randomized control trials, RCTs) were per-
formed in nonsmall cell lung cancer71 and non-Hodgkin’s
lymphomas73 (Table 1). However, although these two trials
further confirm the tolerability of dulanermin in cancer
treatment, no significant anticancer activities were
observed.

Agonistic antibodies

Mapatumumab is the only agonistic TRAIL-R1 specific anti-
body that has entered clinical trials (Table 1). Its safety and
broad tolerability have been revealed in both Phase I and
Phase II trials. In the Phase I trials, partial responses were
observed in advanced cancers when used in combination
with chemotherapy. Although Phase IIa and IIb trials have
been conducted in cancers such as colorectal and lung can-
cers, an objective response was only observed in patients
with lymphoma undergoing a Phase II a trial, while no
anticancer activity was observed in other trials. There are
several agonistic TRAIL-R2 specific antibodies such as con-
atumumab, lexatumumab, tigatuzumab, drozitumab, and
LBY-135 (Table 1). So far, different clinical trials have been
carried out either alone or in combination with chemother-
apy. Some positive trends were observed in Phase I and
Phase II a trials, while no significant anticancer activity

was achieved in Phase II b trials (Table 1). These TRAs
although have been found to be well tolerated, but they
exhibited only minimal therapeutic activity in these clinical
trials. Therefore, future work might be to focus on strategies
that could achieve a significant anticancer effect with these
pharmacological modulators.

Natural compounds that can sensitize tumor
cells to TRAIL

Numerous natural compounds have shown great potential
to enhance TRAIL-induced apoptosis through modulation
of diverse nonapoptotic pathways such as NF-iB, STAT3,
PI3K/AKT, MAPKs, and p53, which can be considered as a
part of emerging treatments for unresponsive cancer
(Table 2). For example, suppression of TRAIL-induced
NF-iB activation is considered to be an important method
to sensitize cancer cells to TRAIL by using natural com-
pounds. Numerous natural compounds such as wogonin
(derived from the popular Chinese herb Huang-Qin), sul-
foraphane (derived from enriched broccoli sprout extracts),
and melittin (major component of bee venom) sensitize
resistant malignant cells to TRAIL-induced apoptosis
through the modulation of NF-iB signaling pathway.102–104

Upregulation of TRAIL receptors through NF-kB is also
mediated by other natural compounds such as the ethanolic
extract of Brazilian green propolis (EEP) and curcumin
(a substance found in turmeric).105,106 However, kurarinone
(a natural bioactive lavandulyl flavonoid),107 resveratrol (a
type of natural phenol),108 artesunate (a derivative of the
natural product artemisinin),109 and combertastatin A-4
(isolated from the bark of combretum caffrum)110 can also
sensitize melanomas to TRAIL through abrogating
TRAIL-induced NF-kB activation and modulation of
expression of anti-apoptotic genes such as cFLIP, XIAP,
and Bcl-xL.

Since suppression of the STAT3 pathway is linked to
overcoming TRAIL resistance of tumor cells, numerous nat-
ural compounds have been investigated to determine
whether they sensitize cancer cells via STAT3-dependent
mechanism(s). Most of these natural compounds such as
chrysin (a major constituent of Thai propolis), 6BIO (a
derivative of indirubin), and bufadienolide (a major class
of biologically active compounds isolated from ChanSu)
can overcome TRAIL resistance of cancer cells through
Mcl-1 downregulation by inhibiting STAT3 phosphoryl-
ation.111–113 Another natural agent, resveratrol, was found
to increase sensitivity of melanomas to exogenous TRAIL
through suppressed expression of cFLIP and Bcl-xL pro-
teins and decreased STAT3 and NF-kB activation.108

Upregulation of DRs through the suppression of STAT3
activation by parthenolide (a sesquiterpene lactone found
in European fever few)114 and luteolin (30,40,5,7-tetrahy-
droxyflavone, found in many pants)115 has also been
found to be involved in enhancing the sensitivity of
tumor cells to TRAIL.

