
 1

Tashkent: Uniting Durability with Transaction Ordering
for High-Performance Scalable Database Replication

Sameh Elnikety Steven Dropsho Fernando Pedone
School of Computer and
Communication Sciences

EPFL
Switzerland

 School of Computer and
Communication Sciences

EPFL
Switzerland

Faculty of Informatics
Università della Svizzera Italiana

USI
Switzerland

Abstract

In stand-alone databases, the two functions of ordering the
transaction commits and making the effects of transactions
durable are generally performed in one action, namely in the
writing of the commit record to disk. In replicated database
systems where all replicas agree on the commit order of update
transactions, these two functions are naturally separated;
specifically, the replication middleware determines the global
commit order, while database replicas make transactions
durable. The contribution of this paper is to demonstrate that the
traditional separation of commit ordering from durability in
replicated designs forces update transactions to be made durable
serially to disk, a potentially significant scalability bottleneck.
Two solutions are possible: (1) keep durability in the database
and pass the global commit order from the replication
middleware to the database, or (2) move durability from the
database to the replication middleware. We show that regardless
of the method, uniting ordering and durability greatly improves
system scalability.

We implement two example scalable replicated database
systems called Tashkent-MW and Tashkent-API to show the
benefits of joining global commit order and durability.
Tashkent-MW is a pure middleware solution that combines
ordering and durability in the middleware and treats an
unmodified database as a black box. Tashkent-MW represents a
high-performance replication solution suitable for closed-
source, off-the-shelf standalone databases. In Tashkent-API, we
modify the open source PostgreSQL database API so the
middleware can specify the commit order, combining ordering
and durability inside the database. We compare both Tashkent
systems to a similar replicated system, called Base, in which
ordering and durability remain separated. Under high update
transaction loads at 15 replicas, we show both Tashkent systems
greatly improve scalability and outperform Base by factors of 5
and 3 times, respectively, in throughput with lower response
times.

Categories and Subject Descriptors
H.2.4 Systems – distributed databases, concurrency.

General Terms

Measurement, Performance, Design, Reliability.

Keywords
Database replication, Generalized snapshot isolation.

1 Introduction

Database replication is a cost-effective technique to improve
performance and to enhance availability for some applications.
High performance replication designs distribute transactions
across many replicas such that all replicas agree on the commit
order of update transactions for consistency.

The primary contribution of this paper is to reveal a dependency
between durability and commit ordering of update transactions
in such designs. In particular, we show that relying on an off-
the-shelf database to make transactions durable (i.e., write their
effects to disk) and commit them in a consistent global order
requires the synchronous disk writes to be serialized, a
significant scalability bottleneck.

We show that the root cause is the separation in replicated
systems of commit ordering from the expensive synchronous
disk writes that ensure durability. In standalone databases, these
two functions are together, permitting group-commits to
minimize the number of synchronous writes to disk, which is an
important performance optimization.

However, in replicated database systems ordering is determined
in the replication middleware – rather than at the database – to
ensure a consistent global order. Since it is customary to only
move the minimal required functionality to the middleware, it
has been natural to leave durability in the database, leading to
the separation of durability and ordering and to scalability
problems. The solution is to unite durability and ordering in
replicated systems.

We propose two approaches to unite these functions. The first
approach is to move durability to the middleware layer where
ordering is determined. It is attractive to make this approach a
pure middleware solution so that it can be used with off-the-
shelf databases. This approach is appropriate for open source
and closed source databases and for clustering different
databases, making it particularly suitable for third-party
software providers supplying replication infrastructures. The
second approach is to extend the database API so the replication
middleware can specify a commit order for update transactions,
combining durability and ordering in the database. An open
source database, such as PostgreSQL, can be modified
appropriately.

We implement instances of both approaches, called Tashkent-
MW and Tashkent-API, respectively, and compare them to an
instance of a traditional replication system, called Base, where

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EuroSys'06, April 18-21, 2006, Leuven, Belgium.
Copyright 2006 ACM 1-59593-322-0/06/0004...$5.00.

 2

ordering and durability remain separated. All systems use
generalized snapshot isolation (GSI) [3] for concurrency
control. They are identical in all other respects. We use
PostgreSQL [19], a well-known open source database to
compare the performance systems.

In our experimental results, we show both Tashkent systems
greatly improve scalability under high update transaction loads,
and outperform Base by factors of five and three times,
respectively, in throughput at 15 replicas and with lower
response times.

The rest of the paper is structured as follows. Section 2 gives
the necessary background on generalized snapshot isolation. In
Section 3 we detail the issue of separating durability from
ordering and justify uniting the two. In Section 4 we present the
design of the Base replication system. In Section 5 we detail the
changes necessary to implement Tashkent-MW and Tashkent-
API. In Section 6 we discuss fault-tolerance of systems. We
discuss the design of the replication middleware in Section 7,
and its interface to PostgreSQL in Section 8. In Section 9 we
experimentally compare the three systems and analyze their
relative performance. Section 10 contrasts related work to this
research. Finally, in Section 11 we summarize the main
conclusions.

2 Background

Snapshot Isolation (SI) [1] is a concurrency control algorithm
for centralized multi-version databases. In snapshot isolation,
when a transaction begins it receives a view, called a snapshot,
of the database for the duration of the transaction. After the
snapshot is assigned it is unaffected by concurrently running
transactions. A read-only transaction reads from the snapshot
and can always commit under SI. An update transaction T reads
from and writes to its snapshot, and can commit if it has no
write-write conflict with any committed update transaction that
ran concurrently with it.

Many database vendors use SI, e.g., Oracle, PostgreSQL,
Microsoft SQL Server, InterBase [16, 1, 7, 10]. SI is weaker
than serializability but in practice most applications run
serializably under SI, including the most widely-used database
benchmarks TPC-B, TPC-C, and TPC-W. SI has attractive
performance properties. Most notably, read-only transactions
never block or abort— they do not need read-locks, and they
never cause update transactions to block or abort. This property
is important for workloads dominated by read-only transactions,
such as those resulting from dynamic content Web servers.

Generalized Snapshot Isolation (GSI) [3] extends SI to
replicated databases (replicas) such that the performance
properties of SI in a centralized setting are maintained in a
replicated setting, including the property that read-only
transactions do not block or abort, and they do not cause update
transactions to block or abort. In addition, workloads that are
serializable under SI are also serializable under GSI [3]. Here
we summarize the essential details of GSI because it is the
concurrency control model used in this paper. We give a more
formal description of GSI in Section 7.

Informally, a replica using GSI works as follows. When a
transaction starts, the replica assigns its latest snapshot to the
transaction. All transaction read and write operations are
executed locally on the replica against the assigned snapshot. At
commit, the replica extracts the transaction’s modifications to
the database into a writeset. If the writeset is empty (i.e., it is a
read-only transaction), the transaction commits immediately.

Otherwise, a certification check is performed to detect write-
write conflicts among update transactions in the system. If no
conflict is found, then the transaction commits, else the
transaction aborts.

The certifier performs certification and assigns a global total
order to the commits of update transactions. Since committing
an update transaction creates a new version (snapshot) of the
database, the total order defines the sequence of snapshots the
database replicas go through. Writesets are propagated to all
other replicas to update their state. We refer to writesets of
remote transactions during the propagation phase as remote
writesets or updatesets.

3 How Durability and Ordering Affect
Scalability

In the GSI algorithm, all replicas commit update transactions in
a global order. However, there is a somewhat surprising
dependency between maintaining the global commit order and
how the durability function must write state to disk. In this
section, we discuss an example of the problem, its implications
on performance, and the underlying causes.

3.1 Example
Here we contrast a centralized versus a replicated system to
show how separating durability and commit ordering in a
replicated system forces serializing the commits which limits
scalability in a replicated system.

