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The WNT signaling pathway has been of great interest to developmental biologists for

decades and has more recently become a central topic for study in cancer biology.

It is vital for cell growth and regulation of embryogenesis in many organ systems,

particularly the CNS and its associated vasculature. We summarize the role of WNT

in CNS development and describe how WNT signaling makes key contributions to

malignant glioma stemness, invasiveness, therapeutic resistance, and angiogenesis.

The role of WNT in these mechanisms, along with creation and maintainance of the

blood-brain barrier (BBB), points to the potential of WNT as a multi-faceted target in

malignant glioma therapy.
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INTRODUCTION

The WNT signaling pathway is one of the most heavily studied in cell biology; it influences
many processes in embryonic development, physiology, and homeostasis. The gene now known
as WNT was first described by Nusse and Varmus (1982) in mouse mammary tumors; it was
dubbed Integration 1 (Int1). Five years later, it was recognized as the mammalian equivalent of
a Drosophila gene associated with a wingless phenotype (Wg). Over the next decade, the signaling
pathway associated with the protein was further defined. The role of WNT signaling in embryonic
development, particularly in axis patterning and the differentiation of anterior and posterior CNS
structures, was elucidated. Abnormalities in WNT signaling are associated with many pathologies
in multiple organ systems, including the nervous system. Specifically, it has been associated with
congenital defects of multiple brain structures, including the cerebellum, midbrain, and thalamus
(McMahon and Bradley, 1990; Thomas and Capecchi, 1990; Zhou et al., 2004). More recently,
research has begun to define the role of WNT signaling in CNS tumors (Klaus and Birchmeier,
2008).

Glioblastoma is the most common primary CNSmalignancy. Rapid cell proliferation, treatment
resistance, and abundant angiogenesis characterize these aggressive tumors. Despite advances in
surgical techniques, radiation therapy, and better understanding of tumor biology, the median
surival remains <18 months. Many newer agents, with varied treatment mechanisms, have failed
in clinical studies. Clearly, better therapies that collectively target different aspects of glioma
pathogenesis are needed.

There is growing interest in the potential role of WNT signaling in malignant glioma
pathogenesis, and how it could be targeted therapeutically. For example, FAT atypical cadherin
1 (FAT1) and the hepatocyte growth factor (HGF) pathway are both known molecular features
of glioma pathogenesis. Intriguingly, both appear to be connected to WNT signaling (Birchmeier
et al., 2003; Kong et al., 2009; Kim et al., 2013; Morris et al., 2013). A number of molecular pathways
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are believed to contribute to specific features of glioma
biology, through crosstalk with WNT signaling. These include
Pleomorphic adenoma gene-like 2 (PLAGL-2) associated with
glioma stem cells; SNAIL gene, which promotes epithelial-
mesenchymal transition (EMT) and tumor invasiveness;
Frizzled-1 (FZD1), associated with radiation resistance; and
vascular endothelial growth factor (VEGF), which promotes
angiogenesis and vasculogenesis (Zheng et al., 2010; Jin et al.,
2011; Liu et al., 2015).

Malignant gliomas present a therapeutic challenge; they are
protected from cytotoxic chemotherapy by a heterogeneously
permeable blood-brain barrier (BBB). Since WNT plays
an essential role in development of CNS vasculature and
establishment of key structural and functional BBB features,
targeting WNT to improve BBB permeability and drug delivery
is a plausible consideration (Liebner et al., 2008; Stenman et al.,
2008; Daneman et al., 2009).

In this review, we first outline the structure and biochemistry
of WNT and associated proteins. We go on to summarize
the role of WNT in development of the CNS and associated
vasculature. We then describe the growing body of evidence for
the contribution of WNT signaling in malignant glioma, with
emphasis on key features of tumor biology. Finally, we discuss
how WNT-based therapies present an opportunity to target not
only the tumor, but also associated microvasculature to improve
drug delivery and possibly attenuate angiogenesis.

