
TARP: Ticket-based Address Resolution Protocol

Wesam Lootah, William Enck, and Patrick McDaniel
Systems and Internet Infrastructure Security Laboratory

Department of Computer Science and Engineering
The Pennsylvania State University

{lootah, enck, mcdaniel}@cse.psu.edu

Abstract

IP networks fundamentally rely on the Address Resolu-
tion Protocol (ARP) for proper operation. Unfortunately,
vulnerabilities in the ARP protocol enable a raft of IP-based
impersonation, man-in-the-middle, or DoS attacks. Pro-
posed countermeasures to these vulnerabilities have yet to
simultaneously address backward compatibility and cost re-
quirements. This paper introduces the Ticket-based Address
Resolution Protocol (TARP). TARP implements security by
distributing centrally issued secure MAC/IP address map-
ping attestations through existing ARP messages. We de-
tail the TARP protocol and its implementation within the
Linux operating system. Our experimental analysis shows
that TARP improves the costs of implementing ARP secu-
rity by as much as two orders of magnitude over existing
protocols. We conclude by exploring a range of operational
issues associated with deploying and administering ARP se-
curity.

1 Introduction

The Address Resolution Protocol (ARP) [32] is the glue
that holds together the network and link layers of the IP
protocol stack. The primary function of ARP is to map IP
addresses onto hosts hardware addresses within a local area
network. As such, its correctness is essential to proper func-
tioning of the network. However, like other protocols within
IP, ARP is subject to a range of serious and continuing se-
curity vulnerabilities [8, 9]. Adversaries can exploit ARP
to impersonate hosts, perform man-in-the-middle attacks,
or simply DoS victims. Moreover, such attacks are trivial
to perform, and few countermeasures have been widely de-
ployed.

Current network environments present two central de-
sign challenges for ARP security. Firstly, the solution must
not require ARP be discarded. The deployed base of IP is
large and diverse enough that replacing any major compo-

nent of the IP protocol stack is technically and cost pro-
hibitive. Secondly, the costs of implementing ARP secu-
rity must be minimal. Resource constrained devices and al-
ready computationally loaded hosts cannot afford to budget
large amounts of resources for ARP security. Any solution
that would demonstrably change the performance profile of
ARP will not be adopted. The primary reason that proposed
solutions [19, 10, 16, 21] have not been widely deployed
is that they have yet to simultaneously address these two
requirements.

In this paper, we introduce the Ticket-based Address Res-
olution Protocol (TARP) protocol. TARP implements se-
curity by distributing centrally generated MAC/IP address
mapping attestations [36, 5]. These attestations, called tick-
ets, are given to clients as they join the network and are
subsequently distributed through existing ARP messages.
Unlike other popular ARP-based solutions, the costs per
resolution are reduced to one public key validation per re-
quest/reply pair in the worst case. As such, TARP is a fea-
sible approach for the diverse assortment of existing net-
work capable devices. We provide a detailed description
of the protocol design and its implementation within the
Linux operating system. Our experimental analysis shows
that TARP retains compatibility while reducing the request
costs by as much as two orders of magnitude over exist-
ing protocols. We explore a range of crucial operational is-
sues including revocation and incremental deployment and
show how TARP can be deployed with limited administra-
tive oversight.

Note that TARP embodies a central design trade-off.
Ticket generation costs grow at the linear inverse of the
ticket’s lifetime. The ticket lifetime dictates the vulnera-
bility to replay attacks.1 Hence, administrators can directly
control cost and security through the selection of ticket life-
time. The ability to balance between these competing fac-
tors is a central benefit to TARP’s design. We explore the
management of this tradeoff throughout and reflect on the

1We consider an alternate design in Section 4.3 in which we address
replay vulnerabilities through the introduction of a revocation service.

necessity of such compromises in the practical use of secu-
rity technologies.

Security in resolution services remains an open problem.
Whether resolving domain or hostnames [15, 6, 7], claims
of address ownership [36, 5], or other network artifacts, one
needs to authenticate the contents and freshness of received
data. This work represents a new point in the design space
of these services. As such, it can be used to inform of the
specific costs and advantages of resolution services. In par-
ticular, our practical analysis indicates that for certain kinds
of resolution, great performance gains can be achieved by
slightly relaxing security requirements.

We begin in the next section by providing background
on ARP and considering the vulnerabilities inherent to its
current design. Section 3 considers past efforts at securing
ARP and other related works. Section 4 details the TARP
architecture and its operation within local networks. Sec-
tion 5 outlines the integration of the TARP client within the
Linux kernel and identifies. Section 6 explores the perfor-
mance of TARP experimentally. Section 7 considers several
operational issues associated with the use of TARP. Sec-
tion 8 concludes.

2 Background

The Address Resolution Protocol (ARP) [32] is used by
hosts to map IP addresses onto Medium Access Control
(MAC) link layer addresses. The resulting address associa-
tions are used to direct packet delivery within the physical
local network.