Cellular resistance to TRAIL could also be developed
through phosphorylation (activation) of the PI3K/AKT
pathway. Eupatolide, the sesquiterpene lactone isolated
from the medicinal plant Inula Britannica, could augment
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TRAIL-induced apoptosis in human breast cancer cells by
downregulating c-FLIP expression through the inhibition of
AKT phosphorylation.116 Besides this, there are various
other natural compounds reported to activate TRAIL-
induced apoptosis through inhibition of the PI3K/AKT
pathway, such as sanguinarine (a benzophenanthridine
alkaloid derived from the root of Sanguinaria
Canadensis),117 artesunate,109 and luteolin.115

Several natural compounds can significantly increase the
expression of ERK1/2, which further induces the expres-
sion of DRs. Gossypol (a polyphenol derived from cotton

seed oil), curcumin (a natural compound derived from cur-
cuma longa), apigenin (40,5,7-trihydroxyflavone found in
many plants), and butein (active component of the stems
of Rhus verniciflua Stokes) induce DRs directly through acti-
vation of ERK1/2.106,118–120 Azadirone (a limonoid tetranor-
triterpene), g-tocotrienol (an unsaturated vitamin E present
predominantly in palm oil), and nimbolide (a terpenoid lac-
tone derived from azadirachta indica)121–123 induce DRs
through activation of ERK1/2 mediated by activation of
p53 pathways. Zerumbone (a component of Asian ginger)
has been shown to upregulate DR expression through

Table 1 Results of recombinant TRAIL or agonistic antibodies targeting TRAIL-R in clinical trials

Agents Phase Cancer type Efficacy/n References

Dulanermin I Advanced cancers 2PR/71 Herbst et al.67

I Colorectal 13PR/23,

6PR/27,

NA/30

Wainberg et al.68

Kasubhai et al.69

Yee et al.70

I Lung (1CRþ13 PR)/24 Soria et al.139

I Lymphoma (2CRþ 1PR)/7 Yee et al.72

II (RCT) Lung No cancer activitya/213 Soria et al.71

II (RCT) Lymphoma No cancer activitya/48 Belada et al.73

Mapatumamab I Advanced cancers No response/49,

No response/41,

12PR/49,

5PR/27

Tolcher et al.74

Hotte et al.75

Mom et al.76

Leong et al.77

I/II Lymphoma (2CRþ 1PR)/40 Younes et al.78

II Colorectal No response/38 Trarbach et al.79

II Lung No response/32 Greco et al.80

II (RCT) Multiple myeloma No cancer activitya/104 Belch et al.81

II (RCT) Lung No cancer activitya/109 von Pawel et al.82

Conatumumab I Advanced cancers 1PR/37,

No response/18,

No response/9

Herbst et al.140

Doi et al.83

Chawla et al.84

I Soft tissue sarcoma No response/6 Demetri et al.85

I Lung (1CRþ 3PR)/12 Paz-Ares et al.141

I Colorectal 5PR/12 Saltz et al.87

I Pancreatic 4PR/13 Kindler et al.88

II (RCT) Soft tissue sarcoma No anticancer activitya/128 Demetri et al.85

II (RCT) Lung No anticancer activitya/172 Paz-Ares et al.86

II (RCT) Pancreatic No anticancer activitya/83 Kindler et al.89

II (RCT) Colorectal No anticancer activitya/103,

No anticancer activitya/190

Cohn et al.90

Fuchs et al.91

Lexatumumab I Advanced cancers No response/37,

No response/31,

PR/41

Plummer et al.92

Wakelee et al.93

Sikic et al.94

I Pediatric cancers No response/24 Merchant et al.95

Tigatuzumab I Carcinoma–lymphoma No response/17 Forero-Torres et al.96

II Pancreatic 8PR/61 Forero-Torres et al.97

II (RCT) Lung No anticancer activitya/97 Reck et al.98

Drozitumab I Colorectal 2PR/9 Rocha Lima et al.99

I Advanced cancers No response/50 Camidge et al.100

LBY-135 I/II Advanced cancers 2PR/73 Sharma et al.101

Note: TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; n, number of patients enrolled; CR, complete response; PR, partial response; NA, data about

responses (efficacy) were not reported; RCT, randomized-controlled trials.
aAnticancer activity was considered when the addition of the recombinant TRAIL or agonistic antibodies demonstrated statistically significant activity as compared to

the standard therapy.
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induction of ERK and P38 activation.124 These studies indi-
cate that ERK-dependent upregulation of TRAIL receptor
DR4/5 can form the basis of an important strategy method
to sensitize tumor cells to TRAIL.

