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Abstract

We propose a targeted communication archi-

tecture for multi-agent reinforcement learning,

where agents learn both what messages to send

and whom to address them to while performing

cooperative tasks in partially-observable environ-

ments. This targeting behavior is learnt solely

from downstream task-specific reward without

any communication supervision. We additionally

augment this with a multi-round communication

approach where agents coordinate via multiple

rounds of communication before taking actions

in the environment. We evaluate our approach

on a diverse set of cooperative multi-agent tasks,

of varying difficulties, with varying number of

agents, in a variety of environments ranging from

2D grid layouts of shapes and simulated traf-

fic junctions to 3D indoor environments, and

demonstrate the benefits of targeted and multi-

round communication. Moreover, we show that

the targeted communication strategies learned by

agents are interpretable and intuitive. Finally, we

show that our architecture can be easily extended

to mixed and competitive environments, leading

to improved performance and sample complexity

over recent state-of-the-art approaches.

1. Introduction

Effective communication is a key ability for collaboration.

Indeed, intelligent agents (humans or artificial) in real-

world scenarios can significantly benefit from exchang-

ing information that enables them to coordinate, strate-

gize, and utilize their combined sensory experiences to

act in the physical world. The ability to communicate

has wide-ranging applications for artificial agents – from

multi-player gameplay in simulated (e.g. DoTA, StarCraft)

or physical worlds (e.g. robot soccer), to self-driving car

networks communicating with each other to achieve safe
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and swift transport, to teams of robots on search-and-rescue

missions deployed in hostile, fast-evolving environments.

A salient property of human communication is the ability

to hold targeted interactions. Rather than the ‘one-size-

fits-all’ approach of broadcasting messages to all partici-

pating agents, as has been previously explored (Sukhbaatar

et al., 2016; Foerster et al., 2016; Singh et al., 2019), it can

be useful to direct certain messages to specific recipients.

This enables a more flexible collaboration strategy in com-

plex environments. For example, within a team of search-

and-rescue robots with a diverse set of roles and goals, a

message for a fire-fighter (e.g. “smoke is coming from the

kitchen”) is largely meaningless for a bomb-defuser.

We develop TarMAC, a Targeted Multi-Agent Communi-

cation architecture for collaborative multi-agent deep rein-

forcement learning. Our key insight in TarMAC is to allow

each individual agent to actively select which other agents

to address messages to. This targeted communication be-

havior is operationalized via a simple signature-based soft

attention mechanism: along with the message, the sender

broadcasts a key which encodes properties of agents the

message is intended for, and is used by receivers to gauge

the relevance of the message. This communication mech-

anism is learned implicitly, without any attention supervi-

sion, as a result of end-to-end training using task reward.

The inductive bias provided by soft attention in the com-

munication architecture is sufficient to enable agents to 1)

communicate agent-goal-specific messages (e.g. guide fire-

fighter towards fire, bomb-defuser towards bomb, etc.), 2)

be adaptive to variable team sizes (e.g. the size of the lo-

cal neighborhood a self-driving car can communicate with

changes as it moves), and 3) be interpretable through pre-

dicted attention probabilities that allow for inspection of

which agent is communicating what message and to whom.

Our results however show that just using targeted commu-

nication is not enough. Complex real-world tasks might

require large populations of agents to go through multi-

ple rounds of collaborative communication and reason-

ing, involving large amounts of information to be persis-

tent in memory and exchanged via high-bandwidth com-

munication channels. To this end, our actor-critic frame-

work combines centralized training with decentralized ex-
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Decentralized Targeted Multi-Round Reinforcement
Execution Communication Decisions Learning

DIAL (Foerster et al., 2016) Yes No No Yes (Q-Learning)

CommNet (Sukhbaatar et al., 2016) Yes No Yes Yes (REINFORCE)

VAIN (Hoshen, 2017) No Yes Yes No (Supervised)

ATOC (Jiang & Lu, 2018) Yes No No Yes (Actor-Critic)

IC3Net (Singh et al., 2019) Yes No Yes Yes (REINFORCE)

TarMAC (this paper) Yes Yes Yes Yes (Actor-Critic)

Table 1: Comparison with previous work on collaborative multi-agent communication with continuous vectors.

ecution (Lowe et al., 2017), thus enabling scaling to large

team sizes. In this context, our inter-agent communication

architecture also supports multiple rounds of targeted in-

teractions at every time-step, wherein the agents’ recurrent

policies persist relevant information in internal states.

