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Abstract

Prioritising candidate genes for further experimental characterisation is a non-trivial challenge in drug discovery and
biomedical research in general. An integrated approach that combines results from multiple data types is best suited for
optimal target selection. We developed TargetMine, a data warehouse for efficient target prioritisation. TargetMine utilises
the InterMine framework, with new data models such as protein-DNA interactions integrated in a novel way. It enables
complicated searches that are difficult to perform with existing tools and it also offers integration of custom annotations
and in-house experimental data. We proposed an objective protocol for target prioritisation using TargetMine and set up a
benchmarking procedure to evaluate its performance. The results show that the protocol can identify known disease-
associated genes with high precision and coverage. A demonstration version of TargetMine is available at http://targetmine.
nibio.go.jp/.
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Introduction

Advances in biomolecular research, coupled with rapidly

increasing availability of information from multiple genome

sequencing initiatives, global gene expression patterns, large scale

molecular interaction experiments and genome wide association

studies, have led to an exponential increase in biological data. The

explosion of data, accompanied by a plethora of theoretical tools

for predicting gene function, has created an information overload.

The immense challenges in separating the biological wheat from

the chaff have necessitated the development of a variety of

analytical tools and databases to store and manage biological data

and retrieve meaningful information to facilitate further experi-

mental characterisation.

The biological role of a gene or a protein is not only defined by

its sequence and structure but also by when and where it is

expressed and its interactions with other biomolecules (such as

proteins, nucleic acids and metabolites). In the post-genomic era,

attempts at function annotation increasingly employ data from

different types of repositories. Biological data from a single type of

data source, though useful, is often limited in extent to which it

may help uncover functional associations; either because of a

systematic bias towards specific genes, gene families and pathways

and/or inclusion of erroneous entries during data acquisition.

With focus shifting from genes and proteins to biological systems,

integrating information from multiple data types is a more robust

and accurate means of enhancing existing interpretations and

unravelling new functional associations as demonstrated in several

studies [1,2].

However, biological data integration is a formidable task.

Different computational tools and data sources may often employ

different approaches and formats for input, storing and retrieving

relevant information that may often result in appreciable differences

in data quality. This heterogeneity often restricts compatibility

between different resources and limits the extent and efficiency of

combined analysis. Furthermore, investigation of diverse data types

necessitates a flexible, uniform and simplified interface to query,

retrieve and analyse data across diverse sources. Despite these

hurdles, the immense potential benefits of a combined investigative

approach have spawned several initiatives towards integrated data

repositories [3,4,5,6,7]. Among these, of particular interest are data

warehouses, which compile all the relevant information to a

common platform [6,8,9,10,11,12,13,14]. A data warehouse is

particularly desirable, since it permits a wide range of queries based

on diverse attributes (including genes, proteins, families, pathways,

ontologies, diseases and expression profiles) and possesses the ability

to produce unified output and the flexibility in selecting the type and

the order of the data sources. InterMine is a multi-purpose data

warehouse framework (http://www.intermine.org/), originally

developed for FlyMine, an integrated database for Drosophila and

Anopheles genomics [13]. It features a sequence ontology-based data

model and a user-friendly web interface permitting the end users to

either design flexible and complex database queries, or choose from

a library of ‘templates’ consisting of predefined queries with a simple

form and description [13]. In addition, InterMine provides default

parsers for integrating data from several resources with the

framework for incorporating customised parsers and data sources.
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The flexibility in designing queries and integrating diverse data

types provides a powerful tool for the researchers. In addition to

FlyMine, InterMine also powers modEncode (http://intermine.

modencode.org/), RatMine (http://ratmine.mcw.edu/ratmine/

begin.do), YeastMine (http://yeastmine.yeastgenome.org:8080/

yeastmine/begin.do) and MetabolicMine (http://www.metabolic

mine.org/).

