
Task Activity Vectors: A New Metric for
Temperature-Aware Scheduling

Andreas Merkel
merkela@ira.uka.de

Frank Bellosa
bellosa@ira.uka.de

System Architecture Group
University of Karlsruhe

76128 Karlsruhe, Germany

ABSTRACT
Non-uniform utilization of functional units in combination with
hardware mechanisms such as clock gating leads to different power
consumptions in different parts of a processor chip. This in turn
leads to non-uniform temperature distributions and problematic lo-
cal hotspots, depending on the characteristics of the currently run-
ning task. The operating system’s scheduler, responsible for de-
ciding which task to run at what time, can influence temperature
distribution. Our work investigates what the operating system can
do to alleviate the problem of hotspots. We propose task activ-
ity vectors describing which functional units a task uses to what
degree. With the knowledge provided by these vectors, the sched-
uler can schedule tasks using different units successively, distribute
tasks using a particular unit excessively over the system’s proces-
sors, or mix tasks using different units on a SMT processor. We
implemented several vector-based scheduling strategies for Linux.
Our evaluations show that vector-based scheduling considerably re-
duces hotspots.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—scheduling

General Terms
Design, Management

Keywords
Activity Vectors, hotspot reduction, task characteristics, task mi-
gration, temperature-aware scheduling, thermal management

1. INTRODUCTION
Increasing clock rates in combination with increasing integration

densities have led to an aggravation of thermal problems in recent
generations of microprocessors. Strategies have been proposed to
avoid overheating the processor by using features like frequency
scaling, clock modulation, or halting, which reduce the switching

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’08, April 1–4, 2008, Glasgow, Scotland, UK.
Copyright 2008 ACM 978-1-60558-013-5/08/04 ...$5.00.

activity of the processor and thus its power consumption [17]. All
those strategies aim at keeping CPU temperature, which is usually
understood as ‘the temperature of the CPU chip’, below a critical
limit.

In general however, the temperature of a chip cannot be de-
scribed accurately by a single temperature value. Different func-
tional units on the chip such as arithmetic logic units (ALUs), float-
ing point units (FPUs), or caches have different structures and thus
different power densities, resulting in a non-uniform temperature
distribution within the chip. Moreover, clock gating, which has
been introduced to limit the overall power consumption of the chip,
deactivates the clock signal for units that are currently not in use,
and further increases thermal imbalances within a chip.

Since the units that are not needed for processing a certain in-
struction are inactive, the actual temperature distribution within a
chip depends on the application running on the processor. Differ-
ent programs differ in the type of instructions they execute, de-
pending on their functionality, the way they are written, and on the
compiler that was used. There are programs that issue many in-
teger instructions, but no floating point instructions, programs that
contain many branch instructions and programs that do not, pro-
grams that do many memory accesses and programs that almost
only work on registers. Thus, the program that the processor cur-
rently executes influences the distribution of power density on the
processor die and for that reason also the distribution of tempera-
ture. We observed variations of up to 30 Kelvin for the temperature
of functional units between different applications from the SPEC
CPU2006 benchmark suite on an Intel Pentium 4 Xeon processor.

Preventing thermal emergencies requires throttling the proces-
sor as soon as the temperature of the hottest part of the chip sur-
passes the critical temperature limit, no matter if there are other
units whose temperature is far below the limit. Throttling reduces
the processor’s power consumption, but also its performance, and
should therefore be avoided. Balancing temperature within a chip
mitigates hotspots and thus also reduces the need for throttling.

As mentioned before, the temperature distribution of a chip is
determined by the software that runs on the chip. For example, if
the integer ALUs of a chip are near the critical temperature, and
an integer task is scheduled next, the processor is likely to overheat
soon, which results in throttling. On the other hand, if a floating
point task is scheduled next, the ALUs remain idle and can cool
down. Thus, balancing temperature within a chip, which means
preferably scheduling tasks using cool units, avoids throttling.

The decisions of the operating system’s scheduler influence the
need for throttling a processor, which in turn influences the sys-
tem’s performance. In order to achieve maximum performance, the
scheduler needs to know about the characteristics of each task, that

1

is, which units of the chip a particular task uses, and to what degree
it uses these units.

In this paper, we investigate to what extent the scheduler can in-
fluence the temperature distribution within a processor. We propose
task activity vectors for characterizing tasks by their utilization of
functional units on a chip. Based on these vectors, we propose and
evaluate the following scheduling strategies:

• scheduling tasks that use different units successively

• distributing tasks among processors of a multiprocessor sys-
tem so that each processor executes tasks that use different
units

• running tasks that use different units simultaneously on mul-
tithreaded processors.

We implemented the aforementioned strategies for the Linux ker-
nel. Using performance monitoring counters and an energy model,
we estimated the power consumption of the functional units of the
processor. Using the HotSpot [9] temperature simulator, we calcu-
lated the course of the temperature during our test runs to verify the
benefits of our strategies.

The rest of our paper is structured as follows: Section 2 delin-
eates the background of our work. Section 3 describes task activ-
ity vectors and presents the design of our vector-based scheduling
policies. Section 4 outlines the implementation for Linux. Sec-
tion 5 evaluates our design. Section 6 addresses the limitations of
our approach and suggests directions for future work. Section 7
discusses related work. Finally, Section 8 concludes.

2. BACKGROUND
The scheduling policies we propose are motivated by the thermal

characteristics that a processor chip exhibits. In the first part of
this section, we want to elucidate these characteristics. The second
part of the section describes the methodology we use for obtaining
information about the temperature distribution on the chip.

2.1 Thermal Behavior of a Processor Chip
The functional units a microprocessor consists of (ALUs, FPUs,

caches, register files, and so on) are usually laid out as blocks, i.e.
(mostly) rectangular areas on the die. Figure 1 shows the floorplan
of an Intel Pentium 4 Northwood (derived from a die photo) as an
example.

From a physical point of view, the functional units are located
on a silicon die, which in today’s processor generations is of rather
small dimensions, typically about 1cm in width and length and less
than 1mm in height. The die is covered by a heat spreader consist-
ing of thermally well conducting material and by a heat sink, which
is comparably large in relation to the die and consists of copper or
aluminum. In relation to its size, the die dissipates large amounts of
power, which can surpass 100W in recent processors. This results
in a power density of 100W/cm2 and more, which is ten times the
power density of a hot-plate.

The temperature of an object, be it a functional unit, the die as a
whole, or the heat sink, is determined by the amount of energy that
the object contains (referred to as internal or intrinsic energy) and
its heat capacity. The heat capacity is a material specific constant
describing how many Joules it requires to heat the object by one
Kelvin.

The heat capacity of the die is small compared to its power dis-
sipation, therefore the die (and thus the individual functional units)
can heat up rather quickly. A small example shall demonstrate this:

A silicon die of 11mm×12mm×0.7mm has a heat capacity of
0.15J/K. If it dissipates 70W and no heat is removed from the die,

itlb

retire
alloc

rename
queue

sched instr
queue

instr

int reg

ucode
rom

fp regfpu

fpu

int
alu

mem
ctrl

bus ctrl

dtlb

bpu 1l
cache
trace mob

bpu 2linstr
decode

l2
cache

l1
cache

l1
cachetrace cache

Figure 1: Floorplan of the Pentium 4 Northwood Processor

time

temperature
power

Figure 2: Dependence of Temperature from Power

it takes only 2ms for the die to heat up by 1K. In contrast to that, the
heat sink has a much larger heat capacity, since it is considerably
more massy, and typically takes seconds to heat by 1K.