Every packet in an IP network must be delivered to some
interface in the local network. Those whose destination IP
addresses are external to the local network (as determined
by the subnet mask) are delivered to the subnet gateway.
Those packets destined for internal network are delivered
directly. Whether the destination address is local or gate-
way, the IP address must be mapped onto a MAC address.
ARP resolution performs a distributed lookup via a sim-
ple broadcast request followed by a unicast response. The
querying host sends the request to the local broadcast ad-
dress. According to the protocol, only a host assigned to
the requested address should reply with its local hardware
address. This reply, containing both the requested IP ad-
dress and associated MAC address, is sent via unicast to the
querying host. The host caches the association, which ex-
pires and is evicted at a later time per some local policy.
Once evicted, the host repeats the request, cache, and even-
tual ejection. While the cache hold time for a response is
undefined in the protocol specification, many implementa-
tions set the expiration to approximately 20 minutes, with
the option of resetting the expiry timer after each use [10].

Hosts implicitly trust the address associations residing
in the ARP cache. If an adversary can influence these val-

M

BA

IPB = MACM IPA = MACM

Pkt{dst=IPB}

Pkt{dst=IPA} Pkt{dst=IPA}

Pkt{dst=IPB}

Figure 1. Example of a Man-in-the-Middle at-
tack in progress. Both host A and B believe
they are talking directly to each other.

ues, the host can be manipulated into sending packets to
the wrong hardware address. The lack of authentication
of address association data leaves hosts susceptible to re-
ply spoofing and cache entry poisoning, commonly referred
to as cache poisoning. In fact, freely available tools are de-
signed to exploit these vulnerabilities [37].

Most IP protocol stacks are designed to ignore unso-
licited ARP replies. However, this does little to prevent
cache poisoning. An adversary can coerce a host into re-
questing a specific address by spoofing an ICMP ping
message. The spoofed message contains the targeted IP ad-
dress, requiring the host to resolve the MAC address to re-
ply. By carefully poisoning the cache and spoofing replies,
an adversary can perform both Denial of Service (DoS) and
Man in the Middle (MITM) attacks [14]. Such attacks were
known even in 1989 [8], and they still exist today [9].

Cache poisoning can be used to mount various types of
DoS attacks. In the most simple case, the adversary replaces
the MAC address of a particular host with another value.
When the victim attempts to communicate with that remote
host, all traffic is sent to the wrong MAC address. This ef-
fectively denies service to the remote host. If this remote
host happens to be the gateway, the host will be unable to
communicate with hosts outside of the subnet. Finally, if
the adversary knows the IP address of all nodes on the sub-
net, cache entries can be crafted so that the victim cannot
communicate with any remote hosts.

While DoS is a serious concern, cache poisoning result-
ing in a MITM attack is more dangerous. This attack, as
shown in Figure 1 not only allows the adversary to insert
messages into the communication channel, but more impor-
tantly, it often goes undetected. Furthermore, cache poi-
soning used in this manner allows eavesdropping even on
a layer-2 switch. In order to launch this attack, the adver-
sary must effectively manipulate the caches at both ends of
a conversation. Once both ends believe the adversary is the
correct remote destination, manipulating packet streams is
trivial.

3 Related Work

Several attempts have been made to address the above se-
curity issues through methods external to the ARP protocol.
For example, it has been proposed that hosts can statically
configure ARP tables [1]. Of course, this would incur a
huge administrative overhead and is largely intractable for
dynamic environments. Conversely, the port security [11]
features available in recent switches restrict the use of phys-
ical ports to configured MAC addresses. This approach only
prevents certain kinds of MAC hijacking, but does nothing
to prevent MITM attacks. Hence, it is only a partial (and in
many ways limited) solution.

Other solutions attempt to detect misbehavior, rather
than prevent it. ARPWatch [21], a network-level detec-
tion device, detects malicious ARP packets by monitor-
ing MAC/IP address pairings occurring on a subnet. Con-
versely, host-level detection services differ in that each host
on the network attempts to detect malicious messages arriv-
ing at the local interface [38]. This is achieved by detecting
duplicate and/or unsolicited ARP packets. Detection tech-
niques are punitive by definition, and hence are of limited
utility in many environments.

A number of cryptographic protocols have targeted is-
sues in the ARP security. In the Secure Link Layer (SLL),
all link layer traffic is authenticated and encrypted. While
this prevents authorized hosts from injecting malicious mes-
sages, it does not prevent authorized, yet untrustworthy
hosts, from injecting malicious messages. In yet another ap-
proach, Gouda and Huang [16] propose the Secure Address
Resolution Protocol. A secure server in this protocol shares
secret keys with each host on a subnet. The server main-
tains a database of IP-address-to-hardware-address map-
pings that is updated periodically through communication
with each host. All ARP requests and replies occur between
a host and the server, and replies are authenticated using the
shared pair keys. Note that the server represents a singular
point of failure and congestion, which make it a poor match
for most networks. Kempf exploits Identity-Based crypto-
graphic techniques in the Address Based Keys (ABK) [19]
protocol. IP addresses are used as public keys in ABK.
However, contemporary identity-based systems require one
or more heavyweight cryptographic operations per signa-
ture or validation. Hence, their cost is prohibitive for many
resource poor devices.