Centralized SI database. The initial case is a centralized
system. If clients concurrently submit two update transactions
T4 and T9 – whose writesets (modifications), W4 and W9, do
not conflict – to a centralized SI database, the database can
commit them in any order: T4 then T9, or T9 then T4. In
addition, each commit corresponds to a disk write, a disk write
for W4 and another for W9 to guarantee durability. However,
the database IO subsystem can group W4 and W9 into a single
disk write, which greatly improves performance, i.e., one disk
write for both T4 and T9.

One GSI replica. Next, consider a replicated GSI database
consisting of one replica and one certifier, both at version zero.
If clients submit T4 and T9 concurrently to the replica, it
executes them and sends their writesets, W4 and W9, to the
certifier. The certifier checks the writesets, determines that
there are no conflicts, and assigns them an order. Let us assume
that the certifier orders W4 at version 1 and W9 at version 2,
and sends these results back to the replica.

Upon receiving the responses from the certifier to commit the
writesets, the replica must now commit T4 first to reach version
1, then commit T9 to reach version 2, the sequence that the
certifier determined. Under GSI, the replica cannot change this
order; otherwise, a new transaction may receive a snapshot
containing the effects of W9 but not W4, a snapshot that never
existed globally (i.e., at the certifier). A typical database offers
no mechanism to specify a commit order externally, but yet the
middleware must not allow the replica to swap the order in
which the commits of T4 and T9 occur. Without an efficient
low-level external mechanism to enforce a particular commit
order, the middleware must submit each commit serially,
waiting for each commit (which includes a disk write) to
complete. Thus, two disk writes, one for T4 and another for T9,
are required. This serializes a costly component of executing
update transactions at the replica.

 3

Multiple GSI replicas. We continue the example with a
replicated GSI system having N replicas. One replica receives
T4 and T9 and then sends W4 and W9 to the certifier. The
certifier receives the two writesets, and receives writesets from
other replicas as well, and creates the following total order: W1,
W2, W3, W4, W5, W6, W7, W8, W9. Under GSI, the replica
must observe this total order. Not only must the replica commit
transaction W4 before W9, but W1, W2, W3 must commit before
W4, and W5, W6, W7, W8 before W9. The replica version
follows the sequence: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, which would
naively imply 9 disk writes, but this can be improved.

Grouping remote writesets. We can batch the writesets of
several remote transactions by combining W1, W2, W3 into one
transaction T1_2_3 with writeset (updateset) W1_2_3 and
similarly another transaction T5_6_7_8 with writeset
W5_6_7_8. The replica version follows this sequence: 0, 3, 4, 8,
9, which requires 4 disk writes (2*M disk writes in general for
M local update transactions at each replica).

It is important to note that the middleware is outside the
database and cannot submit T1_2_3, T4, T5_6_7_8, T9
concurrently to a standard database to force committing T1_2_3
first, T4 second, T5_5_7_8 third, then finally T9, since
databases do not provide such low level mechanisms to the
client interface. Allowing the database to commit them in any
order would require the middleware to block the start of new
transactions (including read-only transactions), lest they
observe an inconsistent snapshot (e.g., T9 commits internally
before T4). This approach has a major performance drawback
as read-only transactions would block waiting for other
transactions to finish, voiding the main performance benefit of
GSI. Another reason for following the global order is that under
certain conditions changing the commit order can result in the
final state of the database not being the same. For example, if
T1_2_3 and T5_6_7_8 both modify a common database item,
then the order in which they commit is significant. Therefore,
we propose two possible solutions for uniting ordering and
durability.

Solution 1: Move durability to the middleware. Another
solution is to have the middleware, which decides the ordering,
be responsible for making durable any modifications to the
database. For example, the middleware can batch all available
requests at certification and ensure they are made persistent in
the proper order, e.g., batch all nine writesets of the prior
example into a single disk write. Furthermore, synchronous
writes can be disabled in the replicas, so commits are essentially
as fast as in-memory actions and serializing them is not a
performance issue.

Solution 2: Pass the ordering information to the database.
For example, if the database API interface is extended such that
the middleware specifies the commit order, then all writesets
could be submitted to the database concurrently.

The key insight is that in both solutions durability is united with
ordering. Regardless of whether the two are united in the
replication middleware as a pure middleware solution or in the
database via an extended API, as we show in the results both
solutions permit IO subsystem optimizations that greatly
improve throughput.

For this paper, the two example solutions assume that the
standalone database (1) supports the SI concurrency control
model, (2) has the ability to capture and extract writesets of
update transactions (further elaborated on in Section 8), (3) has
the ability to enable/disable synchronous writes to disk, and (4)
uses write-ahead logging (WAL).

4 Architecture and Design of Base

Here we describe a replicated database design, called Base,
representing a traditional solution in which the middleware
performs global ordering but relies on the database replicas for
durability. In Section 5, we derive from Base two systems,
Tashkent-MW and Tashkent-API, that combine ordering and
durability. Recovery is an important aspect of any database
system; we discuss fault tolerance and recovery for each of the
three replicated designs in Section 6.

4.1 Architecture
Base is a replicated database system. It uses GSI and consists of
two main logical components both of which are replicated: (1)
database replica and (2) certifier. When a replica receives a
read-only transaction, the replica executes it entirely locally.
When a replica receives an update transaction, it executes it
locally - except the commit operation, which requires global
certification. Replicas communicate only with the certifier
component, not directly with each other. The certifier validates
(certifies) update transactions from all replicas and orders them.

The design described is a pure middleware solution since no
modification to the database source code is required; thus, each
database replica can be an off-the-shelf standalone system.
Attached to each replica is a transparent proxy that intercepts
database requests. The proxy appears as the database to clients,
and appears as clients to the database. We refer to the proxies
and certifiers as the replication middleware.

Figure 1 - Architecture of Base

Figure 1 shows the architecture of the Base system. The two
main components, database replica and certifier, are replicated
asymmetrically at different replication degrees. Database
replicas are replicated mainly for performance, whereas the
certifier is replicated mainly for availability. The certifier
component could be implemented via an atomic broadcast
mechanism incorporated into the proxy at every replica.
However, for this study we simply assume a separate certifier
component, which itself can be replicated, though our
conclusions apply to other configurations.

For update propagation, we use writesets rather than the
original SQL text of update transactions. Although for some
transactions propagating the original SQL text may be shorter in
size than the writeset, it is generally more expensive to re-
execute the SQL text at the certifier and then at each replica
when propagating the effects of the transaction.

4.2 Processing Update Transactions
Processing read-only transactions is straightforward. Each read-
only transaction is assigned a snapshot and it reads from its
snapshot. Next, we outline the mains steps of processing an

 4

update transaction using the GSI algorithm (see [3] for the
formal specification) as used in Base. The pseudo code and its
implementation are in Sections 7 and 8. We use the following
terminology. We use version to count database snapshots. The
version at a replica database is called replica_version. The
database starts at version zero, i.e., at the initial state
replica_version=0. When an update transaction commits,
replica_version is incremented. Each transaction has two
numbers, its version at start, tx_start_version, and the
version created at its commit, tx_commit_version

(tx_commit_version is valid for only update transactions).
At a replica, updatesets are the writesets of committed update
transactions from other remote replicas that must be applied
locally to bring the replica’s state up-to-date before the local
transaction can commit.

The GSI algorithm has two parts: the actions at replicas and
actions at certifiers. We first present an outline of the actions
here, and then present the pseudo code in Section 7.

