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We introduce the AdS/CFT correspondence as a natural extension of
QFT in a fixed AdS background. We start by reviewing some general
concepts of CFT, including the embedding space formalism. We then
consider QFT in a fixed AdS background and show that one can define
boundary operators that enjoy very similar properties as in a CFT, ex-
cept for the lack of a stress tensor. Including a dynamical metric in AdS
generates a boundary stress tensor and completes the CFT axioms. We
also discuss some applications of the bulk geometric intuition to strongly
coupled QFT. Finally, we end with a review of the main properties of
Mellin amplitudes for CFT correlation functions and their uses in the
context of AdS/CFT.
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1. Introduction

The AdS/CFT correspondence [1–3] is a well established general approach

to quantum gravity. However, it is often perceived as a particular con-

struction specific to string theory. In these lectures I will argue that the

AdS/CFT correspondence is the most conservative approach to quantum

gravity. The quick argument goes as follows:

• System in a box - we work with Anti-de Sitter (AdS) boundary con-

ditions because AdS is the most symmetric box with a boundary.

This is useful to control large IR effects, even without dynamical

gravity.

• QFT in the box - Quantum Field Theory (no gravity) in a fixed AdS

background leads to the construction of boundary operators that

enjoy an associative and convergent Operator Product Expansion

(OPE). The AdS isometries act on the boundary operators like the

conformal group in one lower dimension.

• Boundary stress-tensor from gravitons - perturbative metric fluctu-

ations around AdS lead to a boundary stress tensor (weakly coupled

to the other boundary operators).

Starting from these 3 facts it is entirely natural to define quantum gravity

with AdS boundary conditions as Conformal Field Theory (CFT) in one

lower dimension. Of course not all CFTs look like gravity in our universe.

That requires the size of the box to be much larger than the Planck length

and all higher spin particles to be very heavy (relative to the size of the

box). As we shall see, these physical requirements imply that the CFT is

strongly coupled and therefore hard to find or construct. The major role of

string theory is to provide explicit examples of such CFTs like maximally

supersymmetric Yang-Mills (SYM) theory.

There are many benefits that follow from accepting the AdS/CFT per-

spective. Firstly, it makes the holographic nature of gravity manifest. For

example, one can immediately match the scaling of the CFT entropy den-

sity with the Bekenstein-Hawking entropy of (large) black holes in AdS.

Notice that this is a consequence because it was not used as an argument

for AdS/CFT in the previous paragraph. More generally, the AdS/CFT

perspective let us translate questions about quantum gravity into math-

ematically well posed questions about CFT. a Another benefit of the

aIt might not be possible to formulate all quantum gravity questions in CFT language.
For example, it is unclear if the experience of an observer falling into a black hole in AdS
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gauge/gravity duality is that it gives us a geometric description of QFT

phenomena, which can be very useful to gain physical intuition and to

create phenomenological models.

This introduction to AdS/CFT will not follow the historical order of

scientific developments. Section 2 reviews general concepts in CFT. This

part is not entirely self contained because this topic is discussed in detail in

the chapter Conformal Bootstrap by David Simmons-Duffin [5]. b The main

purpose of this section is to set up notation, introduce the embedding space

formalism and discuss large N factorization. Section 3 deals with Anti-

de Sitter (AdS) spacetime. The first goal here is to gain intuition about

particle dynamics in AdS and QFT in a fixed AdS background. From this

point-of-view, we will see that a gravitational theory with AdS boundary

conditions naturally defines a CFT living on its boundary. In section 4,

we discuss the AdS/CFT correspondence in more detail and emphasize its

importance for quantum gravity. We also consider what kind of CFTs have

simple AdS duals and the role of string theory. Furthermore, we discuss

several applications of the gauge/gravity duality as a tool to geometrize

QFT effects. Finally, in section 5, we introduce the Mellin representation

of CFT correlation functions. We explain the analytic properties of Mellin

amplitudes and their particular simplicity in the case of holographic CFTs.

There are many reviews of AdS/CFT available in the literature. Most

of them are complementary to these lecture notes because they discuss

in greater detail concrete examples of AdS/CFT realized in string theory.

I leave here an incomplete list [8–16] that can be useful to the readers

interested in knowing more about AdS/CFT. The lecture notes [17] by

Jared Kaplan discuss in greater detail many of the ideas presented here.

2. Conformal Field Theory

This section briefly describes the basic concepts necessary to formulate a

non-perturbative definition of CFT. In the last part, we explain in more

detail the embedding space formalism for CFT and ’t Hooft’s large N ex-

pansion, which will be very important in the following sections.

is a CFT observable [4].
bSee also the lecture notes [6, 7].
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2.1. Conformal Transformations

For simplicity, in most formulas, we will consider Euclidean signature. We

start by discussing conformal transformations of Rd in Cartesian coordi-

nates,

ds2 = δµνdx
µdxν . (1)

A conformal transformation is a coordinate transformation that preserves

the form of the metric tensor up to a scale factor,

δµν
dx̃µ

dxα
dx̃ν

dxβ
= Ω2(x)δαβ . (2)

In other words, a conformal transformation is a local dilatation.

Exercise 2.1. Show that, for d > 2, the most general infinitesimal confor-

mal transformation is given by x̃µ = xµ + ǫµ(x) with

ǫµ(x) = aµ + λxµ +mµνxν + x2bµ − 2xαbαx
µ . (3)

In spacetime dimension d > 2, conformal transformations form the

group SO(d + 1, 1). The generators Pµ and Mµν correspond to transla-

tion and rotations and they are present in any relativistic invariant QFT.

In addition, we have the generators of dilatations D and special confor-

mal transformations Kµ. It is convenient to think of the special conformal

transformations as the composition of an inversion followed by a translation

followed by another inversion. Inversion is the conformal transformationc

xµ → xµ

x2
. (4)

Exercise 2.2. Verify that inversion is a conformal transformation.

The form of the generators of the conformal algebra acting on functions

can be obtained from

φ (xµ + ǫµ(x)) =

[

1 + i aµPµ − λD +
i

2
mµνMµν + i bµKµ

]

φ (xµ) , (5)

cInversion is outside the component of the conformal group connected to the identity.
Thus, it is possible to have CFTs that are not invariant under inversion. In fact, CFTs
that break parity also break inversion.
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which leads to d

Pµ = −i∂µ , D = −xµ∂µ , (6)

Mµν = −i (xµ∂ν − xν∂µ) , Kµ = 2ixµx
ν∂ν − i x2∂µ . (7)

Exercise 2.3. Show that the generators obey the following commutation

relations

[D,Pµ] = Pµ , [D,Kµ] = −Kµ , [Kµ, Pν ] = 2δµνD − 2iMµν ,

[Mµν , Pα] = i (δµαPν − δναPµ) , [Mµν ,Kα] = i (δµαKν − δναKµ) ,

[Mαβ ,Mµν ] = i (δαµMβν + δβνMαµ − δβµMαν − δανMβµ) . (8)

2.2. Local Operators

Local operators are divided into two types: primary and descendant. De-

scendant operators are operators that can be written as (linear combina-

tions of) derivatives of other local operators. Primary operators can not be

written as derivatives of other local operators. Primary operators at the

origin are annihilated by the generators of special conformal transforma-

tions. Moreover, they are eigenvectors of the dilatation generator and form

irreducible representations of the rotation group SO(d),

[Kµ,O(0)] = 0 , [D,O(0)] = ∆O(0) , [Mµν ,OA(0)] = [Mµν ]
B
A OB(0) .

Correlation functions of scalar primary operators obey

〈O1(x̃1) . . .On(x̃n)〉 =
∣
∣
∣
∣

∂x̃

∂x

∣
∣
∣
∣

−
∆1

d

x1

. . .

∣
∣
∣
∣

∂x̃

∂x

∣
∣
∣
∣

−
∆n
d

xn

〈O1(x1) . . .On(xn)〉 (9)

for all conformal transformations x→ x̃. As explained above, it is sufficient

to impose Poincaré invariance and this transformation rule under inversion,

〈

O1

(
x1
x21

)

. . .On

(
xn
x2n

)〉

=
(
x21
)∆1

. . .
(
x2n
)∆n 〈O1(x1) . . .On(xn)〉 .

This implies that vacuum one-point functions 〈O(x)〉 vanish except for

the identity operator (which is the unique operator with ∆ = 0). It also

dWe define the dilatation generator D in a non-standard fashion so that it has real
eigenvalues in unitary CFTs.
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fixes the form of the two and three point functions,

〈Oi(x)Oj(y)〉 =
δij

(x− y)
2∆i

, (10)

〈O1(x1)O2(x2)O3(x3)〉 =
C123

|x12|∆1+∆2−∆3 |x13|∆1+∆3−∆2 |x23|∆2+∆3−∆1

,

where we have normalized the operators to have unit two point function.

The four-point function is not fixed by conformal symmetry because

with four points one can construct two independent conformal invariant

cross-ratios

u = zz̄ =
x212x

2
34

x213x
2
24

, v = (1− z)(1− z̄) =
x214x

2
23

x213x
2
24

. (11)

The general form of the four point function is

〈O(x1) . . .O(x4)〉 =
A(u, v)

(x213x
2
24)

∆
. (12)

2.3. Ward identities

To define the stress-energy tensor it is convenient to consider the theory in

a general background metric gµν . Formally, we can write

〈O1(x1) . . .On(xn)〉g =
1

Z[g]

ˆ

[dφ]e−S[φ,g]O1(x1) . . .On(xn) , (13)

where Z[g] =
´

[dφ]e−S[φ,g] is the partition function for the background

metric gµν . Recalling the classical definition

Tµν(x) = − 2√
g

δS

δgµν(x)
, (14)

it is natural to define the quantum stress-energy tensor operator via the

equation

Z[g + δg]

Z[g]
= 1 +

1

2

ˆ

dx
√
gδgµν(x) 〈Tµν(x)〉g +O(δg2) , (15)

and

〈O1(x1) . . .On(xn)〉g+δg − 〈O1(x1) . . .On(xn)〉g
=
1

2

ˆ

dx
√
gδgµν(x)

[

〈Tµν(x)O1(x1) . . .On(xn)〉g (16)

−〈Tµν(x)〉g 〈O1(x1) . . .On(xn)〉g
]

+O(δg2) .
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Under an infinitesimal coordinate transformation x̃µ = xµ + ǫµ(x), the

metric tensor changes g̃µν = gµν − ∇µǫν − ∇νǫµ but the physics should

remain invariant. In particular, the partition function Z[g] = Z[g̃] and the

correlation functions e

〈O1(x̃1) . . .On(x̃n)〉g̃ = 〈O1(x1) . . .On(xn)〉g , (17)

do not change. This leads to the conservation equation 〈∇µT
µν(x)〉g and

n∑

i=1

ǫµ(xi)
∂

∂xµi
〈O1(x1) . . .On(xn)〉g (18)

= −
ˆ

dx
√
gǫν(x) 〈∇µT

µν(x)O1(x1) . . .On(xn)〉g

for all ǫµ(x) that decays sufficiently fast at infinity. Thus ∇µT
µν = 0 up to

contact terms.

Correlation functions of primary operators transform homogeneously

under Weyl transformations of the metric f

〈O1(x1) . . .On(xn)〉Ω2g =
〈O1(x1) . . .On(xn)〉g

[Ω(x1)]
∆1 . . . [Ω(xn)]

∆n
. (19)

Exercise 2.4. Show that this transformation rule under local rescalings of

the metric (together with coordinate invariance) implies (9) under confor-

mal transformations.

Consider now an infinitesimal Weyl transformation Ω = 1 + ω, which

corresponds to a metric variation δgµν = 2ωgµν . From (16) and (19) we

conclude that

n∑

i=1

∆i ω(xi) 〈O1(x1) . . .On(xn)〉g

=−
ˆ

dx
√
g ω(x)gµν

[

〈Tµν(x)O1(x1) . . .On(xn)〉g (20)

−〈Tµν(x)〉g 〈O1(x1) . . .On(xn)〉g
]

.

eIf the operators are not scalars (e.g. if they are vector operators) then one also needs
to take into account the rotation of their indices.
fIn general, the partition fungion is not invariant in even dimensions. This is the Weyl
anomaly Z[Ω2g] = Z[g]e−SWeyl[Ω,g].
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Consider the following codimension 1 integral over the boundary of a

region B, g

I =

ˆ

∂B

dSµǫν(x)
[

〈Tµν(x)O1(x1) . . .On(xn)〉g (21)

−〈Tµν(x)〉g 〈O1(x1) . . .On(xn)〉g
]

.

One can think of this as the total flux of the current ǫνT
µν , where ǫν(x) is

an infinitesimal conformal transformation. Gauss law tells us that this flux

should be equal to the integral of the divergence of the current

∇µ (ǫνT
µν) = ǫν∇µT

µν +∇µǫνT
µν = ǫν∇µT

µν +
1

d
∇αǫ

αgµνT
µν , (22)

where we used the symmetry of the stress-energy tensor Tµν = T νµ and

the definition of an infinitesimal conformal transformation ∇µǫν +∇νǫµ =
2
d∇αǫ

αgµν . Using Gauss law and (18) and (20) we conclude that

I = −
∑

xi∈B

[

ǫµ(xi)
∂

∂xµi
+

∆i

d
∇αǫ

α(xi)

]

〈O1(x1) . . .On(xn)〉g . (23)

The equality of (21) and (23) for any infinitesimal conformal transformation

(3) is the most useful form of the conformal Ward identities.

