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In addition to the crucial role in promoting the growth of tumor vessels, vascular endo-
thelial growth factor (VEGF) is also immunosuppressive. VEGF can inhibit the function 
of T cells, increase the recruitment of regulatory T cells (Tregs) and myeloid-derived sup-
pressor cells (MDSCs), and hinder the differentiation and activation of dendritic cells 
(DCs). Recent studies have investigated the role of antiangiogenic agents in antitumor 
immunity, especially in recent 3 years. Therefore, it is necessary to update the role of tar-
geting VEGF/VEGFR in antitumor immunity. In this review, we focus on the latest clinical 
and preclinical findings on the modulatory role of antiangiogenic agents targeting VEGF/
VEGFR in immune cells, including effector T cells, Tregs, MDSCs, DCs, tumor-associated 
macrophages, and mast cells. Our review will be potentially helpful for the development 
of combinations of angiogenesis inhibitors with immunological modulators.
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inTRODUCTiOn

Blood vessels are required for the growth and dissemination of a solid tumor. There are numerous 
growth factors involved in tumor angiogenesis, but foremost among them is the family of vascular 
endothelial growth factors (VEGFs). The VEGF family includes VEGFA, VEGFB, VEGFC, VEGFD, 
and placenta growth factor (PGF) (1). These ligands bind with different affinities to three endothelial 
receptor tyrosine kinases (RTKs), such as VEGFR1, VEGFR2, and VEGFR3, as well as co-receptors, 
including neuropilins and heparan sulfate proteoglycans (2, 3). VEGFA has been studied more than 
other family members and is a critical regulator of angiogenesis (4). VEGFA is usually referred to 
simply as VEGF. VEGFR1 binds to VEGFB and PGF and is a positive regulator of monocyte and 
macrophage migration (5). VEGFR2 is the main signaling VEGFR in blood vascular endothelial 
cells. The activation of VEGFR2 involves both canonical mediators (VEGF, processed VEGFC and 
VEGFD) and non-canonical mediators (Shear stress, gremlins, galectins, lactate, and LDL) (5–7). 
Both blood and lymphatic endothelial cells express VEGFR3 during early development and VEGFR3 
is reintroduced into blood endothelial cells during angiogenesis during angiogenic sprouting in the 
retina (5, 8, 9). VEGFR signaling has been extensively studied by Simons et al. (5) and Sia et al (2).

Vascular endothelial growth factor promotes tumor angiogenesis through stimulating the pro-
liferation and survival of endothelial cells and also by increasing the permeability of vessels and 
recruiting vascular precursor cells from the bone marrow (2). Unlike the formation of mature vessels 
under normal conditions, intratumor vessels are complex, disorganized, irregular, and leaky, result-
ing in hypoxia and the inefficient delivery of antineoplastic agents to the tumor microenvironment 
(10, 11). Besides, VEGF has some direct effects on cancer cells or cancer stem cells. VEGF might 
promote cancer cell proliferation through the activation of VEGFR1 signaling (12). A recent study 
indicated that VEGFA/neuropilin-1 pathway conferred cancer stemness via the activation of the 
Wnt/β-catenin axis in breast cancer cells (13). Zhao et al. found that VEGF promotes tumor-initiating 
cell self-renewal through VEGFR2/STAT3 signaling (14).
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FiGURe 1 | Effects of vascular endothelial growth factor (VEGF) on T cells, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSC),  
and dendritic cell (DC).
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Meanwhile, VEGF is also immunosuppressive. The effects 
of VEGF on immune cells are summarized in Figure 1 and are 
reviewed in detail in the main text. Given the immunosuppressive 
role of VEGF, scientists have recently tried to restore the antitumor 
immunity by targeting VEGF/VEGFR. In this review, we focus 
on the latest clinical and preclinical findings on the modulatory 
role of antiangiogenic agents targeting VEGF/VEGFR in immune 
cells, such as effector T cells, regulatory T cells (Tregs), myeloid-
derived suppressor cells (MDSCs), and dendritic cells (DCs).

eFFeCTOR T CeLLS

effects of veGF on effector T Cells
Zhang et al. found that strong expression of VEGF was detected 
in ovarian carcinoma tissues without T cells, while low expres-
sion of VEGF was detected in ovarian carcinoma tissues with 
T Cells (15). Ohm et  al.’s study indicated VEGF impeded the 
development of T cells from early hematopoietic progenitor cells, 
indicating the potential immunosuppressive role of VEGF in 
tumors (16). But the direct effects of VEGF on T-cell function 
were not investigated in these two studies.