While natural language, i.e. a finite set of discrete tokens

with pre-specified human-conventionalized meanings, may

seem like an intuitive protocol for inter-agent communi-

cation – one that enables human-interpretability of inter-

actions – forcing machines to communicate among them-

selves in discrete tokens presents additional training chal-

lenges. Since our work focuses on machine-only multi-

agent teams, we allow agents to communicate via continu-

ous vectors (rather than discrete symbols), as has been ex-

plored in (Sukhbaatar et al., 2016; Singh et al., 2019), and

agents have the flexibility to discover and optimize their

communication protocol as per task requirements.

We provide extensive empirical evaluation of our approach

across a range of tasks, environments, and team sizes.

• We begin by benchmarking TarMAC and its ablation

without attention on a cooperative navigation task de-

rived from the SHAPES environment (Andreas et al.,

2016) in Section 5.1. We show that agents learn intu-

itive attention behavior across task difficulties.

• Next, we evaluate TarMAC on the traffic junction en-

vironment (Sukhbaatar et al., 2016) in Section 5.2, and

show that agents are able to adaptively focus on ‘ac-

tive’ agents in the case of varying team sizes.

• We then demonstrate its efficacy in 3D environments

with a cooperative first-person point-goal navigation

task in House3D (Wu et al., 2018) (Section 5.3).

• Finally, in Section 5.4, we show that TarMAC can

be easily combined with IC3Net (Singh et al., 2019),

thus extending its applicability to mixed and competi-

tive environments, and leading to significant improve-

ments in performance and sample complexity.

2. Related Work

Multi-agent systems fall at the intersection of game the-

ory, distributed systems, and Artificial Intelligence in gen-

eral (Shoham & Leyton-Brown, 2008), and thus have a rich

and diverse literature. Our work builds on and is related to

prior work in deep multi-agent reinforcement learning, the

centralized training and decentralized execution paradigm,

and emergent communication protocols.

Multi-Agent Reinforcement Learning (MARL). Within

MARL (see Busoniu et al. (2008) for a survey), our work

is related to efforts on using recurrent neural networks to

approximate agent policies (Hausknecht & Stone, 2015),

stabilizing algorithms for multi-agent training (Lowe et al.,

2017; Foerster et al., 2018), and tasks in novel domains

e.g. coordination and navigation in 3D environments (Peng

et al., 2017; OpenAI, 2018; Jaderberg et al., 2018).

Centralized Training & Decentralized Execution.

Both Sukhbaatar et al. (2016) and Hoshen (2017) adopt

a centralized framework at both training and test time –

a central controller processes local observations from all

agents and outputs a probability distribution over joint ac-

tions. In this setting, the controller (e.g. a fully-connected

network) can be viewed as implicitly encoding communi-

cation. Sukhbaatar et al. (2016) propose an efficient con-

troller architecture that is invariant to agent permutations

by virtue of weight-sharing and averaging (as in Zaheer

et al. (2017)), and can, in principle, also be used in a de-

centralized manner at test time since each agent just needs

its local state vector and the average of incoming messages

to take an action. Meanwhile, Hoshen (2017) proposes to

replace averaging by an attentional mechanism to allow tar-

geted interactions between agents. While closely related to

our communication architecture, this work only considers

fully-supervised one-next-step prediction tasks, while we

study the full reinforcement learning problem with tasks

requiring planning over long time horizons.