Exercise 2.5. Conformal symmetry fixes the three-point function of a spin

2 primary operator and two scalars up to an overall constant, h

〈O(x1)O(x2)T
µν(x3)〉 = C12T

Hµν(x1, x2, x3)

|x12|2∆−d+2|x13|d−2|x23|d−2
, (24)

where

Hµν = V µV ν − 1

d
VαV

αδµν , V µ =
xµ13
x213

− xµ23
x223

. (25)

Write the conformal Ward identity (21)=(23) for the three point function

〈Tµν(x)O(0)O(y)〉 for the case of an infinitesimal dilation ǫµ(x) = λxµ and

with the surface ∂B being a sphere centred at the origin and with radius

smaller than |y|. Use this form of the conformal Ward identity in the limit

of an infinitesimally small sphere ∂B and formula (24) for the three point

function to derive

COOT = − d∆

d− 1

1

Sd
, (26)

gIn the notation of the Conformal Bootstrap chapter [5] this is the topological operator
Qǫ[∂B] inserted in the correlation function 〈O1(x1) . . .On(xn)〉g .
hYou can try to derive this formula using the embedding space formalism of section 2.7.
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where Sd =
2πd/2

Γ(d/2) is the volume of a (d− 1)-dimensional unit sphere.

2.4. State-Operator Map

Consider R
d in spherical coordinates. Writing the radial coordinate as

r = eτ we find

ds2 = dr2 + r2dΩ2
d−1 = e2τ

(
dτ2 + dΩ2

d−1

)
. (27)

Thus, the cylinder R × Sd−1 can be obtained as a Weyl transformation of

euclidean space R
d.

Exercise 2.6. Compute the two-point function of a scalar primary operator

on the cylinder using the Weyl transformation property (19).

A local operator inserted at the origin of Rd prepares a state at τ = −∞
on the cylinder. On the other hand, a state on a constant time slice of

the cylinder can be propagated backwards in time until it corresponds to

a boundary condition on a arbitrarily small sphere around the origin of

R
d, which defines a local operator. Furthermore, time translations on the

cylinder correspond to dilatations on R
d. This teaches us that the spectrum

of the dilatation generator on R
d is the same as the energy spectrum for

the theory on R× Sd−1. i

2.5. Operator Product Expansion

The Operator Product Expansion (OPE) between two scalar primary op-

erators takes the following form

Oi(x)Oj(0) =
∑

k

Cijk|x|∆k−∆i−∆j




Ok(0) + β xµ∂µOk(0) + . . .

︸ ︷︷ ︸

descendants




 (28)

where β denotes a number determined by conformal symmetry. For sim-

plicity we show only the contribution of a scalar operator Ok. In general,

in the OPE of two scalars there are primary operators of all spins.

Exercise 2.7. Compute β by using this OPE inside a three-point function.

The OPE has a finite radius of convergence inside correlation functions.

This follows from the state operator map with an appropriate choice of

origin for radial quantization.
i More precisely, there can be a constant shift equal to the Casimir energy of the vacuum
on Sd−1, which is related with the Weyl anomaly. In d = 2, this gives the usual energy
spectrum

(

∆− c
12

)

1
L

where c is the central charge and L is the radius of S1.



10 João Penedones

2.6. Conformal Bootstrap

Using the OPE successively one can reduce any n−point function to a

sum of one-point functions, which all vanish except for the identity oper-

ator. Thus, knowing the operator content of the theory, i.e. the scaling

dimensions ∆ and SO(d) irreps R of all primary operators, and the OPE

coefficients Cijk,
j one can determine all correlation functions of local oper-

ators. This set of data is called CFT data because it essentially defines the

theory. k The CFT data is not arbitrary, it must satisfy several constraints:

• OPE associativity - Different ways of using the OPE to compute

a correlation function must give the same result. This leads to the

conformal bootstrap equations described below.

• Existence of stress-energy tensor - The stress-energy tensor

Tµν is a conserved primary operator (with ∆ = d) whose correlation

functions obey the conformal Ward identities.

• Unitarity - In our Euclidean context this corresponds to reflection

positivity and it implies lower bounds on the scaling dimensions.

It also implies that one can choose a basis of real operators where

all OPE coefficients are real. In the context of statistical physics,

there are interesting non-unitary CFTs.

It is sufficient to impose OPE associativity for all four-point functions of

the theory. For a four-point function of scalar operators, the bootstrap

equation reads

∑

k

C12kCk34G
(12)(34)
∆k,lk

(x1, . . . , x4) =
∑

q

C13qCq24G
(13)(24)
∆q,lq

(x1, . . . , x4) ,

where G∆,l are conformal blocks, which encode the contribution from a

primary operator of dimension ∆ and spin l and all its descendants.

jFor primary operators O1, O2, O3 transforming in non-trivial irreps of SO(d) there are
several OPE coefficients C123. The number of OPE coefficients C123 is given by the
number of symmetric traceless tensor representations that appear in the tensor product
of the 3 irreps of SO(d) associated to O1, O2 and O3.
kHowever, there are observables besides the vacuum correlation functions of local opera-
tors. It is also interesting to study non-local operators (line operators, surface operators,
boundary conditions, etc) and correlation functions in spaces with non-trivial topology
(for example, correlators at finite temperature).
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2.7. Embedding Space Formalism

The conformal group SO(d+ 1, 1) acts naturally on the space of light rays

through the origin of Rd+1,1,

−
(
P 0
)2

+
(
P 1
)2

+ · · ·+
(
P d+1

)2
= 0 . (29)

A section of this light-cone is a d−dimensional manifold where the CFT

lives. For example, it is easy to see that the Poincaré section P 0+P d+1 = 1

is just Rd. To see this parametrize this section using

P 0(x) =
1 + x2

2
, Pµ(x) = xµ , P d+1(x) =

1− x2

2
, (30)

with µ = 1, . . . , d and xµ ∈ R
d and compute the induced metric. In fact, any

conformally flat manifold can be obtained as a section of the light-cone in

the embedding space R
d+1,1. Using the parametrization PA = Ω(x)PA(x)

with xµ ∈ R
d, one can easily show that the induced metric is simply given

by ds2 = Ω2(x)δµνdx
µdxν . With this is mind, it is natural to extend a

primary operator from the physical section to the full light-cone with the

following homogeneity property

O(λP ) = λ−∆O(P ) , λ ∈ R . (31)

This implements the Weyl transformation property (19). One can then

compute correlation functions directly in the embedding space, where the

constraints of conformal symmetry are just homogeneity and SO(d+ 1, 1)

Lorentz invariance. Physical correlators are simply obtained by restricting

to the section of the light-cone associated with the physical space of interest.

This idea goes back to Dirac [18] and has been further develop by many

authors [19–25].

Exercise 2.8. Rederive the form of two and three point functions of scalar

primary operators in R
d using the embedding space formalism.

Vector primary operators can also be extended to the embedding space.

In this case, we impose

PAOA(P ) = 0 , OA(λP ) = λ−∆OA(P ) , λ ∈ R , (32)

and the physical operator is obtained by projecting the indices to the sec-

tion,

Oµ(x) =
∂PA

∂xµ
OA(P )

∣
∣
∣
∣
PA=PA(x)

. (33)
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Notice that this implies a redundancy: OA(P ) → OA(P ) + PAΛ(P ) gives

rise to the same physical operator O(x), for any scalar function Λ(P ) such

that Λ(λP ) = λ−∆−1Λ(P ). This redundancy together with the constraint

PAOA(P ) = 0 remove 2 degrees of freedom of the (d+2)-dimensional vector

OA.

Exercise 2.9. Show that the two-point function of vector primary operators

is given by

〈
OA(P1)OB(P2)

〉
= const

ηAB (P1 · P2)− PA2 P
B
1

(−2P1 · P2)
∆+1

, (34)

up to redundant terms.

Exercise 2.10. Consider the parametrization PA =
(
P 0, Pµ, P d+1

)
=

(cosh τ,Ωµ,− sinh τ) of the global section
(
P 0
)2 −

(
P d+1

)2
= 1, where Ωµ

(µ = 1, . . . , d) parametrizes a unit (d − 1)−dimensional sphere, Ω · Ω = 1.

Show that this section has the geometry of a cylinder exactly like the one

used for the state-operator map.

Conformal correlation functions extended to the light-cone of R1,d+1 are

annihilated by the generators of SO(1, d+ 1)

n∑

i=1

J
(i)
AB 〈O1(P1) . . .On(Pn)〉 = 0 , (35)

where J
(i)
AB is the generator

JAB = −i
(

PA
∂

∂PB
− PB

∂

∂PA

)

, (36)

acting on the point Pi. For a given choice of light cone section, some

generators will preserve the section and some will not. The first are Killing

vectors (isometry generators) and the second are conformal Killing vectors.

The commutation relations give the usual Lorentz algebra

[JAB , JCD] = i (ηACJBD + ηBDJAC − ηBCJAD − ηADJBC) . (37)

Exercise 2.11. Check that the conformal algebra (8) follows from (37) and

D = −i J0,d+1 , Pµ = Jµ0 − Jµ,d+1 ,

Mµν = Jµν , Kµ = Jµ0 + Jµ,d+1. (38)
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Exercise 2.12. Show that equation (35) for JAB = J0,d+1 implies time

translation invariance on the cylinder

n∑

i=1

∂

∂τi
〈O1(τ1,Ω1) . . .On(τn,Ωn)〉 = 0 , (39)

and dilatation invariance on R
d

n∑

i=1

(

∆i + xµi
∂

∂xµi

)

〈O1(x1) . . .On(xn)〉 = 0 . (40)

In this case, you will need to use the differential form of the homogeneity

property PA ∂
∂PA

Oi(P ) = −∆iOi(P ). It is instructive to do this exercise

for the other generators as well.

2.8. Large N Factorization

Consider a U(N) gauge theory with fields valued in the adjoint representa-

tion. Schematically, we can write the action as

S =
N

λ

ˆ

dx Tr
[

(DΦ)
2
+ c3Φ

3 + c4Φ
4 + . . .

]

(41)

where we introduced the ’t Hooft coupling λ = g2YMN and ci are other

coupling constants independent of N . Following ’t Hooft [26], we consider

the limit of large N with λ kept fixed. The propagator of an adjoint field

obeys

〈
ΦijΦ

k
l

〉
∝ λ

N
δilδ

k
j (42)

where we used the fact that the adjoint representation can be represented

as the direct product of the fundamental and the anti-fundamental repre-

sentation. This suggests that one can represent a propagator by a double

line, where each line denotes the flow of a fundamental index. Start by con-

sidering the vacuum diagrams in this language. A diagram with V vertices,

E propagators (or edges) and F lines (or faces) scales as
(
N

λ

)V (
λ

N

)E

NF =

(
N

λ

)χ

λF , (43)

where χ = V + F − E = 2 − 2g is the minimal Euler character of the two

dimensional surface where the double line diagram can be embedded and

g is the number of handles of this surface. Therefore, the large N limit is

dominated by diagrams that can be drawn on a sphere (g = 0). These dia-

grams are called planar diagrams. For a given topology, there is an infinite
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number of diagrams that contribute with increasing powers of the coupling

λ, corresponding to tesselating the surface with more and more faces. Fig-

ure 1 shows two examples of vacuum diagrams in the double line notation.

This topological expansion has the structure of string perturbation theory

with λ/N playing the role of the string coupling. As we shall see this is

precisely realized in maximally supersymmetric Yang-Mills theory (SYM).

= 2 = 4

V = 4

E = 6

F = 2

g = 1

V = 2

E = 3

F = 3

g = 0

Fig. 1. Vacuum diagrams in the double line notation. Interaction vertices are marked

with a small blue dot. The left diagram is planar while the diagram on the right has the
topology of a torus (genus 1 surface).

Let us now consider single-trace local operators of the form O =

cJTr
(
ΦJ
)
, where cJ is a normalization constant independent of N . Adapt-

ing the argument above, it is easy to conclude that the connected correlators

are given by a large N expansion of the form

〈O1 . . .On〉c =
∞∑

g=0

N2−n−2gfg(λ) , (44)

which is dominated by the planars diagrams (g = 0). Moreover, we see

that the planar two-point function is independent of N while connected

higher point functions are suppressed by powers of N . This is large N

factorization. In particular it implies that the two-point function of a multi-

trace operator Õ(x) =: O1(x) . . .Ok(x) : is dominated by the product of

the two-point functions of its single-trace constituents
〈

Õ(x)Õ(y)
〉

≈
∏

i

〈Oi(x)Oi(y)〉 =
1

(x− y)2
∑
i∆i

, (45)

where we assumed that the single-trace operators were scalar conformal

primaries properly normalized. We conclude that the scaling dimension

of the multi-trace operator Õ is given by
∑

i∆i + O(1/N2) . In other

words, the space of local operators in a large N CFT has the structure of

a Fock space with single-trace operators playing the role of single particle

states of a weakly coupled theory. This is the form of large N factorization

relevant for AdS/CFT. However, notice that conformal invariance was not
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important for the argument. It is well known that large N factorization

also occurs in confining gauge theories. Physically, it means that colour

singlets (like glueballs or mesons) interact weakly in large N gauge theories

(see [27] for a clear summary).

The stress tensor has a natural normalization that follows from the

action, Tµν ∼ N
λ Tr (∂µΦ∂νΦ). This leads to the large N scaling

〈Tµ1ν1(x1) . . . Tµnνn(xn)〉c ∼ N2 , (46)

which will be important below. This normalization of Tµν is also fixed by

the Ward identities.

3. Anti-de Sitter Spacetime

Euclidean AdS spacetime is the hyperboloid

−
(
X0
)2

+
(
X1
)2

+ · · ·+
(
Xd+1

)2
= −R2 , X0 > 0 , (47)

embedded in R
d+1,1. For large values of X0 this hyperboloid approaches

the light-cone of the embedding space that we discussed in section 2.7. It is

clear from the definition that Euclidean AdS is invariant under SO(d+1, 1).