Identification of suitable targets (such as genes, proteins, non-

peptide gene products and pathways) for characterisation is one of

the most critical steps in biology, particularly in annotating gene

function, drug discovery and understanding molecular bases of

diseases. An integrated approach that combines results from

multiple data types is best suited for optimal target discovery

[15,16]. The distinct merits of the InterMine framework have

inspired us to develop TargetMine, an integrated resource for

retrieval of target genes and proteins for experimental character-

isation and drug discovery. In this paper, we describe the data

sources available in the present release of TargetMine and their

access and query capability. We also outline an objective protocol

for target prioritisation with TargetMine that relies on the

integration of diverse data types. Gene prioritisation refers to the

selection of most interesting or promising genes from a larger set of

genes for further analysis [17,18]. Experimental evaluation of large

gene lists to identify suitable candidates is a formidable and often

impossible task and therefore, computational tools for candidate

gene prioritisation have emerged over the years. These tools

variously rely on functional associations, protein-protein interac-

tions, gene expression data, sequence and structure properties or

combinations thereof to select candidate genes [16,17,18,19,

20,21,22,23,24,25]. TargetMine was designed specifically for

target prioritisation within the framework of a data warehouse

and our prioritisation protocol, though less sophisticated than

some standalone tools, is easier to use and provides flexibility in the

choice of data sources that may be employed for analysis of query

gene sets. Finally, we discuss the possibilities of future implemen-

tations in the TargetMine data warehouse to provide maximum

coverage of the biological target space.

Results and Discussion

Data sources and Data models
A detailed description of the InterMine system is available

elsewhere [13]. Here we restrict ourselves to a brief overview of the

InterMine data organisation. InterMine is an open source data

warehouse framework. Each entry in the system (such as a gene or

a protein) is considered an ‘object’. The InterMine object-based

data model, consists of ‘classes’ and reflects the relationships

between different data types. Each class contains objects that share

similar properties and a set of ‘attributes’ that correspond to

various types of information (such as gene symbol and gene/

protein identifier) associated with each object of that class. The

classes are linked with each other by references that specify the

associations between objects in different classes. The InterMine

data structure readily allows the navigation of the stored biological

data via the relationships between different data types, facilitated

by an inbuilt tool termed ‘query builder’. The query builder tool

permits the users to select and constrain the data types for the

desired output. The list function enables the query process to be

performed with a user-supplied list of objects and export the lists as

either comma separated (csv) or tab separated values (tsv). It also

permits the user to convert genes/proteins from one species to

another based on KEGG orthology associations. The InterMine

Web Service allows the users to query TargetMine from their own

web pages and applications.

In addition to the existing InterMine classes, we have

customised the InterMine data model and created new classes to

collate biological data types most likely to help facilitate target

discovery (Table S1). We will discuss some of these implementa-

tions below. As of now, the biological data in TargetMine for most

part is limited to human, rat, mouse and fruit fly, the best studied

model organisms in biology. The data sources compiled in

TargetMine are summarised in Table 1.

Protein structures and domains
Structural data for biological macromolecules, especially

proteins, have been extremely important in explaining their

molecular and biochemical functions, evolutionary relationships

and understanding their explicit biological roles [26]. It is well

recognised that complementing protein sequence information with

structural data is a robust approach towards more accurate protein

function annotation [27] and hence, more reliable target

discovery. However, integrating protein sequence and structural

information from different sources remains a non-trivial task. In

recognition of the obvious benefits of an integrated protein

sequence-structure repository, we customised and embellished the

default InterMine data model to combine protein sequence

information from the UniProt database [28] with protein structure

information from the Protein Data Bank (PDB) [29] and structural

classification based on evolutionary relationships in the Structural

Classification of Proteins (SCOP) database [30]. With our

customised data model, the user can easily query for PDB

structures cross-referenced (if available) with the protein of interest

in the UniProt repository and other databases such as DrugBank

[31] (e.g., ‘‘Show all the protein structures that contain the targets,

as defined in DrugBank, of a given set of drugs’’ or ‘‘Given a list of

Table 1. List of data sources in TargetMine.