Basu et  al. found that VEGFRs were expressed on recently 
activated and memory subsets of human CD4+  T  cells (17). 
VEGF–VEGR interactions resulted in the activation of the MAPK 
and PI3K–Akt signaling pathways in human CD4+ T cells (17), 
similar to in endothelial cells (18). VEGF could also induce the 
production of IFN-γ and IL-2 and mediate migratory responses 
in human CD4+CD45RO+ memory T cells (17). However, mount-
ing evidence supports the suppressive role of VEGF/VEGFR in 
T cells (19). Ziogas et al. found that VEGF significantly reduced 
the cytotoxic activity of T  cells derived from peripheral blood 
samples, and that activated T cells expressed increased VEGFR2. 
Anti-VEGFR2 reversed the VEGF-induced suppression of T cells 
(20). Similar results were also observed in T  cells from ascites 
secondary to ovarian cancer (21). In addition to the direct effects 
of VEGF on T cells, VEGF could also suppress T-cell function 
through combination with cyclooxygenase by upregulating FasL 
on the endothelium (22).

Kaur et al.’s study tried to illustrate the controversial role of 
VEGF in the activation of T cells. It was found that VEGF had 
context-dependent effects on T-cell activation. VEGF/VEGFR2 
signaling inhibited TCR-dependent activation in T cells, but not 
in CD47-deficient T cells (23). VEGF and VEGFR2 expression 
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were upregulated in CD47-deficient murine CD4+ T  cells, and 
the resulting autocrine VEGFR2 signaling enhanced proliferation 
and some TCR responses in the absence of CD47 (23). This may 
explain the conflicting findings regarding whether VEGF was 
an inhibitor or stimulator in T-cell function. Because CD47 is 
ubiquitously expressed in human cells (24), it is possible that 
VEGF suppresses the function of T cells in most circumstances.

enhancing T-Cell Function by 
Antiangiogenic Agents Targeting  
veGF/veGFR
Regarding the immunosuppressive role of VEGF in T-cell func-
tion, it is biologically reasonable that interfering with VEGF/
VEGFR can enhance antitumor immunity by improving T-cell 
function. There are some clinical and preclinical findings sup-
portive of this hypothesis. Manzoni et al. found that bevacizumab 
(Avastin), a humanized anti-VEGF monoclonal antibody, could 
increase B-cell and T-cell compartments in patients treated with 
a bevacizumab-based first-line therapy for metastatic colorectal 
cancer (25). Bevacizumab also improved cytotoxic T-lymphocytes 
response in patients with metastatic non-small cell lung cancer 
(NSCLC) (26). Sunitinib is a multi-target tyrosine kinase inhibi-
tor that can block VEGFR1, VEGFR 2, and VEGFR3, platelet-
derived growth factor receptors α and β, stem cell factor receptor, 
and Flt3. Sunitinib was approved by the FDA for the treatment 
of renal cell carcinoma (RCC) and imatinib-resistant gastroin-
testinal stromal tumor (GIST) in 2006 (27, 28). Sunitinib was 
found to reduce the expression of IL-10, Foxp3, PD-1, CTLA4, 
and BRAF, but increased Th1 cytokine (IFN-γ) in isolated tumor-
infiltrating lymphocytes (TILs) in an MCA26 (colon cancer cells) 
bearing mouse model. An increase in the proportion of CD4+ 
and CD8+ T cells was also observed in TILs in sunitinib-treated 
mice, whereas expressions of the inhibitory molecules PD-1 and 
CTLA4 were obviously reduced after sunitinib treatment. T cells 
from sunitinib-treated mice exhibited stronger cytotoxic activity 
against MCA26 tumor cells. These results indicate that sunitinib 
can modify the tumor microenvironment, resulting in a shift of 
cytokine and costimulatory molecule expression profiles that 
could favor T-cell activation and Th1 responses (29). Likewise, 
Schmittnaegel et al.’s study suggested that dual angiopoietin-2 and 
VEGFA inhibition elicited antitumor immunity by increasing the 
proportion of CD8+ T cells that expressed an activated, IFN-γ or 
CD69+ phenotype in both transgenic and transplanted mammary 
tumor models (30). Voron et al. found that VEGFA produced in 
the tumor microenvironment enhanced the expression of PD-1 
and other inhibitory checkpoints involved in CD8+ T-cell exhaus-
tion, including PD-1, CTLA-4, Tim-3, and Lag-3 (28). This effect 
could be reversed by antibodies targeting VEGFR2 (28), which 
is similar to Bamias et al.’s findings (21). Voron et al.’s study also 
indicated that VEGFA enhanced the expression of inhibitory 
checkpoints involved in T-cell exhaustion via the activation of 
the VEGFR2-PLCγ-calcineurin-NFAT pathway (28).