Writeset intersection. At the point of an update transaction
commit, the proxy at the replica makes a request for
certification to the certifier. The certifier performs writeset
intersection, a fast main memory operation that compares table
and field identifiers for matches against recent writesets to
detect write-write conflicts. For the committing transaction Tc
with writeset Wc, the certifier compares Wc to the set of
writesets committed at versions only more recent (greater) than
Tc.tx_start_version. Successfully certified writesets (i.e.,
with no conflicts) are recorded in a persistent log thus creating a
global ordering. The log is necessary because we use the crash-
recovery model for the middleware (and for the databases too).
The state of any replica is always a consistent prefix of the
certifier’s log. Certification is lightweight: writeset intersection
is a quick operation and writing to the persistent log can be
done very efficiently.

Durability. In the Base design, the durability function is
performed in the database. Since the certifier in the middleware
determines the order of commits, the middleware commits
update transactions serially at each database to ensure the same
commit order is followed. In the results we show that this
serialization is a scalability bottleneck, one which we address
via Tashkent-MW and Tashkent-API.

Responding to replicas. The certifier logs the writeset before it
responds to the replica with the (1) result of the requested
certification test, (2) along with any updatesets for the
intervening update transactions at other remote replicas, and (3)
the version at which the transaction commits (if the certification
test succeeds). The middleware proxy at the replica applies the
updatesets to the database before it commits the certified update
transaction.

5 Tashkent-MW and Tashkent-API

Here we describe the modifications to the Base system needed
to implement Tashkent-MW and then the changes to implement
Tashkent-API to combine ordering and durability.

5.1 Tashkent-MW
To unite durability with ordering in the middleware,
synchronous writes are disabled at the database replicas and the
middleware logs the database modifications (i.e., writesets) for
durability. However, the certifier already logs this information
via its persistent log – this log is used for a different purpose: to
allow certifier recovery. Because enabling/disabling

synchronous writes is a standard feature in many databases, it is
relatively simple to transform the Base design into Tashkent-
MW. Furthermore, since Base is a pure middleware solution,
so then is Tashkent-MW. The commit operations at each
database replica are serial, but they are fast in-memory
operations. Therefore, system throughput increases and system
scalability is greatly improved because the durability function is
performed at the certifier which can efficiently group the
writesets into a minimal number of synchronous writes.
However, there is a cost to moving durability out of the
databases and it appears in the recovery procedure. We address
this in the next section.

5.2 Tashkent-API
To unite ordering with durability in the database, the API
available to the middleware is extended so the commit order of
update transactions can be specified. The change is to the SQL
“COMMIT” command to permit an optional integer parameter
giving the sequence number to the commit (e.g., COMMIT 9 to
commit current transaction at version 9). Since we change the
interface of the database, Tashkent-API is not a pure replication
middleware and the source code of the database must be
available.

The flow of actions is the following. When a client commits a
transaction, the commit is intercepted by the middleware. As in
Base, the middleware extracts the writeset of the transaction
and sends it for certification. Here, upon receipt of a commit
decision from the certifier, the Tashkent-API middleware
forwards to the database both the commit command and the
version number returned from the certifier. Similarly,
updatesets are applied in separate transactions with their
appropriate commit sequence numbers.

Next we describe the changes to the database to follow the
commit order and we use PostgreSQL. Inside the database,
commit ordering is enforced as follows. Modifications of a
transaction are visible after (1) the commit record is written to
disk and (2) the transaction is announced as committed. Thus,
to control the sequence of commits we need only control the
order in which transactions are announced as committed. We
modify the PostgreSQL in Tashkent-API so that all pending
commit operations wait upon a semaphore after writing their
commit records to disk, i.e., we control only the second step,
when a transaction is “announced” as committed. The
semaphore is initialized to 0 at system start and incremented
after each commit. Each commit requests the semaphore with a
count matching the specified ordering sequence and blocks until
the semaphore count progresses sufficiently. This method
requires minimal changes to PostgreSQL (20 lines of source
code).

The database may write the commit records to disk in an order
different from the order in which transactions are announced as
committed. This behavior is identical to the original standalone
PostgreSQL system; therefore, database recovery is not affected
by this change.

This extended API is a simple interface yet powerful; it should
be restricted to the replication middleware only. Normal clients
are unaware of system wide commit ordering. If the interface is
abused (e.g., issuing COMMIT 9, without ever providing
COMMIT 1-8), the database may deadlock, potentially aborting
the committing transaction to resolve the deadlock.

 5

5.2.1 Constraints under Tashkent-API
With the new API, the replication middleware can submit
multiple commit operations concurrently since ordering is
enforced inside the database (after writing the commit record to
disk). This concurrent submission of commits is the source of
performance improvement for Tashkent-API since the database
can group the writing of several commit records. However, it is
not always possible for the middleware to submit transaction
commits concurrently, leading to serializing some commit
operations and subsequently reducing the performance gain.
This section describes the condition for which a commit must
be serialized and how to detect if this condition arises.

The condition may arise when committing two different local
update transactions. Should their accompanying two updatesets
modify a shared element then the middleware submitting these
commits concurrently will generate an “artificial” write-write
conflict among local transactions in the database replica,
inhibiting the transactions from committing. The root of the
problem is that the “artificially conflicting” updatesets, which
were generated by remote transactions that did not run
concurrently originally, are now applied by concurrent local
transactions to group their commit records. We illustrate this
subtle but important point, which may appear in Tashkent-API,
with a concrete example and present a simple detection scheme.

Figure 1: Example of concurrent commits
Figure 1 shows two local concurrent transactions, T44 and T46 at
a replica and two updatesets, U43 and U45, that are applied as
local transactions, T43 and T45. The transactions are labeled with
the version at which they commit globally. For example, T44
starts from a snapshot with version 30 and its writeset W44
commits as version 44 globally, but before it can commit,
updateset U43 is received from the certifier and applied to the
replica as local transaction T43.

The proxy can safely submit the commits of transactions T44
and T46 concurrently at the database along with T43 and T45 if
none of the updatesets (U43 and U45) conflict. If there is no
conflict, then the database can write the commit records of T43,
T44, T45, and T46 in one disk write. This is the desirable
behavior.

If an artificial conflict exists between U43 and U45, e.g., U43 sets
x=17 and U45 sets x=39, then this artificial conflict is detected
and U45 will be serialized waiting for U43. Therefore, If U43 and
U45 have an artificial conflict, then the proxy commits T43 and
T44 concurrently, waits for the acknowledgement from the
database, commit T45 and T46 concurrently. The best the
database can do is to group the commits of T43 and T44 into one
disk write and the commits of T45 and T46 into a second disk
write. Therefore, artificial conflicts decrease opportunities to
group commits.

The proxy in Tashkent-API needs to know if it is safe to apply
an updateset concurrently with previous updatesets. We adopt a
safe (and conservative) solution to detect any potential artificial
conflicts. The certifier performs extra work to return a hint,
which is extra information on the updateset returned in the
response to a certification request. When the certifier receives a
certification request, it verifies the received writeset from the
current version back to its start version. We extend this
verification to updatesets as well; the certifier verifies all
updatesets to be returned back to the transaction’s start version.
The hint, which the certifier returns in its response, is the
version back to which the updatesets have been successfully
verified.

For example, to certify T46, W46 is certified back to version 42
and updateset U45 is verified back to version 42 as well. If an
updateset has already been verified that far back, then it will not
conflict with another updateset: U45 will not have an artificial
conflict with U43. While this method is conservative, it is simple
and requires only information readily available in the
transaction itself (its start version). We discuss other conflict
types (e.g., between an updateset and a writeset) in Section 8.

If such artificial conflicts between updatesets are frequent then
in the worst-case all commits are forced to be serialized and
Tashkent-API degrades gracefully to the performance of Base.
In addition, the overhead of the additional verification checks at
the certifier is minimal since we record for each writeset the
point to where it has been (further) certified and avoid repeated
checks for responses to other replicas.