The intrinsic energy and thus the temperature of the functional
units on the die and of the heat sink can be described by simi-
lar differential equations whose solution is an exponential function
[14]. As a consequence, when there is a change in power con-
sumption, the temperature changes exponentially over time (see
Figure 2). Yet, for the functional units, this change happens much
more quickly than for the heat sink.

2.2 Determining Chip Temperature
Traditionally, mechanisms and strategies for avoiding overheat-

ing a processor are based on a single chip temperature value [3, 6,
14]. This value usually stems from a thermal diode located some-
where on the processor [10], or is assembled out of several temper-
ature readings, if multiple sensors are present on the chip [16].

But physical sensors have several limitations: Firstly, their num-
ber is limited, since increasing the number of sensors is expensive
in terms of die area. Hence not all possible hotspots can be cov-

2

ered. Secondly, thermal sensors often cannot be placed directly at
the hottest functional units for topological reasons. Thirdly, read-
ing temperature takes a long time and cannot be performed more
than several times per second [7, 6].

As motivated above, the temperature of a functional unit can rise
very quickly. The consequence of the limitations of physical sen-
sors is that either some parts of the chip can possibly overheat with-
out the sensors detecting it, or that the critical temperature at which
throttling starts must needs be set to a lower value to compensate
for the sensors reporting values that are lower than the maximum
temperature somewhere on the chip. The latter, however, may lead
to throttling without need and thus needlessly sacrificing perfor-
mance.

Skadron et al. [13] proposes using performance monitoring coun-
ters in combination with an energy model and a thermal model to
estimate the temperature of individual parts of the chip. Perfor-
mance monitoring counters, special registers introduced mainly for
profiling and optimization, count the occurrence of various events
in the chip. The information obtained from these counters allows
us to estimate the degree of utilization of individual chip units [11].
The power consumption of each unit, in turn, depends on the unit’s
utilization, and can thus be estimated when utilization is known.
Using a thermal model, temperature estimation for the functional
blocks of the chip based on their power consumption is possible
[13, 7]. Estimation of power consumption from performance coun-
ters yields an estimation error of less than 10% [1, 11]; the temper-
ature simulator HotSpot has been verified against a test chip and
yielded a worst case error of 7% for temperature estimation [9].

Hence, using estimation and simulation allows us to obtain real-
istic temperature values with finer granularity than using hardware
sensors, not only in terms of space (obtaining temperatures for each
unit is possible), but also in terms of time. The latter is determined
by the rate at which the performance monitoring counters are sam-
pled, which can be done at every timer interrupt, that is up to 1000
times a second in today’s systems. The methodology just described
enables us to verify the benefits of our proposed scheduling poli-
cies, since it allows us to observe the course of temperature for each
functional unit at a high enough temporal resolution, which is not
possible using the sensors provided by the hardware.

3. VECTOR-BASED SCHEDULING
As mentioned in the introduction, the scheduling decisions of

the operating system—determining what task the processor shall
execute next—also determine the temperature distribution on the
chip. Up to now, scheduling strategies found in general purpose
operating systems like Linux or Windows are oblivious to this fact.
Today’s schedulers make their decisions according to criteria like
task priorities, fairness or good interactive performance, but neglect
the impact that the order in which tasks are executed has on tem-
perature distribution.

At the same time, in many scheduling strategies the exact order
in which tasks are executed is unspecified. For example, in round-
robin scheduling, it is not relevant in which order the tasks are
scheduled, as long as each task gets its timeslice in turn and all tasks
make progress. The same holds true for proportional share schedul-
ing. Even with priority-based scheduling, the order in which tasks
having the same priority are scheduled is not specified.

This can be used to influence the temperature distribution of the
chip without breaking the properties and objectives of the respec-
tive scheduling policy. In the remainder of this section, we will
concentrate on the widely-used round-robin policy.

3.1 Task Activity Vectors
Enabling the scheduler to influence temperature in a sensible

way requires providing it with information about the characteris-
tics of the tasks it manages, i.e., what task utilizes which parts of
the processor.

For this purpose, we propose task activity vectors. An activity
vector is part of the task’s runtime context. The dimension of this
vector is equal to the number of functional units on the processor.
Each component of the vector denotes the degree of utilization of
a corresponding functional unit when the task is executed. We nor-
malize each component to the maximum utilization the respective
functional unit can exhibit. Thus, the values of the vector’s compo-
nents range between 0 (no utilization) and 1 (maximum utilization).

Task activity vectors make the resources the task uses on the
CPU chip part of the task’s runtime context, so the operating system
has detailed information about the characteristics of each task.

Determining a task’s activity vector requires determining the uti-
lization of each functional unit. Information about the units’ uti-
lization could be provided by the hardware, for example via spe-
cial registers. Unfortunately, this is not the case in today’s proces-
sors. Therefore, we resort to the methodology proposed by Isci
and Martonosi [11], and determine the degree of utilization for
each functional unit using performance monitoring counters. The
method suggested by Isci and Martonosi attributes events or com-
bination of events to each functional unit and determines the uti-
lization of the units by counting how many events occur in a given
timeframe.

The activity vector of a task is not constant, but can change over
time, as the task passes through different phases, e.g., runs different
algorithms successively. Therefore, the operating system has to re-
calculate the activity vector of a task continuously. On every timer
tick and on every task switch, we determine the utilization of the
functional units by reading performance monitoring counters and
update the activity vector of the currently running task. For each
component, we use an exponentially moving average to smooth out
changes in the task’s behavior that are only of short duration. This
way, we avoid erroneously changing a task’s activity vector if the
task’s characteristics show temporary fluctuations.

3.2 Runqueue Sorting
We propose runqueue sorting as a scheduling policy that makes

use of task activity vectors. The aim is to avoid the formation of
hotspots. We accomplish this by choosing a task to run next that
does not utilize the parts of the processor that are currently hot,
provided that such a task is available.

Our policy is based on the assumption that there are CPU-local
runqueues, i.e., there is a list of tasks assigned to each CPU, and
that the tasks in this queue are scheduled in round-robin fashion,
that is, executed for a certain period of time (a timeslice) and re-
appended to the end of the queue thereafter. This holds true in the
majority of today’s operating systems, although the scheme is often
slightly altered or enhanced. For instance, round-robin scheduling
is often combined with a priority scheme or the runqueue is split
into several sub-queues as is the case with Linux.

We propose two forms of runqueue sorting, a simple form and
an enhanced form that uses a thermal model. The simple form
arranges the tasks in the runqueue in a way that two successive tasks
use resources of the CPU that are as complementary as possible, so
the resources the previous task has used can cool down during the
execution of the following task. The enhanced form considers the
estimated temperatures of the CPU’s functional units for choosing
the next task rather than utilization.

3

Sorting efficiently
The set of tasks that compose a CPU’s runqueue is not fixed. Tasks
can terminate or block and thus be removed from the queue, and
new tasks may be started. Also, the load balancer can move task
between the runqueues of different CPUs. Thus, keeping the run-
queues sorted causes a lot of overhead.

The alternative to sorting is searching the runqueue for a suitable
task every time a scheduling decision is made. But searching is not
scalable, since the time required to search for a suitable task grows
with the length of the runqueue. Since scheduling a new task is
a frequently invoked operation, scheduling algorithms have to be
efficient. For example, Linux’s scheduler is designed to satisfy an
O(1) property, meaning that the cost of scheduling is independent
of the number of tasks in the system [12].