The generators are given by

JAB = −i
(

XA
∂

∂XB
−XB

∂

∂XA

)

. (48)

Poincaré coordinates are defined by

X0 = R
1 + x2 + z2

2z

Xµ = R
xµ

z
(49)

Xd+1 = R
1− x2 − z2

2z

where xµ ∈ R
d and z > 0. In these coordinates, the metric reads

ds2 = R2 dz
2 + δµνdx

µdxν

z2
. (50)

This shows that AdS is conformal to R
+ × R

d whose boundary at z = 0 is

just Rd. These coordinates make explicit the subgroup SO(1, 1)×ISO(d) of

the full isometry group of AdS. These correspond to dilatation and Poincaré

symmetries inside the d−dimensional conformal group. In particular, the

dilatation generator is

D = −i J0,d+1 = −X0
∂

∂Xd+1
+Xd+1

∂

∂X0
= −z ∂

∂z
− xµ

∂

∂xµ
. (51)
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Another useful coordinate system is

X0 = R cosh τ cosh ρ

Xµ = RΩµ sinh ρ (52)

Xd+1 = −R sinh τ cosh ρ

where Ωµ (µ = 1, . . . , d) parametrizes a unit (d − 1)−dimensional sphere,

Ω · Ω = 1. The metric is given by

ds2 = R2
[
cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2

d−1

]
. (53)

To understand the global structure of this spacetime it is convenient to

change the radial coordinate via tanh ρ = sin r so that r ∈ [0, π2 [. Then,

the metric becomes

ds2 =
R2

cos2 r

[
dτ2 + dr2 + sin2 r dΩ2

d−1

]
, (54)

which is conformal to a solid cylinder whose boundary at r = π
2 is R×Sd−1.

In these coordinates, the dilatation generator D = −i J0,d+1 = − ∂
∂τ is the

hamiltonian conjugate to global time.

3.1. Particle dynamics in AdS

For most purposes it is more convenient to work in Euclidean signature

and analytically continue to Lorentzian signature only at the end of the

calculation. However, it is important to discuss the Lorentzian signature to

gain some intuition about real time dynamics. In this case, AdS is defined

by the universal cover of the manifold

−
(
X0
)2

+
(
X1
)2

+ · · ·+
(
Xd
)2 −

(
Xd+1

)2
= −R2 , (55)

embedded in R
d,2. The universal cover means that we should unroll the

non-contractible (timelike) cycle. To see this explicitly it is convenient to

introduce global coordinatesl

X0 = R cos t cosh ρ

Xµ = RΩµ sinh ρ (56)

Xd+1 = −R sin t cosh ρ

where Ωµ (µ = 1, . . . , d) parametrizes a unit (d − 1)−dimensional sphere.

The original hyperboloid is covered with t ∈ [0, 2π[ but we consider t ∈ R.

lNotice that this is just the analytic continuation τ → i t and Xd+1 → iXd+1 of the
Euclidean global coordinates (52).
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The metric is given by

ds2 = R2
[
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

d−1

]
. (57)

To understand the global structure of this spacetime it is convenient to

change the radial coordinate via tanh ρ = sin r so that r ∈ [0, π2 [. Then,

the metric becomes

ds2 =
R2

cos2 r

[
−dt2 + dr2 + sin2 r dΩ2

d−1

]
, (58)

which is conformal to a solid cylinder whose boundary at r = π
2 is R×Sd−1.

Geodesics are given by the intersection of AdS with 2-planes through the

origin of the embedding space. In global coordinates, the simplest timelike

geodesic describes a particle sitting at ρ = 0. This corresponds to (the

universal cover of) the intersection of Xµ = 0 for µ = 1, . . . , d with the

hyperboloid (55). Performing a boost in the X1, Xd+1 plane we can obtain

an equivalent timelike geodesic X1 coshβ = Xd+1 sinhβ and Xµ = 0 for

µ = 2, . . . , d. In global coordinates, this gives an oscillating trajectory

tanh ρ = tanhβ sin t , (59)

with period 2π. In fact, all timelike geodesics oscillate with period 2π in

global time. One can say AdS acts like a box that confines massive particles.

However, it is a very symmetric box that does not have a center because

all points are equivalent.

Null geodesics in AdS are also null geodesics in the embedding space.

For example, the null ray Xd+1−X1 = X0−R = Xµ = 0 for µ = 2, . . . , d is

a null ray in AdS which in global coordinates is given by cosh ρ = 1
cos t . This

describes a light ray that passes through the origin at t = 0 and reaches

the conformal boundary ρ = ∞ at t = ±π
2 . All light rays in AdS start and

end at the conformal boundary traveling for a global time interval equal to

π.

One can also introduce Poincaré coordinates

Xµ = R
xµ

z

Xd =
R

2

1− x2 − z2

z
(60)

Xd+1 =
R

2

1 + x2 + z2

z

where now µ = 0, 1, . . . , d − 1 and x2 = ηµνx
µxν . However, in Lorentzian

signature, Poincaré coordinates do not cover the entire spacetime. Surfaces
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of constant z approach the light-like surface Xd +Xd+1 = 0 when z → ∞.

This null surface is often called the Poincaré horizon.

We have seen that AdS acts like a box for classical massive particles.

Quantum mechanically, this confining potential gives rise to a discrete en-

ergy spectrum. Consider the Klein-Gordon equation

∇2φ = m2φ , (61)

in global coordinates (57). In order to emphasize the correspondence with

CFT we will solve this problem using an indirect route. Firstly, consider

the action of the quadratic Casimir of the AdS isometry group on a scalar

field

1

2
JABJ

BAφ =
[
−X2∂2X +X · ∂X (d+X · ∂X)

]
φ . (62)

Formally, we are extending the function φ from AdS, defined by the hyper-

surface X2 = −R2, to the embedding space. However, the action of the

quadratic Casimir is independent of this extension because the generators

JAB are interior to AdS, i.e.
[
JAB , X

2 +R2
]
= 0. If we foliate the embed-

ding space R
d,2 with AdS surfaces of different radii R, we obtain that the

laplacian in the embedding space can be written as

∂2X = − 1

Rd+1

∂

∂R
Rd+1 ∂

∂R
+∇2

AdS . (63)

Substituting this in (62) and noticing that X · ∂X = R∂R we conclude that

1

2
JABJ

BAφ = R2∇2
AdSφ . (64)

Therefore, we should identify m2R2 with the quadratic Casimir of the con-

formal group.

The Lorentzian version of the conformal generators (38) is

D = −J0,d+1 , Pµ = Jµ0 + i Jµ,d+1 , (65)

Mµν = Jµν , Kµ = Jµ0 − i Jµ,d+1 . (66)

Exercise 3.1. Show that, in global coordinates, the conformal generators
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take the form

D = i
∂

∂t
, Mµν = −i

(

Ωµ
∂

∂Ων
− Ων

∂

∂Ωµ

)

,

Pµ = −ie−it
[

Ωµ (∂ρ − i tanh ρ ∂t) +
1

tanh ρ
∇µ

]

,

Kµ = ieit
[

Ωµ (−∂ρ − i tanh ρ ∂t)−
1

tanh ρ
∇µ

]

,

where ∇µ = ∂
∂Ωµ −ΩµΩ

ν ∂
∂Ων is the covariant derivative on the unit sphere

Sd−1.

In analogy with the CFT construction we can look for primary states,

which are annihilated by Kµ and are eigenstates of the hamiltonian, Dφ =

∆φ. The condition Kµφ = 0 splits in one term proportional to Ωµ and one

term orthogonal to Ωµ. The second term implies that φ is independent of

the angular variables Ωµ. The first term gives (∂ρ +∆tanh ρ)φ = 0, which

implies that

φ ∝
(
e−it

cosh ρ

)∆

=

(
R

X0 −Xd+1

)∆

. (67)

This is the lowest energy state. One can get excited states acting with Pµ.

Notice that all this states will have the same value of the quadratic Casimir

1

2
JABJ

BAφ = ∆(∆− d)φ . (68)

This way one can generate all normalizable solutions of ∇2φ = m2φ with

m2R2 = ∆(∆ − d). This shows that the one-particle energy spectrum is

given by ω = ∆ + l + 2n where l = 0, 1, 2, . . . is the spin, generated by

acting with Pµ1
. . . Pµl − traces , and n = 0, 1, 2, . . . is generated by acting

with
(
P 2
)n

.

Exercise 3.2. Given the symmetry of the metric (54) we can look for so-

lutions of the form

φ = eiωtYl(Ω)F (r) , (69)

where Yl(Ω) is a spherical harmonic with eigenvalue −l(l + d − 2) of the

laplacian on the unit sphere Sd−1. Derive a differential equation for F (r)

and show that it is solved by

F (r) = (cos r)
∆
(sin r)

l
2F1

(
l +∆− ω

2
,
l +∆+ ω

2
, l +

d

2
, sin r

)

, (70)
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with 2∆ = d+
√

d2 + 4(mR)2. We chose this solution because it is smooth

at r = 0. Now we also need to impose another boundary condition at the

boundary of AdS r = π
2 . Imposing that there is no energy flux through the

boundary leads to the quantization of the energies |ω| = ∆ + l + 2n with

n = 0, 1, 2, . . . (see reference [8]).

If there are no interactions between the particles in AdS, then the

Hilbert space is a Fock space and the energy of a multi-particle state is

just the sum of the energies of each particle. Turning on small interactions

leads to small energy shifts of the multi-particle states. This structure is

very similar to the space of local operators in large N CFTs if we identify

single-particle states with single-trace operators.

3.2. Quantum Field Theory in AdS

Let us now return to Euclidean signature and consider QFT on the AdS

background. For simplicity, consider a free scalar field with action

S =

ˆ

AdS

dX

[
1

2
(∇φ)2 + 1

2
m2φ2

]

. (71)

The two-point function 〈φ(X)φ(Y )〉 is given by the propagator Π(X,Y ),

which obeys
[
∇2
X −m2

]
Π(X,Y ) = −δ(X,Y ) . (72)

From the symmetry of the problem it is clear that the propagator can

only depend on the invariant X · Y or equivalently on the chordal distance

ζ = (X − Y )2/R2. From now on we will set R = 1 and all lengths will be

expressed in units of the AdS radius.

Exercise 3.3. Use (62) and (64) to show that

Π(X,Y ) =
C∆
ζ∆

2F1

(

∆,∆− d

2
+

1

2
, 2∆− d+ 1,−4

ζ

)

, (73)

where 2∆ = d+
√

d2 + (2m)2 and

C∆ =
Γ(∆)

2π
d
2Γ
(
∆− d

2 + 1
) . (74)

For a free field, higher point functions are simply given by Wick con-

tractions. For example,

〈φ(X1)φ(X2)φ(X3)φ(X4)〉 = Π(X1, X2)Π(X3, X4) + Π(X1, X3)Π(X2, X4)

+ Π(X1, X4)Π(X2, X3) . (75)
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Weak interactions of φ can be treated perturbatively. Suppose the action

includes a cubic term,

S =

ˆ

AdS

dX

[
1

2
(∇φ)2 + 1

2
m2φ2 +

1

3!
gφ3
]

. (76)

Then, there is a non-vanishing three-point function

〈φ(X1)φ(X2)φ(X3)〉 = −g
ˆ

AdS

dY Π(X1, Y )Π(X2, Y )Π(X3, Y ) +O(g3) ,

and a connected part of the four-point function of order g2. This is very

similar to perturbative QFT in flat space.

Given a correlation function in AdS we can consider the limit where we

send all points to infinity. More precisely, we introduce

O(P ) =
1√
C∆

lim
λ→∞

λ∆ φ (X = λP + . . . ) , (77)

where P is a future directed null vector in R
d+1,1 and the . . . denote terms

that do not grow with λ whose only purpose is to enforce the AdS condition

X2 = −1. In other words, the operator O(P ) is the limit of the field φ(X)

when X approaches the boundary point P of AdS. Notice that, by defini-

tion, the operator O(P ) obeys the homogeneity condition (31). Correlation

functions of O are naturally defined by the limit of correlation functions of

φ in AdS. For example, the two-point function is given by

〈O(P1)O(P2)〉 =
1

(−2P1 · P2)
∆

+O(g2) , (78)

which is exactly the CFT two-point function of a primary operator of di-

mension ∆. The three-point function 〈O(P1)O(P2)O(P3)〉 is given by

− g C
− 3

2

∆

ˆ

AdS

dX Π(X,P1)Π(X,P2)Π(X,P3) +O(g3) , (79)

where

Π(X,P ) = lim
λ→∞

λ∆ Π(X,Y = λP + . . . ) =
C∆

(−2P ·X)
∆

(80)

is the bulk to boundary propagator.

Exercise 3.4. Write the bulk to boundary propagator in Poincaré coordi-

nates.
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Exercise 3.5. Compute the following generalization of the integral in (79),

ˆ

AdS

dX
3∏

i=1

1

(−2Pi ·X)
∆i

, (81)

and show that it reproduces the expected formula for the CFT three-point

function 〈O1(P1)O2(P2)O3(P3)〉. It is helpful to use the integral represen-

tation

1

(−2P ·X)
∆

=
1

Γ(∆)

ˆ ∞

0

ds

s
s∆e2sP ·X (82)

to bring the AdS integral to the form
ˆ

AdS

dXe2X·Q (83)

with Q a future directed timelike vector. Choosing the X0 direction along

Q and using the Poincaré coordinates (49) it is easy to show that
ˆ

AdS

dXe2X·Q = π
d
2

ˆ ∞

0

dz

z
z−

d
2 e−z+Q

2/z . (84)

To factorize the remaining integrals over s1, s2, s3 and z it is helpful to

change to the variables t1, t2, t3 and z using

si =

√
z t1t2t3
ti

. (85)

3.2.1. State-Operator Map

We have seen that the correlation functions of the boundary operator (77)

have the correct homogeneity property and SO(d+1, 1) invariance expected

of CFT correlators of a primary scalar operator with scaling dimension ∆.