In addition to increasing T-cell activity, targeting VEGF/VEGFR  
also can promote T-cell infiltration in the tumor microenviron-
ment. Targeting VEGF/VEGFR not only hinders the sprouting 
of new vessels (31, 32) but can also normalize the vasculature. 

Vasculature normalization can improve oxygen levels, drug deliv-
ery (33), and immune cell infiltration (34), especially in CD8+ 
T cells. This assumption is supported by abundant recent studies 
(30, 35–37). The extravasation of T  cells into the tumor tissue 
depends on the expression levels and clustering patterns of inter-
cellular adhesion molecule-1 (ICAM-1) and vascular cell adhe-
sion molecule-1 (VCAM-1) (31, 38). VEGF can downregulate 
expressions or inhibit the clustering of these adhesion molecules 
to impair leukocyte–endothelial interactions (39–41). This can 
be reversed by VEGF antibody or inhibitor (30, 31, 34). There are 
some studies supporting the expression-promoting role of VEGF 
in adhesion molecules including VCAM-1, but most of them are 
not based on tumor models (42–44).

High endothelial venules (45) may be another mechanism by 
which T-cell infiltration can be promoted by targeting VEGFR2. 
HEVs are located in all lymphoid organs except the spleen and 
specialized postcapillary venules with portals through which 
blood-borne lymphocytes enter into secondary lymphoid organs 
(36, 46, 47). Recent studies have suggested that various human 
tumors could develop areas of HEVs and their presence was 
associated with a decreased tumor size and improved patient 
outcome (48, 49). A recent study by Allen et  al. demonstrated 
that a combination of anti-VEGFR2 and anti-PD-L1 antibodies 
could induce HEVs in murine models. These HEVs enhanced 
lymphocyte infiltration and activity through activation of lym-
photoxin β receptor (LTβR) signaling, and eventually improved 
the treatment efficacy (36).

TARGeTinG veGF/veGFR TO DeCReASe 
THe nUMBeR OF Tregs

Regulatory T cells are immunosuppressive and can suppress or 
downregulate induction and proliferation of effector T cells (50). 
Tregs express the biomarkers CD4, FOXP3, and CD25 (51). The 
expression of VEGF has been shown to be positively associated 
with intratumoral Tregs, which are prognostic markers for the 
poor outcomes of various malignancies (52–54). Suzuki et  al. 
showed for the first time that VEGFR2 is selectively expressed 
by FOXP3 high but not FOXP3 low Tregs (55). Neuropilins 
acted as co-receptors, increasing the binding affinity of VEGF for 
VEGFRs (56, 57). Promoted VEGF signaling through conjunc-
tion with neuropilin-1 may enhance Treg activation and create 
a tolerogenic environment (57). It is therefore reasonable that 
targeting VEGFA/VEGFR can modulate antitumor immunity by 
interfering with inhibitory Tregs.

Sunitinib has been reported to reduce the number of Tregs 
in tumor-bearing mice and in patients with metastatic renal 
carcinoma (29, 58–60). Sunitinib could target various receptors 
as mentioned above, and these studies (29, 58–60) did not inves-
tigate through which receptor sunitinib decreased the number 
of Tregs or the direct effects of VEGF on Tregs. Then, Terme 
et al. investigated patients receiving bevacizumab, a monoclonal 
antibody targeting VEGF, for metastatic colorectal cancer and 
treated colon cancer-bearing mice (CT26) with drugs targeting 
the VEGF/VEGFR axis. This study suggested that VEGF could 
promote the proliferation of Tregs and VEGF/VEGFR antibodies 
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or inhibitors could decrease the number of Tregs in both patients 
with mCRC and the mouse models. This proliferation was inhib-
ited by VEGF/VEGFR2 blockade (61), similar to the findings of 
Suzuki et al (55). In addition, sunitinib (55, 61), the anti-VEGFR2 
antibody DC101 (62) and a chimeric receptor blocking VEGFR1/
R2 (63) could also reduce the number of Tregs in tumors.

