
1-4244-1455-5/07/$25.00 c©2007 IEEE

TARP: A Trust-Aware Routing Protocol for Sensor-Actuator Networks

Abdelmounaam Rezgui
Dept. of Computer Science

Virginia Tech
Blacksburg, VA 24061, USA

rezgui@vt.edu

Mohamed Eltoweissy
The Bradley Dept. of Electrical and Computer Engineering

Virginia Tech
Arlington, VA 22203, USA

eltoweissy@vt.edu

Abstract

Most routing protocols for sensor-actuator networks
(SANETs) are built under the assumption that nodes nor-
mally cooperate in forwarding each other’s messages. In
practice, this assumption is not realistic; SANETs are en-
vironments where nodes may or may not cooperate. For
several reasons, a node may fail to operate as planned
at deployment time. As a result, when actually deployed,
protocols and applications may not be as efficient as ex-
pected. In this paper, we present TARP (Trust-Aware Rout-
ing Protocol), a routing protocol for sensor-actuator net-
works that exploits past nodes’ routing behavior and links’
quality to determine efficient paths. We implemented TARP
in a TinyOS-based SANET and conducted several experi-
ments to evaluate its performance. The obtained results
confirmed that TARP achieves substantial improvements in
terms of energy consumption and scalability.

1 Introduction

Sensor-actuator networks (SANETs) are inherently col-
laborative environments. While single nodes may be able to
individually carry out some simple tasks such as sampling
an attribute or broadcasting a message, the overall purpose
of the network may not be attained without the collabora-
tion of several or all of the nodes of the network. Tasks that
require the collaboration of nodes include application tasks
(e.g. calculating the average temperature in a given area),
system tasks (e.g. synchronization), and networking tasks
(e.g routing). SANET protocols and applications often im-
plement these tasks with the assumption of a cooperative
environment where nodes interact with each other with no
malicious behavior. This, however, is not a valid assump-
tion in practice. For several reasons (e.g. tampering by ad-
versaries, malfunction, selfish behavior), individual nodes
and entire networks may cease to behave as expected by
their providers and users. This highlights the need to en-

able nodes to establish trust levels for other nodes prior to
interacting with those nodes.

Interacting with untrustworthy nodes may result in sev-
eral forms of resource waste, e.g. time, energy, bandwidth,
etc. It is therefore important to be able to properly deter-
mine node trustworthiness, i.e. the likelihood that the node
will behave as expected. The need for trust mechanisms
in sensor-actuator networks is the result of four factors: (i)
application requirements, (ii) system requirements, and (iii)
the limitation of traditional security mechanisms, and (iv)
across-network interoperability:

• Application Requirements

Many sensor applications have requirements that may
not be satisfied if nodes are not able to determine, a pri-
ori, to which extent they may entrust other nodes with
a given task. Trust is necessary for both dependability
requirements and quality of service requirements:

– Dependability Requirements: Consider a
SANET that has nodes with temperature sensors
and a cooling mechanism controlled by a num-
ber of actuators. In an application running on this
SANET, sensor nodes periodically send temper-
atures to the actuators. The actuators trigger the
cooling mechanism when any nearby sensor de-
tects a temperature reading of more than a given
threshold. Since, sensor nodes may or may not
be able to communicate directly with actuators,
an end-to-end “trust chain” must exist between
each sensor and all the actuators in its neighbor-
hood for this application to be available and re-
liable. Consider a node ni that detects a tem-
perature above the specified threshold. ni must
report the temperature value to one or more ac-
tuator. Assume that a node nj routes messages
between ni and one of those actuators. If nj fails
to collaborate, the actuator may never determine
that it must activate the cooling mechanism. In

this example, there are several failure forms for
node nj . For example, node nj may not forward
ni’s message to the actuator or forward a mod-
ified version of ni’s message, e.g. indicating a
different temperature value or a different location
for the sampled temperature.
Trust is necessary not only to achieve the two de-
pendability properties of availability and relia-
bility. It may also be necessary to achieve the
safety in some SANET applications. Consider
the previous example. The safety of the temper-
ature monitoring application may translate into
strict real-time requirements, e.g. the cooling
mechanism must be triggered at most 60 sec-
onds after a sensor node detects a temperature
that exceeds the threshold. If a node nj rout-
ing temperature values from a sensor node ni to
an actuator excessively delays ni’s messages, the
system may fail to support the application’s real-
time constraint.

– Quality of Service Requirements: An appli-
cation may have QoS requirements that may not
be met if nodes fail to operate as expected and
if their failure is not detected by their neighbors.
Consider an application that has the following ac-
curacy requirement: “the average temperature re-
ported by a group of sensors deployed in a given
area A must not differ from the actual temper-
ature by more than 2◦C”. Consider a subset of
nodes in the region A that report bogus temper-
ature values. Obviously, if it is not possible to
isolate these nodes, it may not be possible to sat-
isfy the application’s accuracy requirement.