The most popular ARP security protocol, S-ARP [10],
also uses asymmetric cryptography. However, unlike ABK,
hosts use self-created public/private key pair certified by
a local trusted party. Each host registers its public key
with the Authoritative Key Distributor (AKD) server. The
server’s public key and MAC address are also securely dis-
tributed to all hosts during a bootstrapping process.

S-ARP requests proceed as normal ARP requests. How-

ever, S-ARP replies are signed by the sender’s private key.
Upon receiving a reply, the signature is verified using the
sender’s public key. If the receiver does not have the
sender’s public key, or if the signature cannot be verified
by the keys currently in its key ring, the public key of the
sender is requested from the AKD. The AKD sends it to the
requesting host in a signed message. If the new public key
verifies the signature, the reply is accepted and the public
key is cached; otherwise, it is rejected. To avoid replay at-
tacks, messages are time-stamped and synchronization mes-
sages are exchanged with the AKD. S-ARP requires, at min-
imum, a single signature generation and verification per ad-
dress resolution. As illustrated in Section 6, this cost can be
significant.

None of these solutions simultaneously address both the
compatibility and performance requirements of current net-
works. As we will show in the following section, TARP suc-
cessfully achieves resilience to cache poisoning and com-
patibility with ARP, at virtually no cost.

4 A Ticket-Based Approach

The major flaw in ARP is the lack of message authen-
tication. For the remainder of this paper, we classify ARP
vulnerabilities as falling into one of the two following cate-
gories:

• reply spoofing: forging an ARP reply to inject a new
address association into the victim’s cache

• entry poisoning: forging an ARP reply to replace an
address association in the victim’s cache

We address these vulnerabilities through the Ticket-based
Address Resolution Protocol (TARP). TARP implements
security by distributing centrally generated attestations [36,
5]. These attestations, called tickets, authenticate the asso-
ciation between MAC and IP addresses through statements
signed by the local Local Ticket Agent (LTA). Each ticket
encodes a validity period as an expiration time. Of course,
the use of expiration times assume some form of loose clock
synchronization between the issuer LTA and the validating
clients. Such synchronization is a common requirement for
many protocols, and devices for its enforcement are well
known [27]. We defer discussion of issues relating to syn-
chronization to future work.

To securely perform address resolution using TARP, a
host broadcasts a ARP request. The host with the re-
quested IP address sends a reply, attaching previously ob-
tained ticket. The signature on the ticket proves that the
LTA issued it, i.e., the MAC to IP address mapping is valid
(or at least was at the time of issuance—see revocation be-
low). The requesting host receives the ticket, validating it
with the LTA’s public key. If the signatures is valid, the ad-
dress association is accepted; otherwise, it is ignored. With

Static IP Network

R1
{ticketR2}

C1
{ticketC1}

C2
{ticketC2}

C3
{ticketC3}

LTA

Request Reply +
{ticketC1}

Figure 2. Static IP Address Assignment -
hosts receive TARP tickets during initial
setup, and include them with each ARP re-
ply.

Dynamic IP Network

R1

C1 C2 C3

LTA

Request Reply +
{ticketC1}

{ticketC1}

{ticketC2} {ticketC3}

{ticketR1}

Figure 3. Dynamic IP Address Assignment -
hosts receive TARP tickets during the initial
DHCP exchange, and include them with each
ARP reply.

the introduction of TARP tickets, an adversary cannot suc-
cessfully forge a TARP reply and, therefore, cannot exploit
ARP poisoning attacks.

4.1 The TARP Protocol

The means by which a ticket is created and distributed
is dependent on whether the IP address assignments are
static or dynamic. Illustrated in Figure 2, whenever a host is
added to a static assignment network, it is configured with
the network public key, an IP address, and a ticket. Because
the associations are unlikely to change frequently, it may be
acceptable to set long ticket lifetimes. However, there are
security, performance, and administrative considerations re-
lated to the selection of ticket lifetimes. We consider these
issues in depth in Section 4.3 below.

In dynamic IP networks, hosts are assigned IP addresses
and configuration parameters by a configuration server us-
ing the Dynamic Host Configuration Protocol (DHCP).
Each host receives a lease on an IP address and sends a re-
newal request upon expiration as shown in Figure 3. At this
time, the DHCP server may or may not reassign the host the
same IP address.

In a TARP-enabled dynamic IP network, the DHCP
server also performs the functionality of an LTA. In re-
sponse to a DHCP request, the server packages a ticket with
the configuration information. Accordingly, the ticket ex-
pires along with the IP lease. Note that tickets are by def-
inition public, therefore a secure communication channel

is unnecessary. Having the DHCP server play the role of
LTA eliminates the need for additional ticket distribution
messages, hence maintaining simplicity of protocol design.
Additionally, using this method of distribution is logical, as
DHCP was designed to distribute configuration parameters.