STRUCTURAL AND FUNCTIONAL
FEATURES OF THE WNT PATHWAY

There are at least 19 members of the WNT family. WNT
proteins are rich in cysteine, and have a highly conserved cysteine
sequence (Kikuchi et al., 2011). WNTs are approximately 350
residues in length (Logan and Nusse, 2004). The N-terminal
domain consists of a group of alpha-helices. The C-terminal
domain is characterized by two beta sheets, also joined by
disulfide bridges (Willert and Nusse, 2012). Several WNT
proteins are post-translationally glycosylated, a process which
seems to be important for their secretion (Smolich et al., 1993;
Kurayoshi et al., 2007). Depending on the individual WNT,
lipidation may or may not be necessary for either secretion or
receptor binding (Kikuchi et al., 2011). WNTs tend to be quite
hydrophobic, and a number of them undergro post-ranslational
lipidation with palmitate and/or palmitoleic acid at various
residues.

The WNT/β-catenin signaling pathway, also known as the
canonical WNT pathway, is perhaps the best characterized
(Figure 1). The protein β-catenin is a subunit of the cadherin
complex, a group of proteins which form cellular junctions
(McCrea et al., 1991). The central feature of the canonical
WNT pathway is stabilization of cytosolic β-catenin followed by
translocation to the nucleus (Niehrs, 2012). Normally, β-catenin
is found in the cytosol. However, when β-catenin accumulates
in the nucleus, it forms multimeric complexes with other
transcription factors, including several members of the TCF
family and Lef-1, to facilitate expression of multiple genes

invovled in cell proliferation including c-myc, n-myc, Sox9, and
CD44 (He et al., 1999; Wielenga et al., 1999; Blache et al., 2004;
Shu et al., 2005; Valenta et al., 2012).

β-catenin independent or “non-canonical” WNT signaling
may be dividied into two pathways, the planar cell polarity (PCP)
pathway and the WNT/calcium pathway (Gordon and Nusse,
2006; Komiya and Habas, 2008). The PCP pathway controls the
polarization of epithelial cells along the plane of the basement
membrane (Darken et al., 2002). The WNT-Calcium pathway
mediates release of Ca2+ from the ER into the cytosol. It is
involved in the control of embryonic dorsal axis formation,
gastrulation, and tissue separation.

Three of the most important WNT family members, WNT3a,
WNT5a, and WNT7a, function as ligands in the signaling
pathways. WNT3a, the first to be biochemically isolated, is
quite hydrophobic due to lipid modification. WNT3a is an
active ligand in β-catenin signaling, and also plays a role in
stimulating the growth of hematopoietic stem cells (Willert
et al., 2003; Samarzija et al., 2009). WNT5a plays a key role
in non-canonical WNT signaling. It can either stimulate or
inhibit the canonical β-catenin pathway. WNT5a has also been
implicated in atherosclerosis and vascular thrombosis (Kim et al.,
2011; Bhatt and Malgor, 2014). WNT7a can function as a ligand
in both the canonical β-catenin pathway, and in the non-
canonical PCP pathway. WNT7a is one of the most extensively
studied WNT ligands, and one of the most functionally diverse.
It can stimulate both canonical and non-canonical pathways
(Carmon and Loose, 2008; Le Grand et al., 2009). Additionally,
it plays key roles in embryogenesis, and in the pathogenesis of
several types of cancer (Bui et al., 1997; Yoshioka et al., 2012;
Bikkavilli et al., 2015).

WNT SIGNALING IN DEVELOPMENT OF
THE NERVOUS SYSTEM AND
ASSOCIATED VASCULATURE

WNT signaling has been of great interest in developmental
biology. We will briefly consider its role in neurodevelopment.
WNT/β-catenin signaling is crucial for the formation of the
primitive streak, a structure that develops in the posterior
region of the embryo. Specifically, epiblast cells undergo
epithelial-to-mesenchymal (EMT) transition, ingressing
initially to give rise to the endoderm and mesoderm of the
head and heart, and later to progressively more posterior
mesoderm types, including somites (Liu et al., 1999; Mohamed
et al., 2004). In mouse embryos, the anterior visceral
endoderm (a defining feature of the rostral pole) expresses
high levels of Dickkopf-1 (DKK1), a Wnt inhibitor which
contributes to induction of cephalic development (Glinka
et al., 1998). As we will consider later, local expression of
paracrine WNT inhibitors, like DKK1, play a role in the
oncogenesis of certain brain tumors, and also suggests a
unique and fascinating potential therapeutic role for WNT
inhibition.