6 System Fault-Tolerance

We use the crash-recovery model— a node may crash and
subsequently recover an unbounded number of times. Safety is
always guaranteed. If any number of replica or certifier nodes
fail, no transaction is lost: all effects of every committed update
transaction are durable in the system. Progress depends on the
number of failures. Read-only transactions can be processed if
at least one replica is up. Update transactions can be processed
if a majority of certifier nodes are up and at least one replica is
up. Next, we discuss how replicas recover, and how the
certifiers achieve fault-tolerance and recover.

6.1 Replica Recovery for Tashkent-MW
Moving durability outside the database may interfere with the
database recovery subsystem. Informally, turning off durability
in a database should not affect physical data integrity (correct
data pages on disk). In some databases, however, when
durability is disabled, physical data integrity may be violated as
well, producing corrupt data pages in case of database crash. In
this subsection we explain this further and outline a middleware
recovery scheme.

Modern databases use write-ahead logging (WAL), which
improves their IO performance. For guaranteeing physical data
integrity, a database can write a dirty data page only if the
corresponding record in WAL is stable on disk. Therefore, if
the database crashes while writing a dirty data page and the data
page becomes corrupt, then the page can still be recovered
using the undo/redo information in WAL.

Thus, WAL is written to disk for two reasons: (1) to commit
update transactions and make their effects durable (i.e., for
durability), and (2) to allow dirty data pages to be safely written
to disk without violating integrity (i.e., for physical data
integrity).

 6

There are two cases. First, most databases offer the option of
“disabling all WAL synchronous writes”, voiding both
durability and physical data integrity guarantees— that is if the
database crashes, some committed update transactions may be
lost and a data page may be corrupt. When we deploy Tashkent-
MW on such databases, we disable all WAL synchronous
writes for performance, which voids physical data integrity (but
durability is still guaranteed in the middleware). Therefore, to
guarantee physical data integrity, the Tashkent-MW
middleware periodically asks the database to make a copy, with
the middleware recording the database version at the point of its
request. Most databases have direct support for taking such a
copy even while the database is normally processing
transactions, especially in snapshot isolated databases because a
database copy is logically equivalent to a database snapshot.

The Tashkent-MW middleware maintains two complete copies
of the database. If the database crashes, the middleware restarts
the database with the last copy, or the second to last copy (in
the case where the database crashed while dumping the last
copy). Next, the middleware updates the state of the database
by applying all updatesets that have occurred since the version
of the copy used for recovery. We use this alternative with
PostgreSQL because it uses write-ahead logging and can either
enable or disable all WAL synchronous writes.

The second case is where databases offer the option of “enable
WAL synchronous writes, but disable WAL synchronous writes
on commits of update transactions”, which guarantees data
integrity but does not guarantee durability— that is if the
database crashes, it can recover to a previous committed state
but some update transactions that committed after the last WAL
synchronous write may be lost. If the database offers this
feature, Tashkent does not need to take database copies; the
database uses its recovery mechanism and then the middleware
applies the necessary updatesets to bring the database up-to-
date.

6.2 Replica Recovery for Base and
Tashkent-API

In both Base and Tashkent-API, the database uses its standard
recovery scheme, redoing/undoing transactions in the database
log as necessary. Next, the middleware proxy needs to re-apply
update transactions whose commits were forwarded to the
database but were not acknowledged. In Base, this is at most
one transaction because update transactions commit serially. In
Tashkent-API, this is at most the set of update transactions
whose commit operations were concurrent at the time of the
crash.

Reapplying update transactions using their writesets in the
global order is always safe. Therefore, if these update
transactions are not known (e.g., the proxy crashes with the
database), the proxy can obtain them from the certifier’s log. At
the end of this step, the proxy knows the version of the
database. After the database recovers and proxy updates the
database, the replica resumes normal operations.

6.3 Certifier Replication and Recovery
The certifier is identical in all three systems. The certifier state
is replicated for availability. We replicate the state of the
certifier on a small set of nodes using Paxos [13]. Here we
briefly describe how the certifier state is replicated and how
recovery works. The replication algorithm uses a leader. The
leader is elected among the certifiers, and is responsible for
receiving all certification requests.

Normal Case. When the leader receives certification requests,
it performs normal GSI certification and selects which
transactions may commit. Then, it sends the new state (i.e., the
log records containing writesets of the selected transactions) to
all certifiers including itself. All certifiers write the new state to
disk and reply to the leader. Upon reception of replies from a
majority of certifiers, the leader declares those transactions as
committed.

On Failure. When a certifier crashes, a new leader is elected (if
necessary) and certification continues making progress
whenever a majority of certifiers are up.

On Recovery. When a certifier recovers from a crash, it
requests a state transfer from another up certifier to update its
state, participates in electing a new leader (if necessary), and
logs certification requests to disk.

7 Implementation of Replication
Middleware

In this section we discuss the implementation of the replication
middleware which uses the GSI algorithm and list its pseudo
code. In the next section we discuss the mechanisms used by
the proxy to interface to PostgreSQL.

7.1 Certifier
The certifier implements certification of the GSI algorithm. The
certifier prevents write-write conflicts and orders transaction
commits. When the certifier receives a request to certify
transaction T, it runs the certification procedure which checks
for write-write conflicts between T.writeset and the writesets
of other committed update transactions that ran concurrently
with T. Certification is a stateful service that maintains (1) a
persistent LOG containing tuples of (writeset,
tx_commit_version) for all committed update transactions
and (2) system_version. Certification has two inputs
(writeset, tx_start_version) and three outputs
(updatesets, certification result, tx_commit_version). The
pseudo code is the following:

On a certification request for (T.tx_start_version,
T.writeset):
1. The input T.writeset is tested for intersection against entries in

LOG whose tx_commit_version >
T.tx_start_version. An intersection occurs if the two
writesets overlap (signaling a write-write conflict).

2. IF there is no intersection,
THEN {

• decision ← “commit”,
• increment system_version,
• T.tx_commit_version ← system_version,
• append (T.writeset, T.tx_commit_version) to

persistent LOG for crash-recovery }
ELSE decision ← “abort”.

3. The output of the procedure contains:
• the writesets which replica did not receive between

tx_start_version and
T.tx_commit_version,

• decision (either “commit” or “abort”),
• T.tx_commit_version.

The certifier is implemented as a multi-threaded server in C
with worker threads to receive and process certification
requests and send responses. The certifier has a single writer
thread for writing the certifier log to the disk. The key to high

 7

performance is the single writer thread that batches all
outstanding writesets certified by the worker threads and
commits the batch to disk via a single fsync call.

7.2 Transparent Proxy
We use a proxy in front of each database to intercept incoming
database requests. The proxy tracks the database version
replica_version, maintains a small amount of state for each
active transaction, invokes certification, and applies the
updatesets. We begin by listing the pseudo code of the GSI
algorithm at the replica. Then, show how some of the steps are
implemented in the proxy. The steps a replica takes to process
a transaction T are the following:

A- On T begin:
1. T receives a snapshot of the database,
2. T.tx_start_version ← replica_version.

B- On T read and update operations:
1. Read and update operations are executed on T’s snapshot.

C- On T commit:
1. T.writeset is extracted and examined.
2. IF T.writeset is empty (i.e., T is read-only),

THEN T commits,
ELSE invoke certification (T.tx_start_version,
T.writeset)

3. Certification returns three outputs:
(a) updatesets,
(b) “commit” or “abort”,
(c) T.tx_commit_version.

4. Replica applies the updatesets (a), which are the effects of update
transactions (their writesets) from other replicas in the system.

5. IF the second output (b) is “commit”,
THEN { T commits, and
replica_version ← T.tx_commit_version (c)}.
ELSE T aborts.

The labels refer to the corresponding parts of the pseudo code.