Data Organism* Source

InterMine default

Genome annotation H, R, M, F Entrez Gene

Protein annotation H, R, M, F UniProtKB

Protein domain H, R, M InterPro

Pathways H, R, M, F KEGG Pathway

Gene-gene interactions H, R, M, F BioGRID

GO annotation and the Gene
Ontology

H, R, M Gene Ontology,
UniProtKB GOA

Data sources newly incorporated in TargetMine

Protein 3D structure Entire dataset PDBe SIFTS

Protein-protein interactions H PPIview

Protein domain annotations H, R, M IPI

Structural classification Entire dataset SCOP

Orthologues / Paralogues H, R, M, F, E KEGG Orthology

Transcription factor H OregAnno, AMADEUS

Enzyme H, R, M, F The ENZYME database

Drug H DrugBank

Disease H OMIM{

Disease Ontology and DO
annotation

H Disease Ontology, BMC
Genomics 10 Suppl 1:S6

*H: human, R: rat, M: mouse, F: fruit fly (Drosophila), E: E. coli.
{OMIM data are presently not distributed with the TargetMine demonstration
version.
doi:10.1371/journal.pone.0017844.t001

TargetMine Data Warehouse for Target Discovery

PLoS ONE | www.plosone.org 2 March 2011 | Volume 6 | Issue 3 | e17844



proteins, show all the approved drugs solved in complex with any

structure of these proteins if present’’). The user can also retrieve

disease associations, pathway associations and potential protein-

drug associations, based on ligands associated with the protein

structures, for the protein of interest (e.g., ‘‘Show all the PDB

entries that contain a given drug’’).

Different data sources use different numbering systems for

specifying protein regions. To associate protein sequences (in the

Protein class) with protein structures (in the ProteinStructure class),

we introduced two new classes (ProteinStructureRegion and

PDBRegion; Figure 1). We also introduced the ProteinDomain-

Region class to link the Protein class to the Protein domain class

that stores InterPro [32] domain annotations. The PDB-UniProt

mapping was taken from SIFTS [33] and InterPro domain

assignments from IPI [34]. The integration facilitated querying

detailed domain and structural assignments; for example, the user

can query regions of a protein, for which structural information is

available, and then retrieve domain annotations falling within

these regions.

Transcription factors
Transcription factors (TFs) are proteins that bind to specific

DNA sequences, thereby regulating the expression (transcription)

of their target genes [35]. TFs are of immense significance in

biomedical investigations and some TFs such as nuclear receptors

are important drug targets [36,37]. In view of the significance of

these protein-DNA interactions to cellular physiology, we modified

the existing InterMine Interaction class, which describes gene-gene

interactions, to define a new class named ProteinDNAInteraction.

The ProteinDNAInteraction class contains specific attributes that

reflect the unique aspects of protein-DNA interactions, such as

protein (TF) binding sites in the regulatory regions of the target

genes. These data were retrieved from AMADEUS [38] and

OregAnno [39] resources and from assorted literature sources.

Since different resources adopt different approaches to compiling

protein-DNA interaction information, the combined source data

were manually processed to uniformly assign Entrez gene

identifiers to each participating gene and remove redundancies

prior to the incorporation into TargetMine. The integration

enabled us to make a complicated query such as: ‘‘Given a list of

genes, retrieve all the TF-target relations observed within the list’’.

Other data classes
For disease and phenotype association, we created new classes

and data parsers to retrieve the data from OMIM database [40]

and human genome disease annotations [41]. Enzymes play key

roles in many biological processes and are attractive candidates for

experimental investigation aimed at understanding cellular

Figure 1. Schema for selected examples of newly created data sources in TargetMine. The data model is depicted as a class diagram in the
Unified Modeling Language (http://www.uml.org). Some details of the model are ignored to reduce the complexity of the diagram.
doi:10.1371/journal.pone.0017844.g001
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processes, diseases and identifying suitable drug targets. We

designed a new Enzyme class (linked to the Protein class) to gather

all information on enzymes as curated in the Enzyme database

[42]. The Enzyme class was also directly linked to the Pathway

class by parsing the KEGG [43] mapping files, thereby providing

links to their potential roles in cellular processes. Most genes and

proteins function in association with other proteins and thus, the

study of protein-protein interactions (PPIs) is critical to under-

standing their roles in living systems. In addition to the default

InterMine Interaction class that was employed for storing

biomolecular interactions from the BioGRID database [44], we

designed a new ProteinInteraction class to collate all interactions

curated in PPIview, an integrated repository of human PPIs [45].