Moreover, a centralized controller quickly becomes in-

tractable in real-world tasks with many agents and

high-dimensional observation spaces e.g. navigation in

House3D (Wu et al., 2018). To address these weaknesses,

we adopt the framework of centralized learning but decen-

tralized execution (following Foerster et al. (2016); Lowe

et al. (2017)) and further relax it by allowing agents to com-

municate. While agents can use extra information during

training, at test time, they pick actions solely based on lo-

cal observations and communication messages.
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Emergent Communication Protocols. Our work is also

related to recent work on learning communication proto-

cols in a completely end-to-end manner with reinforcement

learning – from perceptual input (e.g. pixels) to commu-

nication symbols (discrete or continuous) to actions (e.g.

navigating in an environment). While (Foerster et al.,

2016; Jorge et al., 2016; Das et al., 2017; Kottur et al.,

2017; Mordatch & Abbeel, 2017; Lazaridou et al., 2017)

constrain agents to communicate with discrete symbols

with the explicit goal to study emergence of language, our

work operates in the paradigm of learning a continuous

communication protocol in order to solve a downstream

task (Sukhbaatar et al., 2016; Hoshen, 2017; Jiang & Lu,

2018; Singh et al., 2019). Jiang & Lu (2018); Singh et al.

(2019) also operate in a decentralized execution setting and

use an attentional communication mechanism, but in con-

trast to our work, they use attention to decide when to com-

municate, not who to communicate with. In Section 5.4,

we discuss how to potentially combine the two approaches.

Table 1 summarizes the main axes of comparison between

our work and previous efforts in this exciting space.

3. Technical Background

Decentralized Partially Observable Markov Decision

Processes (Dec-POMDPs). A Dec-POMDP is a multi-

agent extension of a partially observable Markov decision

process (Oliehoek, 2012). For N agents, it is defined by

a set of states S describing possible configurations of all

agents, a global reward function R, a transition probability

function T , and for each agent i P 1, ..., N a set of allowed

actions Ai, a set of possible observations Ωi and an obser-

vation function Oi. At each time step every agent picks an

action ai based on its local observation ωi following its own

stochastic policy πθipai|ωiq. The system randomly transi-

tions to the next state s1 given the current state and joint ac-

tion T ps1|s, a1, ..., aN q. The agent team receives a global

reward r “ Rps, a1, ..., aN q while each agent receives a

local observation of the new state Oipωi|s1q. Agents aim to

maximize the total expected return J “ řT

t“0
γtrt where

γ is a discount factor and T is the episode time horizon.

Actor-Critic Algorithms. Policy gradient methods di-

rectly adjust the parameters θ of the policy in order to max-

imize the objective Jpθq “ Es„pπ,a„πθpsq rRps, aqs by tak-

ing steps in the direction of ∇Jpθq. We can write the gradi-

ent with respect to the policy parameters as the following:

∇θJpθq “ Es„pπ,a„πθpsq r∇θ log πθpa|sqQπps, aqs ,
where Qπps, aq is the action-value. It is the expected re-

maining discounted reward if we take action a in state s and

follow policy π thereafter. Actor-Critic algorithms learn an

approximation Q̂ps, aq of the unknown true action-value

function by e.g. temporal-difference learning (Sutton &

Barto, 1998). This Q̂ps, aq is the Critic and πθ is the Actor.

Multi-Agent Actor-Critic. Lowe et al. (2017) propose a

multi-agent Actor-Critic algorithm adapted to centralized

learning and decentralized execution wherein each agent

learns its own policy πθipai|ωiq conditioned on local ob-

servation ωi using a central Critic that estimates the joint

action-value Q̂ps, a1, ..., aN q conditioned on all actions.

4. TarMAC: Targeted Multi-Agent

Communication

We now describe our multi-agent communication architec-

ture in detail. Recall that we have N agents with policies

tπ1, ..., πNu, respectively parameterized by tθ1, ..., θNu,

jointly performing a cooperative task. At every timestep

t, the ith agent for all i P t1, ..., Nu sees a local obser-

vation ωt
i , and must select a discrete environment action

ati „ πθi and send a continuous communication message

mt
i, received by other agents at the next timestep, in order

to maximize global reward rt „ R. Since no agent has

access to the underlying complete state of the environment

st, there is incentive in communicating with each other and

being mutually helpful to do better as a team.