[A1] Intercepting BEGIN. When the proxy intercepts
“BEGIN”, which signals a new transaction, it creates a new
record (tx_start_version, tx_commit_version), and
assigns tx_start_version = replica_version. The
proxy forwards “BEGIN” to the database.

[C2] Intercepting COMMIT. When the proxy intercepts
“COMMIT” for transaction T, it extracts the writeset of the
transaction. If the writeset is empty (i.e., a read-only
transaction), “COMMIT” is forwarded to the database; else the
proxy invokes certification by sending T.writeset,
T.tx_start_version to the certifier, and waits for the output
from the certifier.

[C3] Processing certifier output. The proxy receives
updatesets, the certification decision and
T.tx_commit_version.

[C4] Updatesets. Updatesets are first stored in a memory-
mapped file, called proxy_log, a new transaction is started
containing the updatesets, the transaction is sent to the database,
and then the proxy waits for the reply. The database executes
the transaction, applies the updates, and sends the commit to the
proxy.

[C5] Finalizing the COMMIT. If the certifier decision is
“abort” the proxy forwards “ABORT” to the database, aborting
transaction T. On the other hand, if the certifier decision is
“commit”, the proxy forwards “COMMIT” to the database,
waits for its reply. The database commits the transaction. The

proxy updates replica_version =

T.tx_commit_version. Additionally, for Tashkent-API,
T.tx_commit_version is added as a parameter to the
“COMMIT”.

Note that steps [C4] and [C5] are serialized both in Base and in
Tashkent-MW. The proxy applies the updatesets, waits for the
reply from the database, sends the transaction commit, and
again waits for the reply from the database. For Tashkent-MW,
this serialization is quick since the database acts essentially as
an in-memory database. For Tashkent-API, steps [C4] and [C5]
can be concurrent since the commit command includes the
commit order.

Local certification. Local certification is an optimization that
can reduce work at the certifier by reducing the number of
versions against which a writeset is certified. Before the proxy
sends a certification request to the certifier with parameters
(T.writeset, T.tx_start_version), the proxy certifies
T.writeset against the updatesets in the proxy_log, since
the proxy may have received new updatesets while the
transaction was executing. If the local certification succeeds,
T.tx_start_version is advanced appropriately and
certification is invoked. Otherwise, T is aborted, obviating
unnecessary certification.

Conservative assigning of versions is safe under GSI. The
proxy always assigns its most recent value of
replica_version to new transactions (step [A1] above).
However, during the execution of steps [C4] and [C5], the
database commits the transaction before informing the proxy.
Therefore, it is possible that the database has already performed
the commit and gives the new transaction a newer snapshot of
the database. This is safe because under GSI because
certification is correct as long as the transaction is labeled with
a version that is the same or earlier than its actual version, i.e.,
the certifier detects all write-write conflicts.

Bounding Staleness. Updatesets are sent in response to update
transaction commits. In the case where an update transaction
has not been received for a period of time (e.g., a few seconds),
a proxy can proactively request updatesets from the certifier to
bring the database up-to-date.

Proxy Implementation. The proxy is implemented as a multi-
threaded Java program providing a JDBC interface, which
means that all access to the replicated tables must go through
this driver.

8 Middleware Interface to PostgreSQL

8.1 Proxy-Database Interface
The interaction between the proxy and database is database-
specific. We describe here the mechanisms used to implement
the proxy interface for PostgreSQL. Using another database
would require changes, though the underlying mechanisms are
common in most databases.

[C1] Writeset Extraction. Extracting the writeset of a
transaction is not defined in the SQL standard, but many
databases provide mechanisms to extract the writesets, such as
triggers in PostgreSQL, direct support in Oracle, and log
sniffing in Microsoft SQL Server.

We use PostgreSQL’s database triggers to extract the writesets.
We define triggers on the following events “INSERT”,
“UPDATE”, and “DELETE” for replicated tables. When a
trigger is fired it: (1) captures the new row in case of

 8

“INSERT”, (2) captures the primary key(s) and the modified
columns for “UPDATE”, or (3) captures the primary key for
“DELETE”. The trigger also records the table name and
operation type. These changes are stored in a memory mapped
file in order to give access of partial writesets to the proxy (see
Eager Pre-certification below).

Recovery. For recovery in Tashkent-MW, the proxy sends a
“DUMP DATA” command to the database periodically. The
proxy stores replica_version, timestamp, dump data, end-
of-file marker with a checksum in a file. If the database crashes,
the proxy restarts the database using the appropriate dump file.

Soft Recovery. The proxy may send “COMMIT” to the
database, and the database decides to abort the transaction due
to exceptional circumstances, such as running out of disk space,
performing garbage collection to delete old snapshots, or a
crash of one database process. In such cases, the proxy aborts
all active transactions, and re-applies the updatesets and the
previously aborted transaction sequentially in order. If soft
recovery fails, the proxy performs normal system recovery.

8.2 Deadlock Avoidance
A deadlock may develop between the writeset of a local
transaction and the updateset from a remote transaction because
PostgreSQL uses write locks. This deadlock scenario exists in
all three designs Base, Tashkent-MW, and Tashkent-API. We
explain the locking mechanism in PostgreSQL, how deadlocks
can arise, and a middleware solution for this problem.

Write Locks in PostgreSQL. Since PostgreSQL (and other
centralized SI databases) immediately sees all partial writesets
of active update transactions, it uses write locks to eagerly test
for write-write conflicts during transaction execution rather than
at commit time. The first transaction that acquires a write lock
on a database item may proceed, blocking the competitors who
want to update the same database item. If the lock holder
commits, all competitors abort. If the lock holder aborts, one of
the competitors may proceed.

Traditional Deadlock Scenario. In a centralized database,
deadlock may develop between two update transactions T1 and
T2. Suppose T1 updates x, and holds the write-lock on item x
and T2 updates y and holds the write-lock on y. Then, T2
attempts to update x and T1 attempts to update y. Neither T1
nor T2 can proceed as each is waiting for the other.

Deadlock between a Writeset and a Updateset. In a
replicated system, a similar deadlock situation can arise if T2 is
on a remote replica, has been certified, and its writeset is being
applied as an updateset to the replica where T1 is currently
executing and holding a lock.

Some databases allow tagging transactions with priorities. If
such a mechanism is available then avoiding a deadlock is
straight forward: we mark updatesets with high priority,
aborting any conflicting local transaction. However,
PostgreSQL does not have priorities; therefore, we can either
(a) do nothing letting PostgreSQL handle deadlocks between
updatesets and local update transactions (we run soft recovery if
PostgreSQL aborts an updateset), or (b) detect and prevent
deadlocks eagerly in the middleware as an optimization.

Eager Pre-certification. In PostgreSQL, which does not
support tagging transactions with priorities, the proxy can avoid
deadlocks by eagerly detecting write-write conflicts between
updatesets and writesets of local transactions. Conceptually, we
leverage the local certification functionality at the proxy
(Section 7.2) to eagerly certify every write in a transaction as it

occurs against the pending updatesets. Similarly, updatesets
received at the replica are verified against the current group of
partial writesets. If a write-write conflict is found in any case,
the proxy aborts the conflicting local update transaction, which
allows the updateset to be executed.

We point out that local certification and eager pre-certification
of the writesets does not increase the total number of low-level
certification comparisons system wide, since the writesets
advances their tx_start_version when locally certified
against recent updatesets, and they hence do not have to be
recertified globally against the same updatesets at the certifier.
Local certification and eager pre-certification change when
(earlier than the commit time) and where (on the replica rather
than on the certifier) some certification comparisons are
performed, and therefore, they have the benefit of distributing
the certification load to the replicas (though the time for
certifying a writeset is typically an order of magnitude less than
that of executing the transaction itself).

