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Abstract 

In stand-alone databases, the two functions of ordering the 
transaction commits and making the effects of transactions 
durable are generally performed in one action, namely in the 
writing of the commit record to disk. In replicated database 
systems where all replicas agree on the commit order of update 
transactions, these two functions are naturally separated; 
specifically, the replication middleware determines the global 
commit order, while database replicas make transactions 
durable. The contribution of this paper is to demonstrate that the 
traditional separation of commit ordering from durability in 
replicated designs forces update transactions to be made durable 
serially to disk, a potentially significant scalability bottleneck. 
Two solutions are possible: (1) keep durability in the database 
and pass the global commit order from the replication 
middleware to the database, or (2) move durability from the 
database to the replication middleware. We show that regardless 
of the method, uniting ordering and durability greatly improves 
system scalability. 

We implement two example scalable replicated database 
systems called Tashkent-MW and Tashkent-API to show the 
benefits of joining global commit order and durability. 
Tashkent-MW is a pure middleware solution that combines 
ordering and durability in the middleware and treats an 
unmodified database as a black box. Tashkent-MW represents a 
high-performance replication solution suitable for closed-
source, off-the-shelf standalone databases. In Tashkent-API, we 
modify the open source PostgreSQL database API so the 
middleware can specify the commit order, combining ordering 
and durability inside the database. We compare both Tashkent 
systems to a similar replicated system, called Base, in which 
ordering and durability remain separated. Under high update 
transaction loads at 15 replicas, we show both Tashkent systems 
greatly improve scalability and outperform Base by factors of 5 
and 3 times, respectively, in throughput with lower response 
times. 

Categories and Subject Descriptors 
H.2.4 Systems – distributed databases, concurrency. 

General Terms 

Measurement, Performance, Design, Reliability. 

Keywords 
Database replication, Generalized snapshot isolation. 

1 Introduction 

Database replication is a cost-effective technique to improve 
performance and to enhance availability for some applications. 
High performance replication designs distribute transactions 
across many replicas such that all replicas agree on the commit 
order of update transactions for consistency. 

The primary contribution of this paper is to reveal a dependency 
between durability and commit ordering of update transactions 
in such designs. In particular, we show that relying on an off-
the-shelf database to make transactions durable (i.e., write their 
effects to disk) and commit them in a consistent global order 
requires the synchronous disk writes to be serialized, a 
significant scalability bottleneck. 

We show that the root cause is the separation in replicated 
systems of commit ordering from the expensive synchronous 
disk writes that ensure durability. In standalone databases, these 
two functions are together, permitting group-commits to 
minimize the number of synchronous writes to disk, which is an 
important performance optimization. 

However, in replicated database systems ordering is determined 
in the replication middleware – rather than at the database – to 
ensure a consistent global order. Since it is customary to only 
move the minimal required functionality to the middleware, it 
has been natural to leave durability in the database, leading to 
the separation of durability and ordering and to scalability 
problems. The solution is to unite durability and ordering in 
replicated systems. 

We propose two approaches to unite these functions. The first 
approach is to move durability to the middleware layer where 
ordering is determined. It is attractive to make this approach a 
pure middleware solution so that it can be used with off-the-
shelf databases. This approach is appropriate for open source 
and closed source databases and for clustering different 
databases, making it particularly suitable for third-party 
software providers supplying replication infrastructures. The 
second approach is to extend the database API so the replication 
middleware can specify a commit order for update transactions, 
combining durability and ordering in the database. An open 
source database, such as PostgreSQL, can be modified 
appropriately. 

We implement instances of both approaches, called Tashkent-
MW and Tashkent-API, respectively, and compare them to an 
instance of a traditional replication system, called Base, where 
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ordering and durability remain separated. All systems use 
generalized snapshot isolation (GSI) [3] for concurrency 
control. They are identical in all other respects. We use 
PostgreSQL [19], a well-known open source database to 
compare the performance systems. 

In our experimental results, we show both Tashkent systems 
greatly improve scalability under high update transaction loads, 
and outperform Base by factors of five and three times, 
respectively, in throughput at 15 replicas and with lower 
response times. 

The rest of the paper is structured as follows. Section 2 gives 
the necessary background on generalized snapshot isolation. In 
Section 3 we detail the issue of separating durability from 
ordering and justify uniting the two. In Section 4 we present the 
design of the Base replication system. In Section 5 we detail the 
changes necessary to implement Tashkent-MW and Tashkent-
API. In Section 6 we discuss fault-tolerance of systems. We 
discuss the design of the replication middleware in Section 7, 
and its interface to PostgreSQL in Section 8. In Section 9 we 
experimentally compare the three systems and analyze their 
relative performance. Section 10 contrasts related work to this 
research. Finally, in Section 11 we summarize the main 
conclusions. 

2 Background 

Snapshot Isolation (SI) [1] is a concurrency control algorithm 
for centralized multi-version databases. In snapshot isolation, 
when a transaction begins it receives a view, called a snapshot, 
of the database for the duration of the transaction. After the 
snapshot is assigned it is unaffected by concurrently running 
transactions. A read-only transaction reads from the snapshot 
and can always commit under SI. An update transaction T reads 
from and writes to its snapshot, and can commit if it has no 
write-write conflict with any committed update transaction that 
ran concurrently with it.  

Many database vendors use SI, e.g., Oracle, PostgreSQL, 
Microsoft SQL Server, InterBase [16, 1, 7, 10]. SI is weaker 
than serializability but in practice most applications run 
serializably under SI, including the most widely-used database 
benchmarks TPC-B, TPC-C, and TPC-W. SI has attractive 
performance properties. Most notably, read-only transactions 
never block or abort— they do not need read-locks, and they 
never cause update transactions to block or abort. This property 
is important for workloads dominated by read-only transactions, 
such as those resulting from dynamic content Web servers.  

Generalized Snapshot Isolation (GSI) [3] extends SI to 
replicated databases (replicas) such that the performance 
properties of SI in a centralized setting are maintained in a 
replicated setting, including the property that read-only 
transactions do not block or abort, and they do not cause update 
transactions to block or abort. In addition, workloads that are 
serializable under SI are also serializable under GSI [3]. Here 
we summarize the essential details of GSI because it is the 
concurrency control model used in this paper. We give a more 
formal description of GSI in Section 7. 

Informally, a replica using GSI works as follows. When a 
transaction starts, the replica assigns its latest snapshot to the 
transaction. All transaction read and write operations are 
executed locally on the replica against the assigned snapshot. At 
commit, the replica extracts the transaction’s modifications to 
the database into a writeset. If the writeset is empty (i.e., it is a 
read-only transaction), the transaction commits immediately. 

Otherwise, a certification check is performed to detect write-
write conflicts among update transactions in the system. If no 
conflict is found, then the transaction commits, else the 
transaction aborts. 

The certifier performs certification and assigns a global total 
order to the commits of update transactions. Since committing 
an update transaction creates a new version (snapshot) of the 
database, the total order defines the sequence of snapshots the 
database replicas go through. Writesets are propagated to all 
other replicas to update their state. We refer to writesets of 
remote transactions during the propagation phase as remote 
writesets or updatesets. 

3 How Durability and Ordering Affect 
Scalability 

In the GSI algorithm, all replicas commit update transactions in 
a global order. However, there is a somewhat surprising 
dependency between maintaining the global commit order and 
how the durability function must write state to disk. In this 
section, we discuss an example of the problem, its implications 
on performance, and the underlying causes.  