Since inhibition of JNK can enhance TRAIL-induced
apoptosis,37 numerous natural compounds have been
investigated to determine whether they sensitize tumor
cells to TRAIL via a JNK-dependent mechanism(s). One of
these natural compounds, cordycepin, an active component
of the caterpillar fungus cordyceps militaris, increases sensi-
tivity of human hepatocellular carcinoma Hep3B cells to
TRAIL-mediated apoptosis directly by inactivating the
JNK signaling pathway.125 However, other natural com-
pounds such as SVT (snake venom toxin from vipera lebetina
turanica), ursolic acid (a pentacyclin triterpene), capsaze-
pine (the active ingredient of chilli pepper), and tricetin (a
flavonoid derivative found in Myrtaceae pollen and
Eucalyptus Honey) induce DRs mediated by JNK1/2 activa-
tion through production of ROS.126–129

DRs can also be upregulated by diverse natural com-
pounds through the activation of p38 signaling cascade.
Another natural agent, lupulone, a b-acid largely present in
hops (Humulus lupulus l), can significantly enhance the
expression of p38, which plays a major role in the activation
of p53 and the TRAIL-DR apoptotic pathway in SW620
human colon cancer-derived metastatic cells.130 Zerumbone
(a sesquiterpene from the edible plant Zingiber zerumbet
Smith), diosgenin (obtained from fenugreek), and caffeic
acid phenethyl ester (CAPE; a phenolic compound derived
from honeybee propolis) have also been shown to upregulate
DR expression through induction of p38 activation.124,131,132

Our group has also recently reported that emodin, a naturally
occurring anthraquinone present in the roots and barks of
numerous plants, and an active ingredient of various
Chinese medicinal herbs can downregulate the expression
of various cell survival proteins, and induce the cell surface
expression of both TRAIL receptors, DR 4 as well as 5 in
hepatocellular carcinoma cells. In addition, emodin increased
the expression of C/EBP homologous protein (CHOP) in a
time-dependent manner.133 Knockdown of CHOP by small
interfering RNA (siRNA) decreased the induction of emodin-
induced DR5 expression and apoptosis. Emodin-induced
induction of DR5 was mediated through the generation of
ROS, as N-acetylcysteine blocked the induction of DR5 and
the induction of apoptosis.

A critical factor for the TRAIL resistance of p53-mutant
cell lines is the limited upregulation of the expression of
DR4 and DR5 by mutant p53. Numerous natural com-
pounds such as triptolide (isolated from the Chinese herb
Tripterygium wilfordii Hook), alpha-tocopheryl succinate (a-
TOS, an analogue of vitamin E), and andrographolide (a
diterpenoid lactone isolated from a traditional herbal medi-
cine Andrographis paniculata) upregulate the expression of
DRs directly through the induction of p53.134–136 It has also
been reported that ROS participates in the induction of DRs
by 6-dehydrogingerdione (a compound isolated from the
rhizomes of Zingiber officinale) mediated through expression
of p53.137 However, nimbolide, azadirone, and g-yocotrie-
nol induce DR expression through p53 expression that is
mediated by an ERK-p53 mechanism(s).121–123 Similarly,

lupulone and damnacanthal (isolated from Morinda citrifo-
lia) can upregulate DRs through induction of both p38–p53
mediated mechanism(s).130,138 These studies indicate that
p53 plays an important role in induction of DRs by natural
compounds, which can significantly sensitize tumor cells to
TRAIL therapy. Table 2 summarizes the list of various nat-
ural compounds that can significantly summarize tumor
cells to TRAIL.

Conclusions

This review briefly summarizes both the apoptotic and non-
apoptotic pathways that can be activated upon TRAIL treat-
ment as well as its physiological role in cancer. However,
the molecular mechanism(s) contributing to TRAIL resist-
ance in tumor cells still remain to be elucidated.
Experimental preclinical as well as clinical evidences
show that both TRAIL antibody and TRAIL used in com-
bination with chemotherapeutics have a significant poten-
tial for anticancer treatment 139–141. From various reports,
it is also clear that various pharmacological agents derived
from natural sources can sensitize tumor cells to TRAIL
through direct activation of intrinsic apoptotic pathway
or modulation of diverse nonapoptotic pathways to upre-
gulate DRs. However, as most of these studies have
been conducted in cell lines or in preclinical mouse
models of cancer; hence, additional clinical evidences are
required to confirm whether these natural agents may
also have synergistic therapeutic effects with TRAIL in
cancer patients. Furthermore, since several recombinant
TRAIL antibodies and agonistic antibodies against DRs
are being used in the clinic, the combination of natural
agents with these antibodies may greatly revolutionize
cancer treatment. Therefore, in the coming years, we hope
that such studies will be conducted and yield promising
results.
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