This integration facilitated the querying of interacting partners of a

gene/protein or a list of genes/proteins of interest and infer overall

interaction networks involving these genes/proteins.

In addition, to expand the information space for sparsely

annotated genes and proteins, we provided a framework for

including in silico annotations derived from selected protein

prediction tools (FUGUE [46], Protein-DNA binding propensity

[47] and Protein-protein interaction sites [48]) and for including

experimental data from in-house research.

Target prioritisation and benchmarking
Our general protocol for target prioritisation using TargetMine

is shown in Figure 2. First, we upload a list of initial candidate

genes or proteins (e.g., a set of differentially expressed genes or a

set of proteins that interact with a given protein) to TargetMine to

create a TargetMine gene list. Enrichment of specific biological

themes (including but not limited to, KEGG pathways, Gene

Ontology (GO) terms [49] and OMIM phenotypes) associated

with the initial list is estimated by hypergeometric distribution and

the inferred p-values are further adjusted for multiple test

corrections to control the false discovery rate using the Benajmini

and Hochberg procedure [50]. The significantly enriched

biological associations (that satisfied, in this instance, a condition

of p#0.05 after a multiple test correction with the Benajmini and

Hochberg procedure) can be visualised in the individual

enrichment widgets. We gather the genes mapped to the top N

significant associations (where N=1,2,3…, an adjustable value

reflecting incrementally relaxed thresholds) retrieved from KEGG

(A), GO Biological Process (B) and OMIM (C) databases into

separate lists and merge them (for example, by taking the union

A|B|C of the retrieved genes) to infer corresponding sets of

prioritised genes, albeit no ranking is provided at the moment. (We

assume that an initial candidate list is from a single species and the

enrichment calculation is performed using the data for this species

only.)

To evaluate the effectiveness of TargetMine in identifying

suitable targets for further characterisation, we performed target

gene prioritisation tests (as described above) on 19 sets of known

disease-associated genes compiled from the literature [51] (Table 2

and Figures 3 and 4; see Materials and Methods for details). In all

instances, our prioritisation approach was supported by high

sensitivity and precision values, and enforcing a threshold of

collecting only the genes mapped to top seven associations (that

satisfied a p-value cutoff of p#0.05 after a multiple test correction

with the Benajmini and Hochberg procedure) was by and large

most suited to ensuring maximum coverage and minimum over-

prediction (Table S2). Though for cirrhosis and cervical carcinoma,

the number of false positives was slightly larger than those for the

other diseases, the sensitivity and precision remained high.

We have repeated the tests by changing the proportion of

known curated genes in an input gene list (from one third to one

tenth). Although both sensitivity and precision decreased slightly,

reasonable performance was maintained with a cutoff of six (Table

S3), suggesting that the method still works for situations where only

one tenth of input genes are disease-associated. We have also

evaluated the results from a method using only a single data

source. By taking the union of the collected genes from KEGG,

GO and OMIM, the performance in most cases increased by

about 0.1 points (measured by the F-score; see Materials and

Methods), demonstrating the usefulness of the integration.

These results showed that the integration of diverse biological

properties in TargetMine was a successful approach towards the

identification of candidate genes for further investigation. Besides,

the operation in TargetMine is semi-automatically accomplished

by a few mouse clicks instead of preparing specific data files and

running external software. The TargetMine data model permits

retrieval of stored data and its analysis in a single interface and

thus aids in efficient prioritisation. The ease of accomplishing such

analysis via a simple web interface further underscores the utility of

TargetMine as an effective tool in investigation of genes and

genomes. In our benchmark tests, we chose KEGG, GO

Biological Process and OMIM as the best sources for highlighting

the functional associations of groups of genes but TargetMine also

provides enrichment widgets for GO Molecular Function and

Cellular Component, Drug and Disease Ontology (DO) associa-

tions, which may be used to assist in selecting candidate genes.

The user may also employ TF-target associations to identify

common regulatory themes that may be associated with a set of co-

expressed functionally similar genes.