3.1 Example 
Here we contrast a centralized versus a replicated system to 
show how separating durability and commit ordering in a 
replicated system forces serializing the commits which limits 
scalability in a replicated system.  

Centralized SI database. The initial case is a centralized 
system. If clients concurrently submit two update transactions 
T4 and T9 – whose writesets (modifications), W4 and W9, do 
not conflict – to a centralized SI database, the database can 
commit them in any order: T4 then T9, or T9 then T4. In 
addition, each commit corresponds to a disk write, a disk write 
for W4 and another for W9 to guarantee durability. However, 
the database IO subsystem can group W4 and W9 into a single 
disk write, which greatly improves performance, i.e., one disk 
write for both T4 and T9. 

One GSI replica. Next, consider a replicated GSI database 
consisting of one replica and one certifier, both at version zero. 
If clients submit T4 and T9 concurrently to the replica, it 
executes them and sends their writesets, W4 and W9, to the 
certifier. The certifier checks the writesets, determines that 
there are no conflicts, and assigns them an order. Let us assume 
that the certifier orders W4 at version 1 and W9 at version 2, 
and sends these results back to the replica. 

Upon receiving the responses from the certifier to commit the 
writesets, the replica must now commit T4 first to reach version 
1, then commit T9 to reach version 2, the sequence that the 
certifier determined. Under GSI, the replica cannot change this 
order; otherwise, a new transaction may receive a snapshot 
containing the effects of W9 but not W4, a snapshot that never 
existed globally (i.e., at the certifier). A typical database offers 
no mechanism to specify a commit order externally, but yet the 
middleware must not allow the replica to swap the order in 
which the commits of T4 and T9 occur. Without an efficient 
low-level external mechanism to enforce a particular commit 
order, the middleware must submit each commit serially, 
waiting for each commit (which includes a disk write) to 
complete. Thus, two disk writes, one for T4 and another for T9, 
are required. This serializes a costly component of executing 
update transactions at the replica. 



 3

Multiple GSI replicas. We continue the example with a 
replicated GSI system having N replicas. One replica receives 
T4 and T9 and then sends W4 and W9 to the certifier. The 
certifier receives the two writesets, and receives writesets from 
other replicas as well, and creates the following total order: W1, 
W2, W3, W4, W5, W6, W7, W8, W9. Under GSI, the replica 
must observe this total order. Not only must the replica commit 
transaction W4 before W9, but W1, W2, W3 must commit before 
W4, and W5, W6, W7, W8 before W9. The replica version 
follows the sequence: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, which would 
naively imply 9 disk writes, but this can be improved. 

Grouping remote writesets. We can batch the writesets of 
several remote transactions by combining W1, W2, W3 into one 
transaction T1_2_3 with writeset (updateset) W1_2_3 and 
similarly another transaction T5_6_7_8 with writeset 
W5_6_7_8. The replica version follows this sequence: 0, 3, 4, 8, 
9, which requires 4 disk writes (2*M disk writes in general for 
M local update transactions at each replica). 

It is important to note that the middleware is outside the 
database and cannot submit T1_2_3, T4, T5_6_7_8, T9 
concurrently to a standard database to force committing T1_2_3 
first, T4 second, T5_5_7_8 third, then finally T9, since 
databases do not provide such low level mechanisms to the 
client interface. Allowing the database to commit them in any 
order would require the middleware to block the start of new 
transactions (including read-only transactions), lest they 
observe an inconsistent snapshot (e.g., T9 commits internally 
before T4). This approach has a major performance drawback 
as read-only transactions would block waiting for other 
transactions to finish, voiding the main performance benefit of 
GSI. Another reason for following the global order is that under 
certain conditions changing the commit order can result in the 
final state of the database not being the same. For example, if 
T1_2_3 and T5_6_7_8 both modify a common database item, 
then the order in which they commit is significant. Therefore, 
we propose two possible solutions for uniting ordering and 
durability. 

Solution 1: Move durability to the middleware. Another 
solution is to have the middleware, which decides the ordering, 
be responsible for making durable any modifications to the 
database. For example, the middleware can batch all available 
requests at certification and ensure they are made persistent in 
the proper order, e.g., batch all nine writesets of the prior 
example into a single disk write. Furthermore, synchronous 
writes can be disabled in the replicas, so commits are essentially 
as fast as in-memory actions and serializing them is not a 
performance issue.  

Solution 2: Pass the ordering information to the database. 
For example, if the database API interface is extended such that 
the middleware specifies the commit order, then all writesets 
could be submitted to the database concurrently.  

The key insight is that in both solutions durability is united with 
ordering. Regardless of whether the two are united in the 
replication middleware as a pure middleware solution or in the 
database via an extended API, as we show in the results both 
solutions permit IO subsystem optimizations that greatly 
improve throughput. 

For this paper, the two example solutions assume that the 
standalone database (1) supports the SI concurrency control 
model, (2) has the ability to capture and extract writesets of 
update transactions (further elaborated on in Section 8), (3) has 
the ability to enable/disable synchronous writes to disk, and (4) 
uses write-ahead logging (WAL). 

4 Architecture and Design of Base 

Here we describe a replicated database design, called Base, 
representing a traditional solution in which the middleware 
performs global ordering but relies on the database replicas for 
durability. In Section 5, we derive from Base two systems, 
Tashkent-MW and Tashkent-API, that combine ordering and 
durability. Recovery is an important aspect of any database 
system; we discuss fault tolerance and recovery for each of the 
three replicated designs in Section 6. 

4.1 Architecture 
Base is a replicated database system. It uses GSI and consists of 
two main logical components both of which are replicated: (1) 
database replica and (2) certifier. When a replica receives a 
read-only transaction, the replica executes it entirely locally. 
When a replica receives an update transaction, it executes it 
locally - except the commit operation, which requires global 
certification. Replicas communicate only with the certifier 
component, not directly with each other. The certifier validates 
(certifies) update transactions from all replicas and orders them.  

The design described is a pure middleware solution since no 
modification to the database source code is required; thus, each 
database replica can be an off-the-shelf standalone system. 
Attached to each replica is a transparent proxy that intercepts 
database requests. The proxy appears as the database to clients, 
and appears as clients to the database. We refer to the proxies 
and certifiers as the replication middleware. 

Figure 1 - Architecture of Base 

Figure 1 shows the architecture of the Base system. The two 
main components, database replica and certifier, are replicated 
asymmetrically at different replication degrees. Database 
replicas are replicated mainly for performance, whereas the 
certifier is replicated mainly for availability. The certifier 
component could be implemented via an atomic broadcast 
mechanism incorporated into the proxy at every replica. 
However, for this study we simply assume a separate certifier 
component, which itself can be replicated, though our 
conclusions apply to other configurations.  

For update propagation, we use writesets rather than the 
original SQL text of update transactions. Although for some 
transactions propagating the original SQL text may be shorter in 
size than the writeset, it is generally more expensive to re-
execute the SQL text at the certifier and then at each replica 
when propagating the effects of the transaction. 

4.2 Processing Update Transactions  
Processing read-only transactions is straightforward. Each read-
only transaction is assigned a snapshot and it reads from its 
snapshot. Next, we outline the mains steps of processing an 
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update transaction using the GSI algorithm (see [3] for the 
formal specification) as used in Base. The pseudo code and its 
implementation are in Sections 7 and 8. We use the following 
terminology. We use version to count database snapshots. The 
version at a replica database is called replica_version. The 
database starts at version zero, i.e., at the initial state 
replica_version=0. When an update transaction commits, 
replica_version is incremented. Each transaction has two 
numbers, its version at start, tx_start_version, and the 
version created at its commit, tx_commit_version 

(tx_commit_version is valid for only update transactions). 
At a replica, updatesets are the writesets of committed update 
transactions from other remote replicas that must be applied 
locally to bring the replica’s state up-to-date before the local 
transaction can commit.  