Activity of the WNT/β-catenin pathway is vital for
differentiation of the dorsal aspect of the spinal cord. WNT
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FIGURE 1 | Overview of WNT signaling pathway activation. (Left) WNT signaling inactivation with absence of the WNT ligand. Phosphorylation of β-catenin resulted in

Dishevelled (DVL), Axin, APC and GSK3β complex resulting in proteosomal degradation. (Right) Canonical WNT signaling activation after WNT ligand binding.

Unphosphorylated β-catenin enters the nucleus to drive transcription affecting such genes as C-MYC, SOX9, CD44.

signaling, along with Sonic Hedgehog (SHH) signaling, facilitates
dorsoventral polarization of the spinal cord in vertebrates. SHH
serves as a morphogen and is expressed initially in the notochord,
and later in the ventral cells of the neural tube (Roelink et al.,
1994; Marti et al., 1995). In conjunction with its receptor
“patched” (Ptc), SHH directs patterning and morphogenesis
of the ventral spinal cord (Stone et al., 1996). Similar to the
pattern found in spinal cord development, a gradient of WNT
signaling appears to direct the early differentation of anterior as
opposed to posterior brain structures in many vertebrate species
(McMahon and Bradley, 1990; Heisenberg et al., 2001; Ciani and
Salinas, 2005). Experimentally disrupting normally-occuring
WNT inhibitors, such as DKK1, results in posteriorization of
the anterior embryonic brain, leading to effects, such as cyclopia
(Kazanskaya et al., 2000; Mulligan and Cheyette, 2012). The
WNT/β-catenin pathway is vital for regulation of dorsal-ventral
patterning in the telencephalon, inducing a dorsal phenotype in
cells (Gunhaga et al., 2003). Mutations in WNT’s co-receptor,
LRP-6, lead to hypoplasia of the dorsal thalamus, and lack
of thalamocortical projections in mice (Zhou et al., 2004).
Knockout of WNT3a leads to absence of the hippocampus in
mice (Lee et al., 2000). The hippocampus also fails to develop
in mouse models when WNT expression is transcriptionally

disrupted in the cortical hem, a signaling center in the embryonic
brain (Mulligan and Cheyette, 2012).

While WNT was initially investigated in the context of the
nervous system for its role in developmental patterning of the
brain and spinal cord, more recent studies have established
the importance of WNT signaling in the growth and guidance
of axons, synapses and neural circuits. In axons, the WNT
signaling protein Dishevelled (DSV) interacts with microtubules
and appears to play a role in cytoskeletal dynamics and stabilizes
actin in axon microtubules, increases axon diameter and growth
cone size (Ciani et al., 2004). In addition, DSV1 (a specific
isoform of DSV) regulates the development of hippocampal
dendrites in mice (Rosso et al., 2005). Disruption of WNT7a,
normally found in cerebellar granular cells, inhibits mossy fiber
growth cone modulation. WNT7a not only modulates growth
cone activity in the cerebellum, but also the formation of synapses
between granular cells and mossy fibers (Hall et al., 2000).

Of particular relevance to our discussion is the role of WNT
signaling in development of the CNS vasculature and BBB.
Brain vasculature is unique in that it tightly restricts which
molecules can penetrate the CNS parenchyma (Liebner et al.,
2008; Zhou et al., 2014). In the developing spinal cord (neural
tube), angioblasts and endothelial cells are recruited and coalesce
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into the peri-neural vessel plexus (PNVP) on the surface of
the neural tube. As development proceeds within the neural
tube, blood vessels invade the neuroectoderm via sprouting
angiogenesis—forming an intra-neural vessel plexus (INVP). In
both the PNVP and INVP, endothelial cells begin to develop
structural associations with astrocyte foot processes, pericytes,
and neurons. Molecular cross-talk between the cell groups also
begins to occur (Bautch and James, 2009).