We will now argue that they also obey an associative OPE. The argument

is very similar to the one used in CFT. We think of the correlation functions

as vacuum expectation values of time ordered products

〈φ(X1)φ(X2)φ(X3) . . . 〉 = 〈0| . . . φ̂(τ3, ρ3,Ω3)φ̂(τ2, ρ2,Ω2)φ̂(τ1, ρ1,Ω1) |0〉 ,

where we assumed τ1 < τ2 < 0 < τ3 < . . . . We then insert a complete

basis of states at τ = 0,

〈φ(X1)φ(X2)φ(X3) . . . 〉 (86)

=
∑

ψ

〈0| . . . φ̂(τ3, ρ3,Ω3) |ψ〉 〈ψ| φ̂(τ2, ρ2,Ω2)φ̂(τ1, ρ1,Ω1) |0〉 .
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Using φ̂(τ, ρ,Ω) = eτDφ̂(0, ρ,Ω)e−τD and choosing an eigenbasis of the

Hamiltonian D = − ∂
∂τ it is clear that the sum converges for the assumed

time ordering. The next step, is to establish a one-to-one map between

the states |ψ〉 and boundary operators. It is clear that every boundary

operator (77) defines a state. Inserting the boundary operator at PA =
(
P 0, Pµ, P d+1

)
=
(
1
2 , 0,

1
2

)
, which is the boundary point defined by τ →

−∞ in global coordinates, we can write

〈. . . φ(X3)O(P )〉 = 〈0| . . . φ̂(τ3, ρ3,Ω3) |O〉 , (87)

where

|O〉 = lim
τ→−∞

(
e−τ cosh ρ

)∆
φ̂(τ, ρ,Ω) |0〉 (88)

=
∑

ψ

|ψ〉 (cosh ρ)∆ lim
τ→−∞

〈ψ| eτ(D−∆)φ̂(0, ρ,Ω) |0〉 .

The limit τ → −∞ projects onto the primary state with wave function

(67).

The map from states to boundary operators can be established using

global time translation invariance,

〈0| . . . φ̂(τ3, ρ3,Ω3) |ψ(0)〉 (89)

= lim
τ→−∞

〈0| . . . φ̂(τ3, ρ3,Ω3)e
τD |ψ(τ)〉 ≡ 〈. . . φ(X3)Oψ(P )〉

where |ψ(τ)〉 = e−τD|ψ〉 and PA =
(
1
2 , 0,

1
2

)
is again the boundary point

defined by τ → −∞ in global coordinates. The idea is that |ψ(τ)〉 prepares a
boundary condition for the path integral on a surface of constant τ and this

surface converges to a small cap around the boundary point PA =
(
1
2 , 0,

1
2

)

when τ → −∞. This is depicted in figure 2.

The Hilbert space of the bulk theory can be decomposed in irreducible

representations of the isometry group SO(d + 1, 1). These are the high-

est weight representations of the conformal group, labelled by the scaling

dimension and SO(d) irrep of the the primary state. Therefore, the CFT

conformal block decomposition of correlators follows from the partial wave

decomposition in AdS, i.e. the decomposition in intermediate eigenstates

of the Hamiltonian organized in irreps of the isometry group SO(d+ 1, 1).

For example, the conformal block decomposition of the disconnected part

of the four-point function,

〈O(P1) . . .O(P4)〉 =
1

(P12P34)
∆

+
1

(P13P24)
∆

+
1

(P14P23)
∆
, (90)
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τ = −∞ τ = ∞

Fig. 2. Curves of constant τ (in blue) and constant ρ (in red) for AdS2 stereographically

projected to the unit disk (Poincaré disk). This shows how surfaces of constant τ converge
to a boundary bound when τ → −∞. The cartesian coordinates in the plane of the figure

are given by ~w =
(cosh ρ sinh τ,sinh ρ)

1+cosh ρ cosh τ
which puts the AdS2 metric in the form ds2 = 4d~w2

1−~w2 .

where Pij = −2Pi · Pj , is given by a sum of conformal blocks associated

with the vacuum and two-particle intermediate states

〈O(P1) . . .O(P4)〉 = G0,0(P1, . . . , P4)+

∞∑

l=0

even

∞∑

n=0

cn,lG2∆+2n+l,l(P1, . . . , P4) .

Exercise 3.6. Check this statement in d = 2 using the formula [28]

GE,l(P1, P2, P3, P4) =
k(E + l, z)k(E − l, z̄) + k(E − l, z)k(E + l, z̄)

(−2P1 · P2)
∆
(−2P3 · P4)

∆
(1 + δl,0)

(91)

where

k(2β, z) = (−z)β 2F1(β, β, 2β, z) . (92)

Determine the coefficients cn,l for n ≤ 1 by matching the Taylor series

expansion around z = z̄ = 0. Extra: using a computer you can compute

many coefficients and guess the general formula.

3.2.2. Generating function

There is an equivalent way of defining CFT correlation functions from QFT

in AdS. We introduce the generating function

W [φb] =
〈

e
´

∂AdS
dPφb(P )O(P )

〉

, (93)
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where the integral over ∂AdS denotes an integral over a chosen section

of the null cone in R
d+1,1 with its induced measure. We impose that the

source obeys φb(λP ) = λ∆−dφb(P ) so that the integral is invariant under

a change of section, i.e. conformal invariant. For example, in the Poincaré

section the integral reduces to
´

ddxφb(x)O(x). Correlation functions are

easily obtained with functional derivatives

〈O(P1) . . .O(Pn)〉 =
δ

δφb(P1)
. . .

δ

δφb(Pn)
W [φb]

∣
∣
∣
∣
φb=0

. (94)

If we set the generating function to be equal to the path integral over the

field φ in AdS

W [φb] =

´

φ→φb
[dφ] e−S[φ]

´

φ→0
[dφ] e−S[φ]

, (95)

with the boundary condition that it approaches the source φb at the bound-

ary,

lim
λ→∞

λd−∆φ(X = λP + . . . ) =
1

2∆− d

1√
C∆

φb(P ) , (96)

then we recover the correlation functions of O defined above as limits of

the correlation functions of φ.

For a quadratic bulk action, tha ratio of path intagrals in (95) is given

e−S computed on the classical solution obeying the required boundary con-

ditions. A natural guess for this solution is

φ(X) =
√

C∆

ˆ

∂AdS

dP
φb(P )

(−2P ·X)∆
. (97)

This automatically solves the AdS equation of motion ∇2φ = m2φ, because

it is an homogeneous function of weight −∆ and it obeys ∂A∂
Aφ = 0 in the

embedding space (see equations (62) and (64)). To see that it also obeys

the boundary condition (96) it is convenient to use the Poincaré section.

Exercise 3.7. In the Poincaré section (30) and using Poincaré coordinates

(49), formula (97) reads

φ (z, x) =
√

C∆

ˆ

ddy
z∆φb(y)

(z2 + (x− y)2)
∆

(98)

and (96) reads

lim
z→0

z∆−dφ(z, x) =
1

2∆− d

1√
C∆

φb(x) . (99)

Show that (99) follows from (98). You can assume 2∆ > d.
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The cubic term 1
3!gφ

3 in the action will lead to (calculable) corrections of

order g in the classical solution (97). To determine the generating function

W [φb] in the classical limit we just have to compute the value of the bulk

action (76) on the classical solution. However, before doing that, we have

to address a small subtlety. We need to add a boundary term to the action

(76) in order to have a well posed variational problem.

Exercise 3.8. The coefficient β should be chosen such that the quadratic

action m

S2 =

ˆ

AdS

dw
√
G

[
1

2
(∇φ)2 + 1

2
m2φ2

]

+ β

ˆ

AdS

dw
√
G∇α (φ∇αφ) (100)

is stationary around a classical solution obeying (99) for any variation δφ

that preserves the boundary condition, i.e.

δφ(z, x) = z∆ [f(x) +O(z)] . (101)

Show that β = ∆−d
d and that the on-shell action is given by a boundary

term

S2 =
2∆− d

2d

ˆ

AdS

dw
√
g∇α (φ∇αφ) . (102)

Finally, show that for the classical solution (98) this action is given by n

S2 = −1

2

ˆ

ddy1d
dy2φb(y1)φb(y2)K(y1, y2) , (103)

where

K(y1, y2) = C∆
2∆− d

d
lim
z→0

ˆ

ddx

zd−1

z∆

(z2 + (x− y1)2)
∆
∂z

z∆

(z2 + (x− y2)2)
∆

=
1

(y1 − y2)2∆
(104)

is the CFT two point function (78).

mHere w stands for a generic coordinate in AdS and the index α runs over the d + 1
dimensions of AdS.
nThis integral is divergent if the source φb is a smooth function and ∆ > d

2
. The

divergence comes from the short distance limit y1 → y2 and does not affect the value of
correlation functions at separate points. Notice that a small value of z > 0 provides a
UV regulator.
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Exercise 3.9. Using φ = φ0 + O(g) with φ0 given by (97), show that the

complete on-shell action is given by

S = −1

2

ˆ

ddy1d
dy2φb(y1)φb(y2)K(y1, y2)+

1

3!
g

ˆ

AdS

dX [φ0(X)]
3
+O(g2) ,

and that this leads to the three-point function (79). Extra: Compute the

terms of O(g2) in the on-shell action.

We have seen that QFT on an AdS background naturally defines con-

formal correlation functions living on the boundary of AdS. Moreover, we

saw that a weakly coupled theory in AdS gives rise to factorization of CFT

correlators like in a large N expansion. However, there is one missing in-

gredient to obtain a full-fledged CFT: a stress-energy tensor. In the next

section, we will see that this requires dynamical gravity in AdS. The next

exercise also shows that a free QFT in AdSd+1 can not be dual to a local

CFTd.

Exercise 3.10. Compute the free-energy of a gas of free scalar particles in

AdS. Since particles are free and bosonic one can create multi-particle states

by populating each single particle state an arbitrary number of times. That

means that the total partition function is a product over all single particle

states and it is entirely determined by the single particle partition function.

More precisely, show that

F = −T logZ = −T log
∏

ψsp

(
∞∑

k=0

qkEψsp

)

= −T
∞∑

n=1

1

n
Z1 (q

n) , (105)

Z1(q) =
∑

ψsp

qEψsp =
q∆

(1− q)d
, (106)

where q = e−
1

RT and we have used the single-particle spectrum of the hamil-

tonian D = − ∂
∂τ of AdS in global coordinates. Show that

F ≈ −ζ(d+ 1)RdT d+1 (107)

in the high temperature regime and compute the entropy using the thermo-

dynamic relation S = −∂F
∂T . Compare this result with the expectation

S ∼ (RT )d−1 , (108)

for the high temperature behaviour of the entropy of a CFT on a sphere

Sd−1 of radius R. See section 4.3 of reference [29] for more details.
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3.3. Gravity with AdS boundary conditions

Consider general relativity in the presence of a negative cosmological con-

stant

I[G] =
1

ℓd−1
P

ˆ

dd+1w
√
G [R− 2Λ] . (109)

The AdS geometry

ds2 = R2 dz
2 + dxµdx

µ

z2
, (110)

is a maximally symmetric classical solution with Λ = −d(d−1)
2R2 . When

the AdS radius R is much larger than the Planck length ℓP the metric

fluctuations are weakly coupled and form an approximate Fock space of

graviton states. One can compute the single graviton states and verify that

they are in one-to-one correspondence with the CFT stress-tensor operator

and its descendants (with AdS energies matching scaling dimensions). One

can also obtain CFT correlation functions of the stress-energy tensor using

Witten diagrams in AdS. The new ingredients are the bulk to boundary

and bulk to bulk graviton propagators [30–34].

In the gravitational context, it is nicer to use the partition function

formulation

Z[gµν , φb] =

ˆ

G→g
φ→φb

[dG] [dφ] e−I[G,φ] (111)

where

I[G,φ] =
1

ℓd−1
P

ˆ

dd+1w
√
G

[

R− 2Λ +
1

2
(∇φ)2 + 1

2
m2φ2

]

(112)

and the boundary condition are

ds2 = Gαβdw
αdwβ = R2 dz

2 + dxµdxν [gµν(x) +O(z)]

z2
, (113)

φ =
zd−∆

2∆− d
[φb(x) +O(z)] .

By construction the partition function is invariant under diffeomorphisms

of the boundary metric gµν . Therefore, this definition implies the Ward

identity (18). The generating function is also invariant under Weyl trans-

formations

Z
[
Ω2gµν ,Ω

∆−dφb
]
= Z [gµν , φb] (naive) (114)
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This follows from the fact that the boundary condition

ds2 = R2 dz
2 + dxµdxν

[
Ω2(x)gµν(x) +O(z)

]

z2
(115)

φ =
zd−∆

2∆− d

[
Ω∆−d(x)φb(x) +O(z)

]

can be mapped to (113) by the following coordinate transformation

z → zΩ− 1

4
z3Ω (∂µ log Ω)

2
+O(z5) (116)

xµ → xµ − 1

2
z2∂µ log Ω +O(z4)

where indices are raised and contracted using the metric gµν and its in-

verse. In other words, a bulk geometry that satisfies (113) also satisfies

(115) with an appropriate choice of coordinates. If the partition function

(111) was a finite quantity this would be the end of the story. However,

even in the classical limit, where Z ≈ e−I , the partition function needs to

be regulated. The divergences originate from the z → 0 region and can

be regulated by cutting off the bulk integrals at z = ǫ (as it happened

for the scalar case discussed above). Since the coordinate transformation

(116) does not preserve the cutoff, the regulated partition function is not

obviously Weyl invariant. This has been studied in great detail in the con-

text of holographic renormalization [35, 36]. In particular, it leads to the

Weyl anomaly gµνTµν 6= 0 when d is even. The crucial point is that this

is a UV effect that does not affect the connected correlation functions of

operators at separate points. In particular, the integrated form (21)=(23)

of the conformal Ward identity is valid.