• System Requirements
Trust is also crucial to meet system requirements. The
efficiency of many system functionalities on a node de-
pend directly on the behavior of its neighbors and other
nodes in the network. The way a node carries out cer-
tain tasks may significantly impact other nodes. For
example, if a node fails to forward packets (to preserve
its energy), its neighbors may have to spend some of
their energy in finding other routes and resending un-
delivered packets. If a node can determine the likeli-
hood that a given neighbor would cooperate in rout-
ing its packets, it may make better decisions when es-
tablishing routing paths for its packets. Also, many
SANET protocols assume that nodes accurately report
their energy level. If nodes do not report their en-
ergy level accurately, such protocols would obviously
not be feasible. Similarly, consider several nodes that
transmit according to a given TDMA schedule. If one
or more nodes transmitted outside their assigned time

slots, collisions would increase reducing the very ad-
vantage of TDMA over other MAC medium sharing
schemes.

• Limitation of Traditional Security Mechanisms
Thus far, most of the research has formulated the
problem of trustworthy sensor systems as a security
problem. The focus has been largely on securing the
wireless communication between sensor nodes. More
specifically, the objective has been to satisfy security
requirements through energy-aware, lightweight secu-
rity mechanisms that provide different types of authen-
tication and confidentiality guarantees. Security mech-
anisms alone, however, do not guarantee application
and system trust requirements. They do not provide
pre-interaction reliable predictions regarding the future
behavior of nodes. Their prime purpose is to secure the
interaction between two parties. They do not provide
any guarantees about the potential consequences of in-
teracting with a given party. For example, consider an
in-network aggregation scenario where a node ni re-
ceives a message m from a node nj carrying the value
v for an attribute t. An authentication mechanism may
assure ni that the actual sender of m is nj . Also, the
two nodes may some form of encryption to ensure con-
fidentiality. This, however, does not guarantee ni that
v is an accurate value for t. Security mechanisms are
therefore not sufficient to establish trust.

• Across-Network Interoperability
The need for trust-based interaction will become even
greater as SANETs proliferate and become interoper-
able. For example, a potential future scenario would
be of an application that requires the cooperation of
nodes from different SANETs deployed by differ-
ent providers. Nodes, in this context, would be au-
tonomous and driven, primarily, by their self-interest,
e.g. minimizing their energy consumption. Without
trust-based interaction between nodes from different
networks, interoperability between sensor networks
would be virtually impossible. In fact, interoperabil-
ity would make obsolete most of current design ap-
proaches for sensor networks. Consider, for example,
key management schemes. Current approaches may
be able to secure the communication between nodes
within a single network. By design, these schemes
would not be able to provide trust-based interaction
between nodes of different networks. Mechanisms for
establishing trust are therefore a pre-requisite to enable
tomorrow’s interoperable sensor-actuator networks.

Protocols and applications built under the assumption of
cooperative SANETs are viable only when this assump-
tion holds. In practice, this assumption is not realistic.

SANETs are environments where a node may not determine
to which extent other nodes may be entrusted in carrying
out a given task. The challenge is to make SANETs envi-
ronments where nodes become able to accurately predict, at
least with high probability, the actions of other nodes. This,
in turn, would make it possible for a node to determine the
consequences of interacting with other nodes.

In this paper, we propose TARP (Trust-Aware Routing
Protocol), a routing protocol for sensor-actuator networks.
Trust-based routing keeps track of nodes’ routing behav-
ior and links’ quality to determine efficient paths from a
SANET’s nodes to its base station. In the next section, we
describe the theory behind TARP and how TARP operates.
We describe our implementation in Section 3. In Section 4,
we discuss the results of our experimental evaluation. Sec-
tion 6 concludes the paper.

2 Trust-Aware Routing Protocol

TARP is responsible for routing messages from the dif-
ferent nodes to the base station. TARP is a trust-based rout-
ing scheme. Trust refers to the confidence that a node has
in a neighbor’s cooperation. A node’s cooperation, in this
context, is the likelihood that it forwards its neighbors’ mes-
sages. TARP is based on the basic idea of avoiding to route
through non cooperative nodes. The intuition is that sending
packets to nodes that are not likely to cooperate in routing
messages to their neighbors would probably waste energy
with no payoff. TARP captures the concept of coopera-
tion in terms of “routing reputation” or, simply, reputation.
Informally, reputation is a perception that a node has re-
garding another node’s cooperation. TARP consists of two
concurrent phases: (i) reputation assessment and (ii) path
reliability evaluation:

2.1 Reputation Model and Assessment

The reputation value that a node ni assigns to a neighbor
nj is derived from two types of reputation: direct reputation
and indirect reputation:

2.1.1 Direct Reputation

The direct reputation of a node nj as perceived by a node
ni is the reputation that ni associates with nj as a result
of its first-hand, i.e. direct, interaction with it. We note
Dri(nj) node nj’s reputation as perceived by node ni. We
define Dri(nj) as the probability, as evaluated by ni, that
nj would participate in routing ni’s messages further in the
network.