Policies and Decentralized Execution. Each agent is es-

sentially modeled as a Dec-POMDP augmented with com-

munication. Each agent’s policy πθi is implemented as a

1-layer Gated Recurrent Unit (Cho et al., 2014). At every

timestep, the local observation ωt
i and a vector cti aggre-

gating messages sent by all agents at the previous timestep

(described in more detail below) are used to update the hid-

den state ht
i of the GRU, which encodes the entire message-

action-observation history up to time t. From this internal

state representation, the agent’s policy πθi pati |ht
iq predicts

a categorical distribution over the space of actions, and

another output head produces an outgoing message vec-

tor mt
i. Note that for our experiments, agents are sym-

metric and policy parameters are shared across agents, i.e.

θ1 “ ... “ θN . This considerably speeds up learning.

Centralized Critic. Following prior work (Lowe et al.,

2017; Foerster et al., 2018), we operate under the cen-

tralized learning and decentralized execution paradigm

wherein during training, a centralized Critic guides the op-

timization of individual agent policies. The Critic takes as

input predicted actions tat1, ..., atNu and internal state rep-

resentations tht
1, ..., h

t
Nu from all agents to estimate the

joint action-value Q̂t at every timestep. The centralized

Critic is learned by temporal difference (Sutton & Barto,

1998) and the gradient of the expected return Jpθiq “ ErRs
with respect to policy parameters is approximated by:

∇θiJpθiq “ E

”

∇θi log πθipati|ht
iq Q̂tpht

1, ..., h
t
N , a1t , ..., a

N
t q

ı

.

Note that compared to an individual Critic Q̂ipht
i, a

t
iq per

agent, having a centralized Critic leads to considerably
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Figure 1: Overview of our multi-agent architecture with targeted communication. Left: At every timestep, each agent policy gets a local
observation ωt

i and aggregated message cti as input, and predicts an environment action at
i and a targeted communication message mt

i .
Right: Targeted communication between agents is implemented as a signature-based soft attention mechanism. Each agent broadcasts
a message mt

i consisting of a signature kt
i , which can be used to encode agent-specific information and a value vti , which contains the

actual message. At the next timestep, each receiving agent gets as input a convex combination of message values, where the attention
weights are obtained by a dot product between sender’s signature kt

i and a query vector qt`1

j predicted from the receiver’s hidden state.

lower variance in policy gradient estimates since it takes

into account actions from all agents. At test time, the Critic

is not needed and policy execution is fully decentralized.

Targeted, Multi-Round Communication. Establishing

complex collaboration strategies requires targeted com-

munication i.e. the ability to address specific messages

to specific agents, as well as multi-round communication

i.e. multiple rounds of back-and-forth interactions between

agents. We use a signature-based soft-attention mechanism

in our communication structure to enable targeting. Each

message mt
i consists of 2 parts: a signature kti P R

dk to en-

code properties of intended recipients and a value vti P R
dv :

mt
i “ r

signature

kti vti
value

s . (1)

At the receiving end, each agent (indexed by j) predicts a

query vector qt`1
j P R

dk from its hidden state ht`1
j , which

is used to compute a dot product with signatures of all N

messages. This is scaled by 1{
?
dk followed by a softmax

to obtain attention weights αji for each incoming message:

αj “ softmax

»

—

—

–

qt`1
j

T
kt1?

dk
...

qt`1
j

T
kti?

dk
αji

...
qt`1
j

T
ktN?

dk

fi

ffi

ffi

fl

(2)

used to compute ct`1
j , the input message for agent j at t`1:

ct`1
j “

N
ÿ

i“1

αjiv
t
i . (3)

Intuitively, attention weights are high when both sender and

receiver predict similar signature and query vectors respec-

tively. Note that Equation 2 also includes αii correspond-

ing to the ability to self-attend (Vaswani et al., 2017), which

we empirically found to improve performance, especially

in situations when an agent has found the goal in a coor-

dinated navigation task and all it is required to do is stay

at the goal, so others benefit from attending to this agent’s

message but return communication is not necessary. Note

that the targeting mechanism in our formulation is implicit

i.e. agents implicitly encode properties without addressing

specific recipients. For example, in a self-driving car net-

work, a particular message may be for “cars travelling on

the west to east road" (implicitly encoding properties) as

opposed to specifically for “car 2” (explicit addressing).