9 Performance Evaluation

9.1 Methodology
Under generalized snapshot isolation, read-only transactions are
executed completely locally on the receiving replica. Thus, the
scalability of the replicated system is limited by the rate of
update transactions and the overhead of maintain consistency.
We assess the performance of uniting durability with ordering
using three benchmarks that vary widely in their update rates to
compare Tashkent-MW and Tashkent-API to Base.

AllUpdates Benchmark. We developed a benchmark where
clients rapidly generate back-to-back short update transactions
that do not conflict. The benchmark is relatively small and
highly focused on fast, simple updates; it reflects high-
throughput memory-centric behavior. This benchmark, called
AllUpdates, creates a very heavy update-only workload to
generate maximum system consistency maintenance overhead
and represents a worst case workload for a replicated system.
The average writeset size is 54 bytes for each update transaction
in this benchmark.

TPC-B Benchmark. TPC-B is a benchmark from the
Transaction Processing Council [23] that uses transactions
containing small writes and one read. In contrast to the
AllUpdates benchmark, TPC-B transactions has both reads and
writes, plus its workload contains write-write conflicts.
AllUpdates has no conflicts and TPC-W has very few conflicts.
The writeset size is 158 bytes for each update transaction in the
TPC-B benchmark.

TPC-W Benchmark. TPC-W is also a standard benchmark
from the Transaction Processing Council designed to evaluate
e-commerce systems. It implements an on-line bookstore. TPC-
W has three workload mixes. The shopping mix (with 20%
updates) is the main mix for reporting results. In contrast to the
other two benchmarks, the relatively heavy weight transactions
of TPC-W make CPU processing the bottleneck. The average
size of an update transaction writeset in TPC-W is 275 bytes.

Thus, the three benchmarks AllUpdates, TPC-B, and TPC-W
represent a spectrum of workloads differing in their transactions
complexities and conflict profiles.

System specification. We use a cluster of machines, each
running the 2.6.11 Linux kernel on a single Intel Xeon 2.4GHz
CPU with 1GB ECC SDRAM, and a 120GB 7200pm disk
drive. The machines are connected through a switched 1Gbps

 9

Ethernet LAN. We use a leader certifier and two backups for
fault tolerance (see Section 6.3). We use the PostgreSQL 8.0.3
database configured to run transactions in the snapshot isolation
level (which is the strictest isolation level in PostgreSQL where
it is called the “serializable transaction isolation level”). The
database working set fits entirely in main-memory.

IO channel for durability. To guarantee durability we use
synchronous disk writes with the Linux system calls write() and
fsync(), such that the fsync call returns only after the data has
been flushed to disk (i.e., to the disk media rather than to the
disk cache). On our test systems fsync takes about 8ms but the
actual time varies depending on where data resides on disk
(6ms-10ms). Each machine in the cluster contains only one disk
which is used for three IO activities: (1) reading the database
pages, (2) writing dirty database pages, and (3) writing log
records (for which fsync() maybe used). In some experiments,
we dedicate the disk for logging by putting the databases of
AllUpdates and TPC-B in a ramdisk to remove the effect of
activities (1) and (2). Unfortunately, due to the size of TPC-W
environment, we cannot use ramdisk with this benchmark, but
we fully discuss the implications this has on our results.

9.2 AllUpdates
Here we compare our three replicated systems, Base, Tashkent-
MW, and Tashkent-API, using the AllUpdates benchmark.
Figure 2 shows the throughput results for the three systems. The
x-axis is the number of replicas.

Figure 2: Throughput for AllUpdates (shared IO).
In Figure 2, the curve for Base is at the bottom and grows
linearly at the rate of just over 49 req/sec and up to 735 req/sec
at 15 replicas. This matches the limits of each replica’s IO
channel to process synchronous writes. At 8 ms, the limit is 125
IO/sec since all commits are serialized. If there are updatesets
returned in the certification process (which is the case even at
two replicas) then two writes are required to commit each local
update transaction, one for the grouped updatesets and one for
the local transaction, for an expected limit of 50-60 local
transaction commit per second depending on the time to
complete the fsync (more on this below).

In contrast, Tashkent-MW (top curve: tashMW), where
ordering and durability are united in the middleware, the
certifier can group multiple commits in a single synchronous
write. At 15 replicas, the certifier is grouping an average of 29
requests per fsync for a total throughput of 3657 req/sec, or 5.0x
that of Base.

Tashkent-API (tashAPI curve), which combines ordering with
durability in the database, also performs much better than Base,
achieving 2240 req/sec, or 3.0x that of Base, but does not
achieve the same throughput of Tashkent-MW. One possible
reason for this difference is that in Tashkent-API there is an
inherently longer round-trip latency for each client request
because there are actually two disk writes in the path of each
update transaction: one at the certifier for middleware recovery
and one in the database for durability. This extra fsync delay
extends the response time and depresses the throughput
somewhat (Base is not likewise limited as serialization is by far
its bottleneck). While durability in the certifier is necessary for
middleware recovery, we run with it off to determine the extent
of its effect, as shown by the fourth curve tashAPInoCERT for
which the certifier performs normal certification but does not
write to its disk. Without the delay at the certifier, the
throughput increases to 2901 req/sec, but still does not rise to
that of Tashkent-MW.

Figure 3: Throughput for AllUpdates (dedicated IO).

Figure 4: Response for AllUpdates (dedicated IO).
Another possible explanation for the difference could be the IO
channel. With a single disk, the IO channel is shared between
three different IO streams: reading the database pages, writing
back database dirty pages, and logging. Since logging IO is in
the critical path when durability is in the database, we simulate
the effect of having a dedicated IO channel for logging. To do
this we create a dedicated logging channel by putting the
database in ramdisk.

 10

Figure 3 has the throughput when logging does not contend
with the other two streams. The relative behavior is similar as
before. However, all the curves adjust up somewhat because
less contention improves throughput, though the effect is minor
as AllUpdates runs essentially from memory, resulting in very
little activity for reading and writing database pages in the
steady state.

The remaining performance difference between Tashkent-MW
and Tashkent-API is due to that fact they write somewhat
different log information and in different ways. PostgreSQL
uses a multiprocess architecture, and the certifier uses lighter
weight multithreaded IO design. We expect that the
performance differences would be eliminated with proper
changes to PostgreSQL.

Figure 4 shows the response times for AllUpdates with a
dedicated IO channel. For Base, we see the jump of the
response time between one replica and two replicas. This
reflects two fsyncs per transaction in the replicated system: one
for the grouped updateset and one for the commit of the local
transaction. With 10 clients at each replica (having near 10
concurrent local requests at each replica), this adds an
additional delay of 10 fsyncs to each client request (over 80
msec) at one replica and 20 fsyncs (over 160 msec) from two
replicas and onwards. For the Tashkent systems, the delay
increases slowly as more updatesets are processed at each
replica.

In summary, under this worst-case update workload from
AllUpdates, both systems Tashkent-MW and Tashkent-API
show impressive scalability improvements when ordering and
durability are united. Tashkent-MW and Tashkent-API have
improvements of 5.0x/3.0x (shared IO) and 5.0x/3.2x
(dedicated IO) over Base.

Certifier Scalability. At 15 replicas for the Tashkent-API
system (as shown in figure 3), the certifier disk is less than 50%
utilized and the certifier CPU utilization is below 20%,
suggesting that the certifier is lightweight and can handle a
higher workload.

9.3 TPC-B
TPC-B is also an update intensive benchmark, but the
transactions include reads from the database as well. The
throughput is shown in Figure 5 when the IO channel is shared.
Again we see the same relative performance of the systems:
Tashkent-MW highest performing (2.6x Base), Base lowest,
and Tashkent-API (1.3x Base) in between the two.

To explore the difference between Tashkent-MW and Tashkent-
API, we again remove the fsync in the certifier and show its
improvement in the curve tashAPInoCERT, resulting in higher
throughput.