A host requires the LTA’s public key in order to verify
tickets. Key distribution is most secure if performed out
of band. While less secure, this distribution could also be
performed through assertion and user acceptance, similar to
that in the Secure Shell (SSH) protocol [39]. Unfortunately,
this allows an adversary new methods of attack. For this
paper, we only consider manual distribution of the LTA’s
public key.

The operation of ticket resolution proceeds identical in
both the static and dynamic cases once tickets have been
distributed to each host. TARP message flow is similar to
the ARP, with the exception that the ticket is appended to
each replies as defined in the preceding section.

4.2 Ticket Format

Maintaining backwards compatibility with ARP is cru-
cial for the adoption of any enhanced address resolution
protocol. Compatibility is achieved by integrating the ticket
into the ARP reply; no changes need take place to the re-
quest. As shown in Figure 4, the ticket is appended as a
variable length payload, with the ticket header modified ac-
cordingly.

The Magic field in the ticket header is used to distin-
guish the new reply from an ARP reply. If it is a TARP

ARP Reply

Magic
Type SigLen

MAC Addr
IP Addr

Issue Timestamp
Expiration Time

Signature

Figure 4. TARP Reply Packet Format - the
TARP signature covers all fields from the
Magic through the expiration time.

reply the magic field is set to 0x789a0102 2. Since TARP
has only one message type, the Type field actually desig-
nates the cryptographic algorithm.3 The SigLen indicates
the signature length. The remaining fields contain informa-
tion required to ensure proper operation. The MAC Addr
and IP Addr create the address association. The Expiration
Time indicates how long the ticket is valid. Issue Times-
tamp indicates when the ticket was generated and is used
for ticket revocation as discussed below.

4.3 Revocation

A reality of current networks that IP/MAC address asso-
ciations can change; dynamic bindings (e.g., DHCP [12])
or changes in network configuration can occur before the
a ticket expires. To be secure, one must provide a revoca-
tion mechanism that securely notifies clients which tickets
are no longer valid. Historical studies of revocation have
sought to limit the cost of notification, e.g., CRLs and other
data structures [18, 26, 4, 30, 20], limit notification latency,
e.g., OCSP [29], or provide frameworks for trading off se-
curity guarantees and semantics [24, 4, 17].

Revocation speaks to the central tradeoff of TARP. Be-
cause revoked ticket may be replayed at any time prior to
its expiration, administrators may be tempted to keep the
lifetimes short. However, ticket issuance costs grow at the
linear inverse of the ticket lifetime. The ability to calibrate
the balance between these competing factors through the
selection of ticket lifetimes is a central benefit to its design.

The simplest method of handling revocation is to issue
certificates that are only valid for a short time. This similar
to the short lived certificates suggested by Ellison et al. in

2The magic field originally appeared in S-ARP, and we use it for a
similar purpose.

3As discussed in Section 5, our implementation currently uses 1024-bit
RSA, but other key sizes and algorithm may be used as appropriate and
desirable.

the SPKI/SDSI system [34]. Because the tickets are only
valid for a short time, the vulnerability to replay is limited
and no notification is necessary. Note that a window of vul-
nerability to replay also exists in S-ARP. The window that
is equal to the cache hold time of the ARP reply. Users of
TARP can provide similar window by setting the lifetime of
the ticket to the ARP cache hold time. However, the burden
of the creating the tickets is on the LTA, rather than on the
hosts themselves. We experimentally explore the costs of
the ticket creation and validation in section 6.

ARP associations are long lived in networks where IP
addresses are assigned manually. For this reason it may be
advantageous to create tickets whose lifetimes are essen-
tially infinite for these static associations.4 In those rare
cases where mappings change, one can revoke through re-
issuance; all clients would only use the ticket with the latest
expiry timestamp. This “latest ticket wins” approach would
be vulnerable to active attacks in which the adversary can
block delivery of the new ticket. Such attacks represent a
powerful adversary within the local area network, and may
signal larger and more serious problems. Hence the risk
may be acceptable for many environments.

The most secure solution is to implement a separate re-
vocation service. Such solutions range from the distribution
of simple signed certificate revocation lists [18] to instanta-
neous online verification of ticket validity [29]. Note that
the simple solutions like CRLs are likely most appropriate,
as the costs of the complex ones would eclipse the costs of
securing ARP. Hence, we expect that simple, low cost solu-
tions will be used in all networks but those with the highest
security requirements. We defer further discussion of the
design tradeoffs of revocation services to the relevant liter-
ature [28, 25].

An important question is how to recover in the presence
of compromise of the LTA. This issue is similar to CA re-
covery in PKI systems. Unlike many PKI deployments, all
TARP clients serviced by a LTA are likely to be under a
single administrative domain. Hence, it is reasonable to ex-
pect that each client can be manually configured with a new
certificate as needed. Larger domains may employ tech-
niques to reduce the impact of LTA compromise, e.g., key-
splitting [23], issue and revoke LTA keys through local cer-
tificate management services, and may use automated man-
agement tools for the distribution of LTA signing keys.

4.4 Attacks against TARP

Networks implementing TARP are vulnerable to two
types of attacks – active host impersonation, and DoS
through ticket flooding. These attacks result from problems
out of the scope of this paper.