Consider a message m that ni transmits to nj and ex-
pects nj to forward it to other nodes in its neighborhood.

For ni to learn that nj has forwarded its message, three con-
ditions must be satisfied: First, m must reach nj . Second,
nj must act on m as expected by ni, i.e. nj must forward m
to its neighbors. Third, nj must hear its message forwarded
by nj . The first and third conditions clearly depend on the
quality of the links (ni,nj) and (ni,nj) respectively. The
second condition depends on node nj’s routing reputation.
To derive an expression of routing reputation, we first define
the concepts of echo ratio and link quality:

• Echo Ratio: We define the echo ratio between a node
ni and a node nj (according to ni) as the ratio of ni’s
messages that ni overhears forwarded by nj to the total
number of messages that ni broadcasts. Let echij be
the value of the echo ratio between ni and nj .

• Link Quality: Let ni and nj be two nodes. We define
the link quality between ni and nj as the probability
that packets sent by ni are correctly received by nj .
We note the link quality between node ni and nj : lqij .

We now derive the expression of node reputation in terms
of link quality and echo ratio. Consider a node ni that
broadcasts a message m to its neighbors and consider the
following events:

• B: the link (ni,nj) is good enough to let nj receive m
as it is sent by ni,

• C: nj forwards m after it receives it from ni,

• D: the link (nj ,ni) is good enough to let ni receive its
own message m as it is forwarded by nj ,

• A: ni overhears m when it is forwarded by nj

It is easy to see that:

A = B ∩ C ∩D

The events B, C, and D are obviously independent. Ac-
cording to the theorem giving the joint probability of inde-
pendent events:

P (A) = P (B).P (C).P (D) (1)

By definition of direct reputation, echo ratio and link
quality, the following equalities hold:

P (A) = echij (2)
P (B) = lqij (3)
P (C) = Dri(nj) (4)
P (D) = lqji (5)

From equations 1, 2, 3, 4, and 5, we can derive node
nj’s routing reputation as perceived by node ni as:

Dri(nj) =
echij

lqij .lqji
(6)

A node ni is therefore able to evaluate a neighbor nj’s
direct reputation if it can evaluate echij , lqij , and lqji. For
this, each node ni maintains a communication state, noted
CSi that consists of the following fields:

• nbc: the number of messages that ni has broadcast.
nbc is initialized to 0 and incremented before ni broad-
casts a message

• for each neighbor nj , an entry in CSi, noted CSi(nj),
that consists of:

– ns: the number of unicast messages that ni has
sent to nj . It is initialized to 0 and incremented
before ni sends a message to nj

– nr: the number of unicast messages that ni has
received from nj . It is initialized to 0 and incre-
mented each time ni receives a unicast message
from nj

– nbc: the number of broadcast messages that ni

has received from nj . It is initialized to 0 and in-
cremented each time ni receives a broadcast mes-
sage from nj

– rns: the number of unicast messages that nj (has
reported it) has sent to ni

– rnr: the number of unicast messages that nj (has
reported it) has received from ni

– rnbc: the number of broadcast messages that nj

(has reported it) has sent

– rrnbc: the number of ni’s broadcast messages
that nj (has reported it) has received

– fw: the number of ni’s own messages that it has
overheard forwarded from nj .

We will use the notations CSi.nbc for the field nbc of
CSi and CSi(nj).f for field f of CSi(nj).

A message that a node nj sends may be of one of three
types: (i) a unicast message sent to a specific other node ni,
(ii) a broadcast message that nj sends to all of its neighbors,
or (iii) a broadcast message that nj receives from another
node ni and forwards further in the network. We there-
fore distinguish three types of communication actions that
a node may take: sending a unicast messages, broadcasting
a message, and forwarding a message:

• Unicast Messages: to send a unicast message to
node ni, nj increments CSj(ni).ns and appends
CSj(ni).ns, CSj(ni).nr and CSj(ni).nbc to m. It
then sends m to ni.

• Broadcast Messages: to broadcast a message m, node
nj increments its broadcasting counter, i.e. CSj .nbc,
appends it to m, and then broadcasts m. We will note
m.nbc the values of CSj .nbc carried by m.