For multi-round communication, aggregated message vec-

tor ct`1
j and internal state ht

j are first used to predict the

next internal state h1t
j taking into account the first round:

h1t
j “ tanh

`

WhÑh1 r ct`1
j } ht

j s
˘

. (4)

Next, the updated hidden state h1t
j is used to predict sig-

nature, query, value followed by repeating Equations 1-4
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Figure 2: Visualizations of learned targeted communication in SHAPES. Figure best viewed in color. 4 agents have to find rred, red,
green, blues respectively. t “ 1: inital spawn locations; t “ 2: 4 was on red at t “ 1 so 1 and 2 attend to messages from 4 since they
have to find red. 3 has found its goal (green) and is self-attending; t “ 6: 4 attends to messages from 2 as 2 is on 4’s target – blue;
t “ 8: 1 finds red, so 1 and 2 shift attention to 1; t “ 21: all agents are at their respective goal locations and primarily self-attending.

for multiple rounds until we get a final aggregated message

vector ct`1
j to be used as input at the next timestep. Number

of rounds of communication is treated as a hyperparameter.

Our entire communication architecture is differentiable,

and message vectors are learnt through backpropagation.

5. Experiments

We evaluate TarMAC on a variety of tasks and environ-

ments. All our models were trained with a batched syn-

chronous version of the multi-agent Actor-Critic described

above, using RMSProp with a learning rate of 7 ˆ 10´4

and α “ 0.99, batch size 16, discount factor γ “ 0.99 and

entropy regularization coefficient 0.01 for agent policies.

All our agent policies are instantiated from the same set of

shared parameters; i.e. θ1 “ ... “ θN . Each agent’s GRU

hidden state is 128-d, message signature/query is 16-d, and

message value is 32-d (unless specified otherwise). All re-

sults are averaged over 5 independent seeds (unless noted

otherwise), and error bars show standard error of means.

5.1. SHAPES

The SHAPES dataset was introduced by Andreas et al.

(2016)1, and originally created for testing compositional

visual reasoning for the task of visual question answer-

ing. It consists of synthetic images of 2D colored shapes

arranged in a grid (3ˆ 3 cells in the original dataset) along

with corresponding question-answer pairs. There are 3

shapes (circle, square, triangle), 3 colors (red, green, blue),

and 2 sizes (small, big) in total (see Figure 2).

1
github.com/jacobandreas/nmn2/tree/shapes

We convert each image from SHAPES into an active envi-

ronment where agents can now be spawned at different re-

gions of the image, observe a 5ˆ5 local patch around them

and their coordinates, and take actions to move around

– tup, down, left, right, stayu. Each agent is tasked

with navigating to a specified goal state in the environ-

ment within a max no. of steps – t‘red’, ‘blue square’,

‘small green circle’, etc. u – and the reward for each agent

at every timestep is based on team performance i.e. rt “
# agents on goal

# agents
. Having a symmetric, team-based reward in-

centivizes agents to cooperate in finding each agent’s goal.

How does targeting work? Recall that each agent pre-

dicts a signature and value vector as part of the message it

sends, and a query vector to attend to incoming messages.

The communication is targeted because the attention prob-

abilities are a function of both the sender’s signature and

receiver’s query vectors. So it is not just the receiver decid-

ing how much of each message to listen to. The sender also

sends out signatures that affects how much of each message

is sent to each receiver. The sender’s signature could en-

code parts of its observation most relevant to other agents’

goals (e.g. it would be futile to convey coordinates in the

signature), and the message value could contain the agent’s

own location. For example, in Figure 2, at t “ 6, we see

that when agent 2 passes by blue, agent 4 starts attending to

agent 2. Here, agent 2’s signature likely encodes the color

it observes (which is blue), and agent 4’s query encodes its

goal (which is also blue) leading to high attention probabil-

ity. Agent 2’s message value encodes coordinates agent 4

has to navigate to, which it ends up reaching by t “ 21.