Tight junctions amongst CNS endothelial cells significantly
restrict the permeability of the BBB, preventing many substances
from crossing the vascular lumen. The claudins (most
prominently claudin-1, claudin-3, and claudin-5) are one
of the families of proteins which make up tight junctions,
and WNT signaling contributes to their activity (Findley
and Koval, 2009). Specifically, β-catenin signaling induces
expression of claudin-3, while experimental knockdown of
WNT signaling in the embryonic brain results in absence of
normal cell-cell junctional organization. This leads to vessels
which are abnormally enlarged, leaky, and hemorrhagic. This
abnormal phenotype is associated with elevated expression
of plasmalemma vesicle associated protein (PLVAP) (Liebner
et al., 2008). PLVAP is a key structural component of capillary
fenestrations. It facilitates normal vascular physiology in
organs with permeable capillaries, such as in kidneys and
endocrine organs, but is not normally found in brain vasculature
(Satchell and Braet, 2009; Guo et al., 2016; Phoenix et al.,
2016). The role of WNT signaling in BBB development and
its potential to influence vascular permeability is central to
our discussion of the pathway as a therapeutic target in CNS
tumors.

CNS-specific deletion of wnt7a and wnt7b as well as
endothelial cell-specific deletion of ß-catenin in mice, resulted
in severe CNS-specific hemorrhage due to dilated PNVP and
defective INVP endothelial cells and pericytes in the neural
tube. These results indicate that canonical Wnt signaling in
endothelial cells is important for PNVP integrity and blood
vessel ingression to form the INVP (McCrea et al., 1991;
Gordon and Nusse, 2006; Komiya and Habas, 2008; Niehrs,
2012). CNS-specific hemorrhage observed in tumors with these
mutations highlights the role of canonical Wnt signaling in
the BBB formation. The BBB has a number of components,
including endothelial cells linked together by tight and adherens
junctions, pericytes, astrocytic foot processes, and efflux pumps.
Additionally, pericyte recruitment is essential for stabilization of
the BBB and for maintenance of tight junctions. WNT7a and 7b
facilitate development of BBB characteristics in CNS endothelial
cells based on the induction of the glucose-transport protein
Glut1 (McCrea et al., 1991; Niehrs, 2012). The endothelial G-
protein coupled receptor (GPCR) Grp124 specifically enhances
WNT7a and 7b-mediated canonical signaling to control CNS
angiogenesis and BBB permeability (Anderson et al., 2011; Zhou
and Nathans, 2014; Posokhova et al., 2015; Vanhollebeke et al.,
2015; Chang et al., 2017).

The role of WNT signaling in the pathologic
neovascularization of retinal disease highlights its importance in
maintenance of healthy CNS vasculature. One of the hallmarks
of pathologic retinal neovascularization is disruption of the

blood-retinal barrier, which results in significant vascular
leakiness (Lobo et al., 2004; Schulenburg and Tsanaktsidis,
2004). Mouse models of hypoxic retinopathy demonstrate that
components of the WNT signaling pathway, including LRP5,
and increased expression of WNT ligands play a key role in the
pathogenesis. Intriguingly, disruption of WNT signaling in the
same models leads to a less severe retinopathy (Chen et al., 2011).
An established role for WNT in certain forms of pathologic
angiogenesis suggests a potential role for WNT inhibition in
anti-angiogenesis therapy for malignancy.