• Forwarded Messages: When nj receives a broadcast
message m from a neighbor ni, and if it is cooperative,
it increments its broadcasting counter CSj .nbc, sets
m’s counter to CSj .nbc and then broadcasts m. The
identity of the original sender of m, i.e. ni, is kept
in the message m. We will note m.orig the original
sender of message m.

We now describe the updates that a node makes on its
communication state when it receives a message m. We will
use the notation m.f for a field f carried in m. Consider a
node ni that receives a message m from nj . m may be a
unicast or a broadcast message:

• Unicast Messages: When ni receives a unicast mes-
sage m(ns, nr, ..) from nj , it updates its communica-
tion state as follows:

CSi(nj).nr = CSi(nj).nr + 1
CSi(nj).rns := m.ns
CSi(nj).rnr := m.nr
CSi(nj).rrnbc : m.nbc

• Broadcast Messages: When ni receives a broadcast
message m(nbc, ..) from nj , it updates its communi-
cation state as follows:

CSi(nj).nbc = CSi(nj).nbc + 1
CSi(nj).rnbc = m.nbc

If, in addition, i = m.orig:

CSi(nj).fw = CSi(nj).fw + 1

Initially, each node ni assigns the value 1 to echi(nj),
lqij and lqji for each new neighbor nj . From equation 6,
the initial reputation Dri(nj) is also 1. To track nodes’
reputation, we introduce the idea of reputation checkpoints
(RC). A reputation checkpoint is a point in time at which a
node updates the reputation of its neighbors. At this time,
nodes also save their current communication state in their
reputation records. Thus, at any time, the reputation record
of a node ni, noted RRi, contains a copy of the communica-
tion state of ni at the time of its last reputation checkpoint.
We will use the notations RRi.nbc for the field nbc of RRi

and RRi(nj).f for field f of RRi(nj).
At the time of a reputation checkpoint, a node ni first es-

timates the echo ratio of each neighbor nj as well as the link
quality, in both directions, with nj since the last reputation
checkpoint. ni then updates the value of its neighbors’ rep-
utation according to these values. Let ech

′
i(nj), lq

′
ij , and

lq
′
ji be, respectively, the values of the echo ratio of nj and

the link quality of the links (ni,nj) and (nj ,ni) since the last
reputation checkpoint. ni derives these values as follows:

ech
′
i(nj) :=

CSi(nj).fw −RRi(nj).fw

CSi.nbc−RRi.nbc
(7)

lq
′
ij :=

CSi(nj).rnr + CSi(nj).rrnbc− RRi.(nj).rnr − RRi(nj).rrnbc

CSi(nj).ns + CSi.nbc− RRi.(nj).ns− RRi.nbc
(8)

lq
′
ji :=

CSi(nj).nr + CSi(nj).nbc− RRi(nj).nr − RRi(nj).nbc

CSi(nj).rns + CSi(nj).rnbc− RRi(nj).rns− RRi(nj).rnbc
(9)

To update the values of echi(nj), lqij , and lqji, we
use a recurrent model that both captures the “effect of his-
tory” and takes into consideration the more recent changes.
Specifically, Let RCt and RCt+1 be two consecutive rep-
utation checkpoints. Let echt

i(nj), lqt
ij , and lqt

ji be, re-
spectively, the values of echi(nj), lqij , and lqji at the time
of a reputation checkpoint RCt. ni calculates echt+1

i (nj),
lqt+1

ij , and lqt+1
ji as follows:

echt+1
i (nj) := (1− f).echt

i(nj) + f.ech
′
i(nj) (10)

lqt+1
ij := (1− f).lqt

ij + f.lq
′
ij (11)

lqt+1
ji := (1− f).lqt

ji + f.lq
′
ji (12)

where f , called the fading factor, is such that: 0 ≤ f ≤
1. ni then calculates the new value of nj’s direct reputation
using equation (6).

2.1.2 Indirect Reputation

The indirect reputation of a node nj as perceived by a node
ni reflects nj’s routing behavior as reported to ni by its
neighbors. We note this reputation Iri(nj). Initially, ni

sets the Iri(nj) to a default value ε, 0 ≤ ε ≤ 1. To re-
ceive new feedbacks about nj from its neighbors, ni broad-
casts a message ReputationRequest(nj). Each node
nk that wants to answer ni’s request broadcasts a message
ReputationReport(nj, Drk(nj)) that contains nj’s
direct reputation as perceived by nk. Typically, this mes-
sage is received by several nodes (not only ni, the sender
of the ReputationRequest message). When a node nl

receives nk’s message, it updates its indirect reputation as
follows:

Irl(nj) = (1− f).Irl(nj) + f.Drk(nj)

Nodes may also send reputation reports without requests.
When a node ni detects that a neighbor node nj’s direct rep-
utation Dri(nj) has gone under a threshold θ, it broadcasts

a message ReputationReport(nj, Dri(nj)) to its
neighbors.