SHAPES serves as a flexible testbed for carefully control-

ling and analyzing the effect of changing the size of the en-

https://github.com/jacobandreas/nmn2/tree/shapes
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30 ˆ 30, 4 agents, findrreds 50 ˆ 50, 4 agents, findrreds 50 ˆ 50, 4 agents, findrred,red,green,blues

No communication 95.3˘2.8% 83.6˘3.3% 69.1˘4.6%

No attention 99.7˘0.8% 89.5˘1.4% 82.4˘2.1%

TarMAC 99.8˘0.9% 89.5˘1.7% 85.8˘2.5%

Table 2: Success rates on 3 different settings of cooperative navigation in the SHAPES environment.

vironment, no. of agents, goal configurations, etc. Figure 2

visualizes learned protocols, and Table 2 reports quanti-

tative evaluation for three different configurations – 1) 4

agents, all tasked with finding red in 30 ˆ 30 images, 2)

4 agents, all tasked with finding red in 50 ˆ 50 images, 3)

4 agents, tasked with finding rred,red,green,blues respec-

tively in 50ˆ50 images. We compare TarMAC against two

baselines – 1) without communication, and 2) with commu-

nication but where broadcasted messages are averaged in-

stead of attention-weighted, so all agents receive the same

message vector, similar to Sukhbaatar et al. (2016). Bene-

fits of communication and attention increase with task com-

plexity (30 ˆ 30 Ñ 50 ˆ 50 & findrreds Ñ findrred,red,green,blues).

5.2. Traffic Junction

Environment and Task. The simulated traffic junction en-

vironments from (Sukhbaatar et al., 2016) consist of cars

moving along pre-assigned, potentially intersecting routes

on one or more road junctions. The total number of cars is

fixed at Nmax, and at every timestep new cars get added to

the environment with probability parrive. Once a car com-

pletes its route, it becomes available to be sampled and

added back to the environment with a different route as-

signment. Each car has a limited visibility of a 3 ˆ 3 re-

gion around it, but is free to communicate with all other

cars. The action space for each car at every timestep is gas

and brake, and the reward consists of a linear time penalty

´0.01τ , where τ is the number of timesteps since car has

been active, and a collision penalty rcollision “ ´10.

Easy Hard

No communication 84.9˘4.3% 74.1˘3.9%

CommNet (Sukhbaatar et al., 2016) 99.7˘0.1% 78.9˘3.4%

TarMAC 1-round 99.9˘0.1% 84.6˘3.2%

TarMAC 2-round 99.9˘0.1% 97.1˘1.6%

Table 3: Success rates on traffic junction. Our targeted 2-round
communication architecture gets a success rate of 97.1˘1.6% on
the ‘hard’ variant, significantly outperforming Sukhbaatar et al.
(2016). Note that 1- and 2-round refer to the number of rounds of
communication between actions (Equation 4).

Quantitative Results. We compare our approach with

CommNet (Sukhbaatar et al., 2016) on the easy and hard

difficulties of the traffic junction environment. The easy

task has one junction of two one-way roads on a 7 ˆ 7 grid

with Nmax “ 5 and parrive “ 0.30, while the hard task has

four connected junctions of two-way roads on a 18ˆ18 grid

with Nmax “ 20 and parrive “ 0.05. See Figure 4a, 4b for an

example of the four two-way junctions in the hard task. As

shown in Table 3, a no communication baseline has success

rates of 84.9˘4.3% and 74.1˘3.9% on easy and hard respec-

tively. On easy, both CommNet and TarMAC get close to

100%. On hard, TarMAC with 1-round significantly out-

performs CommNet with a success rate of 84.6˘3.2%, while

2-round further improves on this at 97.1˘1.6%, which is an

„18% absolute improvement over CommNet. We did not

see gains going beyond 2 rounds in this environment.

Message size vs. multi-round communication. We study

performance of TarMAC with varying message value size

and number of rounds of communication on the hard vari-

ant of the traffic junction task. As can be seen in Fig-

ure 3, multiple rounds of communication leads to signifi-

cantly higher performance than simply increasing message

size, demonstrating the advantage of multi-round commu-

nication. In fact, decreasing message size to a single scalar

performs almost as well as 64-d, perhaps because even a

single real number can be sufficiently partitioned to cover

the space of meanings/messages that need to be conveyed.