Comparisons with other databases
As a data warehouse, TargetMine is not an alternative to large

public databases (such as UniProt [28]) but rather, it is designed

for use in individual laboratories in academia and industry. In

comparison to existing integrated databases, TargetMine provides

an alternative usage that aims to rapidly and efficiently retrieve

varied biological information for large gene sets in a simplified

manner. Most integrated databases are able to retrieve different

biological properties, but are largely designed for simple queries

for a single gene. Though some may provide facilities for batch

query, the users in many instances need to employ external scripts

for querying and post-processing the relevant data. In contrast,

TargetMine provides a simple interface for batch query with

numerous templates and the facility to construct complicated

queries. The output options permit user-defined displays on the

type and the order of different annotations. Besides, the

enrichment widgets, as described above, provide a quick

preliminary analysis of the genes in the list and thus, greatly help

in understanding the enriched themes associated with query sets

and also help complement the analysis performed by specialised

gene prioritisation tools. Therefore, TargetMine facilitates biolog-

ical data gathering and data analysis in a single user-friendly

interface.

Although some commercial resources such as IngenuityH

(Redwood City, California) and MetaCoreTM (GeneGo, St.

Joseph, MI) provide more interaction and/or pathway data plus

tools for statistical data analysis, they largely emphasise on

collating gene annotations and mostly lack protein level

Figure 2. A schematic representation of the suggested objective protocol for candidate gene prioritisation with TargetMine.
doi:10.1371/journal.pone.0017844.g002

TargetMine Data Warehouse for Target Discovery

PLoS ONE | www.plosone.org 5 March 2011 | Volume 6 | Issue 3 | e17844



annotations such as domains and structures. Additionally, several

data types available in TargetMine such as Protein-DNA

interactions, to the best of our knowledge, are not made

available by other publicly available resources, some of which,

including GeneDistiller [52] and PolySearch [53], can perform

tasks similar to TargetMine’s. However, the key difference is

TargetMine’s flexibility and its built-in prioritisation protocol;

the data size and data types are readily customisable in

TargetMine, providing a more flexible and comprehensive

framework for target discovery.

TargetMine employs an ‘‘unsupervised’’ protocol for prioritisation,

as opposed to most other comparable tools such as ToppGene [21]

and Endeavour [20], which are ‘‘supervised’’ learning methods.

Thus, while direct comparison with these other tools is difficult (and

our data warehouse will complement, not replace, stand-alone tools),

the preliminary results above suggest that TargetMine is well suited

for target prioritisation. In our group, we have been using

TargetMine for analysing a diverse array of experimental data and

we have verified experimentally that some of the prioritised genes

have been associated with the disease of interest [54].

Future developments
TargetMine is structured to accommodate increasingly avail-

able biological data from large-scale experiments. Inclusion of new

data sources would enable enhanced repertoire of functional

associations currently available in TargetMine and at the same

time expand the coverage to newer systems relevant to candidate

gene prioritisation and drug discovery. We plan to add new data

including host-pathogen interactions, specific gene and protein

expression patterns, relationships between potential targets and

chemical compounds and/or moieties, protein-compound inter-

actions and single nucleotide polymorphisms (SNPs). We aim to

supplement the newer data sources with further developments in

the TargetMine web interface, lists, templates and tools for data

visualisation (such as novel widgets) and analysis.

Conclusion
TargetMine is an integrated data warehouse that enables

complicated searches that are difficult to perform using existing

comparable tools and therefore, assists in efficient target

Table 2. Benchmarking results for 19 sets of known disease-
associated genes using top seven significant associations as
the threshold.