2.1.3 Aggregate Reputation

The aggregate reputation or, simply, the reputation of a
node nj as perceived by a node ni captures nj’s behavior
from the perspective of both ni and their common neigh-
bors. Node nj’s reputation according to ni, noted Ri(nj),
is derived as an aggregate of nj’s reputation as calculated
directly by ni and nj’s reputation as calculated by their
common neighbors. When ni updates either of Dri(nj)
or Iri(nj), it also updates Ri(nj) as follows:

Ri(nj) := α.Ri(nj) + β.Dri(nj) + γ.Iri(nj)

where: α + β + γ = 1

2.2 Path Reliability Evaluation

The second phase in TARP enables each node to deter-
mine an approximate value of the reliability of the paths to
the sink starting at each of its neighbors. Each node may
then determine the next hop of the most reliable path to the
sink. For each node ni, we will call ni’s parent ni’s neigh-
bor that is at the other end of the first hop of the most re-
liable path to the sink. When a node has to send or route
a message to the base station, it simply sends it to its par-
ent. Routing in TARP then translates into determining path
reliability.

To evaluate path reliability, we first derive an expression
for path reliability in terms of node cooperation and link
quality. Let (ni,nj) be a pair of nodes and let P(ni, nj)
be the set of possible paths from ni to nj and let φ ≡
ni, np0 , np1 , ..., npm , nj be a path in P(ni, nj). We call
node ni and node nj , respectively, path φ’s start node and
end node. The link (ni, np0) is called path φ’s initial hop.
We define the reliability of the path φ, noted ρ(φ), as the
probability that messages routed from ni through φ be de-
livered to nj . We will note the path(s) with the highest re-
liability from node ni to node nj : Pρ(ni, nj). The purpose
of TARP is to enable each node ni to determine the initial
hop of Pρ(ni, nbs), the most reliable path that starts at ni

and ends at the base station.
To quantify path reliability, we first define the concept of

node cooperation:
Node Cooperation: The cooperation of a node ni is de-

fined as the probability that ni forwards messages on behalf
of its neighbors. We note ni’s cooperation CP (ni).

Assuming event independence, ρ(φ) may be written as
follows:

Figure 1. An Example of trust-based routing

ρ(φ) = (
k=pm∏

k=p0

CP (nk)).lqninp0
.(

k=m−1∏

k=0

lqnpk
npk+1

).lqnpmnj

(13)
Ideally, if node ni is able to evaluate ρ(φ), it will be able

to make perfect routing decisions. This, however, is obvi-
ously not feasible in the context of SANETs. First, a node
may not be able to assess distant nodes’ cooperation and
links’ quality. Second, a node ni may not be able to deter-
mine the cooperation value even for a neighbor nj since this
value depends on traffic between other nodes and nj that ni

may not even hear. To enable nodes to estimate the relia-
bility of the paths leading to the base station, we approxi-
mate node cooperation in terms of their routing reputation
as perceived by individual nodes. Equation 13 may now be
rewritten as follows:

ρ(φ) = lqninp0
.Ri(np0).(

k=m−1∏

k=0

lqnpk
npk+1

.Rpk
(npk+1)).lqnpmnj

(14)
TARP maintains two values at each node ni: Rel and

parent. Rel is the reliability of the most reliable path to the
sink. We will note this value ni.Rel. parent is the identity
of the neighbor that is at the end of the first hop in the most
reliable path to the sink. We will note this value ni.parent
Nodes cooperate to derive path reliability backward from
the sink as follows:

• Each node initializes parent to the identity of its first
neighbor and Rel to a default reliability value.

• Each node ni appends the value ni.Rel to each outgo-
ing message m. We will note this value m.Rel.

• A node ni that has the base station as an immediate
neighbor directly evaluates, lqi0 the quality of the link
(ni,n0) between ni and the sink. ni then sets the value
of ni.Rel to lqi0.