We also plot the results in Figure 6 when the IO channel is
dedicated (i.e., the database is in ramdisk). Here all curves are
higher, indicating a higher activity for reading and writing
database pages than in AllUpdates. However, there is still a
significant difference between Tashkent-MW and Tashkent-API
and the difference is not due to only the additional latency at the
certifier as the curve tashAPInoCERT shows little additional
throughput with the dedicated logging channel.

Figure 5: Throughput for TPC-B (shared IO).

Figure 6: Throughput for TPC-B (dedicated IO).

Figure 7: Response time for TPC-B (dedicated IO).

Unlike AllUpdates, all the performance difference is not wholly
attributed to the way PostgreSQL performs IO. TPC-B
generates “artificial” conflicts among updatesets, while
AllUpdates does not. As detailed in Section 3, such artificial

 11

conflicts among updatesets prevent Tashkent-API from
submitting them concurrently to the database along with the
commits of local update transactions, reducing opportunities to
unite ordering and durability. When such an artificial conflict is
detected under Tashkent-API, the updatesets must be submitted
serially, waiting for at least one fsync, which gracefully
degrades its performance towards that of Base as the conflict
rate increases.

Finally, the response times in Figure 7 show a steady rise as
replicas are added. This reflects the overhead of applying
writesets at the replicas and is not due to load at the certifier.
The certifier is only lightly loaded even at 15 replicas.

9.4 TPC-W
In Figure 8 we show the throughput of TPC-W with the
shopping mix (20% updates) for a shared IO channel. There is
no difference in throughput between Tashkent-API and Base
(we discuss Tashkent-MW below). The reason is that at the
maximum throughput of 240 tps, there are only 48 updates per
second system wide. At 15 replicas, this means each replica
generates only about 3 updates per second on average (requiring
around 2*3 fsync() calls per second), much lower than what is
needed to saturate the local logging channel. Thus, Tashkent-
API has no opportunity to group updatesets in the synchronous
writes. At very low update rates, separating ordering and
durability does not create a bottleneck. Their response times are
identical as well (we omit the response time graph for space
limitation).

Figure 8: Throughput for TPC-W, shopping mix
(shared IO).

The performance of Tashkent-MW is better than both Tashkent-
API and Base. With the shared IO channel and the larger
database, Tashkent-API and Base experience significantly
higher critical path fsync delays due to non-logging IO
congestion. Using a dedicated logging channel would alleviate
this congestion for Tashkent-API and Base. Unfortunately, we
were unable to run TPC-W in ramdisk due to its large size. If
we could, we expect both Tashkent-API and Base would match
the performance of Tashkent-MW.

9.5 Recovery for Tashkent-MW
Since Tashkent-MW requires database checkpoints for its
recovery, we report its cost but only for TPC-W (PostgreSQL,
database size is ~700 MB) since the other benchmarks are small

and are able to recover much faster. In a 15 replica system, a
replica requires about 230 seconds to dump a complete copy of
the database while it continues processing transactions. That
replica’s throughput degrades by 13% during the 230 seconds.
After a crash, restarting a replica requires 140 seconds to restore
from the dump file. The missing writesets (updatesets) that
occurred since the dump was created (this includes writesets
during the down time of the replica) can be applied to the
database at a rate of 900 writesets per second. At 15 replicas,
the rate of updates is 56 writesets per second (20% of 280 tps
for the shopping mix). For H hours of down time, the total
recovery time is approximately (2.3 + 3.7H) minutes. For the
certifiers, the growth rate of the history log for 15 replicas is
201,600 writesets per hour at an average of 275 bytes per
writeset, or 56 MB per hour. The log must be transferred from
one of the backups and is essentially a file transfer and takes
about 1 second in our LAN.

9.6 The affects of aborts
Here we show that the throughput of the two Tashkent systems
degrades gracefully in the presence of aborts. Aborts can occur
due to (real) conflicts between concurrent transactions whose
writesets overlap (i.e., write-write conflicts). The certifier
detects these conflicts and responds with an abort to the later
occurring request. We show the effects of aborts using the
AllUpdates benchmark because TPC-B and TPC-W have very
few (real) conflicts and subsequently low abort rates.

In AllUpdates, we can force a system wide abort rate by having
the certifier randomly abort requests at a given rate. If a
certification request is selected to be aborted, the abort occurs
after the full certification check so that all computational
overhead at the certifier is incurred.

Figure 9. Certifier goodput under different abort
rates (dedicated IO).

In Figure 9 we use exaggerated abort rates to demonstrate how
the “goodput” (the throughput of non-aborted requests only) is
affected. On the three systems, we force three different abort
rates: 0%, 20%, and 40%. The top three lines are Tashkent-
MW, the middle three are Tashkent-API, and the bottom three
are for Base. In all systems, the throughput degrades gracefully
and proportionally with the increasing abort rates.

 12

9.7 Summary
We show that under high update workloads separating
durability from ordering can create a significant scalability
bottleneck. Under these conditions, combining these two
functions, either in the middleware or in the database, alleviates
this bottleneck and can greatly improve performance. We also
demonstrate that the Tashkent-MW solution may be more
robust than Tashkent-API if the workload has significant
artificially conflicting writes that would force Tashkent-API to
serialize its updates and behave more like Base. Furthermore,
when the update rate is low, as in TPC-W, combining ordering
and durability does not improve performance because at low
rates the IO for durability is not a bottleneck.

10 Related Work

In this section, we first discuss related work on serializability in
SI and GSI. Then, we contrast Tashkent to the two main types
of database replication: eager replication and lazy replication.
Finally, we compare Tashkent to replicated systems that use
snapshot isolation.

10.1 SI, GSI, and Serializability
Serializability [17, 2] is the main database correctness criteria.
Snapshot isolation (SI) provides a weaker form of consistency
than serializability. Several researchers [5, 7, 4] have recently
demonstrated that, under certain conditions on the workload,
transactions executing on a database with SI produce
serializable histories. Those conditions hold for many
applications (including TPC-W, TPC-C, and TPC-B, TPC-A
benchmarks). They argue that even if these conditions do not
hold for an application, transaction templates in the application
can be easily (automatically) modified to be serializable under
SI if the transaction templates are known, as in Web
applications. In practice, database developers understand SI and
are capable of using SI serializably.

The notion of generalized snapshot isolation (GSI) is introduced
in [3]. Generalized snapshot isolation preserves SI isolation
guarantees. In particular, the authors prove that if an application
runs serializably under SI, it runs serializably under GSI.
However, no implementation is reported. In our experimental
results section, the workload assigned to the databases is
serializable under GSI as previously indicated [3, 4].

10.2 Database Replication
Gray et al. [9] have classified database replication into two
schemes: eager and lazy. Eager replication provides
consistency, usually at the cost of limited scalability. Lazy
replication increases performance by allowing replicas to
diverge, possibly exposing clients to inconsistent states of the
database.

The two Tashkent systems use GSI and avoid write-write and
write-read conflicts globally while appearing as a single
snapshot isolated database to clients. In addition, update
reconciliation is not needed and the effects of committed update
transactions are not lost in the system due to a replica failure.

10.3 Replication in Snapshot Isolated
Databases

Kemme et al. [12] discussed how to implement different
isolation levels (including serializability and snapshot isolation)

in replicated databases using group communication primitives.
In addition, they implemented Postgres-R [11], and integrated
the replica management with the database concurrency control
[24, 14] in Postgres-R(SI).