We use a combination of searching and sorting to keep the over-
head low. We adopt the scheme used in Linux of having two run-
queues per processor, the first queue consisting of tasks waiting to
be scheduled, and the second queue consisting of tasks that have
been executed lately. When choosing the next task to be scheduled,
we look at the first c tasks in the first queue and choose the best
suited task out of them. After executing for one timeslice, we ap-
pend the task to the second queue. This way, the second queue is
automatically sorted in a way that tasks using complementary re-
sources follow each other. When the first queue is empty, we switch
the queues. Since we operate on a queue now that was previously
sorted, there is a high probability that there is a suitable task among
the first c tasks in the queue.

Additionally, having two queues ensures that all tasks are mak-
ing progress: A task that has been scheduled and is appended to
the second queue is not scheduled again until all other tasks still
residing in the first queue have been scheduled.

Example:
We consider a scenario with two groups of tasks with similar char-
acteristics. Tasks of type A use different resources than tasks of type
B. We assume there are five tasks of type A and three tasks of type
B, we have chosen c = 3 and the initial ordering of the runqueue is
BBBAAAAA. Figure 3 shows how the runqueues evolve. We under-
line the tasks the scheduler considers for making its decision and
mark the task the scheduler picks with a dot. Note that after sort-
ing, there is still a succession of three tasks of type A since there
are more tasks of this type than of type B. One might argue that
it would be better to sort the queue in a fashion that distributes the
tasks of type A more evenly, like ABAABAAB, but this is not feasi-
ble without global knowledge of the whole queue. Additionally, the
functional units typically have already reached their peak temper-
ature after one timeslice, so it does not matter whether we execute
the supernumerous tasks of type A in groups of two or three.

Simple sorting
In the simple form of runqueue sorting, we use only the activity
vectors for deciding which tasks out of the first c tasks in the queue
we pick. If the timeslices are long enough (10ms to 100ms), which
is the case in most operating systems, and a task switch occurs be-
cause of timeslice expiration, the unit utilization of the previously
running task is a good indicator for the units’ temperatures: Be-
cause of the comparatively small thermal capacitance of the func-
tional units, the units the task has utilized are hot and the units the
task has not utilized are cold. Therefore, we choose a task that uses
different units than the one that ran before.

Whether a task uses different units than another task can be in-
ferred from the angle the tasks’ activity vectors form, as we want

queue 1 queue 2
BBBAAAAȦ
BBBAAAȦ A
BBBAAȦ AA
BBḂAA AAA
BBAȦ BAAA
BḂA ABAAA
BȦ BABAAA
Ḃ ABABAAA

BABABAAA
BABABAAȦ
. . .

Figure 3: Example for runqueue sorting

to explicate in the following. We denote the angle between two
vectors~x and~y by ∠(~x,~y).

Let~a be the activity vector of the task that has run on the CPU up
to now and ~bi with i ∈ {1, ..,c} the activity vectors of the tasks we
consider when choosing the next task to run. We want to choose the
task whose unit utilization is most different from the unit utilization
of the previously running task. In the ideal case, when two tasks
use completely distinct units, their activity vectors are orthogonal,
so ∠(~a,~bi) = 90◦. Since the components of all activity vectors are
positive or zero, no two vectors can form an angle greater than
90◦. Therefore, we choose the task whose activity vector ~b j with
j ∈ {1, ..,c} forms the biggest angle with ~a:

j = arg
c

max
i=1

∠(~a,~bi) (1)

With ∠(~x,~y) = arccos ~x·~y
|~x||~y| we transform this to:

j = arg
c

max
i=1

arccos
~a ·~bi

|~a||~bi|
(2)

Since for 0◦ ≤ α ≤ 90◦, arccos α is strictly falling, this is equiv-
alent to:

j = arg
c

min
i=1

~a ·~bi

|~a||~bi|
(3)

j = arg
c

min
i=1

~a ·~bi

|~bi|
(4)

Determining the length of the vectors ~bi involves calculating
square roots, which is expensive. Since all components of our vec-
tors are positive, we replace |~bi| =

√
∑

n
k=1 b2

i,k by ∑
n
k=1 bi,k, where

bi,k is the k-th component of vector~bi.
Hence, we choose the task with activity vector ~b j to schedule

next, if:

j = arg
c

min
i=1

~a ·~bi

∑
n
k=1 bi,k

(5)

Equation 5 does not yield exactly the same results as Equation 4.
Both equations lead to choosing a task that uses, as far as possible,
different units than its predecessor, which is accomplished by the
scalar product in the numerator of the fraction. Omitting the square
root in the denominator leads to preferring activity vectors having
high values in some components and low values in other compo-
nents to vectors with medium values in all components. This is
advantageous for our strategy, since it ‘saves’ tasks with medium
unit utilization for situations in which no task with complementary

4

utilization (compared to the task just executed) can be found among
the first c tasks in the queue.

Enhanced sorting
The enhanced form of runqueue sorting considers the actual tem-
peratures of the functional units. As described in Section 2.2, these
temperatures cannot be obtained directly from hardware. There-
fore, we use a thermal model of the processor for estimating tem-
peratures. Using estimated temperatures for runqueue sorting is
computationally more expensive, but has the advantage of consid-
ering the physical properties of the chip, for example lateral heat
spreading: Even a unit that the previously running task has not uti-
lized can have an increased temperature if it is located next to a unit
that the task has utilized heavily.

Using a thermal model also has the advantage of implicitly con-
sidering the actual period of time that a task spends on the CPU.
Simple sorting assumes that tasks are exhausting their timeslice. If
a task uses only a small fraction of its timeslice and then blocks or
releases the CPU, the characteristics of this task are not crucial for
the temperature distribution of the CPU. Enhanced sorting can cope
with this, since the thermal model considers the amount of energy
each tasks dissipates in each unit, and this amount is small if a task
runs only for a short time.

For modeling the chip’s thermal properties, we use a compact
model as proposed by Skadron et al. [9]. Since we want to ob-
tain temperature estimations at runtime, we choose a rather simple
model of the chip, describing each functional unit as a thermal ca-
pacitor (with capacitance depending on the area the block occupies)
that is linked by thermal resistors to its neighbor units. We also
model the heat sink as a thermal capacitor that is linked to each
unit via a thermal resistor.

Based on the utilization of the functional units, we estimate the
power consumption of each unit and use it as input to the ther-
mal model. The model delivers temperature estimations for each
functional unit and is comparable to Temptor [7], another adop-
tion of Skadron’s methodology to runtime temperature estimation.
Our model is simpler than Temptor and thus less exact, but requires
fewer calculations.

The basic idea of enhanced runqueue sorting is to choose a task
to be scheduled next that uses units having a low temperature and
does not use units having a high temperature. For deciding whether
a unit’s temperature is currently high or low, we compare the cur-
rent temperature of the unit to its average temperature. For this
purpose, we calculate an exponentially moving average over the
temperature of each unit (delivered by our thermal model).

Let ~m be a vector containing the average temperatures of all units
and~t a vector containing the current temperatures of the units. The
difference~t −~m is a vector with positive components for units that
are currently hot and negative components for units that are cur-
rently cold.

We choose the task with activity vector ~b j to be scheduled next,
if:

j = arg
c

min
i=1

(~t −~m) ·~bi (6)

If a unit is currently hotter than its average temperature, schedul-
ing a task that uses this unit is discouraged: The corresponding
component of the temperature difference (~t −~m) is positive; mul-
tiplication with a nonzero utilization from vector ~bi yields a pos-
itive contribution to the scalar product. On the other hand, if a
unit is currently colder than its average temperature, scheduling a
task that uses this unit is encouraged: The corresponding compo-
nent of the temperature difference is negative; multiplication with

a nonzero utilization from vector ~bi yields a negative contribution
to the scalar product.