4The expiration time field is a 32-bit value. When set to its maximum
value, the ticket will expire in 2038.

An active adversary that can block all communication
been two hosts can impersonate its victim by spoofing its
MAC address and replaying a captured ticket. While this
attack is present in the ARP, with TARP, the adversary can
only impersonate the victim as long as the ticket is valid.
Furthermore, a variant of this attack is present in any solu-
tion that uses caching. Fortunately, this attack can be miti-
gated by using a layer-2 switch with port security, thereby
preventing MAC spoofing.

An adversary can also take advantage of the cost imbal-
ance between generating a TARP reply and processing it.
Exploiting this, a DoS attack can be launched by flooding
the victim with bogus TARP replies. These bogus replies
are trivial to generate, hence allowing the adversary to eas-
ily send thousands of TARP replies at a cost magnitudes
lower than the resulting validation attempt. By flooding a
victim with bogus ICMP requests and corresponding TARP
replies, the adversary successfully circumvents even a state-
ful ARP implementation and consumes the victim’s CPU
resources. As this attack results from ICMP behavior, miti-
gation requires adaptation of that protocol and is outside the
scope of this paper.

5 Implementation

We have implemented TARP on Linux, version 2.6. The
source code is available for download at URL: [22]. Our
implementation has two primary goals: to demonstrate that
TARP indeed works and is compatible with ARP; and more
importantly, to measure the overhead of TARP and compare
it to the overhead of both ARP and S-ARP.

Our implementation makes use of a number of libraries
including libpcap [3] for packet capture, libnet [35] for
packet injection and openSSL [2] for cryptographic oper-
ations. Similar to S-ARP, our implementation has two main
components – a loadable kernel module and a userspace
daemon. The kernel module provides the proper hooks to
disable kernel processing of incoming ARP packets. This
allows the userspace daemon, tarpd, to capture and re-
spond to incoming ARP packets. By implementing most
of the functionality in userspace, we gain better portability
and avoid implementing complex cryptography in the Linux
kernel.

When loaded, the userspace daemon instructs the kernel
module (through the /proc filesystem) to disable kernel pro-
cessing of incoming ARP packets and waits for ARP pack-
ets. When an ARP packet arrives, it is processed according
to its type. If it is a request a TARP reply is sent. Other-
wise, it is a reply, and the source IP address is compared to
white-list entries. If not found, it is treated as a TARP reply
and the attached ticket is verified. If the ticket is valid the
ARP cache is updated using a netlink socket, and the ticket
is cached (in a hash table) to speedup later verifications.

The current implementation of TARP uses RSA with
1024-bit keys. We choose RSA among a number of alterna-
tive signature schemes because of its fast signature verifica-
tion and the availability of highly efficient open source im-
plementations (OpenSSL). We also choose a 1024-bit key
size as this key size is fit-to-purpose, striking a good bal-
ance between security and performance.

Our current version of TARP does not include a DHCP
server and client, instead it includes an administrative tool
to generate the LTA’s key pair and generate tickets. A TARP
aware implantation of a DHCP is left for future work. Such
an implementation is not necessary for the evaluation of
TARP’s performance as the cost of ticket generation and
distribution is amortized across the lifetime of a ticket.

6 Performance Evaluation

In order to understand the cost incurred by TARP,
we performed two types of measurements: the macro-
benchmark indicates the cost seen by an application, the
micro-benchmark evaluates the delay of the primary opera-
tions. For the macro-benchmarks, we compare our protocol
to both ARP and S-ARP.

Our test environment consists of two desktop PCs and
included a laptop as the AKD in the S-ARP measurements.
The desktops were equipped with 2.8GHz Pentium 4 pro-
cessors and 1GB of RAM, while the laptop contained a
1.0GHz Pentium 3 processor and 1GB of RAM. All ma-
chines ran version 2.6 of the Linux Kernel and were con-
nected via a Gigabit Ethernet switch. Finally, because S-
ARP [31] was written for an earlier version of Linux, small
updates were required to compile and run it in our environ-
ment.

6.1 Macro-benchmark

The macro-benchmark observes the round trip time of
the three tested protocols: ARP, S-ARP, and TARP. While
direct measurement in the kernel is possible, we chose an
indirect route, measuring delay at the application level. For
this method, ARP is used as a baseline. The overhead is
calculated by taking the difference between ARP and both
S-ARP and TARP. Since the overhead is the desired result,
the indirect method produces the same results as a direct
measurement. Additionally, measuring delays from the ap-
plication level not only reflects real costs, it provides con-
sistent measurement between the tested protocols.

To observe round trip delay from the application level,
we used a custom ping program that flushed the system’s
ARP cache after each ICMP echo request/reply pair. This
ensured each measurement included the overhead of ad-
dress resolution. We performed five experiments, each con-
sisting of 1000 ICMP echo requests. These experiments

Protocol x (µs) σ (µs) Median (µs) x Overhead (µs)
ARP 1178.59 259.98 1108 N/A

S-ARP 6579.57 415.99 6535 5401.02
TARP 1276.54 262.47 1206 97.95

Table 1. Round-trip delay for ICMP echo requests with caching (1000 requests).