TARGeTinG veGF/veGFR TO inHiBiT THe 
ACCUMULATiOn AnD THe ACTiviTY OF 
MDSCs

Myeloid-derived suppressor cells were initially identified in 
tumor-bearing mice as cells co-expressing CD11b and Gr1 (64). 
Two main MDSC populations were characterized: monocytic 
MDSCs (M-MDSC) and polymorphonuclear MDSCs (PMN-
MDSC). In tumor-bearing mice, PMN-MDSCs are the dominant 
population of MDSCs, while M-MDSCs are the dominant popu-
lation for suppressing T-cell activation in vitro in human studies 
(64, 65). The mechanisms by which MDSCs elicited immuno-
suppressive effects can be grouped into four classes: lymphocyte 
nutrient depletion; generation of oxidative stress; interfering 
with lymphocyte trafficking and viability; and the activation and 
expansion of Tregs (64). Gabrilovich et al.’s study suggested that 
infusion of VEGF could increase the production of Gr1+ cells 
in tumor-free animals (66). The accumulation of MDSCs was 
shown to be associated with an increase in intratumoral VEGF 
concentration during disease progression in pancreatic-ductal 
adenocarcinoma-bearing mice (45).

Huang et  al. found that VEGF could induce the accumula-
tion of Gr1+CD11b+ cells by VEGFR2 and activation of JAK2 
and STAT3 (67), but not VEGFR1 in tumor-bearing mice (68). 
Besides, MDSC enhanced by VEGF could induce the develop-
ment of other immunosuppressive cells, including FOXP3+ 
Tregs, through a TGFβ-dependent and/or independent pathway 
(69–71). It is, therefore, reasonable to decrease the accumulation 
of MDSC by interfering with VEGF/VEGFR axis.

A decrease in the absolute number of MDSC in the spleen, bone 
marrow, and tumor in various tumor models has been observed 
after treatment with sunitinib (29, 58). The potential mechanisms 
included the following: sunitinib could act on MDSC by inhibit-
ing STAT3; sunitinib could constrain the M-MDSC and lead to 
the apoptosis of granulocytic MDSCs (29, 58). Sunitinib also 
resulted in a favorable microenvironment depleted of MDSCs and 
synergize with HPV vaccine leading to enhanced levels of active 
tumor-antigen specific CTLs in a tumor-bearing mice model (72). 
Not only the quantity of MDSC but also the suppressive capacity 
was affected. In a melanoma-bearing mouse model, Axitinib, 
a small molecule against VEGFR1, R2, and R3, could induce a 
reduced suppressive capacity of MDSCs isolated from the spleen 
or tumor of Axitinib-treated mice compared to vehicle-treated 
mice. Moreover, treatment with Axitinib induced differentiation 
of MDSC toward an antigen-presenting phenotype (73). Clinically, 
sunitinib could result in a reduction of MDSC in RCC patients. 
The reduction of MDSC was correlated with reversal of T-cell 
suppression (74). A recent study demonstrated that bevacizumab-
containing regimens significantly reduce the percentage of the 

granulocytic-MDSCs compared with non-bevacizumab-based 
regimens in patients with unresectable NSCLC (75).

DenDRiTiC CeLLS

effects of veGF on the Differentiation, 
Maturation, and Activation of DCs
Dendritic cells are antigen-presenting cells of the immune sys-
tem, which act as messengers between the innate and the adaptive 
immune systems. Immature DCs are derived from hematopoi-
etic bone-marrow progenitor cells. Immature DCs are highly 
endocytic. They express relatively low levels of surface MHC-I, 
MHC-II, and costimulatory molecules such as CD80 and CD68. 
Hence, immature DCs are unable to process and present them 
efficiently to T cells (76, 77). Mature DCs are characterized by an 
increased capacity for antigen processing, increased the half-life 
of surface MHC-peptide complexes, and reduced antigen uptake 
(76, 78). Activated DCs can be distinguished from resting, mature 
DCs by expression of higher levels of MHC and costimulatory 
molecules or production of cytokines. Maturation and activation 
can occur simultaneously (76, 79). Thus, factors that interfere 
with the differentiation, maturation, and activation of DCs can 
lead to the dysfunction of DCs.