We do not now how to define the quantum gravity path integral in

(111). The best we can do is a semiclassical expansion when ℓP ≪ R.

This semiclassical expansion gives rise to connected correlators of the stress

tensor Tµν that scale as

〈Tµ1ν1(x1) . . . Tµnνn(xn)〉c ∼
(
R

ℓP

)d−1

. (117)

This is exactly the scaling (46) we found from large N factorization if we

identify N2 ∼
(
R
ℓP

)d−1

. This suggests that CFTs related to semiclassical

Einstein gravity in AdS, should have a large number of local degrees of

freedom. This can be made more precise. The two-point function of the
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stress tensor in a CFT is given by

〈Tµν(x)Tσρ(0)〉 =
CT
S2
d

1

x2d

[
1

2
IµσIνρ +

1

2
IµρIνσ − 1

d
δµνδσρ

]

, (118)

where Sd =
2πd/2

Γ(d/2) is the volume of a (d− 1)-dimensional unit sphere and

Iµν = δµν − 2
xµxν
x2

. (119)

The constant CT provides an (approximate) measure of the number of

degrees of freedom.o For instance, for nϕ free scalar fields and nψ free

Dirac fields we find [37]

CT = nϕ
d

d− 1
+ nψ2

[ d2 ]−1d , (120)

where [x] is the integer part of x. If the CFT is described by Einstein

gravity in AdS, we find [30]

CT = 8
d+ 1

d− 1

π
d
2Γ(d+ 1)

Γ3
(
d
2

)
Rd−1

ℓd−1
P

, (121)

which shows that the CFT dual of a semiclassical gravitational theory with

R≫ ℓP , must have a very large number of degrees of freedom.

In summary, semiclassical gravity with AdS boundary conditions gives

rise to a set of correlation functions that have all the properties (conformal

invariance, Ward identities, large N factorization) expected for the correla-

tion functions of the stress tensor of a large N CFT. Therefore, it is natural

to ask if a CFT with finite N is a quantum theory of gravity.

4. The AdS/CFT Correspondence

4.1. Quantum Gravity as CFT

What is quantum gravity? The most conservative answer is a standard

quantum mechanical theory whose low energy dynamics around a weakly

curved background is well described by general relativity (or some other

theory with a dynamical metric). This viewpoint is particularly useful

with asymptotically AdS boundary conditions. In this case, we can view

the AdS geometry with a radius much larger than the Planck length as a

background for excitations (gravitons) that are weakly coupled at low en-

ergies. Therefore, we just need to find a quantum system that reproduces
oHowever, for d > 2, CT is not a c-function that always decreases under Renormalization
Group flow.
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the dynamics of low energy gravitons in a large AdS. In fact, we should be

more precise about the word “reproduces”. We should define observables in

quantum gravity that our quantum system must reproduce. This is not so

easy because the spacetime geometry is dynamical and we can not define

local operators. In fact, the only well defined observables are defined at

the (conformal) boundary like the partition function (111) and the associ-

ated correlation functions obtained by taking functional derivatives. But in

the previous section we saw that these observables have all the properties

expected for the correlation functions of a large N CFT. Thus, quantum

gravity with AdS boundary conditions is equivalent to a CFT.

There are many CFTs and not all of them are useful theories of quantum

gravity. Firstly, it is convenient to consider a family of CFTs labeled by

N , so that we can match the bulk semiclassical expansion using N2 ∼
(
R
ℓP

)d−1

. In the large N limit, every CFT single-trace primary operator of

scaling dimension ∆ gives rise to a weakly coupled field in AdS with mass

m ∼ ∆/R. Therefore, if are looking for a UV completion of pure gravity

in AdS without any other low energy fields, then we need to find a CFT

where all single-trace operators have parametrically large dimension, except

the stress tensor. This requires strong coupling and seems rather hard to

achieve. Notice that a weakly coupled CFT with gauge group SU(N) and

fields in the adjoint representation has an infinite number of primary single-

trace operators with order 1 scaling dimension. It is natural to conjecture

that large N factorization and correct spectrum of single-trace operators

are sufficient conditions for a CFT to provide a UV completion of General

Relativity (GR) [38]. However, this is not obvious because we still have to

check if the CFT correlation functions of Tµν match the prediction from

GR in AdS. For example, the stress tensor three-point function is fixed by

conformal symmetry to be a linear combination of 3 independent conformal

invariant structures. p On the other hand, the action (109) predicts a

specific linear combination. It is not obvious that all large N CFTs with

the correct spectrum will automatically give rise to the same three-point

function. There has been some recent progress in this respect. The authors

of [39] used causality to show that this is the case. Unfortunately, their

argument uses the bulk theory and can not be formulated entirely in CFT

language. In any case, this is just the three-point fuction and GR predicts

the leading large N behaviour of all n-point functions. It is an important

open problem to prove the following conjecture:

pHere we are assuming d ≥ 4. For d = 3 there are only 2 independent structures.



32 João Penedones

Any large N CFT where all single-trace operators, except the stress ten-

sor, have parametrically large scaling dimensions, has the stress tensor cor-

relation functions predicted by General Relativity in AdS.

Perhaps the most pressing question is if such CFTs exist at all. At the

moment, we do not know the answer to this question but in the next section

we will discuss closely related examples that are realized in the context of

string theory.

If some CFTs are theories of quantum gravity, it is natural to ask if

there are other CFT observables with a nice gravitational interpretation.

One interesting example that will be extensively discussed in this school is

the entanglement entropy of a subsystem. In section 4.3, we will discuss how

CFT thermodynamics compares with black hole thermodynamics in AdS.

In addition, in section 4.4 we will give several examples of QFT phenomena

that have beautiful geometric meaning in the holographic dual.

4.2. String Theory

The logical flow presented above is very different from the historical route

that led to the AdS/CFT correspondence. Moreover, from what we said so

far AdS/CFT looks like a very abstract construction without any concrete

examples of CFTs that have simple gravitational duals. If this was the full

story probably I would not be writing these lecture notes. The problem

is that we have stated properties that we want for our CFTs but we have

said nothing about how to construct these CFTs besides the fact that they

should be strongly coupled and obey large N factorization. Remarkably,

string theory provides a “method” to find explicit examples of CFTs and

their dual gravitational theories.

The basic idea is to consider the low energy description of D-brane

systems from the perspective of open and closed strings. Let us illus-

trate the argument by quickly summarizing the prototypical example of

AdS/CFT [1]. Consider N coincident D3-branes of type IIB string the-

ory in 10 dimensional Minkowski spacetime. Closed strings propagating in

10 dimensions can interact with the D3-branes. This interaction can be

described in two equivalent ways:

(a) D3-branes can be defined as a submanifold where open strings can

end. This means that a closed string interacts with the D3-branes by break-

ing the string loop into an open string with endpoints attached to the D3-

branes.

(b) D3-branes can be defined as solitons of closed string theory. In other
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words, they create a non-trivial curved background where closed strings

propagate.

(a) (b)

Fig. 3. (a) Closed string scattering off branes in flat space. (b) Closed string propagat-
ing in a curved background.

These two alternatives are depicted in figure 3. Their equivalence is

called open/closed duality. The AdS/CFT correspondence follows from

the low-energy limit of open/closed duality. We implement this low-energy

limit by taking the string length ℓs → 0, keeping the string coupling gs,

the number of branes N and the energy fixed. In description (a), the

low energy excitations of the system form two decoupled sectors: massless

closed strings propagating in 10 dimensional Minkoski spacetime and mass-

less open strings attached to the D3-branes, which at low energies are well

described by N = 4 Supersymmetric Yang-Mills (SYM) with gauge group

SU(N). In description (b), the massless closed strings propagate in the

following geometry

ds2 =
1

√

H(r)
ηµνdx

µdxν +
√

H(r)
[
dr2 + r2dΩ2

5

]
, (122)

where ηµν is the metric of the 4 dimensional Minkowski space along the

branes and

H(r) = 1 +
R4

r4
, R4 = 4πgsNℓ

4
s . (123)

Naively, the limit ℓs → 0 just produces 10 dimensional Minkowski space-

time. However, one has to be careful with the region close to the branes at

r = 0. A local high energy excitation in this region will be very redshifted
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from the point of view of the observer at infinity. In order to determine

the correct low-energy limit in the region around r = 0 we introduce a new

coordinate z = R2/r, which we keep fixed as ℓs → 0. This leads to

ds2 = R2 dz
2 + ηµνdx

µdxν

z2
+R2dΩ2

5 , (124)

which is the metric of AdS5×S5 both with radius R. Therefore, description

(b) also leads to 2 decoupled sectors of low energy excitations: massless

closed strings in 10D and full type IIB string theory on AdS5 × S5. This

led Maldacena to conjecture that

SU(N) SYM ⇔ IIB strings on AdS5 × S5

g2YM = 4πgs
R4

ℓ4s
= g2YMN ≡ λ

SYM is conformal for any value of N and the coupling constant g2YM .

The lagrangian of the theory involves the field strength

Fµν = ∂µAν − ∂νAµ − i [Aµ, Aν ] , (125)

6 scalars fields Φm and 4 Weyl fermions Ψa, which are all valued in the

adjoint representation of SU(N). The lagrangian is given by

1

g2YM
Tr

[
1

4
FµνFµν +

1

2
(DµΦm)

2
+ Ψ̄aσµDµΨa (126)

−1

4
[Φm,Φn]

2 − CabmΨa [Φ
m,Ψb]− C̄mabΨ̄

a
[
Φm, Ψ̄b

]
]

,

where Dµ is the gauge covariant derivative and Cabm and C̄mab are constants

fixed by the SO(6) = SU(4) global symmetry of the theory. Notice that the

isometry group of AdS5 × S5 is SO(5, 1)× SO(6), which matches precisely

the bosonic symmetries of SYM: conformal group × global SO(6). There

are many interesting things to say about SYM. In some sense, SYM is the

simplest interacting QFT in 4 dimensions [40]. However, this is not the

focus of these lectures and we refer the reader to the numerous existing

reviews about SYM [10, 41].

The remarkable conjecture of Maldacena has been extensively tested

since it was first proposed in 1997 [1]. To test this conjecture one has to

be able to compute the same observable on both sides of the duality. This

is usually a very difficult task. On the SYM side, the regime accessible

to perturbation theory is g2YMN ≪ 1. This implies gs ≪ 1, which on the

string theory side suppresses string loops. However, it also implies that the

AdS radius of curvature R is much smaller than the string length ℓs. This
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means that the string worldsheet theory is very strongly coupled. In fact,

the easy regime on the string theory side is gs ≪ 1 and R ≫ ℓs, so that

(locally) strings propagate in an approximately flat space. Thus, directly

testing the conjecture is a formidable task. There are three situations where

a direct check can be made analitycally.

The first situation arises when some observable is independent of the

coupling constant. In this case, one can compute it at weak coupling λ ≪
1 using the field theory description and at strong coupling λ ≫ 1 using

the string theory description. Usually this involves completely different

techniques but in the end the results agree. Due to the large supersymmetry

of SYM there are many observables that do not depend on the coupling

constant. Notable examples include the scaling dimensions of half BPS

single-trace operators and their three-point functions [42].

The second situation involves observables that depend on the coupling

constant λ but preserve enough supersymmetry that can be computed at

any value of λ using a technique called localization. Important examples

of this type are the sphere partition function and the expectation value of

circular Wilson loops [43, 44].

Finally, the third situation follows from the conjectured integrability

of SYM in the planar limit. Assuming integrability one can compute the

scaling dimension of non-protected single-trace operators at any value of λ

and match this result with SYM perturbative calculations for λ ≪ 1 and

with weakly coupled string theory for λ≫ 1 (see figure 1 from [45]). Planar

scattering amplitudes an three-point functions of single-trace operators can

also be computed using integrability [46, 47].

There are also numerical tests of the gauge/gravity duality. The most

impressive study in this context, was the Monte-Carlo simulation of the

BFSS matrix model [48] at finite temperature that reproduced the predic-

tions from its dual black hole geometry [49–55].

How does the Maldacena conjecture fit into the general discussion of the

previous sections? One important novelty is the presence of a large internal

sphere on the gravitational side. We can perform a Kaluza-Klein reduction

on S5 and obtain an effective action for AdS5

1

(2π)7ℓ8s

ˆ

d10x
√
g10e

−2Φ [R10 + . . . ] → R5

8(2π)4g2sℓ
8
s

ˆ

d5x
√
g5 [R5 + . . . ] .

This allows us to identify the 5 dimensional Planck length

ℓ3P =
8(2π)4g2sℓ

8
s

R5
(127)
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and verify the general prediction N2 ∼ R3/ℓ3P . Remarkably, at strong

coupling λ≫ 1 all single-trace non-protected operators of SYM have para-

metrically large scaling dimensions. This is simple to understand from the

string point of view. Massive string states have masses m ∼ 1/ℓs. But we

saw in the previous sections that the dual operator to an AdS field of mass

m has a scaling dimension ∆ ∼ mR ∼ R/ℓs ∼ λ
1

4 . The only CFT opera-

tors that have small scaling dimension for λ≫ 1 are dual to massless string

states that constitute the fields of type IIB supergravity (SUGRA). There-

fore, one can say that SYM (with N ≫ λ ≫ 1) provides a UV completion

of IIB SUGRA with AdS5 × S5 boundary conditions.

String theory provides more concrete examples of AdS/CFT dual

pairs. These examples usually involve SCFTs (or closely related non-

supersymmetry theories). This is surprising because SUSY played no role in

our general discussion. At the moment, it is not known if SUSY is an essen-

tial ingredient of AdS/CFT or if it is only a useful property that simplifies

the calculations. The latter seems more likely but notice that SUSY might

be essential to stabilize very strong coupling and allow the phenomena of

large scaling dimensions for almost all single-trace operators. Another ob-

servation is that it turns out to be very difficult to construct AdS duals with

small internal spaces (for SYM we got a 5-sphere with the same radius of

AdS5). It is an open problem to find CFTs with gravity duals in less than

10 dimensions (see [56, 57] for attempts in this direction).