Disease Sensitivity Precision F-score

Atherosclerosis (athe) 0.78660.04 0.84860.06 0.81460.03

Autism (auti) 0.82460.02 0.83960.07 0.83060.03

Cervical carcinoma (cerv) 0.77960.03 0.83460.03 0.80560.03

Cirrhosis (cirr) 0.85060.02 0.84860.05 0.84860.02

Endometrial carcinoma (enca) 0.77060.02 0.90360.06 0.82960.02

Endometriosis (endo) 0.62160.07 0.89760.07 0.72960.03

Epilepsy (epil) 0.74460.02 0.77760.08 0.75960.03

Grave’s disease (grav) 0.80360.01 0.93460.04 0.86360.02

Hypercholesterolaemia (hycl) 0.87560.00 0.89360.03 0.88460.02

Inflammatory bowel disease
(inbd)

0.89760.04 0.83860.08 0.86360.04

Ischaemic stroke (isch) 0.90960.04 0.84560.08 0.87460.04

Lymphoma (lymp) 0.63660.10 0.78860.06 0.69760.05

Migraine (migr) 0.71260.03 0.81260.10 0.75560.03

Myocardial ischemia (myis) 0.80360.02 0.88960.06 0.84260.03

Neural tube defects (neur) 0.68260.03 0.81760.07 0.74260.03

Osteoarthritis (oste) 0.82260.02 0.87060.05 0.84460.02

Pancreatitis (panc) 0.92360.05 0.87460.07 0.89560.03

Systemic scleroderma (sysc) 0.82660.03 0.81860.06 0.82160.03

Ulcerative colitis (ulco) 0.85660.02 0.83160.08 0.84160.04

doi:10.1371/journal.pone.0017844.t002

Figure 3. Outline of the procedure for benchmarking candidate gene prioritisation on 19 sets of known disease-associated genes
with TargetMine. TP- True positive, FP- False positive (see text for details).
doi:10.1371/journal.pone.0017844.g003
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prioritisation. The benchmarking results for our proposed protocol

for target gene prioritisation suggested the effectiveness of

TargetMine in target discovery. The flexibility in TargetMine

structure ensures that different types of biological data can be

readily added and analysed to generate new hypotheses for further

investigation. The inclusion of additional data sources and

analytical tools will greatly enhance the ability of TargetMine to

investigate biological systems for better target discovery.

Materials and Methods

InterMine was downloaded from http://www.intermine.org.

New parsers were written in Java and integrated into the

InterMine code base. A list of URLs for the individual data

sources can be found in Table S4. Part of OMIM data, not

available in downloadable files, was retrieved from the online

resource using custom PERL scripts and TF-target associations

were manually processed prior to integration into TargetMine.

To benchmark our gene prioritisation protocol, we performed

target gene prioritisation on 19 sets of known disease-associated

genes (denoted by set x) compiled from the literature [51]. We first

created test datasets (set y), where each curated gene set was

merged with twice its number of unrelated randomly selected

human genes (set r) to incorporate background ‘‘noise’’. To avoid

any bias incurred due to the selection of random genes, the process

was repeated 10 times to infer 10 test gene sets for each curated

gene list. The prioritisation tests (Figures 2 and 3) were then

performed for each test gene set. We gathered the genes mapped

to up to the top 10 associations, retrieved from KEGG, GO and

OMIM databases to infer prioritised genes (set z). These were then

compared with the curated gene sets (x>z) and the efficiency of the

prioritisation procedure was estimated with sensitivity and

precision measures (Table S2). The True Positives (TP) in z were

defined as genes present in x, while those corresponding to r were

defined as False Positives (FP). The False Negatives (FN) were those

genes corresponding to x that were not included in z at the

specified threshold, while the True Negatives (TN) were genes

corresponding to r correctly left out from the list of prioritised

genes at a given threshold. Sensitivity, measuring the proportion of

the known disease-associated genes that were correctly prioritised,

was defined as TP/(TP+FN) and precision, measuring the

proportion of the prioritised genes that were known disease-

associated genes, was defined as TP/(TP+FP). The performance of

the prioritisation protocol was also assessed using the F-score

defined as 2(precision6sensitivity)/(precision+sensitivity) [55,56].

Supporting Information

Table S1 A full list of newly defined classes in TargetMine.

(XLS)

Table S2 Detailed benchmarking results for candidate gene

prioritisation with TargetMine using 19 sets of known disease-

associated genes.

(XLS)

Table S3 Detailed benchmarking results for candidate gene

prioritisation with TargetMine using 19 sets of known disease-

associated genes with increased background noise.

(XLS)

Table S4 A list of URLs for the individual data sources in

TargetMine.

(XLS)
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