WNT SIGNALING IN MALIGNANT GLIOMAS

WNT signaling is of growing interest in neurooncology research.
The established role of WNT in the pathogenesis of a number
of non-CNS and CNS malignancies points to the need for
investigation of a potential role in malignant gliomas. WNT
signaling is known to play a role in the pathogenesis of
colorectal cancer, hepatocellular carcioma, and in one sub-type
of medulloblastoma. Specific mechanisms of WNT signaling in
these tumors will later be discussed in the context of tumor
vasculature. As of yet, relatively few WNT pathway alterations
have been identified in malignant gliomas. However, we will
briefly consider those that have. FAT1 is a protocadherin
family protein that binds β-catenin, inhibiting its activity as a
transcription factor. It belongs to the protocadherin family, a
group of transmembrane proteins found in epithelial tissues,
which are believed to play a role in cell-cell interactions. FAT1
acts as a tumor suppessor by inhibiting cell cycle progression
from G1 to S. This β-catenin translocation to the nucleus
then increases transcriptional activation and cell growth. It is
proposed that FAT1 function promotes dysregulated WNT/β-
catenin signaling, allowing more free β-catenin to enter the
nucleus. Recently, homozygous deletion of FAT1 was observed to
occur in approximately 57% of glioblastomas and this deletion
was associated with a significantly prolonged survival (Morris
et al., 2013).

WNT is also connected to parallel signaling pathways involved
in glioblastoma pathogenesis. HGF and its receptor c-Met have
well-established roles in the pathogenesis of several human
cancers, including hepatocellular carcinoma, colorectal cancer,
and glioblastoma (Birchmeier et al., 2003). Expression of c-MET
is associated with a poor prognosis in glioblastoma, with median
survival of 11.7 months compared to14.3 months in patients
with lack of c-Met tumor expression(Kong et al., 2009). WNT/β-
catenin signaling is significantly up-regulated in glioma stem cells
that express high levels of c-Met. A similar correlation between
c-Met expression and WNT/β-catenin signaling was observed
in mouse glioma xenografts. Preclinical studies demonstrated
that inhibition of c-MET in GBM cells decreased the nuclear
translocation of β-catenin (Kim et al., 2013). This evidence
suggests overlap of the WNT pathway with other pathways in
glioblastoma which are relevant to the biology and clinical course
of the tumor. For example, a therapeutic WNT inhibitor could
attenuate tumor activity through both the FAT1 surface receptor
and the HGF signaling pathway.
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Particular applications of WNT signaling as it relates
to four central features of malignant glioma biology are
worth summarizing. Specifically, WNT signaling in stemness,
invasivenss, therapeutic resistance, and tumor angiogenesis will
be considered. Each of these processes presents a potential target
for WNT blockade in malignant glioma therapy.

WNT Signaling and Stemness
Stemness is an important concept in cancer biology.
Fundamentally, it describes the ability of cells to self-renew
and proliferate with a limited differentation status; reflecting the
potential to develop into multiple types of cells (Cai et al., 2004).
Malignant cells classically possess this phenotype, reflecting
that of normal stem cells (found in the bone marrow, skin, and
gonads) which are crucial for homeostasis (Wong et al., 2008).
Glioma stem cells are thought to be the precursors of a variety
of malignant gliomas (Lathia et al., 2015). WNT signaling is
believed to contribute to glioma stem cell proliferation and
survival; potentially providing an opportunity for therapeutic
targeting. The mechanisms by which WNT signaling is involved
in tumor stem cell biology are complex. Pleiomorphic adenoma
gene like-2 (PLAGL-2), overexpressed in glioblastomas, was
found to activate the WNT/β-catenin pathway in neural stem
cells and contributes to glioma stem cell self-renewal. Human
LN215 glioma cells expressing PLAGL-2 demonstrated increased
expression of the neural stem cell marker nestin. Additionally,
induced expression of PLAGL-2 was associated with a decreased
expression of maturity markers, and impaired differentiation
in neural stem cells. Preclinical studies in mice with PLAGL-2
expressing glioma xenografts developed disseminated disease
with a reduced median survival compared with those injected
with vector control glioma xenografts. Perhaps most interesting,
treatment of PLAGL-2 expressing gliomas with the WNT
inhibitor DKK1 significantly reduced the effect of PLAGL-2
on neural stem cells, and partially restored their ability to
differentiate and proliferate (Zheng et al., 2010). Human achaete-
scute homolog (ASCL1), an essential transcription factor
in neuronal differentiation is also essential for maintenance
and propagation of GSCs by upstream regulation of the Wnt
pathway. Specifically, it can repress DKK-1 in GSCs, thereby
promoting WNT signaling and GSC survival (Rheinbay et al.,
2013). Collectively, these findings clearly suggest an active role of
WNT signaling in glioma stem cell biology.