Another interesting class of examples are the dualities between vector

models and Higher Spin Theories (HST) [58, 59]. Consider for simplicity

the free O(n) model in 3 dimensions

S =

ˆ

d3x

n∑

i=1

1

2
∂µϕ

i∂µϕi . (128)

In this case, the analogue of single-trace operators are the O(n) singlets

Ol =
∑

i ϕ
i∂µ1

. . . ∂µlϕ
i with even spin l and dimension ∆ = 1+ l. At large

n, the correlation functions of these operators factorize with n playing the

role of N2 in a SU(N) gauge theory with adjoint fields. The AdS dual

of this CFT is a theory with one massless field for each even spin. These

theories are rather non-local and they can not be defined in flat spacetime.

Even if we introduce the relevant interaction
(
ϕiϕi

)2
and flow to the IR

fixed point (Wilson-Fisher fixed point), the operators Ol with l > 2 get

anomalous dimensions of order 1
n and therefore the classical AdS theory

still contains the same number of massless higher spin fields. This duality

has been extended to theories with fermions and to theories where the global
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O(n) symmetry is gauged using Chern-Simons gauge fields. It is remarkable

that HST in AdS seems to have the correct structure to reproduce the

CFT observables that have been computed so far. Notice that in these

examples of AdS/CFT supersymmetry plays no role. However, it is unclear

if the AdS description is really useful in this case.q In practice, the large

n limit of these vector models is solvable and the dual HST in AdS is

rather complicated to work with even at the classical level. There are also

analogous models in AdS3/CFT2 duality [62].

4.3. Finite Temperature

In section 3.3, we argued that holographic CFTs must have a large number

of local degrees of freedom, using the two-point function of the stress tensor.

Another way of counting degrees of freedom is to look at the entropy density

when the system is put at finite temperature. For a CFT in flat space and

infinite volume, the temperature dependence of the entropy density is fixed

by dimensional analysis because there is no other scale available,

s = csT
d−1 . (129)

The constant cs is a physical measure of the number of degrees of freedom.

The gravitational dual of the system at finite temperature is a black

brane in asymptotically AdS space. The Euclidean metric is given by

ds2 =
R2

z2

[
dz2

1− (z/zH)d
+

(

1− zd

zdH

)

dτ2 + δijdx
idxj

]

. (130)

Exercise 4.1. Show that in order to avoid a conical defect at the horizon

z = zH , we need to identify Euclidean time τ with period 4πzH
d . This fixes

the Hawking temperature T = d
4πzH

.

The formula T = d
4πzH

illustrates a general phenomena in holography: high

energy corresponds to the region close to the boundary and low energy

corresponds to the deep interior of the dual geometry.

The entropy of the system is given by the Bekenstein-Hawking formula

S =
AH
4GN

=
4π

ℓd−1
P

Rd−1

zd−1
H

ˆ

dd−1x ⇒ cs =
(4π)d

dd−1

Rd−1

ℓd−1
P

. (131)

qIn practice it was very useful because it led to an intensive study of Chern-Simons
matter theories, which gave rise to the remarkable conjecture of fermion/boson duality
in 3 dimensions [60, 61].
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As expected cs is very large in the bulk classical limit R≫ ℓP . Interestingly,

the ratio

cs
CT

=
π
d
2

8

(
4

d

)d
d− 1

d+ 1

Γ3
(
d
2

)

Γ(d)
(132)

only depends on the spacetime dimension d if the CFT has a classical bulk

dual [63]. It would be very nice to prove that all large N CFTs where all

single-trace operators, except the stress tensor, have parametrically large

scaling dimensions, satisfy (132). Notice that (132) is automatic in d = 2

because CT = 2c and cs = π
3 c are uniquely fixed in terms of the central

charge c. In planar SYM, CT = 40N2 is independent of the ’t Hooft cou-

pling but cs varies with λ (although not much, cs(λ = ∞) = 3
4cs(λ = 0)).

In this case, (132) is only satisfied at strong coupling, when all primary

operators with spin greater than 2 have parametrically large scaling dimen-

sions.

Exercise 4.2. Consider a CFT on a sphere of radius L and at temperature

T . In this case, the entropy is a non-trivial function of the dimensioless

combination LT . Let us compute this function assuming the CFT is well

described by Einstein gravity with asymptotically AdS boundary conditions.

There are two possible bulk geometries that asymptote to the Euclidean

boundary S1 × Sd−1. The first is pure AdS

ds2 = R2

[
dr2

1 + r2
+
(
1 + r2

)
dτ2 + r2dΩ2

d−1

]

(133)

with Euclidean time periodically identified and the second is Schwarzschild-

AdS

ds2 = R2

[
dr2

f(r)
+ f(r)dτ̃2 + r2dΩ2

d−1

]

, (134)

where f(r) = 1 + r2 − m
rd−2 . At the boundary r = rmax ≫ 1, both solutions

should be conformal to S1×Sd−1 with the correct radii. Show that this fixes

the periodicities

∆τ =
1

TL

rmax
√

1 + r2max
, ∆τ̃ =

1

TL

rmax
√

f(rmax)
. (135)

Show also that regularity of the metric (134) implies the periodicity

∆τ̃ =
4π

f ′(rH)
=

4π

rHd+
d−2
rH

, (136)
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where r = rH is the largest zero of f(r). Notice that this implies a minimal

temperature for Schwarzschild black holes in AdS, T >

√
d(d−2)

2πL .

Both (133) and (134) are stationary points of the Euclidean action

(109). Therefore, we must compute the value of the on-shell action in order

to decide which one dominates the path integral. Show that the difference

of the on-shell actions is given by

IBH − IAdS = −2Sd
Rd−1

ℓd−1
P

[
rdmax∆τ −

(
rdmax − rdH

)
∆τ̃
]

(137)

−→ Sd
Rd−1

ℓd−1
P

1

TL
rd−2
H (1− r2H) (138)

where Sd is the area of a unit (d−1)-dimensional sphere and in the last step

we took the limit rmax → ∞. Conclude that the black hole only dominates

the bulk path integral when rH > 1, which corresponds to T > d−1
2πL . This is

the Hawking-Page phase transition [64]. It is natural to set the free-energy

of the AdS phase to zero because this phase corresponds to a gas of gravitons

around the AdS background whose free energy does not scale with the large

parameter (R/ℓP )
d−1. Therefore, the free energy of the black hole phase is

given by

FBH =
1

L
Sd
Rd−1

ℓd−1
P

rd−2
H (1− r2H) . (139)

Verify that the thermodynamic relation ∂F
∂T = −S agrees with the

Bekenstein-Hawking formula for the black hole entropy. Since this a first

order phase transition you can also compute its latent heat.

In the last exercise, we saw that for a holographic CFT on a sphere of

radius L, the entropy is a discontinuous function of the temperature. In

fact, we found that for sufficiently high temperatures T > d−1
2πL , the entropy

was very large S ∼ CT , while for lower temperatures the entropy was small

because it did not scale with CT . This can be interpreted as deconfinement

of the numerous degrees of freedom measured by CT ≫ 1 which do not

contribute to the entropy below the transition temperature Tc =
d−1
2πL . How

can this bevavior be understood from the point of view of a large N gauge

CFT?

4.4. Applications

The AdS/CFT correspondence (or the gauge/gravity duality more gener-

ally) is a useful framework for thinking about strong coupling phenomena
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in QFT. Besides the specific examples of strongly coupled CFTs that can be

studied in great detail using the gravitational dual description, AdS/CFT

provides a geometric reformulation of many effects in QFT. Usually, we do

not know the precise gravitational dual of a given QFT of interest (like

QCD) but it is still very useful to study gravitational toy models that

preserve the main features we are interested in. These models enlarge our

intuition because they are very different from QFT models based on weakly

interacting quasi-particles. There are many examples of QFT observables

that have a nice geometric interpretation in the dual gravitational descrip-

tion. Perhaps the most striking one is the computation of entanglement

entropy as the area of a minimal surface in the dual geometry [65]. Let us

illustrate this approach in the context of confinig gauge theories like pure

Yang-Mills theory.

Confinement means that the quark anti-quark potential between static

quarks grows linearly with the distance L at large distances

V (L) ≈ σL , L→ ∞ , (140)

where σ is the tension of the flux tube or effective string. This potential

can be defined through the expectation value of a Wilson loop (in the

fundamental representation)

W [C] = Tr P exp

˛

C

Aµdx
µ , (141)

for a rectangular contour C with sides T × L,

〈W [C]〉 ∼ e−TV (L) , T → ∞ . (142)

This is equivalent to the area law 〈W [C]〉 ∼ e−σArea[C] for large contours.

In the gauge/string duality there is a simple geometric rule to compute

expectation values of Wilson loops [66]. One should evaluate the path

integral

〈W [C]〉 =
ˆ

∂Σ=C

[dΣ]e−Ss[Σ] (143)

summing over all surfaces Σ in the dual geometry that end at the contour

C at the boundary. The path integral is weighted using the dual string

world-sheet action. At large N , we expect that the dominant contribution

comes from surfaces Σ with disk topology. In specific examples, like SYM,

this can be made very precise. For example, at large ’t Hooft coupling the
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world-sheet action reduces to r

Ss[Σ] =
1

4πℓ2s
Area[Σ] . (144)

In this case, since the theory is conformal, there is no confinement and the

quark anti-quark potential is Coulomb like,

V (L) =
a(N,λ)

L
. (145)

For most confining gauge theories (e.g. pure Yang-Mills theory) we do

not know neither the dual geometry nor the dual string world-sheet action.

However, we can get a nice qualitative picture if we assume (144) and only

change the background geometry. The most general (d + 1)-dimensional

geometry that preserves d-dimensional Poincaré invariance can be written

as

ds2 = R2

[
dz2

z2
+A2(z)dxµdxµ

]

. (146)

The profile of the function A2(z) encodes many properties of the dual QFT.

For a CFT, scale invariance fixes A(z) ∝ z−1. For asymptotically free gauge

theories, we still expect that A(z) diverges for z → 0 however the function

should be very different for larger values of z. In particular, it should have

a minimum for some value z = z⋆ > 0. Let us see what this implies for the

expectation value of a large Wilson loop. The string path integral (143)

will be dominated by the surface Σ with minimal area. For large contours

C, this surface will sink inside AdS until the value z = z⋆ that minimizes

A2(z) and the worldsheet area will be given by

R2A2(z⋆)Area[C] +O(Length[C]) . (147)

Therefore, we find a confining potential with flux tube tension

σ =
A2(z⋆)

4π

R2

ℓ2s
. (148)

What happens if we put the QFT at finite temperature? In this case,

we can probe confinement by computing
〈
W (Cx)W̄ (Cx+L)

〉

β
= e−βFqq̄(β,L) (149)

where Cx is the contour around the Euclidean time circle at the spatial po-

sition x (Polyakov loop). Fqq̄(β, L) denotes the free energy of a static quark
rIn fact, the total area of Σ is infinite but the divergence comes from the region close to
the boundary of AdS. This can be regulated by cutting of AdS at z = ǫ, and renormalized
by subtracting a divergent piece proportional to the length of the contour C.
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anti-quark pair at distance L and temperature 1/β. If Fqq̄(β, L) → ∞ as we

separate the pair, then we are in the confined phase. On the other hand, if

Fqq̄(β, L) remains finite when L→ ∞, we are in the deconfined phase. Let

us see how this works in the holographic dual. For low temperatures, the

dual geometry is simply given by (146) with Euclidean time identified with

period β. Therefore, the bulk minimal surface that ends on Cx and Cx+L
will have a cylindrical topology and its area will scale linearly with L at

large L. In fact, we find Fqq̄(β, L) ≈ σL like in the vacuum. On the other

hand, for high enough temperature we expect the bulk path integral to be

dominated by a black hole geometry (see exercise 4.2 about Hawking-Page

phase transition). The metric can then be written as

ds2 = R2

[
dz2

z2f(z)
+ f(z)dτ2 + g(z)dxidxi

]

, (150)

where f(z) vanishes for some value z = zH . This means that the Euclidean

time circle is contractible in the bulk. Therefore, for large L, the minimal

surface has two disconnected pieces with disk topology ending on Cx and

Cx+L whose area remains finite when L→ ∞. This means deconfinement

lim
L→∞

〈
W (Cx)W̄ (Cx+L)

〉

β
= 〈W (Cx)〉2β = e−2βFq(β) > 0 . (151)

Another feature of a confining gauge theory is a mass gap and a dis-

crete spectrum of mesons and glueballs. To compute this spectrum using

the bulk dual one should study fluctuations around the vacuum geometry

(146). Consider for simplicity, a scalar field obeying ∇2φ = m2φ. Since

we are interested in finding the spectrum of the operator PµP
µ we look for

solutions of the form φ = eik·xψ(z), which leads to

z

Ad(z)
∂z
(
zAd(z)∂zψ

)
− k2

A2(z)
ψ = m2R2ψ . (152)

The main idea is that this equation will only have solutions that obey the

boundary conditions ψ(0) = ψ(∞) = 0 for special discrete values of k2. In

other words, we obtain a discrete mass spectrum as expected for a confining

gauge theory.

Exercise 4.3. Consider the simplest holographic model of a confining gauge

theory: the hard wall model. This is just a slice of AdS, i.e. we take

A(z) = 1/z and cutoff space at z = z⋆. Show that (152) reduces to the

Bessel equation
[
z2∂2z + z∂z − α2 − k2z2

]
h(z) = 0 , (153)
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where α2 = m2R2 + d2/4 and h(z) = z−
d
2ψ(z). Finally, show that the

boundary conditions h(0) = h(z⋆) = 0, lead to the quantization

hn(z) = Jα

(
z

z⋆
uα,n

)

, m2
n = −k2 =

u2α,n
z2⋆

, n = 1, 2, . . . (154)

where uα,n is the nth zero of the Bessel function Jα.