Clinical and preclinical studies indicated that VEGF could 
impair the differentiation and maturation of DCs. Almand et al. 
found that an increased plasma level of VEGF was associated with 
the presence of immature DCs in the peripheral blood of cancer 
patients. Surgical removal of the tumor could result in partial 
reversal of the observed effects (80). For patients with colorectal 
cancer, peripheral DCs were inversely correlated with VEGF 
serum levels (81). Various studies have indicated that VEGF 
binding to VEGFR1 blocked the activation of the transcriptional 
factor NF-κB and resulted in the inhibition of DC maturation in 
murine models (71, 82, 83). Dikov et al.’s study demonstrated that 
VEGFR2 affected the differentiation of DC from early hematopoi-
etic progenitors (84).

TARGeTinG veGF/veGFR TO MODiFY 
THe DiFFeRenTiATiOn, MATURATiOn, 
AnD ACTivATiOn OF DCs

Scientists have tried to modify the function of DCs by target-
ing VEGF/VEGFR. Sorafenib is a multikinase inhibitor and can 
inhibit RAF/MEK/ERK pathway, VEGFR2, VEGFR3, PDGFRβ, 
Flt-3, and c-KIT (85). Though various studies have investigated 
the associations between sorafenib and DCs, the results are 
inconsistent and the role of sorafenib in DCs remains controver-
sial. Hipp et al. found that sorafenib impeded the maturation of 
DCs, characterized by reduced expression of CD1a, major histo-
compatibility complex, and costimulatory molecules in response 
to TLR ligands as well as by their impaired ability to migrate 
and stimulate T-cell response (85). However, Alfaro et al.’s study 
indicated that sorafenib could restore the differentiation of DCs 
assessed by the alloreactive mixed T-lymphocyte reaction (MLR) 
in the presence of VEGF and supernatants of RCC cells (86). The 
seemingly paradoxical results from the studies of Hipp (85) and 
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Alfaro (86) are actually intelligible. Sorafenib does not target 
VEGFR1 and therefore will not stimulate DC maturation, while 
VEGFR2 is one of the targets of sorafenib and is responsible for 
the differentiation of DCs. A recent study by Zhao et al. suggested 
that sorafenib promoted the differentiation of bone marrow cells 
to immune suppressive DCs and constrained the MLR (87). 
In mouse models bearing hepatocellular carcinoma, Ho et  al. 
found that sorafenib and TLR3 could enhance the activation of 
DCs (88). Discrepancies among different studies may lie in the 
intricate effects of sorafenib or distinct experimental designs, the 
complicated development of DCs, or the use of different animal 
models. Discrepancies also exist for sunitinib. Though sunitinib 
was found to increase the frequency of myeloid DCs in patients 
with renal cancer experiencing tumor regression (89), other studies 
indicated that the function of DCs was not affected by the use 
of sunitinib (85, 86). Generally, the exact roles of sorafenib and 
sunitinib in DCs are debatable and further studies are warranted.

A preclinical study indicated that bevacizumab could reverse 
the inhibitory effects of VEGF in the differentiation of mono-
cytes into DCs in  vitro (86). Various clinical studies suggested 
improvements in both quantity and function of DCs after the use 
of bevacizumab. Bevacizumab was found to increase the number 
of DCs in peripheral blood of cancer patients and enhance the 
allostimulatory capacity of DCs against recall antigens (90). In 
patients with metastatic NSCLC, bevacizumab was found to pro-
mote DC activation (26). Significant trafficking of CD163+ DCs 
across the tumor vasculature was observed in bevacizumab plus 
ipilimumab post-treatment biopsies in patients with metastatic 
melanoma, compared to ipilimumab alone (91).

TUMOR-ASSOCiATeD MACROPHAGeS 
(TAMs)

effects of veGF on TAMs
Vascular endothelial growth factor can recruit macrophages to 
the tumor and promote TAM development (53, 92). TAMs have 
a poor antigen-presenting capacity and a decreased cytotoxic 
capacity due to the weak NO production (53, 93). TAMs can 
also hinder T-cell activation and proliferation by releasing IL-10, 
TGFβ, and prostaglandins (53, 94).

TAM Might Be involved in the  
Anti-veGF Resistance
A recent study suggested macrophages could be actively recruited 
to the tumor microenvironment and were responsible for the 
anti-VEGF resistance in a mouse model bearing ovarian cancer. 
The resistance to anti-VEGF failed to occur in a macrophage-
deficient mouse model (95). Zoledronic is a bisphosphonate drug 
and clinically approved for the treatment of bone metastases 
and osteoporosis. Bisphosphonates can also result in robust 
macrophage depletion (95–97). The addition of zoledronic acid 
at the emergence of resistance to anti-VEGF therapy halted tumor 
growth and obviously prolonged the survival of mice bearing 
ovarian cancer (95).