3.3 Activity Balancing
Runqueue sorting is effective only if a runqueue contains tasks

with different characteristics. In a multiprocessor system, the sched-
uler can influence the contents of the runqueues by migrating tasks
between CPUs. In today’s operating systems, this is done for the
purpose of load balancing, i.e., equalizing runqueue lengths by
moving tasks from long runqueues to shorter ones. We use task
migration to create the prerequisites for runqueue sorting. For ex-
ample, if one runqueue consists solely of integer tasks and another
runqueue consists solely of floating point tasks, we migrate some
integer tasks to the second queue and some floating point tasks to
the first queue.

Activity balancing is beneficial when done between processors
that are physically different chips, as well as between different
cores on one multicore chip, since it makes sure that for each loca-
tion (chip or core), there are tasks having different characteristics
available. For logical processors of a simultaneously multithreaded
processor, however, a different strategy (described in Section 3.4)
makes sense, since several logical processors dissipate heat at the
same physical location.

In a previous work, we proposed energy balancing for equalizing
the power consumptions of CPUs by migrating tasks depending on
the amount of energy they consume [14]. We modify the energy
balancing algorithm to do activity balancing, i.e., equalizing the
utilization of functional units between the CPUs.

Therefore we introduce a measure called thermal stress, which
describes whether the tasks contained in a runqueue use mainly
the same units or not. The goal of activity balancing is to keep
the thermal stress of all runqueues as low as possible by migrating
tasks between queues.

We define the thermal stress of a CPU as the sum of the average
utilization of all units whose utilization is greater than a constant l.
If the average utilization of a unit is greater than l, this means that
too many tasks are using the unit too heavily, and runqueue sorting
cannot always find a task that does not use the unit.

Let n be the number of functional units, p the number of tasks in
a runqueue, and~bi, i ∈ {1, . . . , p} the activity vectors of the tasks in
the queue. Let ~m be the average of the activity vectors~bi:

~m =
1
p

p

∑
i=1

~bi (7)

We define the thermal stress s of the queue formally as:

s = ∑
j∈{1,...,n}:m j>l

m j (8)

This way, units that are used by many tasks, but only to a low
degree, or used only by few tasks, do not contribute to thermal
stress. Hence, migration of a task that utilizes a certain unit heavily
to a runqueue whose tasks do not utilize the unit does not increase
the target runqueue’s thermal stress.

Activity balancing works by migrating a task from one runqueue
to another if this either decreases the thermal stress of both queues,
or decreases the stress of one queue, while the stress of the other
queue stays constant. At the same time, we ensure that activity
balancing does not cause load imbalances; the approach we take in
this respect is the same as in our work on energy balancing [14].

Since units with average utilization lower than l do not contribute
to thermal stress, our policy encourages migrating tasks that utilize
a certain unit to runqueues consisting of tasks that do not utilize the
respective unit.

5

For each unit that is used heavily by a task, runqueue sorting
requires the availability of another task that does not utilize the unit,
since this permits to schedule tasks using and not using the units
alternatingly. In theory, l = 1

2 seems a sensible choice, since if the
average utilization of a unit is 1

2 , this means that there are as many
tasks that use the unit as there are tasks that do not. However, since
tasks can use more than one functional unit, activity balancing is
a multidimensional optimization problem, and l = 1

2 turned out to
prevent activity balancing in many situations when no configuration
can be found that keeps unit utilization below 1

2 .
Empirically, we found l = 2

3 to be a good choice. Lower values
are too restrictive and prevent activity balancing too often, whereas
higher values lead to runqueues containing too many tasks with
similar characteristics.

3.4 Activity Unbalancing
Multithreaded CPUs offer multiple logical processors that make

use of the functional units of the same physical chip. Logical pro-
cessors belonging to the same physical processor are termed sib-
lings.

Gomaa et al. [5] have shown that regarding thermal constraints,
multithreaded chips can be used most efficiently if siblings execute
tasks that use different units (and hence possess different activity
vectors). With our approach, we want to verify that the princi-
ple of running tasks with different characteristics together can be
achieved in a real operating system by using automatic task char-
acterization (activity vectors) and a suitable scheduling policy (ac-
tivity unbalancing).

From the operating system’s point of view, the logical proces-
sors of a physical chip behave like individual processors, and most
operating systems treat them this way in many respects. In partic-
ular, scheduling decisions happen independently for each logical
processor, and operating systems providing CPU-local runqueues
typically provide a separate runqueue for each logical processor.

Scheduling decisions for different logical processors do not nec-
essarily happen at the same time: Tasks on different logical pro-
cessors can block or release the CPU at different points in time.
Therefore, it is difficult to synchronize scheduling decisions and
to enforce that siblings do not execute tasks with similar activity
vectors simultaneously.

We solve this problem by using task migrations to arrange the
runqueues of siblings in a way that the tasks in a runqueue all use
different units than the tasks in the other runqueues, if this is pos-
sible. For example, on a two-way multithreaded processor, one
runqueue might contain only cache intensive tasks and memory in-
tensive tasks, and the other runqueue only floating point tasks and
integer tasks. This way, it does not matter if scheduling decisions
happen independently for the siblings, since no matter which task is
chosen, it is guaranteed to use different units than the task running
on the sibling.

A policy different from activity balancing must be applied for
sibling processors, since our aim is the opposite: Rather than mak-
ing all runqueues consist of tasks with different characteristics, we
want to divide all available tasks into subsets that use mutually dis-
tinct units. Therefore, we propose a strategy for activity unbalanc-
ing.

The strategy is based on a measure we call diversity. The diver-
sity of two runqueues q1 and q2 denotes whether the tasks in q1
mainly use the same units as the tasks in q2 or not.

Let n be the number of functional units on the chip and ~m the
average of the activity vectors of the tasks from q1, as defined by
Equation 7, and ~o the average of the activity vectors of the tasks

from q2, respectively. The diversity d(q1,q2) is then defined by the
following equation:

d(q1,q2) =
n

∑
j=1

|m j −o j| (9)

Hence, if two siblings use a functional unit to a different degree,
i.e., most tasks on one sibling utilize the unit heavily, while most
tasks on the other hardly use it, this causes a high contribution to
the diversity of the siblings.

Activity unbalancing works by migrating a task from one sibling
to another, if this increases their diversity. In systems consisting of
multiple multithreaded chips, we perform activity unbalancing be-
tween runqueues belonging to siblings, but activity balancing be-
tween runqueues belonging to different physical processors, since
this ensures that there are tasks with different characteristics avail-
able on each physical processor to distribute between the logical
processors.

Besides running tasks with different characteristics simultane-
ously on siblings, we additionally perform runqueue sorting on
each sibling. This is beneficial, since typically, the number of func-
tional units on a processor is greater than the number of logical
processors. Hence, even if we distribute the tasks to the runqueues
in a way that the logical processors always use mutually different
units, the units that the tasks in a particular runqueue are using may
still differ from task to task, so that runqueue sorting is still benefi-
cial.

4. LINUX IMPLEMENTATION
We extended a Linux 2.6.16 kernel to support scheduling based

on activity vectors. We modified the kernel in the following ways:

• We enhanced the task_struct data structure that Linux
uses to describe a task by fields describing the task’s activity
vector.

• We implemented the mechanism described by Isci and Mar-
tonosi [11] to determine unit utilization (and power consump-
tion) by evaluating performance monitoring counters. We
enhanced the mechanism for supporting multithreaded pro-
cessors, which involves multiplexing counters, since there is
only one set of performance monitoring counters per physi-
cal processor.