Protocol x (µs) σ (µs) Median (µs) x Overhead (µs)
ARP 1178.59 259.98 1108 N/A

S-ARP 12479.71 571.47 12176 11319.12
TARP 1364.21 253.93 1297 185.62

Table 2. Round-trip delay for ICMP echo requests without caching (1000 requests).

measured the round trip delay for ARP, S-ARP, and TARP
with and without caching.

Table 1 summarizes the mean, standard deviation, and
median of the recorded measurements for the protocols op-
erating with caching turned on (best case scenario). The
overhead was calculated from the mean. As shown, we ob-
served small standard deviations for each proton. This re-
sulted from the largely controlled test environment.

With caching turned on, S-ARP observes an overhead of
approximately 5.4 ms. This is 55 times greater than TARP,
which observes only a 98 µs overhead. The delay incurred
by TARP is essentially unnoticeable, meeting our perfor-
mance sensitivity design requirement.

Table 2 summarizes the worst case performance mea-
surements. Again, the mean was used to calculate the over-
head. When caching is disabled, the delay introduced by
S-ARP doubles, resulting in an overhead of 11 ms. On the
other hand, TARP is two orders of magnitude faster, incur-
ring only 186 µs of overhead. Hence, when signature veri-
fication is required, the delay incurred by TARP is virtually
insignificant.

In summary, our results show that TARP out-performs
S-ARP by at least an order of magnitude in all experiments,
and by as much as two orders of magnitude in some cases.
More importantly, the results indicate TARP incurs a vir-
tually insignificant overhead. As discussed in our solution
criteria, this is vital to the adoption of a secure replacement
for ARP.

6.2 Micro-benchmarks

Operationally breaking down TARP’s overhead provides
insight into how the protocol will perform on different types
of devices. TARP message flow begins by requesting an
address association. Since the request is identical to that
of ARP, no overhead is introduced. When the remote host
replies, a ticket is simply appended to a reply. While this
requires additional system I/O and network traffic, the over-
head is negligible. Upon receiving a TARP reply, a host

must verify the ticket signature. This stage requires an
asymmetric cryptographic operation and should therefore
be investigated. As TARP operates in userspace, cache up-
dates result in additional context switches, slowing down
operation. Determining this cost foretells the gain result-
ing from a kernel based implementation. Finally, TARP
gains significant performance improvements by amortizing
the cost of ticket generation.

Table 3 summarizes the micro-benchmarks. The exper-
imental environment was more controlled than that of the
macro-benchmarks, therefore, even with 100 runs, a small
standard deviation was achieved. The ticket signature ver-
ification consists mainly of a 1024-bit RSA signature ver-
ification. This operation is only required when a received
ticket does not exist in the cache. The average time of 119
µs corresponds directly to the difference between the two
TARP variations measured in the macro-benchmark. The
cache update also reflects the values measured in the macro-
benchmark. If TARP was implemented in kernelspace, 74
µs would be virtually eliminated, removing essentially all
overhead when tickets are cached. Finally, ticket generation
requires 4.5 ms. As the ratio of requests to ticket genera-
tions approaches one, TARP performs similarly to S-ARP.
This is where the real power of TARP is introduced.

7 Discussion

As previously indicated, TARP does not include key and
ticket distribution messages. Instead of creating a new dis-
tribution protocol, DHCP is used. Clients receiving tickets
alongside DHCP replies can readily authenticate the DHCP
reply by verifying the signature on the ticket. However,
this only provides one-way authentication. In some cases,
authenticating clients before distributing DHCP leases and
tickets may be required in order to restrict network access
or avoid attacks such as IP address pool exhaustion.

Methods for securing DHCP exist. Suggestions in-
clude Authentication for DHCP [13], where the protocol

Operation Average (µs) σ

Ticket Signature Verification 119.12 2.00
Update of ARP cache 74.07 7.15

Ticket Generation 4535.36 68.33

Table 3. Execution times in microseconds for
TARP operations (Average of 100 measure-
ments).

has been extended with additional security parameters. Of
course, such systems need a way to tie authentication into
a central system. Many network installations already have
such devices deployed. Applicable backends include RA-
DIUS [33], a common authentication database. How and
when such authentication is the subject of network policy
and available infrastructure, and hence should be dealt with
as operational needs dictate.

While TARP successfully and efficiently prevents cache
poisoning, it is useless without a plan for incremental de-
ployment. Mixed networks result in two scenarios of inter-
est to incremental deployment: 1) an ARP host (Hc) sends
an ARP request to TARP-enabled host (Ht), or 2) a TARP
host (Ht) sends a request to ARP host (Hc).

In scenario 1, when Ht receives the ARP request, it does
not know Hc runs the original protocol, because both re-
quest packet forms are identical. Ht proceeds to return a
TARP reply. Hc receives this reply and parses it correctly.
This occurs, because to an ARP host, the ticket simply ap-
pears as network garbage. Hence, Hc can successfully re-
solve Ht’s MAC address and therefore transmit data.