In addition to ovarian cancer, increased TAMs have been 
observed in the specimens of glioblastomas which progress during 

bevacizumab treatment and associated with a poor outcome in 
preclinical and clinical studies (98, 99). The accumulation of 
immune-suppressive cells was induced by increased expressions 
of stromal-derived factor (SDF)-1α (CXCL12) and C–X–C motif 
chemokine receptor 4 (CXCR4) (100, 101). SDF-1αpromoted the 
recruitment of macrophages by targeting CXCR4. Decreasing the 
recruitment of TAMs is another strategy to reverse the anti-VEGF 
resistance. A preclinical study by Deng et al. found that inhibition 
of SDF-1α inhibited the recruitment of TAMs induced by VEGF 
blockade and potentiated its antitumor efficacy in glioblastoma 
(102). Combination of VEGFR and CXCR4 inhibitors slows 
progression of GBM xenografts (100).

AMD3100 against CXCR4 was applied with a combination of 
bevacizumab in patients with recurrent high-grade glioma (HGG) 
in a phase I clinical trial NCT01339039. In ASCO annual meeting 
2014, the preliminary data demonstrated that the combination 
treatment with bevacizumab and AMD3100 was well tolerated 
in HGG patients (103). Macrophage migration inhibitory factor 
(MIF) is another ligand for CXCR4. A recent study by Castro 
et al. described that MIF was also a mediator of increased mac-
rophages and associated with bevacizumab-resistance in patients 
with glioblastoma and xenograft models by causing proliferative 
expansion of M2 macrophages (104).

AnTiAnGiOGeniC THeRAPY  
AnD MAST CeLLS

Kessler et al. found that mast cells accumulated in tumors before 
the onset of angiogenesis and resided in close proximity to blood 
vessels (105, 106). Mast cells can participate in the tumor rejec-
tion by producing molecules such as IL-1, IL-4, IL-6, and TNF-α. 
By contrast, mast cells can promote the tumor by enhancing its 
vascular supply, degradation of the tumor extracellular matrix 
and immunosuppression (107). Mast cells can synthesize and 
release angiogenic cytokines, including VEGF, FGF-2, the serine 
proteases tryptase and chymase, IL-8, TGFβ, TNF-α, and nerve 
growth factor (NGF) (107).

Similar to the findings in MDSC and TAM, antiangiogenic 
agents could reverse the tumor-induced immunosuppression by 
decreasing the tumor-promoting mast cells, and mast cells also 
played a role in antiangiogenic resistance. Axitinib is a multi-
receptor inhibitor, which does not only inhibit VEGF receptors but 
also kinases including fms-like tyrosine kinase 3 (FLT-3), PDGF 
receptors, and CD117 (cKIT) (108). The latest study found that 
inhibition of mast cells by axitinib as well as their experimental 
depletion led to a decreased tumor growth. Treatment with axitinib 
also resulted in an improved T-cell response, which was pivotal for 
the therapeutic efficacy (109). A recent study demonstrated that 
mast cells could decrease the efficacy of antiangiogenic therapy 
(anti-VEGFR2 antibody DC101) (106). The potential mechanisms 
included: the degranulation-independent secretion of granzyme 
B, which liberates alternative pro-angiogenic factors including 
FGF-1 and GM-CSF from the ECM and the degranulation-
dependent secretion of FGF-2 (106). Therefore, tumor-promoting 
mast cells might be a promising therapeutic target to improve the 
antitumor immunity and reverse the antiangiogenic resistance.
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COnCLUSiOn

In this review, we summarized the effects of VEGF and antian-
giogenic agents on the immune cells, e.g., effector T cells, Tregs, 
MDSCs, DCs, TAMs, and mast cells. Agents targeting VEGF/
VEGFR can restore the function and enhance the infiltration 
of effector T cells, decrease the number of immunosuppressive 
Tregs, TAMs, and mast cells, and inhibit the accumulation and 
immunosuppressive activity of MDSCs. But the effects of antian-
giogenic agents on DCs are inconsistent among different studies 
and further studies are still needed. MDSC, TAMs, and mast cells 
also participate in the resistance of antiangiogenic therapy. Our 
review will be potentially helpful for the development of combina-
tions of angiogenesis inhibitors with immunological modulators.
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