• When a node nj receives from a neighbor ni a
message m, it updates its variable Rel as follows:

r := lqji.Rj(ni).(m.Rel);
if r > Rel

{
parent := ni;
Rel := r;
}

Figure 1 illustrates the operation of TARP. In Figure 1.a,
nodes 1, 2 and 4 have determined that the sink (node 0)
is their neighbor. Node 2 assigns the value lq2,0 to Rel
and considers 0 its parent. In Figure 1.b, node 2 sends a
message to node 9. Node 9 takes node 2 as its parent and
sets its Rel to Rel2.R9(n2).lq9,2. In Figure 1.c, node 9
sends a message to node 5 which then takes node 9 as its
parent and sets its Rel to Rel9.R5(n9).lq5,9. finally, in
Figure 1.d, node 5 hears from node 6 and determines that
Rel < Rel6.R5(n6).lq5,6. It then takes node 6 as its new
parent and sets variable Rel to Rel6.R5(n6).lq5,6.

3 Implementation

(a) Radio Energy Consumption (b) CPU Energy Consumption

Figure 2. Energy Consumption in TARP

command result t send(TOS MsgPtr m);
event result t msgReceived(TOS MsgPtr m);

Figure 3. TARP’s nesC Interface

We implemented TARP as a routing layer on top of
TinyOS 1.1.15 [14, 15]. TARP’s nesC interface has one
command (send) and one event msgReceived (Fig-
ure 3). A node calls TARP’s send command to send (or
forward) a message to the base station. When TARP re-
ceives a message from lower layers, it forwards it to the
local node’s parent and signals the event msgReceived
so that the local node is notified of the event.

Communication in TARP is implemented us-
ing TinyOS’s two interfaces BareSendMsg and
ReceiveMsg. TARP is notified of the reception of
messages via ReceiveMsg’s event receive. When
TARP receives a message, it first reads the message’s CRC
to check whether it is correct. If the message is corrupt
(CRC = 0), TARP simply discards the message. If the
message is valid, TARP sends it to the local node’s parent.

TinyOS’s basic communication (using BareSendMsg
and ReceiveMsg) is not reliable. Messages that are not
successfully sent are not retransmitted. We therefore im-
plemented a reliable communication layer that uses a FIFO
queue MsgQueue and a timer TransmitTimer that trig-
gers the (re)sending of the message at MsgQueue’s head.
If the sender successfully sends the message, the message is
removed from MsgQueue. If not, another attempt to send
the message is made the next time TransmitTimer is
fired.

TARP reduces energy consumption by using a simple
power control mechanism. Immediately after TARP suc-
cessfully sends a message, it makes the two following calls:

call CC1000Control.SetRFPower(0x00);
call CC1000StdControl.stop();

The first call ensures that power leak is minimized. The
second call powers down the radio. To further reduce power
consumption, TARP makes the following call immediately
after it processes each incoming message:

call PowerState.cpuState(POWER SAVE);

This call puts the node’s CPU in TinyOS’s power save
mode.

4 Evaluation

In this section, we present our experimental evaluation of
TARP. We will focus on two aspects: energy consumption
and scalability. To evaluate TARP, we developed an evalua-
tion benchmark that uses the PowerTOSSIM simulator [13]
integrated in the TinyOS package. The benchmark enables
a wide spectrum of simulation scenarios.

We considered a typical scenario where the base station
submits a query requesting that all nodes that may sample
an attribute t send t’s value to the base station. The nodes
that are able to sample the attribute t are randomly selected.
The query message is broadcast to all the nodes in the net-
work. we considered two alternatives to get the results to
the base station. In the first case, nodes simply sample the
attribute t and send the result message to the base station
through broadcasts. Intermediary nodes simply forward the
result message through broadcasts until the result message
reaches the base station. In the second case, TARP is used
to route the results back to the base station. The experiment
is halted after a constant delay from the time the base sta-
tion submits the query. Figure 2 shows the average energy
consumption for all nodes in the two scenarios. The sce-
nario labeled ”BC-BC” corresponds to the first case where
both queries and results are broadcast. The scenario labeled
”BC-TARP” corresponds to the second case where queries
are broadcast and results are sent back to the base station

using TARP. The figure shows that, in terms of radio energy
consumption, BC-TARP outpeforms BC-BC by a percent-
age varying from 23% to 43%. In terms of CPU energy
consumption, BC-TARP outpeforms BC-BC by a percent-
age varying from 7% to 71%.

5 Related Work

While used in some previous research on routing in the
context of mobile ad hoc networks (MANs) and P2P net-
works, the concepts of reputation and trust have not been
extensively investigated in the context of sensor networks.
In this section, we overview some of the research related to
exploiting reputation and trust in the context of MANs and
P2P networks.