Scenario 2 occurs when Ht replies to Hc. Hc receives
the TARP request, which again is identical to an ARP re-
quest, and replies to Ht. As Ht cannot verify the address as-
sociation, it ignores the reply. After time elapses, the higher
layer protocols times out. If Ht could be made to accept
this reply, the lookup would complete successfully.

The only barrier keeping the mixed network from func-
tioning is the verification of an ARP reply. A TARP enabled
host cannot simply accept all ARP replies; this invalidates
any security gained from the new protocol. In order to allow
the above scenarios, TARP supports whitelists. Whitelist
entries are one of two types – whitelisted IP ranges or static
ARP mappings.

TARP supports whitelisted IP ranges. This allows a
DHCP server5 to distribute IP addresses from two different
pools – ARP hosts, and TARP hosts. Such a configuration
may be necessary for a transition to TARP as it is needed to
specify precisely which hosts are participating in the proto-
col.

These lists can also contain hardcoded MAC and IP ad-
dress mappings. While currently not implemented, this type

5The DHCP server signs the whitelist with the network private key

of whitelist can be distributed by the network administra-
tor or DHCP server. This allows dynamic configuration of
static ARP entries for known devices that do not support
TARP. Example devices include embedded hosts such as
routers that require vendor support for protocol updates.

Although TARP is designed to interoperate with ARP to
facilitate incremental deployment, hosts running ARP are
not in any way protected by TARP. Moreover, TARP hosts’
cache entries refrencing whitelisted hosts are also subject to
poisoning. In order to achieve the most from TARP all hosts
on the local area network should be migrated to TARP.

8 Conclusions

ARP is essential to the proper operation of IP networks.
However, the lack of authentication in ARP leads to a range
of serious security vulnerabilities. Previous solutions to
ARP have failed to simultaneously address the compatibil-
ity and cost requirements of current networks. We have in-
troduced TARP: a Ticket-based Address Resolution Proto-
col and detailed its implementation. Built as an extension
to ARP, TARP achieves resilience to cache poisoning. We
have shown experimentally that TARP reduces cost by as
much as two orders of magnitude over existing protocols.

ARP vulnerabilities will remain a serious network secu-
rity problem until a viable alternative is accepted. We have
shown TARP to be viable, but much work remains before
our implementation can be broadly used. Extensions in-
cluding support for dynamic environments are requisite. Fi-
nally, we seek further operational experience; a deeper un-
derstanding of the costs and limitations of our approach can
only be gleaned from field testing. We are currently actively
performing such a field test within our parent institution.

9 Acknowledgements

Thanks to Patrick Traynor and Kevin Butler for their sup-
port and invaluable comments on the style and content of
this paper. Thanks also to Dhananjay Bapat for being so
accommodating and allowing us to use his work space and
equipment.

Finally special thanks to Ruth Lootah and Megan Mc-
Daniel for their help and support throughout the process of
this project.

References

[1] Anatomy of an arp poisoning attack. http://www.watchguard
.com/infocenter/editorial/135324.asp, accessed June 2005.

[2] The openssl library. http://www.openssl.org/.
[3] The packet capture library. http://www.tcpdump.org/.
[4] C. Adams and R. Zuccherato. A General, Flex-

ible Approach to Certificate Revocation, June 1998.
http://www.entrust.com/securityzone/whitepapers.htm.

[5] W. Aiello, J. Ioannidis, and P. McDaniel. Origin Authen-
tication in Interdomain Routing. In Proceedings of 10th
ACM Conference on Computer and Communications Secu-
rity, pages 165–178. ACM, October 2003. Washington, DC.

[6] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
RFC 4034, Resource Records for the DNS Security Exten-
sions. Internet Engineering Task Force, March 2005.

[7] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
RFC 4035, Protocol Modifications for the DNS Security Ex-
tensions. Internet Engineering Task Force, March 2005.

[8] S. M. Bellovin. Security problems in the tcp/ip proto-
col suite. Computer Communications Review, 2(19):32–48,
April 1989.

[9] S. M. Bellovin. A look back at ”security problems in the
tcp/ip protocol suite”. In 20th Annual Computer Security
Application Conference (ACSAC), pages 229–249, Decem-
ber 2004.

[10] D. Bruschi, A. Orgnaghi, and E. Rosti. S-arp: a secure ad-
dress resolution protocol. 2003.

[11] Cisco Systems. Catalyst 4500 Series Switch Cisco
IOS Software Configuration Guide, 12.1(19)EW.
http://www.cisco.com/en/US/products/hw/switches/ps4324/
products configuration guide chapter09186a008019d0de.html,
accessed May 2005.

[12] R. Droms. Dynamic host configuration protocol. RFC 2131,
March 1997.

[13] R. Droms and W. Arbaugh. Authentication
for dhcp messages. RFC 3118, June 2001.
http://www.ietf.org/rfc/rfc3118.txt?number=3118.