The GSI algorithm has two parts: the actions at replicas and 
actions at certifiers. We first present an outline of the actions 
here, and then present the pseudo code in Section 7. 

Writeset intersection. At the point of an update transaction 
commit, the proxy at the replica makes a request for 
certification to the certifier. The certifier performs writeset 
intersection, a fast main memory operation that compares table 
and field identifiers for matches against recent writesets to 
detect write-write conflicts. For the committing transaction Tc 
with writeset Wc, the certifier compares Wc to the set of 
writesets committed at versions only more recent (greater) than 
Tc.tx_start_version. Successfully certified writesets (i.e., 
with no conflicts) are recorded in a persistent log thus creating a 
global ordering. The log is necessary because we use the crash-
recovery model for the middleware (and for the databases too). 
The state of any replica is always a consistent prefix of the 
certifier’s log. Certification is lightweight: writeset intersection 
is a quick operation and writing to the persistent log can be 
done very efficiently. 

Durability. In the Base design, the durability function is 
performed in the database. Since the certifier in the middleware 
determines the order of commits, the middleware commits 
update transactions serially at each database to ensure the same 
commit order is followed. In the results we show that this 
serialization is a scalability bottleneck, one which we address 
via Tashkent-MW and Tashkent-API.  

Responding to replicas. The certifier logs the writeset before it 
responds to the replica with the (1) result of the requested 
certification test, (2) along with any updatesets for the 
intervening update transactions at other remote replicas, and (3) 
the version at which the transaction commits (if the certification 
test succeeds). The middleware proxy at the replica applies the 
updatesets to the database before it commits the certified update 
transaction. 

5 Tashkent-MW and Tashkent-API 

Here we describe the modifications to the Base system needed 
to implement Tashkent-MW and then the changes to implement 
Tashkent-API to combine ordering and durability. 

5.1 Tashkent-MW 
To unite durability with ordering in the middleware, 
synchronous writes are disabled at the database replicas and the 
middleware logs the database modifications (i.e., writesets) for 
durability. However, the certifier already logs this information 
via its persistent log – this log is used for a different purpose: to 
allow certifier recovery. Because enabling/disabling 

synchronous writes is a standard feature in many databases, it is 
relatively simple to transform the Base design into Tashkent-
MW.  Furthermore, since Base is a pure middleware solution, 
so then is Tashkent-MW. The commit operations at each 
database replica are serial, but they are fast in-memory 
operations. Therefore, system throughput increases and system 
scalability is greatly improved because the durability function is 
performed at the certifier which can efficiently group the 
writesets into a minimal number of synchronous writes. 
However, there is a cost to moving durability out of the 
databases and it appears in the recovery procedure. We address 
this in the next section. 

5.2 Tashkent-API 
To unite ordering with durability in the database, the API 
available to the middleware is extended so the commit order of 
update transactions can be specified. The change is to the SQL 
“COMMIT” command to permit an optional integer parameter 
giving the sequence number to the commit (e.g., COMMIT 9 to 
commit current transaction at version 9). Since we change the 
interface of the database, Tashkent-API is not a pure replication 
middleware and the source code of the database must be 
available. 

The flow of actions is the following. When a client commits a 
transaction, the commit is intercepted by the middleware. As in 
Base, the middleware extracts the writeset of the transaction 
and sends it for certification. Here, upon receipt of a commit 
decision from the certifier, the Tashkent-API middleware 
forwards to the database both the commit command and the 
version number returned from the certifier. Similarly, 
updatesets are applied in separate transactions with their 
appropriate commit sequence numbers. 

Next we describe the changes to the database to follow the 
commit order and we use PostgreSQL. Inside the database, 
commit ordering is enforced as follows. Modifications of a 
transaction are visible after (1) the commit record is written to 
disk and (2) the transaction is announced as committed. Thus, 
to control the sequence of commits we need only control the 
order in which transactions are announced as committed. We 
modify the PostgreSQL in Tashkent-API so that all pending 
commit operations wait upon a semaphore after writing their 
commit records to disk, i.e., we control only the second step, 
when a transaction is “announced” as committed. The 
semaphore is initialized to 0 at system start and incremented 
after each commit. Each commit requests the semaphore with a 
count matching the specified ordering sequence and blocks until 
the semaphore count progresses sufficiently. This method 
requires minimal changes to PostgreSQL (20 lines of source 
code). 

The database may write the commit records to disk in an order 
different from the order in which transactions are announced as 
committed. This behavior is identical to the original standalone 
PostgreSQL system; therefore, database recovery is not affected 
by this change. 

This extended API is a simple interface yet powerful; it should 
be restricted to the replication middleware only. Normal clients 
are unaware of system wide commit ordering. If the interface is 
abused (e.g., issuing COMMIT 9, without ever providing 
COMMIT 1-8), the database may deadlock, potentially aborting 
the committing transaction to resolve the deadlock. 
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5.2.1 Constraints under Tashkent-API 
With the new API, the replication middleware can submit 
multiple commit operations concurrently since ordering is 
enforced inside the database (after writing the commit record to 
disk). This concurrent submission of commits is the source of 
performance improvement for Tashkent-API since the database 
can group the writing of several commit records. However, it is 
not always possible for the middleware to submit transaction 
commits concurrently, leading to serializing some commit 
operations and subsequently reducing the performance gain. 
This section describes the condition for which a commit must 
be serialized and how to detect if this condition arises. 

The condition may arise when committing two different local 
update transactions. Should their accompanying two updatesets 
modify a shared element then the middleware submitting these 
commits concurrently will generate an “artificial” write-write 
conflict among local transactions in the database replica, 
inhibiting the transactions from committing. The root of the 
problem is that the “artificially conflicting” updatesets, which 
were generated by remote transactions that did not run 
concurrently originally, are now applied by concurrent local 
transactions to group their commit records. We illustrate this 
subtle but important point, which may appear in Tashkent-API, 
with a concrete example and present a simple detection scheme. 

 

Figure 1: Example of concurrent commits 
Figure 1 shows two local concurrent transactions, T44 and T46 at 
a replica and two updatesets, U43 and U45, that are applied as 
local transactions, T43 and T45. The transactions are labeled with 
the version at which they commit globally. For example, T44 
starts from a snapshot with version 30 and its writeset W44 
commits as version 44 globally, but before it can commit, 
updateset U43  is received from the certifier and applied to the 
replica as local transaction T43.  

The proxy can safely submit the commits of transactions T44 
and T46 concurrently at the database along with T43 and T45 if 
none of the updatesets (U43 and U45) conflict. If there is no 
conflict, then the database can write the commit records of T43, 
T44, T45, and T46 in one disk write. This is the desirable 
behavior. 

If an artificial conflict exists between U43 and U45, e.g., U43 sets 
x=17 and U45  sets x=39, then this artificial conflict is detected 
and U45 will be serialized waiting for U43. Therefore, If U43 and 
U45 have an artificial conflict, then the proxy commits T43 and 
T44 concurrently, waits for the acknowledgement from the 
database, commit T45 and T46 concurrently. The best the 
database can do is to group the commits of T43 and T44 into one 
disk write and the commits of T45 and T46 into a second disk 
write. Therefore, artificial conflicts decrease opportunities to 
group commits. 