It is instructive to compare the lightest glueball mass m1 with the flux

tube tension σ = 1
4πz2⋆

R2

ℓ2s
in the hard wall model. We find that σ

m2
1

∼ R2

ℓ2s
.

The fact that this ratio is of order 1 in pure Yang-Mills theory is another

indication that its holographic dual must be very stringy (curvature radius

of the same order of the string length).

Above the deconfinement temperature, the system is described by

a plasma of deconfined partons (quarks and gluons in QCD). The

gauge/gravity duality is also very useful to describe this strongly coupled

plasma. The idea is that the hydrodynamic behavior of the plasma is dual

to the long wavelength fluctuations of the black hole horizon. This map can

be made very precise and has led to significant developments in the theory

of relativistic hydrodynamics. One important feature of the gravitational

description is that dissipation is built in because black hole horizons natu-

rally relax to equilibrium. A famous result from this line of work was the

discovery of a universal ratio of shear viscosity η to entropy density s. Any

CFT dual to Einstein gravity in AdS has η
s = 1

4π . This is a rather small

number (water at room temperature has η
s ∼ 30) but remarkably it is of

the same order of magnitude of that observed in the quark-gluon plasma

produced in heavy ion collisions [67].

There are also many interesting applications of the gauge/gravity du-

ality to Condensed Matter physics [9, 14]. There are many materials that

are not well described by weakly coupled quasi-particles. In this case, it

is useful to have alternative models based on gravitational theories in AdS

that share the same qualitative features. This can give geometric intuition

about the system in question.

The study of holographic models is also very useful for the discovery of

general properties of CFT (and QFT more generally). If one observes that a

given property holds both in weakly coupled and in holographic CFTs, it is

natural to conjecture that such property holds in all CFTs. This reasoning

has led to the discovery (and sometimes proof) of several important facts

about CFTs, like the generalization of Zamolodchikov’s c-theorem to d > 2

(known as F-theorem in d = 3 and a-theorem in d = 4) [68–71] or the
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existence of universal bounds on the three-point function of the stress tensor

and its relation to the idea of energy correlators [72–74].

Onother example along this line is the existence of “double-trace” op-

erators with large spin in any CFT. The precise statement is that in the

OPE of two operators O1 and O2 there is an infinite number of operators

On,l of spin l ≫ 1 and scaling dimension

∆n,l ≈ ∆1 +∆2 + 2n+ l +
γn
lτmin

(155)

where τmin is the minimal twist (dimension minus spin) of all the operators

that appear in both OPEs O1 × O1 and O2 × O2. In a generic CFT, this

will be the stress tensor with τmin = d − 2 and one can derive explicit

formulas for γn [75–78]. This statement has been proven using the confor-

mal bootstrap equations but its physical meaning is more intuitive in the

dual AdS language. Consider two particle primary states in AdS. Without

interactions the energy of such states is given by ∆1 + ∆2 + 2n + l where

n = 0, 1, 2, . . . is a radial quantum number and l is the spin. Turning on

interactions will change the energies of these two-particle states. However,

the states with large spin and fixed n correspond to two particles orbitating

each other at large distances and therefore they will suffer a small energy

shift due to the gravitational long range force. At large spin, all other in-

teractions (corresponding to operators with higher twist) give subdominant

contributions to this energy shift. In other words, the general result (155) is

the CFT reflection of the simple fact that interactions decay with distance

in the dual AdS picture.

5. Mellin amplitudes

Correlation functions of local operators in CFT are rather complicated func-

tions of the cross-ratios. Since these are crucial observables in AdS/CFT

it is useful to find simpler representations. This is the motivation to study

Mellin amplitudes. They were introduced by G. Mack in 2009 [79, 80]

following earlier work [81, 82]. Mellin amplitudes share many of the prop-

erties of scattering amplitudes of dual resonance models. In particular,

they are crossing symmetric and have a simple analytic structure (related

to the OPE). As we shall see, in the case of holographic CFTs, we can

take this analogy further and obtain bulk flat space scattering amplitudes

as a limit of the dual CFT Mellin amplitudes. Independently of AdS/CFT

applications, Mellin amplitudes can be useful to describe CFTs in general.
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5.1. Definition

Consider the n-point function of scalar primary operators s

〈O1(P1) . . .On(Pn)〉 =
ˆ

[dγ]M(γij)
∏

1≤i<j≤n

Γ(γij)

(−2Pi · Pj)γij
(156)

Conformal invariance requires weight −∆i in each Pi. This leads to con-

straints in the Mellin variables which can be conveniently written as

n∑

j=1

γij = 0 , γij = γji , γii = −∆i . (157)

Notice that for n = 2 and n = 3 the Mellin variables are entirely fixed

by these constraints. In these cases, there is no integral to do and the

Mellin representation just gives the known form of the conformal two and

three point function. The integration measure [dγ] is over the n(n − 3)/2

independent Mellin variables (including a factor of 1
2πi for each variable)

and the integration contours run parallel to the imaginary axis. The precise

contour in the complex plane is dictated by the requirement that it should

pass to the right/left of the semi-infinite sequences of poles of the integrand

that run to the left/right. This will become clear in the following example.

γ12

0−1−2−3 ∆− γ14

Fig. 4. Integration contour for the Mellin variable γ12. The crosses represent (double)

poles of the Γ-functions given by (160) and (161). In general, the Mellin amplitude has
several semi-infinite sequence of poles. Each sequence should stay entirely on one side

of the contour.

Consider the case of a four-point function of a scalar operator of dimen-

sion ∆. In this case, there are two independent Mellin variables which we
sWe shall use the notation M(γij) to denote a function M(γ12, γ13, . . . ) of all Mellin
variables.



46 João Penedones

can choose to be γ12 and γ14. This leads to

〈O(P1) . . .O(P4)〉 =
1

(P13P24)∆

ˆ i∞

−i∞

dγ12γ14
(2πi)2

M̂(γ12, γ14)u
−γ12v−γ14 ,

(158)

where u and v are the cross ratios (11) and

M̂(γ12, γ14) =M(γ12, γ14)Γ
2(γ12)Γ

2(γ14)Γ
2(∆− γ12 − γ14) . (159)

Consider the first the complex plane of γ12 depicted in figure 4. The Γ-

functions give rise to semi-infinite sequences of (double) poles at

γ12 = 0,−1,−2, . . . (160)

γ12 = ∆− γ14,∆− γ14 + 1,∆− γ14 + 2, . . . (161)

As we shall see in the next section, the Mellin amplitude M(γij) also has

the same type of semi-infinite sequences of poles. The integration contour

should pass in the middle of these sequences of poles as shown in figure

4. Invariance of the four-point function under permutation of the insertion

points Pi, leads to crossing symmetry of the Mellin amplitude

M(γ12, γ13, γ14) =M(γ13, γ12, γ14) =M(γ14, γ13, γ12) , (162)

where we used 3 variables obeying a single constraint γ12 + γ13 + γ14 = ∆.

This is reminiscent of crossing symmetry of scattering amplitudes written

in terms of Mandelstam invariants.

It is convenient to introduce fictitious momenta pi such that γij = pi ·pj .
Imposing momentum conservation

∑n
i=1 pi = 0 and the on-shell condition

p2i = −∆i automatically leads to the constraints (157). These fictitious

momenta are a convenient trick but we do not know how to define them

directly. In all formulas, we will only use their inner products γij = pi · pj .
In particular, it is not clear in what vector space do the momenta pi live.

t

Let us be more precise about the number of independent cross ratios.

The correct formula is

n(n− 3)

2
, n ≤ d+ 2 (163)

nd− (d+ 1)(d+ 2)

2
, n ≥ d+ 2 (164)

In fact, for n > d+ 2 one can write identities like

det
i,j

Pi · Pj = 0 (165)

tThe flat space limit of AdS discussed in section 5.3.2, suggests a d+1 dimensional space
but this is unclear before the limit.
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using d + 3 embedding space vectors. Notice that this makes the Mellin

representation non-unique. We can shift the Mellin amplitude by the Mellin

transform of

F (P1, . . . , Pn) det
i,j

Pi · Pj = 0 (166)

where F is any scalar function with the appropriate homogeneity prop-

erties. This non-uniqueness of the Mellin amplitude is analogous to the

non-uniqueness of the n-particle scattering amplitudes (as functions of the

invariants ki · kj) in (d+ 1)-dimensional spacetime if n > d+ 2.

5.2. OPE ⇒ Factorization

Consider the OPE

O1(x1)O1(x2) =
∑

k

C12k

(
x212
)∆k−∆1−∆2

2
[
Ok(x2) + c x212∂

2Ok(x2) + . . .
]

(167)

where the sum is over primary operatorsOk and, for simplicity, we wrote the

contribution of a scalar operator. The term proportional to the constant c

is a descendant and is fixed by conformal symmetry like all the other terms

represented by . . . . Let us compare this with the Mellin representation.

When x212 → 0, it is convenient to integrate over γ12 closing the contour to

the left in the γ12-complex plane. This gives

〈O1(x1)O1(x2) . . . 〉 =
∑

γ̄12

(
x212
)−γ̄12

ˆ

[dγ]′Resγ̄12M̂(γij)

′∏(
x2ij
)−γij

(168)

where [dγ]′ and
∏′

stand for the integration measure and product excluding

ij = 12. Comparing the two expressions we conclude that M̂ must have

poles at

γ12 =
∆1 +∆2 −∆k − 2m

2
, m = 0, 1, 2, . . . (169)

where the poles with m > 0 correspond to descendant contributions. If

the CFT has a discrete spectrum of scaling dimensions then its Mellin

amplitudes are analytic functions with single poles as its only singularities

(meromorphic functions). It is also clear that the residues of these poles will

be proportional to the product of the OPE coefficient C12k and the Mellin

amplitude of the lower point correlator 〈Ok . . . 〉. The precise formulas

are derived in [79, 83]. Here we shall just list the main results without

derivation.
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5.2.1. Four-point function

In the case of the four-point function it is convenient to write the Mellin

amplitude in terms of ‘Mandelstam invariants’

s = −(p1 + p2)
2 = ∆1 +∆2 − 2γ12 (170)

t = −(p1 + p3)
2 = ∆1 +∆3 − 2γ13 (171)

Then, the poles and residues of the Mellin amplitude take the following

form [79]

M(s, t) ≈ C12kC34k
Qlk,m(t)

s−∆k + lk − 2m
, m = 0, 1, 2, . . . (172)

where Ql,m(t) is a kinematical polynomial of degree l in the variable t.

This strengthens the analogy with scattering amplitudes. Each operator

of spin l in the OPE O1×O2 gives rise to poles in the Mellin amplitude very

similar to the poles in the scattering amplitude associated to the exchange

of a particle of the same spin.

5.2.2. Planar correlators

Notice that the polynomial behaviour of the residues requires the inclusion

of the Γ-functions in the definition (156) of Mellin amplitudes. On the

other hand, the Γ-functions themselves have poles at fixed positions. For

example, Γ(γ12) gives rise to poles at s = ∆1+∆2+2m withm = 0, 1, 2, . . . .

In a generic CFT, there are no operators with these scaling dimensions and

therefore the Mellin amplitude must have zeros at these values to cancel

these unwanted OPE contributions. However, in correlation functions of

single-trace operators in large N CFTs we expect precisely this type of

contributions. At the planar level, the Γ-functions account for all multi-

trace OPE contributions and the Mellin amplitude only has poles associated

to single-trace operators.

5.2.3. n-point function

Considering the OPE of k scalar operators, one can derive more general

factorization formulas [83]. For example, for each primary operator O of

dimension ∆ and spin l that appears in the OPEs O1 × · · · × Ok and

Ok+1 × · · · × On, we obtain the following sequence of poles in the n-point

Mellin amplitude,

Mn ≈ Qm
γLR −∆+ l − 2m

, m = 0, 1, 2, . . . (173)
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where

γLR = −
(

k∑

i=1

pi

)2

=

k∑

i=1

n∑

j>k

γij . (174)

In general, the residue can be written in terms of lower point Mellin ampli-

tudes. For example, if l = 0 the residue factorizes

Q0 = −2Γ(∆)ML
k+1M

R
n−k+1 , (175)

with ML
k+1 the Mellin amplitude of 〈O1 . . .OkO〉 and MR

n−k+1 the Mellin

amplitude of 〈OOk+1 . . .On〉 . The satellite poles also factorize but give

rise to more complicated formulae

Qm =
−2Γ(∆)m!
(
∆− d

2 + 1
)

m

LmRm , (176)

with

Lm =
∑

nab≥0
∑
nab=m

ML(γab + nab)
∏

1≤a<b≤k

(γab)nab
nab!

(177)

and similarly for Rm.

There also factorization formulas for the residues associated with oper-

ators with non-zero spin [83]. However, the general case including external

operators with spin has not been worked out.

5.3. Holographic CFTs

As discussed in section 4.1, holographic CFTs have two special properties:

large N factorization and a small number of low dimension single-trace

operators. Therefore, one should expect that the corresponding Mellin

amplitudes are particularly simple, at least at the planar level. We shall

now confirm this expectation with a few simple examples.