[14] B. Fleck and J. Dimov. Wireless access points and arp poi-
soning: Wireless vulnerabilities that expose the wired net-
work. http://downloads.securityfocus.com/
library/arppoison.pdf.

[15] J. Galvin. Public Key Distribution with Secure DNS. In
Proceedings of the 6th USENIX Security Symposium, pages
161–170, July 1996.

[16] M. Gouda. and C. Huang. A secure address resolution pro-
tocol. Computer Networks, 41:860–921, January 2003.

[17] C. A. Gunter and T. Jim. Generalized certificate revoca-
tion. In POPL ’00: Proceedings of the 27th ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pages 316–329, New York, NY, USA, 2000. ACM
Press.

[18] R. Housley, W. Ford, W. Polk, and D. Solo. RFC 2459, In-
ternet X.509 Public Key Infrastructure Certificate and CRL
Profile. Internet Engineering Task Force, January 1999.

[19] J. Kempf, C. Gentry, and A. Silverberg. Secur-
ing ipv6 neighbor discovery using address based keys
(abks). http://www.watersprings.org/pub/id/draft-kempf-
abk-nd-00.txt. draft-kempf-ipng-secure-nd-00.txt work in
progress.

[20] P. Kocher. On Certificate Revocation and Validation. In
R. Hirschfeld, editor, Financial Cryptography FC ’98, vol-
ume 1465, pages 172–177, Anguilla, British West Indies,
February 1998. Springer.

[21] L. B. N. L. (LBNL). Arpwatch: Ethernet monitor program.
http://www-nrg.ee.lbl.gov, accessed May 2005.

[22] W. Lootah. Tarp source code. http://siis.cse.psu.edu/
tools.html.

[23] M. Malkin, T. D. Wu, and D. Boneh. Experimenting with
shared generation of rsa keys. In Proceedings of Network
and Distributed Systems Security 1999. Internet Society,
February 1999. San Diego, CA.

[24] P. McDaniel and S. Jamin. Windowed Certificate Revoca-
tion. In Proceedings of IEEE INFOCOM 2000, pages 1406–
1414. IEEE, March 2000. Tel Aviv, Israel.

[25] P. McDaniel and A. Rubin. A Response to ‘Can We Elimi-
nate Certificate Revocation Lists?’. In Proceedings of Finan-
cial Cryptography 2000. International Financial Cryptogra-
phy Association (IFCA), February 2000. Anguilla, British
West Indies.

[26] S. Micali. Efficient Certificate Revocation. Technical Report
Technical Memo MIT/LCS/TM-542b, Massachusetts Insti-
tute of Technology, 1996.

[27] D. L. Mills. RFC 1301, network time protocol (version 3)
specification, implementation. Internet Engineering Task
Force, March 1992.

[28] M. Myers. Revocation: Options and Challenges. In
R. Hirschfeld, editor, Financial Cryptography FC ’98, vol-
ume 1465, pages 165–171, Anguilla, British West Indies,
February 1998. Springer.

[29] M. Myers, R. Ankney, A. Malpani, S. Galperin, and
C. Adams. RFC 2560, X.509 Internet Public Key Infras-
tructure Online Certificate Status Protocol - OCSP. Internet
Engineering Task Force, June 1999.

[30] M. Noar and K. Nassim. Certificate Revocation and Cer-
tificate Update. In Proceedings of the 7th USENIX Security
Symposium, pages 217–228, January 1998.

[31] A. Ornaghi. S-arp: a secure address resolution proto-
col. http://security.dico.unimi.it/research.it.html#sarpd, ac-
cessed May 2005.

[32] D. C. Plummer. An ethernet address resolution protocol
or converting network protocol addresses to 48.bit ethernet
address for tansmission on ethernet hardware. RFC 826,
November 1982.

[33] C. Rigney, S. Willens, A. Rubens, and W. Simpson. RFC
2865, remote authentication dial in user service (RADIUS).
Internet Engineering Task Force, June 2000.

[34] R. Rivest and B. Lampson. SDSI A Simple Dis-
tributed Security Infrastructure, October 1996.
http://theory.lcs.mit.edu/r̃ivest/sdsi11.html.

[35] M. Schiffman. The libnet packet construction library.
http://www.packetfactory.net/libnet/.

[36] K. Seo, C. Lynn, and S. Kent. Public-Key Infrastructure for
the Secure Border Gateway Protocol (S-BGP). In Proceed-
ings of DARPA Information Survivability Conference and
Exposition II. IEEE, June 2001.

[37] D. Song. dsniff: a collection of tools for network audit-
ing and penetration testing. http://www.monkey.org/ dug-
song/dsniff, accessed May 2005.

[38] M. V. Tripunitara and P. Dutta. A middle approach to asyn-
chronous and backward compatiable detection and preven-
tion of arp cache poisoning. pages 303–309, 1999.

[39] T. Ylonen. SSH - Secure Login Connections Over the Inter-
net. In Proceedings of 6th USENIX UNIX Security Sympo-
sium, pages 37–42. USENIX Association, June 1996. San
Jose, CA.