The proxy in Tashkent-API needs to know if it is safe to apply 
an updateset concurrently with previous updatesets. We adopt a 
safe (and conservative) solution to detect any potential artificial 
conflicts. The certifier performs extra work to return a hint, 
which is extra information on the updateset returned in the 
response to a certification request. When the certifier receives a 
certification request, it verifies the received writeset from the 
current version back to its start version. We extend this 
verification to updatesets as well; the certifier verifies all 
updatesets to be returned back to the transaction’s start version. 
The hint, which the certifier returns in its response, is the 
version back to which the updatesets have been successfully 
verified. 

For example, to certify T46, W46 is certified back to version 42 
and updateset U45 is verified back to version 42 as well. If an 
updateset has already been verified that far back, then it will not 
conflict with another updateset: U45 will not have an artificial 
conflict with U43. While this method is conservative, it is simple 
and requires only information readily available in the 
transaction itself (its start version). We discuss other conflict 
types (e.g., between an updateset and a writeset) in Section 8. 

If such artificial conflicts between updatesets are frequent then 
in the worst-case all commits are forced to be serialized and 
Tashkent-API degrades gracefully to the performance of Base. 
In addition, the overhead of the additional verification checks at 
the certifier is minimal since we record for each writeset the 
point to where it has been (further) certified and avoid repeated 
checks for responses to other replicas. 

6 System Fault-Tolerance 

We use the crash-recovery model— a node may crash and 
subsequently recover an unbounded number of times. Safety is 
always guaranteed. If any number of replica or certifier nodes 
fail, no transaction is lost: all effects of every committed update 
transaction are durable in the system. Progress depends on the 
number of failures. Read-only transactions can be processed if 
at least one replica is up. Update transactions can be processed 
if a majority of certifier nodes are up and at least one replica is 
up. Next, we discuss how replicas recover, and how the 
certifiers achieve fault-tolerance and recover. 

6.1 Replica Recovery for Tashkent-MW 
Moving durability outside the database may interfere with the 
database recovery subsystem. Informally, turning off durability 
in a database should not affect physical data integrity (correct 
data pages on disk). In some databases, however, when 
durability is disabled, physical data integrity may be violated as 
well, producing corrupt data pages in case of database crash. In 
this subsection we explain this further and outline a middleware 
recovery scheme. 

Modern databases use write-ahead logging (WAL), which 
improves their IO performance. For guaranteeing physical data 
integrity, a database can write a dirty data page only if the 
corresponding record in WAL is stable on disk. Therefore, if 
the database crashes while writing a dirty data page and the data 
page becomes corrupt, then the page can still be recovered 
using the undo/redo information in WAL. 

Thus, WAL is written to disk for two reasons: (1) to commit 
update transactions and make their effects durable (i.e., for 
durability), and (2) to allow dirty data pages to be safely written 
to disk without violating integrity (i.e., for physical data 
integrity). 
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There are two cases. First, most databases offer the option of 
“disabling all WAL synchronous writes”, voiding both 
durability and physical data integrity guarantees— that is if the 
database crashes, some committed update transactions may be 
lost and a data page may be corrupt. When we deploy Tashkent-
MW on such databases, we disable all WAL synchronous 
writes for performance, which voids physical data integrity (but 
durability is still guaranteed in the middleware). Therefore, to 
guarantee physical data integrity, the Tashkent-MW 
middleware periodically asks the database to make a copy, with 
the middleware recording the database version at the point of its 
request. Most databases have direct support for taking such a 
copy even while the database is normally processing 
transactions, especially in snapshot isolated databases because a 
database copy is logically equivalent to a database snapshot. 

The Tashkent-MW middleware maintains two complete copies 
of the database. If the database crashes, the middleware restarts 
the database with the last copy, or the second to last copy (in 
the case where the database crashed while dumping the last 
copy). Next, the middleware updates the state of the database 
by applying all updatesets that have occurred since the version 
of the copy used for recovery. We use this alternative with 
PostgreSQL because it uses write-ahead logging and can either 
enable or disable all WAL synchronous writes. 

The second case is where databases offer the option of “enable 
WAL synchronous writes, but disable WAL synchronous writes 
on commits of update transactions”, which guarantees data 
integrity but does not guarantee durability— that is if the 
database crashes, it can recover to a previous committed state 
but some update transactions that committed after the last WAL 
synchronous write may be lost. If the database offers this 
feature, Tashkent does not need to take database copies; the 
database uses its recovery mechanism and then the middleware 
applies the necessary updatesets to bring the database up-to-
date. 

6.2 Replica Recovery for Base and 
Tashkent-API 

In both Base and Tashkent-API, the database uses its standard 
recovery scheme, redoing/undoing transactions in the database 
log as necessary. Next, the middleware proxy needs to re-apply 
update transactions whose commits were forwarded to the 
database but were not acknowledged. In Base, this is at most 
one transaction because update transactions commit serially. In 
Tashkent-API, this is at most the set of update transactions 
whose commit operations were concurrent at the time of the 
crash. 

Reapplying update transactions using their writesets in the 
global order is always safe. Therefore, if these update 
transactions are not known (e.g., the proxy crashes with the 
database), the proxy can obtain them from the certifier’s log. At 
the end of this step, the proxy knows the version of the 
database. After the database recovers and proxy updates the 
database, the replica resumes normal operations. 

6.3 Certifier Replication and Recovery 
The certifier is identical in all three systems. The certifier state 
is replicated for availability. We replicate the state of the 
certifier on a small set of nodes using Paxos [13]. Here we 
briefly describe how the certifier state is replicated and how 
recovery works. The replication algorithm uses a leader. The 
leader is elected among the certifiers, and is responsible for 
receiving all certification requests. 

Normal Case. When the leader receives certification requests, 
it performs normal GSI certification and selects which 
transactions may commit. Then, it sends the new state (i.e., the 
log records containing writesets of the selected transactions) to 
all certifiers including itself. All certifiers write the new state to 
disk and reply to the leader. Upon reception of replies from a 
majority of certifiers, the leader declares those transactions as 
committed.  

On Failure. When a certifier crashes, a new leader is elected (if 
necessary) and certification continues making progress 
whenever a majority of certifiers are up.  

On Recovery. When a certifier recovers from a crash, it 
requests a state transfer from another up certifier to update its 
state, participates in electing a new leader (if necessary), and 
logs certification requests to disk. 

7 Implementation of Replication 
Middleware 

In this section we discuss the implementation of the replication 
middleware which uses the GSI algorithm and list its pseudo 
code. In the next section we discuss the mechanisms used by 
the proxy to interface to PostgreSQL. 

7.1 Certifier 
The certifier implements certification of the GSI algorithm. The 
certifier prevents write-write conflicts and orders transaction 
commits. When the certifier receives a request to certify 
transaction T, it runs the certification procedure which checks 
for write-write conflicts between T.writeset and the writesets 
of other committed update transactions that ran concurrently 
with T. Certification is a stateful service that maintains (1) a 
persistent LOG containing tuples of (writeset, 
tx_commit_version) for all committed update transactions 
and (2) system_version. Certification has two inputs 
(writeset, tx_start_version) and three outputs 
(updatesets, certification result, tx_commit_version). The 
pseudo code is the following: 

On a certification request for (T.tx_start_version, 
T.writeset):  
1. The input T.writeset is tested for intersection against entries in 

LOG whose tx_commit_version > 
T.tx_start_version. An intersection occurs if the two 
writesets overlap (signaling a write-write conflict).  