• We implemented temperature estimation using a compact mo-
del to obtain temperatures for each functional unit, which is
required for the extended version of runqueue sorting.

• We implemented the scheduling strategies described in Sec-
tion 3. In the following two subsections, we delineate how
we modified Linux’s scheduler to implement our policies.

4.1 Runqueue Sorting
Linux pursues a scheduling policy combining round-robin-sche-

duling with priorities. The scheduler assigns longer timeslices to
tasks with higher priorities and schedules tasks with higher pri-
orities before tasks with lower priorities. However, the scheduler
avoids starvation of low-priority tasks by making sure that no high-
priority task executes for a second timeslice unless all lower-priority
tasks have been scheduled in the time in between.

This is achieved by introducing two data structures for storing
ready-to-run tasks, one containing tasks that have already executed
(the expired array) and one for tasks that have not executed yet (the
active array). Both arrays consist of linked lists of tasks, one for

6

each priority. When making a scheduling decision, the scheduler
chooses the first task of the linked list with the highest priority from
the active array. After executing, the task is enqueued in the linked
list of the expired array that corresponds to its priority. When the
list with the highest priority is empty, the scheduler resorts to the
second highest priority and so on. When all lists of the active array
are empty, the scheduler exchanges expired and active array.

To support runqueue sorting, we modified the policy for choos-
ing the next task to schedule. Instead of choosing the first task from
the queue with the highest priority in the active array, we look at
the first c tasks in the queue with the highest priority. If the queue
with the highest priority contains less than c tasks, we also con-
sider tasks from the queue with the second highest priority and so
forth. We choose the task that suits best according to our metric
(Equation 5 or 6), execute it for one timeslice, and append it to the
expired array. In our implementation, we chose c = 4.

Considering tasks from lower priority queues softens the priority
scheme of Linux, since tasks having lower priorities may be sched-
uled prior to tasks with higher priorities. However, it increases the
chances that a suitable task is found, if there are only few tasks
of a given priority. Additionally, priorities in Linux are already
designed to be soft priorities only. Native Linux also schedules a
lower priority task although a higher priority task is in the ready
state, if the low priority task is it the active array and the high pri-
ority task is in the expired array.

4.2 Activity Balancing/Unbalancing
For implementing activity balancing between physical proces-

sors and activity unbalancing between siblings, we modified Li-
nux’s load balancer to consider the metrics described by Equations
8 and 9 in addition to load.

We took advantage of the scheduler domain hierarchy that Li-
nux uses to represent the topology of the system. The hierarchy
defines groups of CPUs at different levels, e.g. groups comprising
all siblings residing on the same physical processor, groups com-
prising all CPUs residing on the same NUMA node, and so on.
Within groups consisting of siblings, we perform activity unbalanc-
ing, and migrate tasks if this increases diversity, but between CPUs
not belonging to the same group of siblings, we perform activity
balancing, i.e., migrate tasks if this decreases thermal stress.

We also consider the aforementioned metrics when choosing a
CPU for starting a new task after a fork()/execve() system
call.

5. EVALUATION

5.1 Setup and Methodology
We evaluated our implementation with a set of different work-

loads composed of programs taken from the SPEC CPU 2006 suite,
a benchmark suite consisting of several compute intensive integer
and floating point benchmarks derived from real user applications.

As described in Section 2.2, hardware sensors are not suitable
for verifying the impact of our approach, namely the reduction of
hotspots. Temperature measurement via external sensors such as
laser thermometers is not applicable for similar reasons, e.g., it is
not possible to operate the chip without a heat sink attached and
hence the chip is not accessible for temperature measurements.

For these reasons, we use a combination of real hardware and
simulation: We let our modified Linux kernel run on real physical
hardware. We use an IBM xSeries 445 eight-way multiprocessor
system (eight Pentium 4 Xeon Gallatin processors with 2.2 GHz
each processor). The system consists of two NUMA nodes with
four two-way multithreaded processors on each node.

0 1000 2000 3000 4000
time [ms]

60

65

70

75

80

85

te
m

p
e

ra
tu

re
 [

°
C

]

0 1000 2000 3000 4000
time [ms]

60

65

70

75

80

85

te
m

p
e

ra
tu

re
 [

°
C

]

Figure 4: Temperature of floating point registers with (bottom)
and without (top) runqueue sorting

For investigating temperature, we resort to simulation using the
HotSpot [9] temperature simulator. During the test runs, we sample
the utilization of each functional unit of the CPU. From unit utiliza-
tion, we estimate the power consumption of each unit. Afterwards,
we use the power estimates as input to the HotSpot simulator.

Since we had no floorplan for the Pentium 4 Xeon Gallatin pro-
cessor at our disposal, we estimated temperature based on the floor-
plan of a Pentium 4 Northwood processor, which has the same fea-
ture size and also the same amount of L1, L2 and trace cache, but
lacks the L3 cache of the Gallatin processor. Since the power con-
sumption of the L3 cache is moderate in relation to the area the
cache occupies, the L3 cache is no hotspot and can therefore legit-
imately be neglected.

We sampled unit utilization at millisecond granularity. To limit
the amount of sampled data and to shorten the time required for the
temperature simulations, we took samples only every 100th second.
Thus, during a test run, the programs ran 99 seconds without sam-
pling, then, during the following second, we took 1000 samples,
let the program run for 99 seconds without sampling again, and so
forth.

5.2 Runqueue Sorting
To demonstrate the benefits of runqueue sorting, we selected two

SPEC benchmarks that use complementary resources. hmmer uses
mainly the integer units (integer ALUs and integer register file) and
the L1 cache. When hmmer is running alone, the hottest unit on
the chip is the integer register file. namd mainly uses the floating
point units; when namd is running, the hottest unit is the floating
point register file.

We started three instances of hmmer and three instances of namd
simultaneously. Since we wanted the tasks to run on one CPU to-
gether, we disabled all CPUs of the system but one.

Figure 4 shows the effect of runqueue sorting. The figure depicts
the course of temperature over time for the floating point register
file, which reached the highest temperature of all units during the
test.

7

50 60 70 80
temperature [°C]

o
c
c
u

rr
e

n
c
e

no sorting

50 60 70 80
temperature [°C]

o
c
c
u

rr
e

n
c
e

simple sorting

50 60 70 80
temperature [°C]

o
c
c
u

rr
e

n
c
e

enhanced sorting

Figure 5: Temperature of floating point registers (hmmer +
namd)

Without runqueue sorting, the order in which the tasks are sched-
uled is arbitrary. In the most unfavorable situation, which is shown
it the top half of the figure, three timeslices in a row are assigned to
the three instances of namd, followed by three timeslices assigned
to hmmer. Whenever an instance of namd is running, the temper-
ature increases, whereas whenever hmmer is running, the tempera-
ture decreases. Since a timeslice is 100ms long, temperature rises/
decreases for 300ms, respectively.

With runqueue sorting enabled, the scheduler arranges the tasks
in a way that whenever an instance of namd has been executed for
one timeslice, an instance of hmmer gets scheduled during the next
timeslice. The effect of this can be seen in the bottom half of the
figure: The time during which the floating point register file’s tem-
perature increases is one timeslice at most, since after this times-
lice, the scheduler picks a task that does not utilize the floating
point units. Therefore, the temperature of the register file does not
rise as high as it does without runqueue sorting. The effect on the
other units’ temperatures is similar.