Figure 3: Success rates for 1 vs. 2-round vs. message size on hard.
Performance does not decrease significantly even when the mes-
sage vector is a single scalar, and 2-round communication before
taking an action leads to significant improvements over 1-round.

Model Interpretation. Interpreting the learned policies of

TarMAC, Figure 4a shows braking probabilities at different

locations – cars tend to brake close to or right before en-

tering traffic junctions, which is reasonable since junctions

have the highest chances for collisions. Turning our atten-

tion to attention probabilities (Figure 4b), we can see that

cars are most-attended to when in the ‘internal grid’ – right

after crossing the 1st junction and before hitting the 2nd

junction. These attention probabilities are intuitive – cars
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(a) Brake probabilities at different lo-
cations on the hard traffic junction en-
vironment. Cars tend to brake close to
or right before entering junctions.

(b) Attention probabilities at differ-
ent locations. Cars are most attended
to in the ‘internal grid’ – right after
the 1st junction and before the 2nd.

(c) No. of cars being attended to 1) is positively corre-
lated with total cars, indicating that TarMAC is adaptive
to dynamic team sizes, and 2) is slightly right-shifted,
since it takes few steps of communication to adapt.

Figure 4: Interpretation of model predictions from TarMAC in the traffic junction environment.

Figure 5: Agents navigating to the fireplace in House3D (marked in yellow). Note in particular that agent 4 is spawned facing away
from it. It communicates with others, turns to face the fireplace, and moves towards it.

learn to attend to specific sensitive locations with the most

relevant local observations to avoid collisions. Finally, Fig-

ure 4c compares total number of cars in the environment vs.

number of cars being attended to with probability ą 0.1 at

any time. Interestingly, these are (loosely) positively cor-

related, with Spearman’s σ “ 0.49, which shows that Tar-

MAC is able to adapt to variable number of agents. Cru-

cially, agents learn this dynamic targeting behavior purely

from task rewards with no hand-coding! Note that the right

shift between the two curves is expected, as it takes a few

timesteps of communication for team size changes to prop-

agate. At a relative time shift of 3, the Spearman’s rank

correlation between the two curves goes up to 0.53.

5.3. House3D

Next, we benchmark TarMAC on a cooperative point-goal

navigation task in House3D (Wu et al., 2018). House3D

provides a rich and diverse set of publicly-available 3D

indoor environments, wherein agents do not have access

to the top-down map and must navigate purely from first-

person vision. Similar to SHAPES, the agents are tasked

with finding a specified goal (such as ‘fireplace’) within a

max no. of steps, spawned at random locations in the en-

vironment and allowed to communicate and move around.

Each agent gets a shaped reward based on progress towards

the specified target. An episode is successful if all agents

end within 0.5m of the target object in 500 navigation steps.

Table 4 shows success rates on a find[fireplace] task in

House3D. A no-communication navigation policy trained

with the same reward structure gets a success rate of

62.1˘5.3%. Mean-pooled communication (no attention)

performs slightly better with a success rate of 64.3˘2.3%,

and TarMAC achieves the best success rate at 68.9˘1.1%.

TarMAC agents take 82.5 steps to reach the target on aver-

age vs. 101.3 for no attention vs. 186.5 for no communica-

tion. Figure 5 visualizes a predicted navigation trajectory

of 4 agents. Note that the communication vectors are sig-

nificantly more compact (32-d) than the high-dimensional

observation space (224ˆ224 image), making our approach

particularly attractive for scaling to large agent teams.

Success rate Avg. # steps

No communication 62.1˘5.3% 186.5

No attention 64.3˘2.3% 101.3

TarMAC 68.9˘1.1% 82.5

Table 4: 4-agent find[fireplace] navigation task in House3D.