2. IF there is no intersection,  
THEN  { 

• decision ← “commit”,  
• increment system_version,  
• T.tx_commit_version ← system_version, 
• append (T.writeset, T.tx_commit_version) to 

persistent LOG for crash-recovery } 
ELSE   decision ← “abort”. 

3. The output of the procedure contains: 
• the writesets which replica did not receive between 

tx_start_version and 
T.tx_commit_version,  

• decision (either “commit” or “abort”), 
• T.tx_commit_version.  

 

The certifier is implemented as a multi-threaded server in C 
with worker threads to receive and process certification 
requests and send responses. The certifier has a single writer 
thread for writing the certifier log to the disk. The key to high 
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performance is the single writer thread that batches all 
outstanding writesets certified by the worker threads and 
commits the batch to disk via a single fsync call. 

7.2 Transparent Proxy 
We use a proxy in front of each database to intercept incoming 
database requests. The proxy tracks the database version 
replica_version, maintains a small amount of state for each 
active transaction, invokes certification, and applies the 
updatesets. We begin by listing the pseudo code of the GSI 
algorithm at the replica. Then, show how some of the steps are 
implemented in the proxy.  The steps a replica takes to process 
a transaction T are the following: 

A- On T begin:  
1. T receives a snapshot of the database,  
2. T.tx_start_version ← replica_version. 

B- On T read and update operations:  
1. Read and update operations are executed on T’s snapshot. 

C- On T commit:  
1. T.writeset is extracted and examined.  
2. IF  T.writeset is empty (i.e., T is read-only),  

THEN  T commits,  
ELSE  invoke certification ( T.tx_start_version, 
T.writeset ) 

3. Certification returns three outputs:  
(a) updatesets,  
(b) “commit” or “abort”,  
(c) T.tx_commit_version. 

4. Replica applies the updatesets (a), which are the effects of update 
transactions (their writesets) from other replicas in the system. 

5. IF  the second output (b) is “commit”,  
THEN  { T commits, and  
replica_version ← T.tx_commit_version (c)}. 
ELSE  T aborts.  

 

The labels refer to the corresponding parts of the pseudo code. 

[A1] Intercepting BEGIN. When the proxy intercepts 
“BEGIN”, which signals a new transaction, it creates a new 
record (tx_start_version, tx_commit_version), and 
assigns tx_start_version = replica_version. The 
proxy forwards “BEGIN” to the database. 

[C2] Intercepting COMMIT. When the proxy intercepts 
“COMMIT” for transaction T, it extracts the writeset of the 
transaction. If the writeset is empty (i.e., a read-only 
transaction), “COMMIT” is forwarded to the database; else the 
proxy invokes certification by sending T.writeset, 
T.tx_start_version to the certifier, and waits for the output 
from the certifier. 

[C3] Processing certifier output. The proxy receives 
updatesets, the certification decision and 
T.tx_commit_version.  

[C4] Updatesets. Updatesets are first stored in a memory-
mapped file, called proxy_log, a new transaction is started 
containing the updatesets, the transaction is sent to the database, 
and then the proxy waits for the reply. The database executes 
the transaction, applies the updates, and sends the commit to the 
proxy.  

[C5] Finalizing the COMMIT. If the certifier decision is 
“abort” the proxy forwards “ABORT” to the database, aborting 
transaction T. On the other hand, if the certifier decision is 
“commit”, the proxy forwards “COMMIT” to the database, 
waits for its reply. The database commits the transaction. The 

proxy updates replica_version = 

T.tx_commit_version. Additionally, for Tashkent-API, 
T.tx_commit_version is added as a parameter to the 
“COMMIT”. 

Note that steps [C4] and [C5] are serialized both in Base and in 
Tashkent-MW. The proxy applies the updatesets, waits for the 
reply from the database, sends the transaction commit, and 
again waits for the reply from the database. For Tashkent-MW, 
this serialization is quick since the database acts essentially as 
an in-memory database. For Tashkent-API, steps [C4] and [C5] 
can be concurrent since the commit command includes the 
commit order. 

Local certification. Local certification is an optimization that 
can reduce work at the certifier by reducing the number of 
versions against which a writeset is certified. Before the proxy 
sends a certification request to the certifier with parameters 
(T.writeset, T.tx_start_version), the proxy certifies 
T.writeset against the updatesets in the proxy_log, since 
the proxy may have received new updatesets while the 
transaction was executing. If the local certification succeeds, 
T.tx_start_version is advanced appropriately and 
certification is invoked. Otherwise, T is aborted, obviating 
unnecessary certification. 

Conservative assigning of versions is safe under GSI. The 
proxy always assigns its most recent value of 
replica_version to new transactions (step [A1] above). 
However, during the execution of steps [C4] and [C5], the 
database commits the transaction before informing the proxy. 
Therefore, it is possible that the database has already performed 
the commit and gives the new transaction a newer snapshot of 
the database. This is safe because under GSI because 
certification is correct as long as the transaction is labeled with 
a version that is the same or earlier than its actual version, i.e., 
the certifier detects all write-write conflicts. 

Bounding Staleness. Updatesets are sent in response to update 
transaction commits. In the case where an update transaction 
has not been received for a period of time (e.g., a few seconds), 
a proxy can proactively request updatesets from the certifier to 
bring the database up-to-date.  

Proxy Implementation. The proxy is implemented as a multi-
threaded Java program providing a JDBC interface, which 
means that all access to the replicated tables must go through 
this driver. 

8 Middleware Interface to PostgreSQL 

8.1 Proxy-Database Interface 
The interaction between the proxy and database is database-
specific. We describe here the mechanisms used to implement 
the proxy interface for PostgreSQL. Using another database 
would require changes, though the underlying mechanisms are 
common in most databases. 

[C1] Writeset Extraction. Extracting the writeset of a 
transaction is not defined in the SQL standard, but many 
databases provide mechanisms to extract the writesets, such as 
triggers in PostgreSQL, direct support in Oracle, and log 
sniffing in Microsoft SQL Server. 

We use PostgreSQL’s database triggers to extract the writesets. 
We define triggers on the following events “INSERT”, 
“UPDATE”, and “DELETE” for replicated tables. When a 
trigger is fired it: (1) captures the new row in case of 
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“INSERT”, (2) captures the primary key(s) and the modified 
columns for “UPDATE”, or (3) captures the primary key for 
“DELETE”. The trigger also records the table name and 
operation type. These changes are stored in a memory mapped 
file in order to give access of partial writesets to the proxy (see 
Eager Pre-certification below). 

Recovery. For recovery in Tashkent-MW, the proxy sends a 
“DUMP DATA” command to the database periodically. The 
proxy stores replica_version, timestamp, dump data, end-
of-file marker with a checksum in a file. If the database crashes, 
the proxy restarts the database using the appropriate dump file. 

Soft Recovery. The proxy may send “COMMIT” to the 
database, and the database decides to abort the transaction due 
to exceptional circumstances, such as running out of disk space, 
performing garbage collection to delete old snapshots, or a 
crash of one database process. In such cases, the proxy aborts 
all active transactions, and re-applies the updatesets and the 
previously aborted transaction sequentially in order. If soft 
recovery fails, the proxy performs normal system recovery. 