The benefits of runqueue sorting become apparent in a histogram
displaying the frequency of occurrence for the temperature values
observed during the test run. Figure 5 shows histograms of the
temperature of the floating point registers.

Without sorting (top histogram in Figure 5), two major spikes
appear in the histogram, one around 60◦C, and one around 82◦C.
When unit usage is constant for a longer period of time, as is the
case when many tasks with similar characteristics are scheduled
successively, the units reach a steady state temperature (also com-
pare Figure 2). The spike at 60◦C results from the floating point
registers being inactive during a longer period of time, whereas the
spike at 82◦C results from the registers being active for a longer
period of time.

When runqueue sorting is enabled (bottom histograms in Fig-
ure 5), the spikes are diminished, and temperature is biased towards
medium temperatures.

The effects of runqueue sorting on temperature become most ap-
parent when overlaying the three histograms, as can be seen in
Figure 6. To improve readability, the figure lacks the bars of the
histograms and displays only the tops.

As can be seen, runqueue sorting biases temperature towards the
middle of the range, which particularly leads to high temperatures

50 60 70 80
temperature [°C]

o
c
c
u

rr
e

n
c
e

no sorting

simple sorting

enhanced sorting

Figure 6: Temperature of floating point registers (hmmer +
namd, combination of the histograms from Figure 5)

occurring less frequently and also reduces the observed maximum
temperature. The figure also shows that enhanced sorting guided
by a thermal model is superior to simple sorting guided only by
unit utilization.

Without runqueue sorting, the temperature of the floating point
register file was greater than 80◦C for 25% of the time. With simple
sorting, this percentage dropped to 9% and with enhanced sorting
further to 6%.

For other combinations of tasks, runqueue sorting yielded sim-
ilar effects: If the tasks possess different characteristics regarding
the utilization of a certain unit, the temperature of this units gets
biased towards medium temperature ranges by runqueue sorting.
Figure 7 shows histograms of the temperature for the data transla-
tion look-aside buffer (DTLB), which is the hottest unit when run-
ning gobmk, a memory intensive application, in combination with
leslie3d, which is also memory intensive, but does not stress
the DTLB as much as gobmk does. Although the overall tempera-
ture of the DTLB is lower than that of the floating point registers in
the previous test, a bias towards the medium range can also be ob-
served. Since gobmk and leslie3d both use the DTLB to some
degree, the spikes in the histogram are not as prominent as in the
previous test.

For combinations of tasks that have similar characteristics, run-
queue sorting is not beneficial. Figure 8 shows histograms for the
temperature of the floating point registers when running calculix
in combination with milc. Both applications show high usage
of the floating point registers, although not as high as with namd.
Therefore, the histogram shows only one spike around 70◦C. Since
the tasks have similar characteristics, runqueue sorting cannot re-
duce the temperature of the floating point registers and the his-
togram looks similar with sorting activated.

We measured the overhead introduced by sorting. We compared
our implementation of runqueue sorting to Linux’s original schedul-
ing policy. The runtime of the benchmarks increased by 1.3% with
simple sorting and by 1.5% with enhanced sorting.

5.3 Activity Balancing
We tested activity balancing by running the same workload de-

scribed at the beginning of Section 5.2, but on all eight CPUs of
the system. Hence, we started 24 instances of hmmer and namd,
which the load balancer distributed to the individual CPUs.

8

40 45 50 55 60
temperature [°C]

o
c
c
u
rr

e
n
c
e

no sorting

enhanced sorting

Figure 7: Temperature of dtlb (gobmk + leslie3d)

50 60 70 80
temperature [°C]

o
c
c
u
rr

e
n
c
e

no sorting

enhanced sorting

Figure 8: Temperature of floating point registers (calculix +
milc)

To eliminate the possibility of buying the reduction of hotspots
on one CPU with an aggravation on some other CPU, we observed
the temperature of all eight CPUs.

We performed two runs, one with activity balancing disabled and
one with activity balancing enabled. During both runs, we activated
enhanced runqueue sorting.

Since runqueue sorting depends on runqueues consisting of tasks
with different characteristics, it is only beneficial if the load bal-
ancer distributes tasks to CPUs accordingly. The default Linux load
balancer, however, is oblivious of the tasks’ characteristics.

This becomes apparent in Figure 9, which displays histograms
of the temperature values accumulated from all eight processors.
Without activity balancing, the histogram looks similar to the one
in the top half of Figure 5, which resulted from a test run with run-
queue sorting disabled. Runqueues containing too many instances
of namd are responsible for this. Only when runqueue sorting and
activity balancing are combined, the desired effect eventuates.

Migrating a task to another processor introduces an overhead,
since the task needs to warm up the cache of the new processor.

50 60 70 80
temperature [°C]

o
c
c
u
rr

e
n
c
e

balancing disabled

balancing enabled

Figure 9: Temperature of floating point registers (8 processors)

60 65 70 75 80 85 90
temperature [°C]

o
c
c
u
rr

e
n
c
e

no unbalancing

unbalancing

Figure 10: Temperature of floating point registers (Hyper-
Threading)

However, activity balancing is an infrequently occurring operation;
once the tasks are distributed to the CPUs according to their unit
utilization, no further migrations are necessary. We measured only
0.3% of overhead introduced by activity balancing.

5.4 Activity Unbalancing
To test activity unbalancing, we enabled only one CPU in the

system, but activated the processor’s HyperThreading capability
(Intel’s term for simultaneous multithreading), which resulted in
a system consisting of two logical CPUs. We ran one test with
runqueue unbalancing enabled and one test with runqueue unbal-
ancing disabled. Both times, we enabled runqueue sorting and ran
four instances of hmmer and namd respectively.

It is remarkable that with HyperThreading enabled, the histogram
(Figure 10) looks completely different than with HyperThreading
disabled. Instead of two spikes, one in the low and one in the high
temperature ranges (compare Figure 6), with HyperThreading, the
temperatures in the middle range dominate.

9

Figure 11: Temperature of floating point registers (Hyper-
Threading)

The reason for this becomes evident when looking at the course
of temperature (Figure 11). Power consumption and temperature of
the functional units are no longer determined by the order in which
tasks are scheduled by one scheduler, but by the scheduling deci-
sions of two independent schedulers. Since task switches happen
independently for both logical processors, this leads to situation in
which none of the processors uses the functional unit as shown at
point (1) in the figure, both processors use the functional unit (2),
or one processor uses the functional unit and the other does not (3)
and (4).

When one logical processor uses a unit and the other does not,
the unit’s temperature is in the middle range. Combined with the
fact that it takes some time for temperature to increase or decrease
after both processors start using or not using a unit at the same time,
this yields the bias towards medium-range temperatures that can be
observed in the histogram.

Provided that the set of runnable task allows it, activity unbalanc-
ing ensures that tasks using complementary resources are always
scheduled together on sibling processors. This avoids temperature
spikes to the upper and lower ranges (like points (1) and (2) in Fig-
ure 11) and ensures that a situation as shown at points (3) and (4),
where temperature is in the middle range, dominates most of the
time.

The histogram (Figure 10) reflects this: With activity unbalanc-
ing enabled, temperature values are much more concentrated in the
middle range than without unbalancing. This shows the benefits
of activity unbalancing. Without unbalancing, the temperature of
the floating point registers is higher than 80◦C during 17.7% of
the time. Activity unbalancing achieves that the temperature of the
floating point register never exceeds 80◦C in this scenario, so our
policy succeeded in avoiding hotspots.