WNT Signaling and Invasiveness
WNT signaling is known to contribute to invasiveness and
metastasis in many malignancies. It is often associated with up-
regulation of Frizzled-4 (FZD4), a positive regulator for WNT.
EMT is a well-recognized process inmanymalignancies, in which
epithelial tissue undergoes specific genetic and biochemical
alterations to resemble and behave like mesenchymal tissue.
After undergoing EMT, cells have increased migratory capacity
and become quite resistant to apoptosis. The process plays
a key role in tumor invasiveness and metastasis (Kalluri and
Weinberg, 2009). Although the CNS lacks epithelial tissue, there
is a growing consensus that a constellation of molecular and
phenotypic changes, which parallel EMT, contribute to tumor

invasivenss in malignant gliomas. Primarly glioblastomas are
known to express key molecular markers associated with EMT.
Specific examples include osteonectin (bone), YKL-40 (cartilage),
and TNC (myeloid tissue) (Tso et al., 2006). In addition, cell
lines derived from glioblastoma express a number of cell surface
receptors associated with mesenchymal stem cells, such as CD29,
CD44, and CD90 (Lee et al., 2014). A number of genes which
contribute to EMT in other tumors are strongly associated with
invasive activity in glioma cells and tumors. Some of these genes
include SNAIL, TWIST, and ZEB1 (Elias et al., 2005; Mikheeva
et al., 2010; Myung et al., 2014).

WNT has shown promise in blocking EMT-associated
changes in other tumor types, and it may also hold potential
in this regard for malignant glioma treatment. FZD4 induces
SNAIL expression, which controls the epithelial-mesenchymal
transition process (EMT) in malignant glioma cells (Jin et al.,
2011), a central feature of tumor invasiveness. Induction of
WNT signaling, through overexpression of positive regulators,
increases expression of genes associated with EMT in glioma cells
(SNAIL, TWIST, and ZEB1) (Lee et al., 2016). Additionally, the
use of a Wnt/β-catenin inhibitor XAV939 prevented glioma cell
invasion and EMT. Furthermore,WNT5a stimulation can induce
migration of glioblastoma cells though β-catenin independent
signaling, and by stimulating the activity of cell surface
dissocating endopeptidase matrix metalloprotease 2 (MMP2).
Accordingly, knockdown of WNT5a in human glioma cell lines
suppressed cell invasion and migration by specifically decreasing
MMP2 expression (Kamino et al., 2011). Thus, demonstrating the
strong relationship between WNT inhibition in glioma cells to
prevention of EMT and associated metastases.

WNT Signaling and Therapeutic Resistance
WNT signaling has been reported to contribute to temozolomide
chemotherapy resistance in glioblasoma. In vitro studies
evaluating glioma cells resistance to temozolomide,
demonstrated overexpression of the developmental pathway
of FZD2 (involved in Wnt pathway), and downregulation of
transcription factor LEF1 (Wnt pathway inhibitor) (Auger et al.,
2006).

Additionally, WNT signaling has been implicated as one
of the culprits inducing radiation resistance in breast cancer.
While radiation treatment kills murine mammary epithelial
cells, radiation-resistant epithelial progenitor cells continued
to proliferate. When these stem cells were analyzed further,
they were found to have high levels of WNT/β-catenin activity
(Woodward et al., 2007). In examination of glioblastoma cells
with high levels of radiotherapy resistance, they also overexpress
genes associated with WNT signaling. Genome analysis was
performed on tumor cells from human xenograft models treated
with whole brain irradiation (10Gy). Cells from recurrent
tumors post-radiation had higher levels of activated β-catenin
compared to cells from tumors after mock radiation. There was
also increased expression of many genes associated with WNT
signaling, including WISP1, FZD1, and APC. In contrast, post-
radiation glioma cells exhibited much higher radiation sensitivity
when irradiated after treatment with theWNT inhibitor XAV939
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than did post-radiation glioma cells irradiated in the presence of
a vehicle control (Kim et al., 2012).