8.2 Deadlock Avoidance 
A deadlock may develop between the writeset of a local 
transaction and the updateset from a remote transaction because 
PostgreSQL uses write locks. This deadlock scenario exists in 
all three designs Base, Tashkent-MW, and Tashkent-API. We 
explain the locking mechanism in PostgreSQL, how deadlocks 
can arise, and a middleware solution for this problem. 

Write Locks in PostgreSQL. Since PostgreSQL (and other 
centralized SI databases) immediately sees all partial writesets 
of active update transactions, it uses write locks to eagerly test 
for write-write conflicts during transaction execution rather than 
at commit time. The first transaction that acquires a write lock 
on a database item may proceed, blocking the competitors who 
want to update the same database item. If the lock holder 
commits, all competitors abort. If the lock holder aborts, one of 
the competitors may proceed. 

Traditional Deadlock Scenario. In a centralized database, 
deadlock may develop between two update transactions T1 and 
T2. Suppose T1 updates x, and holds the write-lock on item x 
and T2 updates y and holds the write-lock on y. Then, T2 
attempts to update x and T1 attempts to update y. Neither T1 
nor T2 can proceed as each is waiting for the other. 

Deadlock between a Writeset and a Updateset. In a 
replicated system, a similar deadlock situation can arise if T2 is 
on a remote replica, has been certified, and its writeset is being 
applied as an updateset to the replica where T1 is currently 
executing and holding a lock.  

Some databases allow tagging transactions with priorities. If 
such a mechanism is available then avoiding a deadlock is 
straight forward: we mark updatesets with high priority, 
aborting any conflicting local transaction. However, 
PostgreSQL does not have priorities; therefore, we can either 
(a) do nothing letting PostgreSQL handle deadlocks between 
updatesets and local update transactions (we run soft recovery if 
PostgreSQL aborts an updateset), or (b) detect and prevent 
deadlocks eagerly in the middleware as an optimization. 

Eager Pre-certification. In PostgreSQL, which does not 
support tagging transactions with priorities, the proxy can avoid 
deadlocks by eagerly detecting write-write conflicts between 
updatesets and writesets of local transactions. Conceptually, we 
leverage the local certification functionality at the proxy 
(Section 7.2) to eagerly certify every write in a transaction as it 

occurs against the pending updatesets. Similarly, updatesets 
received at the replica are verified against the current group of 
partial writesets. If a write-write conflict is found in any case, 
the proxy aborts the conflicting local update transaction, which 
allows the updateset to be executed. 

We point out that local certification and eager pre-certification 
of the writesets does not increase the total number of low-level 
certification comparisons system wide, since the writesets 
advances their tx_start_version when locally certified 
against recent updatesets, and they hence do not have to be 
recertified globally against the same updatesets at the certifier. 
Local certification and eager pre-certification change when 
(earlier than the commit time) and where (on the replica rather 
than on the certifier) some certification comparisons are 
performed, and therefore, they have the benefit of distributing 
the certification load to the replicas (though the time for 
certifying a writeset is typically an order of magnitude less than 
that of executing the transaction itself). 

9 Performance Evaluation 

9.1  Methodology 
Under generalized snapshot isolation, read-only transactions are 
executed completely locally on the receiving replica. Thus, the 
scalability of the replicated system is limited by the rate of 
update transactions and the overhead of maintain consistency. 
We assess the performance of uniting durability with ordering 
using three benchmarks that vary widely in their update rates to 
compare Tashkent-MW and Tashkent-API to Base.  

AllUpdates Benchmark. We developed a benchmark where 
clients rapidly generate back-to-back short update transactions 
that do not conflict. The benchmark is relatively small and 
highly focused on fast, simple updates; it reflects high-
throughput memory-centric behavior. This benchmark, called 
AllUpdates, creates a very heavy update-only workload to 
generate maximum system consistency maintenance overhead 
and represents a worst case workload for a replicated system. 
The average writeset size is 54 bytes for each update transaction 
in this benchmark. 

TPC-B Benchmark. TPC-B is a benchmark from the 
Transaction Processing Council [23] that uses transactions 
containing small writes and one read. In contrast to the 
AllUpdates benchmark, TPC-B transactions has both reads and 
writes, plus its workload contains write-write conflicts. 
AllUpdates has no conflicts and TPC-W has very few conflicts. 
The writeset size is 158 bytes for each update transaction in the 
TPC-B benchmark. 

TPC-W Benchmark. TPC-W is also a standard benchmark 
from the Transaction Processing Council designed to evaluate 
e-commerce systems. It implements an on-line bookstore. TPC-
W has three workload mixes. The shopping mix (with 20% 
updates) is the main mix for reporting results. In contrast to the 
other two benchmarks, the relatively heavy weight transactions 
of TPC-W make CPU processing the bottleneck. The average 
size of an update transaction writeset in TPC-W is 275 bytes. 

Thus, the three benchmarks AllUpdates, TPC-B, and TPC-W 
represent a spectrum of workloads differing in their transactions 
complexities and conflict profiles. 

System specification. We use a cluster of machines, each 
running the 2.6.11 Linux kernel on a single Intel Xeon 2.4GHz 
CPU with 1GB ECC SDRAM, and a 120GB 7200pm disk 
drive. The machines are connected through a switched 1Gbps 
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Ethernet LAN. We use a leader certifier and two backups for 
fault tolerance (see Section 6.3). We use the PostgreSQL 8.0.3 
database configured to run transactions in the snapshot isolation 
level (which is the strictest isolation level in PostgreSQL where 
it is called the “serializable transaction isolation level”). The 
database working set fits entirely in main-memory.  

IO channel for durability. To guarantee durability we use 
synchronous disk writes with the Linux system calls write() and 
fsync(), such that the fsync call returns only after the data has 
been flushed to disk (i.e., to the disk media rather than to the 
disk cache). On our test systems fsync takes about 8ms but the 
actual time varies depending on where data resides on disk 
(6ms-10ms). Each machine in the cluster contains only one disk 
which is used for three IO activities: (1) reading the database 
pages, (2) writing dirty database pages, and (3) writing log 
records (for which fsync() maybe used). In some experiments, 
we dedicate the disk for logging by putting the databases of 
AllUpdates and TPC-B in a ramdisk to remove the effect of 
activities (1) and (2). Unfortunately, due to the size of TPC-W 
environment, we cannot use ramdisk with this benchmark, but 
we fully discuss the implications this has on our results.  

9.2 AllUpdates 
Here we compare our three replicated systems, Base, Tashkent-
MW, and Tashkent-API, using the AllUpdates benchmark. 
Figure 2 shows the throughput results for the three systems. The 
x-axis is the number of replicas. 

Figure 2: Throughput for AllUpdates (shared IO). 
In Figure 2, the curve for Base is at the bottom and grows 
linearly at the rate of just over 49 req/sec and up to 735 req/sec 
at 15 replicas. This matches the limits of each replica’s IO 
channel to process synchronous writes. At 8 ms, the limit is 125 
IO/sec since all commits are serialized. If there are updatesets 
returned in the certification process (which is the case even at 
two replicas) then two writes are required to commit each local 
update transaction, one for the grouped updatesets and one for 
the local transaction, for an expected limit of 50-60 local 
transaction commit per second depending on the time to 
complete the fsync (more on this below). 

In contrast, Tashkent-MW (top curve: tashMW), where 
ordering and durability are united in the middleware, the 
certifier can group multiple commits in a single synchronous 
write. At 15 replicas, the certifier is grouping an average of 29 
requests per fsync for a total throughput of 3657 req/sec, or 5.0x 
that of Base. 