Postgres-R(SI) uses a replicated form of snapshot isolation. In
contrast to Postgres-R(SI) [24, 14], the two Tashkent systems
have the key feature of uniting ordering and durability, they
never block read-only transactions and, in addition, Tashkent-
MW is a pure middleware solution. Postgres-R(SI) commits
update transactions sequentially, which limits scalability if
durability is guaranteed by the database but ordering is in the
middleware, requiring one fsync for each commit. The
Tashkent systems remove this fsync bottleneck and still provide
durability. In Postgres-R(SI) the replication protocol is tightly
coupled with the concurrency control. For example, their
replication middleware accesses PostgreSQL lock tables and
replicas map internal transaction IDs to global transaction IDs.
The validation function in Postgres-R(SI) (similar to our
certification) is replicated with each database; whereas in our
work the certifier and the replica component can be replicated
asymmetrically to enhance certifier availability and replica
performance. In large scale systems under heavy loads, co-
locating the certifier with each database replica marginally
improves the certifier availability (over asymmetric replication)
but makes the certifier compete on resources with the database
at each replica, possibly reducing replica performance.

Plattner et al. [18] presented Ganymed, a master-slave scheme
for replicating snapshot isolated databases in clusters of
machines. In Ganymed all update transactions are handled by a
master and read-only transactions are distributed among slaves.
Ganymed serializes commits on the master using one fsync for
each commit as well as the commits at the slaves. Both the
master and the slaves could benefit from the extended API
described in this paper. However, a single master system such
as Ganymed is limited to the throughput of a single machine to
fully process all update transactions. The Tashkent systems
process most of each update transaction locally at a replica and
only certify the core writesets at the certifier. Certifying the
core writesets is an order of magnitude less work than executing
the transaction. Thus, the Tashkent designs distribute much of
the update transaction workload.

11 Conclusions

This paper identifies a limitation to scalability concerning
durability and commit ordering in replicated database designs in
which all replicas agree on which update transactions commit
and on the order of their commits. We analyze the dependency
between maintaining the global commit order and the
durability. By uniting durability with ordering, the two actions
be done in one phase, which greatly improves scalability.

We use two example solutions that unite durability and
ordering. We present Base a traditional replicated database
system where durability and commit ordering are separate.
Then, we present the design and implementation of Tashkent-
MW and Tashkent-API, where durability and ordering are
united. In Tashkent-MW, durability is united with ordering in
the replication middleware and provides a pure middleware
solution for high-performance replicated databases.

In Tashkent-API, we detail how to extend the standard database
API to permit passing the commit order information to the
database from the middleware. In this solution, additional care
must be taken to ensure the middleware proxy does not generate
artificial conflicts between updatesets to be submitted

 13

concurrently. This constraint can prevent some opportunities to
combine durability and ordering. In the presence of these
artificial conflicts (an artifact of the conflict profile of the
workload) the performance of Tashkent-API degrades
gracefully to that of Base.

We implement the Tashkent systems on top of PostgreSQL and
assess their performance relative to Base. At low update rates
when durability is not a bottleneck, the Tashkent systems
perform similar to Base, as to be expected. However, under
high update transaction loads uniting durability and ordering
becomes significant; we show that both versions of Tashkent
greatly improve scalability and outperform Base by factors of 5
and 3 times , respectively, in throughput and with lower
response times.

12 Acknowledgments

We thank Prof. Willy Zwaenepoel from EPFL for his insightful
suggestions and valuable feedback. We also thank the
anonymous reviewers for their constructive feedback. This
research was partially supported by the Swiss National Science
Foundation grant number 200021-107824: System Support for
Distributed Dynamic Content Web Services.

References

[1] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton,
Elizabeth O’Neil, and Patrick O’Neil. A critique of ANSI SQL
isolation levels. In proceedings of the SIGMOD International
Conference on Management of Data, May 1995.

[2] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley,
1987.

[3] Elnikety, S., F. Pedone, and W. Zwaenepoel, Database
Replication Using Generalized Snapshot Isolation. IEEE
Symposium on Reliable Distributed Systems (SRDS 2005),
Orlando, Florida, Oct. 2005.

[4] Alan Fekete. Allocating Isolation Levels to Transactions.
ACM Sigmod, Baltimore, Maryland, June 2005.

[5] Alan Fekete. Serialisability and snapshot isolation. In
proceedings of the Australian Database Conference, pages 201–
210, Auckland, New Zealand, January 1999.

[6] L. Frank. Evaluation of the basic remote backup and
replication methods for high availability databases. Software
Practice and Experience, 29:1339–1353, 1999.

[7] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil,
Patrick O’Neil, and Dennis Shasha. Making snapshot isolation
serializable. In proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, pages 173–
182, June 1996.

[8] Lei Gao, Mike Dahlin, Amol Nayate, Jiandan Zheng, and
Arun. Iyengar. Application specific data replication for edge
services. In Proceedings of the twelfth international conference
on World Wide. Web, pages 449–460. ACM Press, 2003.

[9] J. N. Gray, P. Helland, P. O’Neil, and D. Shasha. The
dangers of replication and a solution. In proceedings of the
1996 ACM SIGMOD International Conference on Management
of Data, Montreal (Canada), June 1996.

[10] K. Jacobs. Concurrency control, transaction isolation and
serializability in SQL92 and Oracle7. Technical report number
A33745, Oracle Corporation, Redwood City, CA, July 1995.

[11] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be
consistent: Postgres-R, a new way to implement database
replication. In proceedings of 26th International Conference on
Very Large Data Bases (VLDB 2000), Cairo, Egypt, September
2000.

[12] Bettina Kemme and Gustavo Alonso. A suite of database
replication protocols based on group communication primitives.
In proceedings 18th International Conference on Distributed
Computing Systems (ICDCS), Amsterdam, The Netherlands,
May 1998.

[13] L. Lamport. The Part-time Parliament. ACM Transactions
on Computer Systems, 16(2):133-169, May 1998.

[14] Y. Lin, B. Kemme, M. Patiño-Martínez, R. Jiménez-Peris.
Middleware based Data Replication providing Snapshot
Isolation. ACM Int. Conf. on Management of Data (SIGMOD),
Baltimore, Maryland, June 2005.

[15] Oracle parallel server for windows NT clusters. Online
White Paper.

[16] Data Concurrency and Consistency, Oracle8 Concepts,
Release 8.0: Chapter 23. Technical report, Oracle Corporation,
1997.

[17] Christos Papadimitriou, The theory of database
concurrency control. Computer science press. 1986.

[18] Christian Plattner, Gustavo Alonso. Ganymed: Scalable
Replication for Transactional Web Applications. In proceedings
of the 5th ACM/IFIP/USENIX International Middleware
Conference, Toronto, Canada, October 2004.

[19] PostgreSQL, SQL compliant, open source object-relational
database management system. http://www.postgresql.org/.

[20] C. Pu and A. Leff. Replica control in distributed systems:
an asynchronous approach. SIGMOD Record (ACM Special
Interest Group on Management of Data), 20(2):377–386, June
1991.

[21] Robbert van Renesse, and Fred B. Schneider. Chain
Replication for Supporting High Throughput and Availability.
Sixth Symposium on Operating Systems Design and
Implementation (OSDI '04). USENIX Association, (San
Francisco, California, December 2004), 91—104.

[22] SCHNEIDER, F. B.. Implementing fault-tolerant services
using the state machine approach: a tutorial. In ACM
Computing Surveys. 22 (4):299–319, December 1990.

[23] Transaction Processing Performance Council –
http://www.tpc.org/.

[24] Shuqing Wu and Bettina Kemme: Postgres-R(SI):
Combining Replica Control with Concurrency Control based on
Snapshot Isolation. In proceedings of International Conference
on Data Engineering (ICDE), April 2005.

[25] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G.
Alonso. Understanding replication in databases and distributed
systems. In proceedings of 20th International Conference on
Distributed Computing Systems (ICDCS’2000), Taipei,
Taiwan, April 2000.