WNT Signaling and Tumor Angiogenesis
WNT signaling is known to be involved in angiogenesis in
a number of solid tumors (Sherwood, 2015). WNT regulates
expression of VEGF, a key pro-angiogenesis factor in many
types of cancer, including malignant gliomas (Zhang et al., 2001;
Reardon et al., 2008; Liu et al., 2015). A detailed study of
WNT, metabolism, and angiogenesis demonstrated that WNT/β-
catenin signaling increases cytosolic lactate levels through
increased aerobic glycolysis and pyruvate oxidation in colorectal
cancer cells. An accompanying increase in monocarboxylate
transporter-1 (MCT-1), a lactate transporter, causes increased
lactate secretion promoting angiogenesis. WNT blockade in
mouse colorectal tumor models resulted in signifcantly reduced
tumor vascularity, and inhibition of tumor growth (Pate et al.,
2014).

Studies with mouse tumor models of hepatocellular
carcinoma (HCC) have shown that administration of WNT
inhibitors (WIF-1, sFRP1) reduces the density of tumor
vasculature, endothelial progenitor migration, and expression
of pro-angiogenesis factors. Furthermore, the reduction in
angiogenesis is associated with slower tumor growth and
prolonged survival (Hu et al., 2009). WNT signaling has not
been conclusively linked with angiogenesis in human gliomas,
but its involvement in angiogenesis in other solid tumors, and
particularly its relationship with VEGF, a known angiogenic
factor in glioblastoma, strongly supports a connection. Thus,
further studies evaluating the influence of WNT inhibition in
glioma cells on tumor microvascular angiogenesis, and vasular
growth factor expression are warranted.

WNT Signaling and Drug Delivery
The most prominent roles of WNT in cell function are related
to cell proliferation and vascular stability. The WNT subtype
medulloblastoma carries a WNT mutation which promotes
abnormal nuclear β-catenin localization, inducing abnormal
cellular proliferation (Baryawno et al., 2010). Intriguingly, this
group has the best prognosis of all medulloblastomas, and
responds exceptionally well to chemotherapy and radiation, even
when diagnosed at an advanced stage (Northcott et al., 2011).
The gene for β-catenin (CTNNB1) is frequently mutated inWNT
medulloblastomas (Ellison et al., 2011). Other mutations specific
to this tumor type include APC, AXIN1, and AXIN2 (DeSouza
et al., 2014).

In 2016, the Phoenix research group published a landmark
study that elucidated the vascular phenotype of WNT
medulloblastomas (Phoenix et al., 2016). They reported
markedly decreased expression of molecules normally associated
with the brain vasculature, such as claudin-5 and Glut1.
Additionally, plasmalemma vesicle-asociated protein (PLVAP,
aka PV-1), a fenestration-specific protein, was conversely
up-regulated. The presence of fenestrations, which is highly
unusual in normal brain microvasculature, was also documented
by electron microscopy. Furthermore, studies with rodent
models demonstrated that WNT medulloblastoma xenografts

have a much more favorable response to vincristine than SHH
medulloblastoma xenografts. This is likely explained by the
characteriscally poor BBB permeability of vincristine, a drug
with good efficacy against medulloblastoma cells. However,
pharmacodynamic experiments demonstrated that vincristine
permeability was significantly higher in WNT medulloblastoma
tumors, likely contributing to the improved outcomes of patients
with this subtype.

Importantly, the same mutation in CTNNB1 that drives
oncogenic WNT signaling and tumorigenesis in WNT
medulloblastomas also induces secretion of locally active
WNT inhibitors, such as WIF1 and DKK1. Experimental
disruption of the observed paracrine signaling in tumor
models results in restoration of the BBB and normalization of
vascular permeability. Additional studies have demonstrated the
connection between WNT signaling and PLVAP. Specifically,
experimental knockout of β-catenin in mice leads to increased
expression of PLVAP, and increased BBB permeability. These
findings were confirmed by Evans Blue CNS tracer dye studies
(Liebner et al., 2008). Similarly, mouse embryos with genetic
knockout of the WNT signaling components LRP5 and LRP6
demonstrate increased levels of PLVAP and abnormal BBB
leakiness (Zhou et al., 2014). These findings are fascinating, and
suggest the possibility of targeting WNT sigaling to attenuate the
BBB and improve delivery of chemotherapy drugs.