Note that House3D is a challenging testbed for multi-agent

reinforcement learning. To get to „100% accuracy, agents

have to deal with high-dimensional visual observations, be

able to navigate long action sequences (up to „500 steps),

and avoid getting stuck against objects, doors, and walls.
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(a) 3 agents, 5 ˆ 5 grid, vision=0, max steps=20 (b) 10 agents, 20 ˆ 20 grid, vision=1, max steps=80

Figure 6: Average no. of steps to complete an episode (lower is better) during training in the Predator-Prey mixed environment. IC3Net
+ TarMAC converges much faster than IC3Net, demonstrating that attentional communication helps. Shaded region shows 95% CI.

3 agents, 5 ˆ 5, 5 agents, 10 ˆ 10, 10 agents, 20 ˆ 20,

vision=0, max steps=20 vision=1, max steps=40 vision=1, max steps=80

CommNet (Sukhbaatar et al., 2016) 9.1˘0.1 13.1˘0.01 76.5˘1.3

IC3Net (Singh et al., 2019) 8.9˘0.02 13.0˘0.02 52.4˘3.4

IC3Net ` TarMAC 8.31˘0.06 12.74˘0.08 41.67˘5.82

IC3Net ` TarMAC (2-round) 7.24˘0.08 – 35.57˘3.96

Table 5: Average number of steps taken to complete an episode (lower is better) at convergence in the Predator-Prey mixed environment.

5.4. Mixed and Competitive Environments

Finally, we look at how to extend TarMAC to mixed and

competitive scenarios. Communication via sender-receiver

soft attention in TarMAC is poorly suited for competitive

scenarios, since there is always “leakage” of the agent’s

state as a message to other agents via a low but non-zero

attention probability, thus compromising its strategy and

chances of success. Instead, an agent should first be able to

independently decide if it wants to communicate at all, and

then direct its message to specific recipients if it does.

The recently proposed IC3Net architecture by Singh et al.

(2019) addresses the former – learning when to commu-

nicate. At every timestep, each agent in IC3Net predicts

a hard gating action to decide if it wants to communicate.

At the receiving end, messages from agents who decide to

communicate are averaged to be the next input message.

Replacing this message averaging with our sender-receiver

soft attention, while keeping the rest of the architecture

and training details the same as IC3Net, should provide an

inductive bias for more flexible communication strategies,

since this model (IC3Net + TarMAC) can learn both when

to communicate and whom to address messages to.

We evaluate IC3Net + TarMAC on the Predator-Prey en-

vironment from Singh et al. (2019), consisting of n preda-

tors, with limited vision, moving around (with a penalty

of rexplore “ ´0.05 per timestep) in search of a stationary

prey. Once a predator reaches a prey, it keeps getting pos-

itive reward rprey “ 0.05 till end of episode i.e. till other

agents reach prey or maximum no. of steps. The prey gets

0.05 per timestep only till the first predator reaches it, so

it has incentive to not communicate its location. We com-

pare average no. of steps for agents to reach the prey dur-

ing training (Figure 6) and at convergence (Table 5). Fig-

ure 6 shows that using TarMAC with IC3Net leads to sig-

nificantly faster convergence than IC3Net alone, and Table

5 shows that TarMAC agents reach the prey faster. Results

are averaged over 3 independent runs with different seeds.

6. Conclusions and Future Work

We introduced TarMAC, an architecture for multi-agent re-

inforcement learning that allows targeted continuous com-

munication between agents via a sender-receiver soft atten-

tion mechanism and multiple rounds of collaborative rea-

soning. Evaluation on four diverse environments shows

that our model is able to learn intuitive communication at-

tention behavior and improves performance, even in non-

cooperative settings, with task reward as sole supervision.

While TarMAC uses continuous vectors as messages, it is

possible to force these to be discrete, either during training

itself (as in Foerster et al. (2016)) or by adding a decoder

after learning to ground these messages into symbols.

In future, we aim to exhaustively benchmark TarMAC on

more challenging 3D navigation tasks because we believe

this is where decentralized targeted communication is most

crucial, as it allows scaling to a large number of agents with

high-dimensional observation spaces. In particular, we are

interested in investigating combinations of TarMAC with

recent advances in spatial memory, planning networks, etc.
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