Tashkent-API (tashAPI curve), which combines ordering with 
durability in the database, also performs much better than Base, 
achieving 2240 req/sec, or 3.0x that of Base, but does not 
achieve the same throughput of Tashkent-MW. One possible 
reason for this difference is that in Tashkent-API there is an 
inherently longer round-trip latency for each client request 
because there are actually two disk writes in the path of each 
update transaction: one at the certifier for middleware recovery 
and one in the database for durability. This extra fsync delay 
extends the response time and depresses the throughput 
somewhat (Base is not likewise limited as serialization is by far 
its bottleneck). While durability in the certifier is necessary for 
middleware recovery, we run with it off to determine the extent 
of its effect, as shown by the fourth curve tashAPInoCERT for 
which the certifier performs normal certification but does not 
write to its disk. Without the delay at the certifier, the 
throughput increases to 2901 req/sec, but still does not rise to 
that of Tashkent-MW. 

Figure 3: Throughput for AllUpdates (dedicated IO). 

Figure 4: Response for AllUpdates (dedicated IO). 
Another possible explanation for the difference could be the IO 
channel. With a single disk, the IO channel is shared between 
three different IO streams: reading the database pages, writing 
back database dirty pages, and logging. Since logging IO is in 
the critical path when durability is in the database, we simulate 
the effect of having a dedicated IO channel for logging. To do 
this we create a dedicated logging channel by putting the 
database in ramdisk. 
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Figure 3 has the throughput when logging does not contend 
with the other two streams. The relative behavior is similar as 
before. However, all the curves adjust up somewhat because 
less contention improves throughput, though the effect is minor 
as AllUpdates runs essentially from memory, resulting in very 
little activity for reading and writing database pages in the 
steady state. 

The remaining performance difference between Tashkent-MW 
and Tashkent-API is due to that fact they write somewhat 
different log information and in different ways. PostgreSQL 
uses a multiprocess architecture, and the certifier uses lighter 
weight multithreaded IO design. We expect that the 
performance differences would be eliminated with proper 
changes to PostgreSQL. 

Figure 4 shows the response times for AllUpdates with a 
dedicated IO channel. For Base, we see the jump of the 
response time between one replica and two replicas. This 
reflects two fsyncs per transaction in the replicated system: one 
for the grouped updateset and one for the commit of the local 
transaction. With 10 clients at each replica (having near 10 
concurrent local requests at each replica), this adds an 
additional delay of 10 fsyncs to each client request (over 80 
msec) at one replica and 20 fsyncs (over 160 msec) from two 
replicas and onwards. For the Tashkent systems, the delay 
increases slowly as more updatesets are processed at each 
replica. 

In summary, under this worst-case update workload from 
AllUpdates, both systems Tashkent-MW and Tashkent-API 
show impressive scalability improvements when ordering and 
durability are united. Tashkent-MW and Tashkent-API have 
improvements of 5.0x/3.0x (shared IO) and 5.0x/3.2x 
(dedicated IO) over Base. 

Certifier Scalability. At 15 replicas for the Tashkent-API 
system (as shown in figure 3), the certifier disk is less than 50% 
utilized and the certifier CPU utilization is below 20%, 
suggesting that the certifier is lightweight and can handle a 
higher workload. 

9.3 TPC-B 
TPC-B is also an update intensive benchmark, but the 
transactions include reads from the database as well. The 
throughput is shown in Figure 5 when the IO channel is shared. 
Again we see the same relative performance of the systems: 
Tashkent-MW highest performing (2.6x Base), Base lowest, 
and Tashkent-API (1.3x Base) in between the two. 

To explore the difference between Tashkent-MW and Tashkent-
API, we again remove the fsync in the certifier and show its 
improvement in the curve tashAPInoCERT, resulting in higher 
throughput.  

We also plot the results in Figure 6 when the IO channel is 
dedicated (i.e., the database is in ramdisk). Here all curves are 
higher, indicating a higher activity for reading and writing 
database pages than in AllUpdates. However, there is still a 
significant difference between Tashkent-MW and Tashkent-API 
and the difference is not due to only the additional latency at the 
certifier as the curve tashAPInoCERT shows little additional 
throughput with the dedicated logging channel. 

Figure 5: Throughput for TPC-B (shared IO). 

Figure 6: Throughput for TPC-B (dedicated IO). 

Figure 7: Response time for TPC-B (dedicated IO). 

 
Unlike AllUpdates, all the performance difference is not wholly 
attributed to the way PostgreSQL performs IO. TPC-B 
generates “artificial” conflicts among updatesets, while 
AllUpdates does not. As detailed in Section 3, such artificial 
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conflicts among updatesets prevent Tashkent-API from 
submitting them concurrently to the database along with the 
commits of local update transactions, reducing opportunities to 
unite ordering and durability. When such an artificial conflict is 
detected under Tashkent-API, the updatesets must be submitted 
serially, waiting for at least one fsync, which gracefully 
degrades its performance towards that of Base as the conflict 
rate increases.  

Finally, the response times in Figure 7 show a steady rise as 
replicas are added. This reflects the overhead of applying 
writesets at the replicas and is not due to load at the certifier. 
The certifier is only lightly loaded even at 15 replicas. 

9.4 TPC-W 
In Figure 8 we show the throughput of TPC-W with the 
shopping mix (20% updates) for a shared IO channel. There is 
no difference in throughput between Tashkent-API and Base 
(we discuss Tashkent-MW below). The reason is that at the 
maximum throughput of 240 tps, there are only 48 updates per 
second system wide. At 15 replicas, this means each replica 
generates only about 3 updates per second on average (requiring 
around 2*3 fsync() calls per second), much lower than what is 
needed to saturate the local logging channel. Thus, Tashkent-
API has no opportunity to group updatesets in the synchronous 
writes. At very low update rates, separating ordering and 
durability does not create a bottleneck. Their response times are 
identical as well (we omit the response time graph for space 
limitation). 

Figure 8: Throughput for TPC-W, shopping mix 
(shared IO). 

The performance of Tashkent-MW is better than both Tashkent-
API and Base. With the shared IO channel and the larger 
database, Tashkent-API and Base experience significantly 
higher critical path fsync delays due to non-logging IO 
congestion.  Using a dedicated logging channel would alleviate 
this congestion for Tashkent-API and Base. Unfortunately, we 
were unable to run TPC-W in ramdisk due to its large size. If 
we could, we expect both Tashkent-API and Base would match 
the performance of Tashkent-MW. 

9.5 Recovery for Tashkent-MW 
Since Tashkent-MW requires database checkpoints for its 
recovery, we report its cost but only for TPC-W (PostgreSQL, 
database size is ~700 MB) since the other benchmarks are small 

and are able to recover much faster. In a 15 replica system, a 
replica requires about 230 seconds to dump a complete copy of 
the database while it continues processing transactions. That 
replica’s throughput degrades by 13% during the 230 seconds. 
After a crash, restarting a replica requires 140 seconds to restore 
from the dump file. The missing writesets (updatesets) that 
occurred since the dump was created (this includes writesets 
during the down time of the replica) can be applied to the 
database at a rate of 900 writesets per second. At 15 replicas, 
the rate of updates is 56 writesets per second (20% of 280 tps 
for the shopping mix). For H hours of down time, the total 
recovery time is approximately (2.3 + 3.7H) minutes. For the 
certifiers, the growth rate of the history log for 15 replicas is 
201,600 writesets per hour at an average of 275 bytes per 
writeset, or 56 MB per hour. The log must be transferred from 
one of the backups and is essentially a file transfer and takes 
about 1 second in our LAN. 