Activity unbalancing is also advantageous in another respect:
Running tasks that use complementary resources together also makes
sure that the tasks running simultaneously on sibling processors
do obstruct each other less, since they do not compete as much
for resources as would be the case when running tasks with sim-
ilar characteristics together. This is the same principle symbiotic
job scheduling [18] takes advantage of. Less obstruction means
higher throughput; in our scenario, the runtime of the benchmarks
decreased by 3.6% when activity unbalancing was enabled.

We verified that this is generally the case by test runs using other
SPEC benchmarks: With one processor and HyperThreading ac-
tivated, we ran six benchmarks simultaneously. The benchmarks
were chosen at random out of the SPEC CPU2006 suite. Whenever
one benchmark terminated, we started another benchmark, also se-
lected at random, so there were always six benchmarks running
simultaneously, but in arbitrary combinations.

We measured the runtimes of the benchmarks with activity un-
balancing disabled and also recorded the order in which the bench-
marks were started. After the first run, we enabled activity unbal-
ancing and replayed the same sequence of benchmarks as before.
A comparison of the runtimes showed an improvement (reduction
of runtime) of 3.3%.

5.5 Analysis
Our experiments show that runqueue sorting improves temper-

ature distribution on the chip and reduces hotspots. Activity bal-
ancing creates the prerequisites for runqueue sorting in SMP sys-
tems. For multithreaded processors, activity unbalancing reduces
hotspots and additionally increases performance.

The overhead introduced by runqueue sorting has to be com-
pared to the overhead that results when throttling is engaged to pre-
vent overheating. The overhead introduced by throttling depends
on the actual throttling mechanism, and on the trip temperature at
which throttling starts. Both, mechanisms and trip temperatures
vary between different CPU types.

As an example, Intel’s thermal monitor 1 feature periodically
disables the clock signal, effectively reducing the processor’s fre-
quency by 12.5% to 87.5%. The thermal monitor 2 feature uses
frequency scaling for reducing power and temperature; the penalty
introduced by thermal monitor 2 depends on the frequency the pro-
cessor runs with when not throttled. In both cases, throttling re-
sults in a performance penalty that is considerably higher than the
penalty introduced by our vector-based scheduling policies, which
we measured to be 1.8% at most (1.5% introduced by runqueue
sorting and an additional 0.3% introduced by activity balancing).

As an example, we showed in Section 5 that for a scenario with
tasks using complementary resources, runqueue sorting manages
to reduce the percentage of time during which the hottest of the
processor’s units operates above 80◦C from 25% to 6%. If the pro-
cessor is not supposed to operate at more than 80◦C, throttling has
to be used to keep temperature below 80◦C, at the price of pro-
longed execution times. If we assume the processor runs at half its
normal frequency when throttled, without runqueue sorting, 25%
of the instructions have to be executed at half speed, which doubles
the time required to process these instructions and increases total
execution time by 25%. With runqueue sorting, the total execution
time is only increased by 6% because of throttling, plus the addi-
tional 1.5% introduced by the overhead runqueue sorting causes. A
programm running 100s on an unthrottled processor thus runs 125s
without runqueue sorting and 107.6s with runqueue sorting, which
is a speedup of 14%. Even if a throttled processor is running at
75% maximum speed instead of 50%, the speedup is still 7%.

Depending on the processor, 80◦C, which we use as a reference
temperature for illustrating the benefits of our approach, need not
necessarily be a critical temperature. In the system we used, we
were therefore not able to increase performance by decreasing tem-
perature, since even without our improved temperature distribution,
no throttling was engaged. Yet, with increasing power and integra-
tion densities, thermal problems can be expected to aggravate in the
future. Additionally, the lifetime and the reliability of a processor
chip decreases with temperature. Increasing temperature by 10 to

10

15 degrees halves the lifetime of an electrical circuit [19]. There-
fore, reducing hotspots is always beneficial.

6. LIMITATIONS AND FUTURE WORK
The main limitation of our approach lies in its dependence on

the workload. For workloads consisting only of tasks with sim-
ilar characteristics (that means, tasks executing the same kind of
instructions), our proposed scheduling policies are not beneficial,
and for workloads where each runqueue consists of one task only,
they are not applicable. However, recent trends like virtualization
and server consolidation can be use to combine more, potentially
heterogeneous workloads on a CPU. Therefore, we need to explore
to what extent these techniques can be used to create suitable work-
loads.

A limitation of enhanced runqueue sorting lies in the fact that it
requires a thermal model of the processor chip, i.e., the thermal ca-
pacitance and resistance of the die, interface material and heat sink
must be known. These values differ between different processor
types and must be adjusted individually for each system. However,
falling back to simple runqueue sorting, where no thermal model
is needed, is always an option for systems with unknown thermal
characteristics.

Future processors are likely to have built-in mechanisms and
policies for avoiding hotspots. For instance, chips that feature spare
resources and perform activity migration in hardware have been
proposed [8, 17]. Another example are multithreaded chips that fa-
vor certain logical processors, preferring them when allocating re-
sources depending on the characteristics of the tasks they run, and
on the current temperature distribution [3]. We believe that both
hardware and software should cooperate to attain the goal of effec-
tive temperature management best. If the hardware exposes infor-
mation to the operating system about its internal features, like mul-
tiple register files or adaptive fetch policies, and about the actions
actually taken to prevent thermal emergencies, the operating system
can provide the circumstances in which the hardware’s mechanisms
are most effective, for example by migrating tasks between CPUs
or ordering the tasks in the runqueues accordingly.

We believe that our approach is also applicable for multicore pro-
cessors. In recent multicore processors, throttling can be engaged
on a percore basis. Just like for singlecore processors, the decision
whether or not to throttle a core of a multicore processor depends
on the temperature of the hottest parts of the core, which can be
reduced by our proposed scheduling policies. Additionally, hav-
ing multiple cores on a chip requires higher integration densities,
which aggravates thermal problems.

7. RELATED WORK
Characterization of tasks by unit utilization has been used for

different purposes in the past.
Isci and Martonosi [11] shows that performance monitoring coun-

ters are suitable for determining functional unit utilization by which
tasks are characterized. This characterization is used for analyzing
the phases a task passes through. Our approach adopts this me-
thodology for characterizing tasks, but uses the characterization for
energy-aware scheduling.

Lee and Skadron [13] uses unit utilization inferred from perfor-
mance monitoring counters to determine the power consumption of
the individual functional units on a chip. The energy estimates are
used for on-line estimation of the temperature distribution on the
chip by means of the HotSpot [9] simulator. We use the methodo-
logy proposed by Lee and Skadron to determine the temperature of
functional units on the chip. Using the Hotspot Simulator, we were

able to verify that our scheduling algorithms succeed at influencing
temperature distribution.

Improving performance by taking advantage of the tasks’ char-
acteristics and mitigating thermal problems have been the goal of
different scheduling policies proposed in the past.

Snavely and Tullsen [18] combines task on a multithreaded pro-
cessor in a way that results in maximum throughput. In contrast
to our approach, thermal aspects are not considered. Also, the op-
timal combination of tasks is not inferred directly from the tasks’
characteristics, but determined empirically by trying out different
combinations.

Gomaa et al. [5] combines tasks with different characteristics
for running simultaneously on a multithreaded processor to avoid
overheating individual units while other units are cold. However,
the approach does not characterize tasks by utilization of functional
units, but distinguishes only between high and low IPC (instruc-
tions per cycle) tasks and between integer and floating point tasks.
Also, simulation is used instead of real hardware.

Michaud and Sazeides [15] proposes to use shorter timeslices
to prevent overheating individual parts of the chip. We argue that
shorter timeslices are only beneficial if there are tasks available that
use different units, and that the order in which they are scheduled
is important. Our work addresses both problems.