5.3.1. Witten diagrams

Consider the contact Witten diagram of figure 5. It corresponds to an

interaction vertex λφ1 . . . φn in the bulk lagrangian and it contributes u

〈O1(P1) . . .On(Pn)〉 = λ

ˆ

AdS

dX

n∏

i=1

√
C∆i

(−2Pi ·X)∆i
(178)

uWe are using CFT operators Oi normalized to have unit two point function.
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O1(P1)

O2(P2)

On(Pn)

X

Fig. 5. Witten diagram for a n-point contact interaction in AdS. The interior of the disk
represents the bulk of AdS and the circumference represents its conformal boundary. The
lines connecting the boundary points Pi to the bulk point X represent bulk to boundary
propagators.

to the dual CFT correlation function. One can show that this corresponds

to a constant Mellin amplitude,

M = λ
1

2
π
d
2Γ

(∑
∆i − d

2

) n∏

i=1

√
C∆i

Γ(∆i)
. (179)

Exercise 5.1. Check the last statement. Start by using the integral repre-

sentation of the bulk to boundary propagators and performing the integral

over AdS using Poincare coordinates as explained in exercise 3.5. This

turns (178) into

λπ
d
2Γ

(∑
∆i − d

2

)
ˆ ∞

0

e−
∑
i<j sisjPij

n∏

i=1

√
C∆i

Γ(∆i)
s∆i−1
i dsi . (180)

Next, use the Mellin representation (c > 0)

e−sisjPij =

ˆ c+i∞

c−i∞

dγij
2πi

Γ(γij)(sisjPij)
−γij (181)

for n(n − 3)/2 exponential factors. A good choice is to keep n factors,

corresponding to the exponential

e−s1
∑n
i=2

siP1i−s2s3P23 . (182)

The integrals over s4, . . . , sn can be easily done in terms of Γ-functions.

Finally, do the integrals over s1, s2, s3 using the same type of change of

variables as in exercise 3.5.
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This result can be easily generalized to interaction vertices with deriva-

tives. For example, the vertex λ(∇αφ1∇αφ2)φ3 . . . φn gives rise to

〈O1(P1) . . .On(Pn)〉 = λ

ˆ

AdS

dX

n∏

i=3

√
C∆i

(−2Pi ·X)∆i
× (183)

× (ηAB +XAXB)
∂

∂XA

√
C∆1

(−2P1 ·X)∆1

∂

∂XB

√
C∆2

(−2P2 ·X)∆2

.

Here we have used the fact that covariant derivatives in AdS can be com-

puted as partial derivatives in the embedding space projected to the AdS

sub-manifold.v This gives

λ∆1∆2 (−2P12D∆1+1,∆2+1,∆3,...,∆n +D∆1,∆2,∆3,...,∆n)
n∏

i=1

√

C∆i (184)

where we introduced the D-function [33]

D∆1,...,∆n ≡
ˆ

AdS

dX
n∏

i=1

1

(−2Pi ·X)∆i
. (185)

More generally, it is clear that the contact Witten diagram associated with

a generic vertex λ∇ . . .∇φ1∇ . . .∇φ2 . . .∇ . . .∇φn with all derivatives con-

tracted among different fields, gives rise to a linear combination of terms

of the form

D∆1+Λ1,...,∆n+Λn

n∏

i<j

P
λij
ij (186)

where λij are non-negative integers and Λi =
∑

j 6=i λij . As we will see in the

next exercise, the Mellin amplitude of (186) is a polynomial in the Mellin

variables. Therefore, the Mellin amplitude associated to contact Witten

diagrams is polynomial. The absence of poles in the Mellin amplitude

means that the conformal block decomposition of the contact diagram only

contains multi-trace operators, in agreement with previous results [85, 86].

Exercise 5.2. If the vertex λ∇ . . .∇φ1∇ . . .∇φ2 . . .∇ . . .∇φn has 2N =

2
∑

i<j αij derivatives with αij contractions of derivatives acting on φi and

φj, show that the contact Witten diagram is given by

λ

(
n∏

i=1

√

C∆i

)

D∆1+Λ1,...,∆n+Λn

n∏

i<j

(−2Pij)
αij + . . . (187)

vSee appendix F.1 of [84] for a derivation of this statement in the analogous case of a
sphere embedded in Euclidean space.
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where Λi =
∑

j 6=i αij and the . . . represent similar terms with less Pij
factors. Hint: use the trick of writing covariant derivatives in AdS as partial

derivatives in the embedding space projected to the AdS sub-manifold.

The Mellin representation of the D-functions is very simple. As we saw

in exercise 5.1, the Mellin amplitude associated to D∆1,...,∆n is simply

π
d
2Γ
(∑

∆i−d
2

)

2
∏n
i=1 Γ(∆i)

. (188)

Show that the Mellin amplitude associated to the correlation function (187)

is given by the polynomial

λ

(
n∏

i=1

√

C∆i

)
π
d
2Γ
(∑

∆i+2N−d
2

)

2
∏n
i=1 Γ(∆i + Λi)

n∏

i<j

(−2γij)
αij + . . . (189)

where the . . . represent terms of lower degree in γij. Hint: this follows

easily from shifting the integration variables in the Mellin representation

(156).

O1(P1)

O2(P2)

O4(P4)

O3(P3)

∆, l

Fig. 6. Witten diagram describing the exchange of a bulk field dual to an operator of
dimension ∆ and spin l.

Consider now the Witten diagram shown in figure 6 describing the ex-

change of a bulk field dual to a single-trace boundary operator O of dimen-

sion ∆ and spin l. The conformal block decomposition of this diagram in the

(12)(34) channel contains the single-trace operator O plus double-trace op-

erators schematically of the form O1(∂
2)n∂µ1...µjO2 and O3(∂

2)n∂µ1...µjO4.

Moreover, the OPE in the crossed channels only contains double-trace op-

erators. This means that the Mellin amplitude is of the form

M = C12OC34O

∞∑

m=0

Ql,m(t)

s−∆+ l − 2m
+R(s, t) (190)
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where the OPE coefficients C12O and C34O are proportional to the bulk

cubic couplings and R(s, t) is an analytic function. The residues are pro-

portional to degree l Mack polynomials Ql,m(t) which are entirely fixed by

conformal symmetry as we saw in 5.2.1. If we choose minimal coupling

between the spin l bulk field and the external scalars, then R(s, t) is a

polynomial of degree ≤ l − 1. This is particularly simple in the case of

a scalar exchange (l = 0). Then the residues are independent of t and

R = 0 [87]. Notice that this simple looking Mellin amplitude gives rise to

a rather involved function of the cross-ratios in position space. This ex-

ample illustrates clearly the advantage of using the Mellin reprsentation to

describe Witten diagrams.

The Mellin amplitude of a general tree-level scalar Witten diagrams was

determined in [88–91]. The final result can be summarized in the following

Feynman rules:

• Associate a momentum pj to every line (propagator) in the Witten

diagram. External lines have incoming momentum pi satisfying

−p2i = ∆i. Momentum is conserved at every vertex of the diagram.

• Assign an integer mj to every line. External lines have mi = 0.

• Every internal line (bulk-to-bulk propagator) contributes a factorw

S
∆j
mj

p2j +∆j + 2mj
(192)

where ∆j is the dimension of the propagating scalar field.

• Every vertex, gφ1 . . . φk joining k lines, contributes a factorx

g V ∆1...∆k
m1...mk

(193)

• Sum over all integers mj associated with internal lines. Each sum

runs from 0 to ∞.

w The propagator numerator is given by

S∆
m =

Γ
(

∆− d
2
+ 1 +m

)

2(m!)Γ2
(

∆− d
2
+ 1
) . (191)

x The vertex factor is given by

V
∆1...∆k
m1...mk

=

m1
∑

n1=0

· · ·

mk
∑

nk=0

Γ

(
∑

j(∆j + 2nj)− d

2

)

k
∏

j=1

(−mj)nj

nj !
(

∆j − d
2
+ 1
)

nj

.
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• Multiply by

N =
π
d
2

2

n∏

i=1

√
C∆i

Γ(∆i)
(194)

to get the n-point Mellin amplitude in our normalization of the

external operators.

O1

O2

O3

O4

O5

∆
1
,
0

∆
2
,
0

∆
3
,
0

∆
4
, 0

∆
5
,
0

∆
6 ,m

6 ∆
7
,m

7

p1

p2

p3

p4

p5

p6 p7

Fig. 7. A tree level scalar Witten diagram contributing to a 5-point function. The

auxiliary momenta pi is conserved at each vertex, i.e. p6 = p1 + p2 and p7 = p4 + p5.

As an example, the Witten diagram in figure 7 gives rise to the following

Mellin amplitude

N
∞∑

m6=0

∞∑

m7=0

V ∆1∆2∆6

0 0m6

S∆6

m6

p26 +∆6 + 2m6
V ∆6∆3∆7

m6 0m7

S∆7

m7

p27 +∆7 + 2m7
V ∆7∆4∆5

m7 0 0

where p26 = (p1+p2)
2 = 2γ12−∆1−∆2 and p

2
7 = (p4+p5)

2 = 2γ45−∆4−∆5.

These Feynman rules suggest that we should think of the Mellin amplitude

as an amputated amplitude because the bulk to boundary propagators do

not contribute. In the case of scalar tree level diagrams (with non-derivative

interaction vertices), the only dependence in the Mellin variables γij comes

from the bulk-to-bulk propagators. It is not known how to generalize these

Feynman rules for loop diagrams or tree-level diagrams involving fields with

spin. There are partial results in literature [83, 89] but nothing systematic.

Mellin amplitudes are also useful in the context of weakly coupled CFTs.

The associated Feynman rules for tree level diagrams were given in [92].

Exercise 5.3. Consider the residue of the Mellin amplitude at the first

pole (m = 0) associated to a bulk-to-bulk propagator. Show that the Feyn-
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man rules above are compatible with the factorization property (175) of this

residue. Extra: check the factorization formula (176) for the satellite poles

with m > 0.

5.3.2. Flat space limit of AdS

If we consider a scattering process where all length scales are much smaller

than the AdS radius R then the curvature effects should be negligible. Con-

sider a relativistic invariant theory in flat spacetime with a characteristic

length scale ℓs (this scale could come from a mass or from a dimensionful

coupling). Then, a scattering amplitude Tn of n massless scalar particles

in this theory will depend on ℓs and on the relativistic invariants ki · kj ,
where ki are the momenta of the external particles. On the other hand,

this theory in AdS will give rise to Mellin amplitudes that depend on the

dimensionless parameter θ = R/ℓs and the Mellin variables γij . We claim

that these two quantities are related by

Tn(ℓs, ki)
ℓ
n d−1

2
−d−1

s

= lim
θ→∞

1

N

ˆ

Γ

dα

2πi
α
d−

∑
∆i

2 eα
Mn

(

θ, γij =
θ2

2αℓ
2
s ki · kj

)

θn
1−d
2

+d+1
(195)

where the contour Γ runs parallel to the imaginary axis and passes to the

right of the branch point at α = 0 and to the left of all poles of Mn.

The powers of ℓs where introduced to make both sides of the equation

dimensionless and the constantN was given in (194). The external particles

are massless in flat space but in AdS they can have any scaling dimension

∆i of order 1. We expect this equation to hold when both sides of the

equation are well defined. In case the flat space scattering amplitude Tn is

IR divergent, we expect that the limit θ → ∞ of the Mellin amplitude will

not be finite.y

Exercise 5.4. Consider the vertex λ∇ . . .∇φ1 . . .∇ . . .∇φn discussed in

exercise 5.2 in d + 1 spacetime dimensions. Start by writing the coupling

constant λ as a power (ℓs)
q of a characteristic length scale ℓs and determine

the value of q. Then, use the Mellin amplitude (189) in the flat space limit

formula (195) and obtain the expected n-particle scattering amplitude

Tn = λ
∏

i<j

(−ki · kj)αij . (196)

The last exercise can be seen as a derivation of the flat space limit

formula (195). The point is that a generic Feynman diagram can be written
yIt might be useful to think of large θ as an IR regulator for the scattering amplitude.



56 João Penedones

as a (infinite) sum of contact diagrams with any number of derivatives.

This corresponds to integrating out the internal particles and replacing

there effect by contact vertices among the external particles. Since formula

(195) works for any contact diagram it should work in general. This has

been tested in several explicit examples, including 1-loop diagrams [87, 88,

93]. In addition, the same formula was derived in [90] using a wave-packet

construction where the scattering region was limited to a small flat region

of AdS.

In principle, formula (195) provides a non-perturbative definition of

string theory scattering amplitudes in terms of SYM correlation functions.

However, we do not know how to directly compute SYM correlators at

strong coupling. In practice, what we can do is to use formula (195) in

the opposite direction, i.e. we can use known string scattering amplitudes

in flat space to obtain information about the strong coupling expansion of

SYM correlators [87, 94]. If the external particles are massive in flat space

then formula (195) is not adequate. This case was studied in [95].

5.4. Open questions

The study of Mellin amplitudes is still very incomplete. Firstly, it is impor-

tant to understand in what conditions do we have a well defined analytic

Mellin amplitude. For example, in free CFTs the Mellin representation

requires some form of regularization. This might be a technical detail but

it would be useful to understand in general the status of the Mellin repre-

sentation. Another important question is the asymptotic behavior of the

Mellin amplitude when the Mellin variables are large. In the case of the

four-point Mellin amplitude discussed in 5.2.1, the limit of large s with

fixed t is called the Regge limit in analogy with flat space scattering am-

plitudes. In [96], we studied this limit using Regge theory techniques and

making some reasonable assumptions about the large spin behaviour of the

conformal partial amplitudes. Proving these assumptions is an important

open question. The bound on chaos [97] is another possible approach to the

Regge limit of Mellin amplitudes. Notice that if we can tame the asymp-

totic behaviour of M(s, t) when s → ∞, then we can write a dispersion

relation that expresses M(s, t) in terms of its poles in s, which are given

by (172). This could provide a reformulation of the conformal bootstrap

approach.

In the holographic context, it would be interesting to establish more

general Feynman rules for Mellin amplitudes associated to Witten diagrams
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involving loops and particles with spin. It would also be useful to generalize

more modern approaches to scattering amplitudes, like BCFW [98] or CHY

[99], to Mellin amplitudes.
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