9.6 The affects of aborts 
Here we show that the throughput of the two Tashkent systems 
degrades gracefully in the presence of aborts. Aborts can occur 
due to (real) conflicts between concurrent transactions whose 
writesets overlap (i.e., write-write conflicts). The certifier 
detects these conflicts and responds with an abort to the later 
occurring request. We show the effects of aborts using the 
AllUpdates benchmark because TPC-B and TPC-W have very 
few (real) conflicts and subsequently low abort rates. 

In AllUpdates, we can force a system wide abort rate by having 
the certifier randomly abort requests at a given rate. If a 
certification request is selected to be aborted, the abort occurs 
after the full certification check so that all computational 
overhead at the certifier is incurred. 

Figure 9.  Certifier goodput under different abort 
rates (dedicated IO). 

In Figure 9 we use exaggerated abort rates to demonstrate how 
the “goodput” (the throughput of non-aborted requests only) is 
affected. On the three systems, we force three different abort 
rates: 0%, 20%, and 40%. The top three lines are Tashkent-
MW, the middle three are Tashkent-API, and the bottom three 
are for Base. In all systems, the throughput degrades gracefully 
and proportionally with the increasing abort rates.  
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9.7 Summary 
We show that under high update workloads separating 
durability from ordering can create a significant scalability 
bottleneck. Under these conditions, combining these two 
functions, either in the middleware or in the database, alleviates 
this bottleneck and can greatly improve performance. We also 
demonstrate that the Tashkent-MW solution may be more 
robust than Tashkent-API if the workload has significant 
artificially conflicting writes that would force Tashkent-API to 
serialize its updates and behave more like Base. Furthermore, 
when the update rate is low, as in TPC-W, combining ordering 
and durability does not improve performance because at low 
rates the IO for durability is not a bottleneck. 

10 Related Work 

In this section, we first discuss related work on serializability in 
SI and GSI. Then, we contrast Tashkent to the two main types 
of database replication: eager replication and lazy replication. 
Finally, we compare Tashkent to replicated systems that use 
snapshot isolation.  

10.1 SI, GSI, and Serializability  
Serializability [17, 2] is the main database correctness criteria. 
Snapshot isolation (SI) provides a weaker form of consistency 
than serializability. Several researchers [5, 7, 4] have recently 
demonstrated that, under certain conditions on the workload, 
transactions executing on a database with SI produce 
serializable histories. Those conditions hold for many 
applications (including TPC-W, TPC-C, and TPC-B, TPC-A 
benchmarks). They argue that even if these conditions do not 
hold for an application, transaction templates in the application 
can be easily (automatically) modified to be serializable under 
SI if the transaction templates are known, as in Web 
applications. In practice, database developers understand SI and 
are capable of using SI serializably. 

The notion of generalized snapshot isolation (GSI) is introduced 
in [3]. Generalized snapshot isolation preserves SI isolation 
guarantees. In particular, the authors prove that if an application 
runs serializably under SI, it runs serializably under GSI. 
However, no implementation is reported. In our experimental 
results section, the workload assigned to the databases is 
serializable under GSI as previously indicated [3, 4]. 

10.2 Database Replication 
Gray et al. [9] have classified database replication into two 
schemes: eager and lazy. Eager replication provides 
consistency, usually at the cost of limited scalability. Lazy 
replication increases performance by allowing replicas to 
diverge, possibly exposing clients to inconsistent states of the 
database. 

The two Tashkent systems use GSI and avoid write-write and 
write-read conflicts globally while appearing as a single 
snapshot isolated database to clients. In addition, update 
reconciliation is not needed and the effects of committed update 
transactions are not lost in the system due to a replica failure. 

10.3 Replication in Snapshot Isolated 
Databases 

Kemme et al. [12] discussed how to implement different 
isolation levels (including serializability and snapshot isolation) 

in replicated databases using group communication primitives. 
In addition, they implemented Postgres-R [11], and integrated 
the replica management with the database concurrency control 
[24, 14] in Postgres-R(SI). 

Postgres-R(SI) uses a replicated form of snapshot isolation. In 
contrast to Postgres-R(SI) [24, 14], the two Tashkent systems 
have the key feature of uniting ordering and durability, they 
never block read-only transactions and, in addition, Tashkent-
MW is a pure middleware solution. Postgres-R(SI) commits 
update transactions sequentially, which limits scalability if 
durability is guaranteed by the database but ordering is in the 
middleware, requiring one fsync for each commit. The 
Tashkent systems remove this fsync bottleneck and still provide 
durability. In Postgres-R(SI) the replication protocol is tightly 
coupled with the concurrency control. For example, their 
replication middleware accesses PostgreSQL lock tables and 
replicas map internal transaction IDs to global transaction IDs. 
The validation function in Postgres-R(SI) (similar to our 
certification) is replicated with each database; whereas in our 
work the certifier and the replica component can be replicated 
asymmetrically to enhance certifier availability and replica 
performance. In large scale systems under heavy loads, co-
locating the certifier with each database replica marginally 
improves the certifier availability (over asymmetric replication) 
but makes the certifier compete on resources with the database 
at each replica, possibly reducing replica performance. 

Plattner et al. [18] presented Ganymed, a master-slave scheme 
for replicating snapshot isolated databases in clusters of 
machines. In Ganymed all update transactions are handled by a 
master and read-only transactions are distributed among slaves. 
Ganymed serializes commits on the master using one fsync for 
each commit as well as the commits at the slaves. Both the 
master and the slaves could benefit from the extended API 
described in this paper. However, a single master system such 
as Ganymed is limited to the throughput of a single machine to 
fully process all update transactions. The Tashkent systems 
process most of each update transaction locally at a replica and 
only certify the core writesets at the certifier. Certifying the 
core writesets is an order of magnitude less work than executing 
the transaction. Thus, the Tashkent designs distribute much of 
the update transaction workload. 

11 Conclusions 

This paper identifies a limitation to scalability concerning 
durability and commit ordering in replicated database designs in 
which all replicas agree on which update transactions commit 
and on the order of their commits. We analyze the dependency 
between maintaining the global commit order and the 
durability. By uniting durability with ordering, the two actions 
be done in one phase, which greatly improves scalability. 

We use two example solutions that unite durability and 
ordering. We present Base a traditional replicated database 
system where durability and commit ordering are separate. 
Then, we present the design and implementation of Tashkent-
MW and Tashkent-API, where durability and ordering are 
united. In Tashkent-MW, durability is united with ordering in 
the replication middleware and provides a pure middleware 
solution for high-performance replicated databases.  

In Tashkent-API, we detail how to extend the standard database 
API to permit passing the commit order information to the 
database from the middleware. In this solution, additional care 
must be taken to ensure the middleware proxy does not generate 
artificial conflicts between updatesets to be submitted 
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concurrently. This constraint can prevent some opportunities to 
combine durability and ordering. In the presence of these 
artificial conflicts (an artifact of the conflict profile of the 
workload) the performance of Tashkent-API degrades 
gracefully to that of Base.  

We implement the Tashkent systems on top of PostgreSQL and 
assess their performance relative to Base. At low update rates 
when durability is not a bottleneck, the Tashkent systems 
perform similar to Base, as to be expected. However, under 
high update transaction loads uniting durability and ordering 
becomes significant; we show that both versions of Tashkent 
greatly improve scalability and outperform Base by factors of 5 
and 3 times , respectively, in throughput and with lower 
response times. 
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