Another approach by Donald and Martonosi [4] proposes task
migrations to prevent hotspots in multicore processors. Perfor-
mance monitoring counters and sensor readings obtained from a
simulator are used to characterize tasks, and migrations to another
core are initiated when a functional unit reaches a critical temper-
ature. This approach is comparable to our activity balancing pol-
icy, which also strives at avoiding hotspots by distributing tasks to
CPUs accordingly. However, we use activity balancing to create
the preconditions for runqueue sorting, arguing that not only the
distribution of tasks, but also the order in which they are executed
matters.

Choi et al. [2] proposes scheduling strategies for mitigating ther-
mal problems on multicore processors. The approach characterizes
tasks by using the temperature sensors of the Power 5 processor.
Although some of the proposed scheduling policies are similar to
ours, they are based on a characterization of tasks into hot and cold
tasks and consider the location at which energy is dissipated only
on a per-core basis.

Approaches that aim at mitigating thermal problems have mostly
focused on the hardware level rather than on the operating system.
In contrast to the operating system, hardware has no knowledge
about tasks, so hardware-related policies operate at the level of
hardware threads.

Donald and Martonosi [3] suggests an adaptive fetch policy for
multithreaded chips to avoid the formation of hotspots. The ap-
proach uses performance monitoring counters to determine the uti-
lization of the integer and the floating point unit for each thread.
Depending on the temperatures of these units, the processor prefers
the thread using the cooler unit and fetches proportionally more in-
structions for this thread. Adapting the fetch policy as a hardware
level approach could benefit from operating system policies like the
ones we propose, ensuring that tasks with different characteristics
are available on a processor.

Another hardware related approach to avoiding hotspots consists
in adding spare resources such as register files, issue queues, or
ALUs on the processor chip and migrating computation to one of
those spare resources when the original resource reaches a critical
temperature [8, 17]. In contrast to our approach, this requires addi-
tional units, which occupy additional die area.

11

8. CONCLUSION
The task running on a CPU determines temperature distribution

and the location of hotspots. Our work addressed the influence the
operating system can take on temperature distribution by schedul-
ing tasks in a suitable manner.

We proposed task activity vectors as a metric for characterizing
a task by the functional units it uses. Our experiments verify that
activity vectors are a valuable input for a scheduler that aims at
reducing hotspots. We proposed three scheduling strategies that
make use of activity vectors:

Runqueue sorting arranges the tasks in a processor’s runqueue
in a way that tasks using complementary resources are scheduled
successively. This reduces thermal stress, since hot units can cool
down when a task not using the units is scheduled. Activity bal-
ancing makes sure that runqueue sorting can be applied reasonably
in multiprocessor systems. By distributing tasks with similar char-
acteristics onto all processors of a system, we make sure that the
composition of each runqueue is suitable for runqueue sorting. Ac-
tivity unbalancing, in contrast, concentrates tasks with similar char-
acteristics in the same runqueue. Activity unbalancing is beneficial
if applied between SMT siblings, ensuring that tasks with different
characteristics are running simultaneously, which reduces thermal
stress and at the same time increases throughput.

Our experiments show that activity-based scheduling succeeds
at reducing hotspots. Our scheduling policies considerably reduce
the percentage of time during which the processor operates in high
temperature ranges. This alleviates the need for thermal throt-
tling and reduces thermal emergencies. The overhead of activity
based scheduling is minimal; in case of multithreaded processors,
activity-based scheduling even has negative overhead (increased
throughput).

Acknowledgements
We would like to thank Simon Kellner, Raphael Neider, and Jan
Stöß, as well as the anonymous reviewers, for their helpful sugges-
tions and comments regarding this paper.

9. REFERENCES
[1] F. Bellosa, A. Weissel, M. Waitz, and S. Kellner.

Event-driven energy accounting for dynamic thermal
management. In Proceedings of the Workshop on Compilers
and Operating Systems for Low Power (COLP’03), Sept.
2003.

[2] J. Choi, C.-Y. Cher, H. Franke, H. Hamann, A. Weger, and
P. Bose. Thermal-aware task scheduling at the system
software level. In Proceedings of the 2007 International
Symposium on Low-Power Electronics and Design
(ISLPED’07), Aug. 2007.

[3] J. Donald and M. Martonosi. Leveraging simultaneous
multithreading for adaptive thermal control. In Second
Workshop on Temperature-Aware Computer Systems
(TACS’05), Madison, USA, June 2005.

[4] J. Donald and M. Martonosi. Techniques for multicore
thermal management: Classification and new exploration.
SIGARCH Comput. Archit. News, 34(2):78–88, 2006.

[5] M. Gomaa, M. D. Powell, and T. N. Vijaykumar.
Heat–and–run: leveraging SMT and CMP to manage power
density through the operating system. SIGARCH Comput.
Archit. News, 32(5):260–270, 2004.

[6] S. H. Gunther, F. Binns, D. M. Carmean, and J. C. Hall.
Managing the impact of increasing microprocessor power
consumption. Intel Technology Journal, 2001. Q1 issue.

[7] Y. Han, I. Koren, and C. M. Krishna. Temptor: A lightweight
runtime temperature monitoring tool using performance
counters. In Proceedings of the Third Workshop on
Temperature-Aware Computer Systems (TACS’06), June
2006.

[8] S. Heo, K. Barr, and K. Asanovi. Reducing power density
through activity migration. In Proceedings of the
International Symposium on Low Power Electronics and
Design (ISPLED’03), 2003.

[9] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan,
S. Ghosh, and S. Velusamy. Compact thermal modeling for
temperature aware design. In Proceedings of the 41st Design
Automation Conference (DAC’04), 2004.

[10] Intel. Intel® Pentium® 4 Processor with 512-KB L2 Cache
on 0.13 Micron Process Thermal Design Guidelines Design
Guide, Nov. 2002.

[11] C. Isci and M. Martonosi. Runtime power monitoring in
high-end processors: Methodology and empirical data. In
Proceedings of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture (MIRCO’03), pages
93–104, Washington, DC, USA, 2003. IEEE Computer
Society.

[12] M. T. Jones. Inside the linux scheduler. IBM Developer
Works, 2006.

[13] K.-J. Lee and K. Skadron. Using performance counters for
runtime temperature sensing in high-performance processors.
In Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05) - Workshop
11, Apr. 2005.

[14] A. Merkel and F. Bellosa. Balancing power consumption in
multiprocessor systems. In First ACM SIGOPS EuroSys
Conference, Leuven, Belgium, Apr. 18–21 2006.

[15] P. Michaud and Y. Sazeides. Scheduling issues on
thermally–constrained processors. Technical report, Institut
de Recherche en Informatique et Systemes Aleatoires, Oct.
2006.

[16] E. Rothem, J. Hermerding, C. Aviad, and C. Harel.
Temperature measurement in the intel core duo processor. In
Proceedings of the Twelfth International Workshop on
Thermal Investigations of ICs (THERMINIC’06), Aug. 2006.

[17] K. Skadron, M. R. Stan, W. Huang, S. Velusamy,
K. Sankaranarayanan, and D. Tarjan. Temperature-aware
microarchitecture. In Proceedings of the 30th International
Symposium on Computer Architecture (ISCA’03), June 2003.

[18] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a
simultaneous mutlithreading processor. SIGPLAN Not.,
35(11):234–244, 2000.

[19] L.-T. Yeh and R. C. Chu. Thermal Management of
Microelectronic Equipment. American Society of
Mechanical Engineers, 2001.

12