5.1 Trust in Mobile Ad hoc Networks

An issue in a mobile ad hoc network is that the nodes
do not belong to a single authority [8]. This obviously
poses the problem of stimulating cooperation, i.e., giving
the incentive for nodes to cooperate, e.g., by forwarding
each other’s messages, for the overall good of the network.
In [11], a reputation system is proposed where each node
monitors its neighbor to check whether it actually forwards
others’ traffic. If it does not, it is considered as an uncooper-
ative node and this reputation is propagated throughout the
network. The authors propose two tools: a watchdog that
identifies uncooperative nodes, and a pathrater that selects
routes that avoid uncooperative nodes. In [2], the authors
present a roubust reputation system for MANs. The system
aims at detecting misbehaving nodes that are source of false
positive and negative ratings. The system The basic idea in
this system is that each node maintains a reputation rating
and a trust rating about every other node of interest. From
time to time, first-hand reputation information is exchanged
with others. A node accepts second-hand reputation infor-
mation only if it is not incompatible with the current reputa-
tion rating. In [8], the authors focus on the formal analysis
of the properties that mobile nodes use to update and agree
on the reputation of other mobile nodes. They also study
the correlation between the speed of reputation propagation
and the convergence speed of reputation agreement. In [6],
the authors propose a reputation-based incentive scheme,
called SORI, that encourages packet forwarding and disci-
plines selfish nodes. The scheme is based on three com-
ponents: neighbor monitoring, reputation propagation, and
punishment. Each node maintains the number of packets
that each neighbor forwards and requests to be forwarded.
Through this monitoring, a node is able to locally determine
its selfish neighbors. This local reputation of being selfish
is then propagated by the monitoring node so that the selfish
node becomes punsihed by all of its neighbors.

5.2 Trust in Peer-to-Peer Networks

A peer-to-peer (P2P) network is a network in which any
node (i.e., peer) may interact directly with any other node
to achieve a given goal. In a typical interaction, a peer a
requests a resource r from another peer b that provides the
resource r to peer a. The basic use of reputation in P2P net-
works is to identify reputable nodes so that non-reputable
nodes may be prevented from affecting the system. The ba-
sic idea is to deploy reputation systems that provide reliable
reputation information about peers. A peer can then use this
information in decision making, e.g., who to download a file
from [5, 3, 7]. Examples of applications based on this con-
cept include P2P anonymity systems (e.g., anonymous re-
mailers [4]) and P2P resource sharing networks. In [3], the
authors propose an approach to security in P2P information
sharing environments where peers keep track of other peers’
reputation and may share their reputation information with
other peers. A distributed polling algorithm is proposed for
reputation sharing. The algorithm has two phases. In the
polling phase, a peer p polls its peers to inquire about the
reputation of selected providers that offer the requested con-
tent. This is achieved by broadcasting a Poll message re-
questing each peer’s opinion about the providers. All peers
may answer p’s request. The poller p then uses the opinions
received from voters to make its decision about where the
source to use to download the requested content. In [7], the
authors present a system, called EigenTrust, that computes
and publishes a global reputation rating for each node in a
network using an algorithm similar to Google’s PageRank
[12]. In [16], the authors propose a Bayesian network-based
trust model and a method for building reputation based on
recommendations in P2P networks. The evaluation of the
model using a simulation of a P2P file sharing system shows
that the system where peers communicate their experiences
(recommendations) outperforms the system where peers do
not share recommendations. In [10], the authors study the
advantages and disadvantages of resource selection tech-
niques based on peer reputation. They analyze the effect
of limited reputation information sharing on the efficiency
and load distribution of a P2P system. A noticeable result
of the study is that limited reputation sharing can reduce the
number of failed transactions by a factor of 20. In [17], the
authors present PeerTrust, a system that uses reputation to
estimate the trustworthiness of peers. PeerTrust uses a gen-
eral trust metric that combines a set of basic trust parameters
and adaptive factors in computing trustworthiness of peers,
namely, the feedback a peer receives from other peers, the
total number of transactions a peer performs, the credibility
of the feedback sources, transaction context factor, and the
community context factor. In [5], the authors propose a rep-
utation system for decentralized unstructured P2P content
sharing networks like Gnutella. The purpose is to help well-

reputed peers make decisions about who to serve content to
and who to request content from. In [1], the authors ad-
dress the issue of scalability in reputation-based trust man-
agement in P2P systems. They propose to use a scalable
access method, called P-Grid, to store trust information that
peers have about their past interactions with each other. An-
other issue in P2P systems is the tension between anonymity
and the support for reputation. In [9], the authors compare
two identity infrastructures for P2P resource-sharing envi-
ronments. The first uses a centralized login server that ties
nodes’ network pseudo-identities to their real-world iden-
tities. In the second approach, each node generates its
own identity. The authors show that the first approach pro-
vides better support for reputation management by prevent-
ing nodes from changing identities. They also show that the
second approach provides a higher level of anonymity. In
[4], the authors report on their experience in designing rep-
utation mechanisms for anonymous remailing and anony-
mous publishing systems. In anonymous publishing, for
example, a set of servers form a P2P network where they
may anonymously publish documents. The rule is that any
server that publishes must also provide some disk space to
store other servers’ material for a certain time. The authors
use a reputation system that prevents servers from cheating
by dropping data early.