WNT AS A MULTI-FACETED THERAPEUTIC
TARGET IN BRAIN TUMORS

As previously discussed, there is a growing body of evidence
that WNT signaling plays a key role in malignant glioma
pathogenesis, and contributes specifically to the growth of glioma
stem cells, tumor invasiveness, and therapeutic resistance. A
number of studies have shown notable effects from WNT
modulation and/or inhibition in human cancers. Use of a
small moleculeWNT/β-catenin inhibitor, SEN461, demonstrated
decreased glioma cell viability and subcutaneous implanted
xenograft tumor volume (De Robertis et al., 2013). Additionally,
Non-steroidal antiinflammatorys (NSAIDs) are being evaluated
in clinical studies as potential therapeutic WNT inhibitors.
Studies are ongoing for the effect of aspirin in esophageal and
colorectal cancer, diclofenac in basal cell carcinoma and breast
cancer, and celecoxib in pancreatic cancer and glioblastoma
(Stockhammer et al., 2010; Brinkhuizen et al., 2016; Lee et al.,
2016). Aspirin, thought to antagonize WNT by phosphorylating
key residues on β-catenin and promoting its degradation, has
been the most rigorously studied of the NSAID family for
its anti-cancer properties. A retrospective clinical study of
celecoxib (COX2-selective NSAID) in recurrent glioblastoma
found that 6 month progression-free survival was 43% for
patients receiving low-dose temozolomide plus celecoxib, as
opposed to the 21% typically seen with standard temozolomide
maintenance therapy. Median progression-free survival was 4.2
months in the celecoxib/temozolomide group (Stockhammer
et al., 2010). Compelling evidence for WNT involvement in
glioma pathogenesis combined with encouraging preliminary
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FIGURE 2 | Potential benefits of inhibiting WNT signaling. (A) WNT inhibition blocking innate features of tumor biology could decrease tumor cell stemness, prevent

tumor invasiveness and decrease therapeutic resistance. (B) Inhibition impacts glioblastoma vasculature by blocking angiogenesis. (C) Signaling inhibition results in

increased BBB permeability allowing for improved chemotherapy delivery.

clinical results immediately suggests the value of a prospective,
randomized trial of WNT inhibition (combined with standard
chemotherapy plus radiaton) for glioblastoma patients.

WNT inhibition holds potential to target not only the tumor

itself, but also associated vasculature. As we have discussed, there

is some evidence for the role of WNT signaling in pathologic,
and even tumor angiogenesis. Even more intriguingly, WNT

inhibition of glioma cells and influence of microvasculature,
could target the BBB, essentially attempting to replicate the
vascular phenotype of WNT medulloblastoma. This could
significantly increase the fraction of systemically administered
temozolomide that penetrates the CNS, which is normally only
20% of the systemic concentration (Ostermann et al., 2004;
Portnow et al., 2009). A variety of systemically administered
agents have been evaluated to elicit increased BBB permeability
(Jackson et al., 2016, 2017). However, none have provided a
sizeable and sustained therapeutic effect. Prospective clinical
trials with WNT inhibition and concomitant chemoradiotherapy
will help determine the therapeutic benefit of WNT inhibition

in patients with malignant gliomas. Such studies will provide the
opportunity to evaluate not only clinial outcomes, but also the
effects ofWNT inhibition on tumor angiogenesis and on the BBB
in relation to drug delivery (Figure 2).

The WNT pathway is an intricate and ubiquitous signaling
cascade which influences many processes in health and disease.
Interestingly, it plays key roles in the pathogenesis of multiple
types of brain tumors. The WNT signaling pathway is of great
value in glioblastoma research because it represents a potential
means of targeting an aggressive, highly vascularized tumor by
impacting glioma stem cells, tumor invasiveness, therapeutic
resistance, angiogenesis, and drug delivery in an effort to improve
overall survival.
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