6 Conclusion

We presented TARP, a trust-aware routing protocol for
sensor-actuator networks. We implemented TARP on top
of TinyOS. Empirical results show that TARP achieves sig-
nificant improvements in terms of energy consumption and
scalability. Our future work aims at developing a new
context-awareness approach that we plan to integrate in
TARP. The new context-aware TARP would further exploit
data semantics and enable routing schemes particularly suit-
able to prioritized traffic. Specifically, the new protocol
would enable applications where urgent information has to
be routed to the base station before other, less important,
traffic.

References

[1] K. Aberer and Z. Despotovic. Managing Trust in a Peer-2-
Peer Information System. In Proc. of the ACM Conference
on Information and Knowledge Management (CIKM), pages
310–317, Atlanta, Georgia, 2001.

[2] S. Buchegg and J. Y. L. Boudec. A Robust Reputation Sys-
tem for Peer-to-Peer and Mobile Ad-hoc Networks. In Proc.
of the 2nd Workshop on the Economics of Peer-to-Peer Sys-
tems, Cambridge, Massachusetts, June 2004.

[3] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and
P. Samarati. Managing and Sharing Servents’ Reputations

in P2P Systems. IEEE Trans. on Knowledge and Data En-
gineering, 15(4), July/August 2003.

[4] R. Dingledine, N. Mathewson, and P. Syverson. Reputa-
tion in P2P Anonymity Systems. In Proc. of the Workshop
on Economics of Peer-to-Peer Systems, Berkeley, California,
June 2003.

[5] M. Gupta, P. Judge, and M. Ammar. A reputation system
for peer-to-peer networks. In Proceedings of the 13th inter-
national workshop on Network and operating systems sup-
port for digital audio and video (NOSSDAV), pages 144–
152, New York, NY, USA, 2003. ACM Press.

[6] Q. He, D. Wu, , and P. Khosla. SORI: A Secure and Ob-
jective Reputation-based Incentive Scheme for Ad-hoc Net-
works. In Proc. of the IEEE Wireless Communications and
Networking Conference (WCNC), Atlanta, GA, USA, March
21-25 2004.

[7] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The
Eigentrust Algorithm for Reputation Management in P2P
Networks. In Proc. of the 12th International World Wide
Web Conference (WWW), pages 640–651, Budapest, Hun-
gary, 2003.

[8] Y. Liu and Y. R. Yang. Reputation Propagation and
Agreement in Mobile Ad-Hoc Networks. In Proc. of the
IEEE Wireless Communication and Networks Conference
(WCNC), New Orleans, LA, USA, March 2003.

[9] S. Marti and H. Garcia-Molina. Identity Crisis: Anonymity
vs. Reputation in P2P Systems. In Proc. of the 3rd Interna-
tional Conference on Peer-to-Peer Computing, pages 134–
141, Linkping, Sweden, 2003.

[10] S. Marti and H. Garcia-Molina. Limited Reputation Sharing
in P2P Systems. In Proc. of the 5th ACM Conference on
Electronic Commerce, pages 91–101, New York, NY, USA,
May 2004.

[11] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating
Routing Misbehavior in Mobile Ad hoc Networks. In Proc.
of the 6th International Conference on Mobile Computing
and Networking (MobiCom), pages 255–265, Boston, Mas-
sachusetts, USA, 2000.

[12] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank Citation Ranking: Bringing Order to the Web. Technical
report, Stanford Digital Library Technologies Project, 1998.

[13] V. Shnayder, M. Hempstead, B. rong Chen, G. W. Allen, and
M. Welsh. Simulating the power consumption of large-scale
sensor network applications. In J. A. Stankovic, A. Arora,
and R. Govindan, editors, SenSys, pages 188–200. ACM,
2004.

[14] TinyOS. http://www.tinyos.net.
[15] TinyOS Tutorial. http://www.tinyos.net/

tinyos-1.x/doc/tutorial.
[16] Y. Wang and J. Vassileva. Trust and Reputation Model in

Peer-to-Peer Networks. In Proc. of the 3rd IEEE Interna-
tional Conference on Peer-to-Peer Computing, pages 150–
157, Linkoeping, Sweden, September 2003.

[17] L. Xiong and L. Liu. PeerTrust: Supporting Reputation-
based Trust for Peer-to-Peer Electronic Communities. IEEE
Trans. on Knowledge and Data Engineering (TKDE),
16(7):843–857, July 2004.

