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Abstract

Most continual learning approaches implicitly as-

sume that there exists a multi-task solution for the

sequence of tasks. In this work, we motivate and

discuss realistic scenarios when this assumption

does not hold. We argue that the traditional met-

ric of zero-shot remembering is not appropriate in

such settings, and, inspired by the meta-learning

literature, we focus on the speed of remembering

previous tasks. A natural approach to deal with

this case is to separate the concerns into what task

is currently being solved and how the task should

be solved. At each step, the what algorithm per-

forms task inference, which allows our framework

to work in absence of task boundaries. The how

algorithm is conditioned on the inferred task, al-

lowing for task-specific behaviour, hence relaxing

the assumption of a multi-task solution. From

the perspective of meta-learning, our framework

is able to deal with a sequential presentation of

tasks, rather than having access to the distribution

of all tasks. We empirically validate the effective-

ness of our approach and discuss variations of the

proposed algorithm.

1. Introduction

Connectionist networks are known to suffer from catas-

trophic forgetting (CF) (McCloskey & Cohen, 1989), when

the underlying data stream is not independently and identi-

cally distributed (i.i.d). Continual Learning (CL) explores

this problem, where non-stationarity of data is given as a

sequence of distinct tasks. One typical goal of many CL

algorithms is to ensure that, after training on a sequence

of tasks, the performance of the network is close to a net-

work trained on all tasks at the same time. Hence, all these

methods implicitly assume that there is always a multi-task

solution that fits all previous tasks. Another common as-

sumption is that either the identities of different tasks or the
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boundaries between them are available to the learner, and

many CL methods often depend on this information to know

when to consolidate the knowledge learned so far.

However, there are many realistic scenarios where both of

the above-mentioned assumptions do not hold. Consider

a multi-agent game in reinforcement learning (RL), where

all agents are learning and adapting their policies. For any

of these agents, the objective it tries to optimize (in other

words, its task) depends not only on itself and the environ-

ment, but also on the policies and configurations of others,

which are usually not directly observable. Moreover, the

other agents might change their policies at any moment as

they are also learning. As a result, the task for this agent

is changing all the time and there are no clearly defined

boundaries available to the agent. It has been observed that

such non-stationarity in multi-agent systems usually causes

catastrophic forgetting of the agent (Hernandez-Leal et al.,

2019). For example, Vinyals et al. (2019) trained agents

to play the video game StarCraft II by self-play (Tesauro,

1995), and they noticed that one salient drawback of this

approach is in fact forgetting: the agent may forget how

to defeat a previous version of itself as training progresses,

and this may lead to a “tail-chasing” cycle where the agents

always relearn a previously learned strategy and training

never converges.

Furthermore, since the tasks now depend on the configura-

tions of other agents, in general, there is no guarantee that a

multi-task solution would exist in these settings. A poten-

tial example is Generative Adversarial Networks (GANs)

(Goodfellow et al., 2014), where a generator G and a dis-

criminator D are trained together by playing a minimax

game. The objective of D is to classify the data as real or

fake, whereas the goal of G is to fool D as much as possible

by generating fake data. It was shown in (Goodfellow et al.,

2014) that the optimal discriminator D∗(x) is a function of

the generator probability density function pG(x),

D∗(x) =
pdata(x)

pdata(x) + pG(x)

Therefore, if we take two snapshots G1, G2 of the genera-

tor at different moments of the training process such that

pG1
(x) 6= pG2

(x) for some x where pdata(x) 6= 0, then

their corresponding optimal discriminators have to be differ-

ent. In other words, there is no multi-task solution for the
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discriminator to be optimal for both generators. As a result,

optimizing the discriminator with respect to a new version of

the generator will inevitably lead to degradation of its perfor-

mance with respect to a past generator, which is considered

forgetting by the traditional metric of continual learning.

Indeed, it has been shown empirically by Thanh-Tung &

Tran (2019); Liang et al. (2019) that GANs suffer from

catastrophic forgetting, and they adapted CL methods such

as Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,

2017) and Synaptic Intelligence (SI) (Zenke et al., 2017)

to alleviate forgetting in GANs . However, as we pointed

out before, these methods were initially designed with im-

plicit assumptions that a multitask solution always exists

and precise task boundaries are available, which makes them

unsuitable for the setting of multi-agent games like GANs.

In this work, we propose a CL framework that does not

make these assumptions and is applicable in a task agnostic

scenario where the tasks can potentially be conflicting with

each other. Furthermore, to evaluate our framework, we

shift our focus from less forgetting to faster remembering:

to rapidly recover the performance on a previously learned

task, given the right context as a cue.

2. Formal Statement

We consider an online learning scenario similar to Hochre-

iter et al. (2001); Nagabandi et al. (2019), where at each

time step t, a model f̂ parametrised by θt receives an ob-

servation xt and makes a prediction ŷt := f̂(xt; θt). It then

gets the ground truth yt on that task, which can be used to

optimize its parameters for better performance in the future.

If the data distribution is non-stationary (for example, (x, y)
are sampled from task A for a while, then the task switches

to task B at some moment t′), then training on the new data

might lead to catastrophic forgetting – the new parameters

θ′ can solve task B but not task A anymore.

Many continual learning methods were proposed to alleviate

the problem of catastrophic forgetting. Most of them require

either the task identities (A and B in the example) or at least

the moment when the task switches (t′ in this case). This

information, however, is not available when the ground

truth yt depends not only on the observation xt but also on

some hidden task (or context) variable Tt: yt = f(xt, Tt),
a common situation in partially observable environments

(Monahan, 1982; Cassandra et al., 1994). Only recently, the

CL community started to look at the task agnostic setting

(Zeno et al., 2018; Aljundi et al., 2019). However, all these

methods have the underlying assumption that no matter

what tasks the learner has been learning, at any time t, it

is always possible to find parameters θt that fit all previous

tasks: ∃θt s.t. ∀t
′ ≤ t, f̂(xt′ , θt) ≈ yt′ . As discussed in

the previous section, this assumption does not hold in many

realistic scenarios where different tasks conflict with each

other: f(xt, Tt) 6= f(xt′ , Tt′) even when xt = xt′ . It

follows that, in those settings, catastrophic forgetting cannot

be avoided if the model f̂(·; θt) does not depend on the

hidden task variable Tt.

3. What & How Framework

Here we propose a framework for task agnostic continual

learning that explicitly infers the current task from some

context data Dctx
t and makes predictions based on both the

inputs xt and the inferred task representations ct. The frame-

work consists of two modules: a task inference encoder al-

gorithm Fwhat : Dctx
t → ct that predicts the current task rep-

resentation ct based on the context data Dctx
t , and a decoder

algorithm FHow : ct → f̂t that maps the task representation

ct to a task specific model f̂t : x→ ŷ.

Under this framework, even when the inputs xt and

xt′ are the same, the predictions ŷt and ŷt′ can be

different from each other depending on the context.

In this work, we choose the recent k observations

{(xt−k, yt−k), · · · (xt−1, yt−1)} as the context dataset Dctx
t .

This choice is reasonable in an environment where the task

variable Tt is piece-wise stationary or changes smoothly.

An overview of this framework is illustrated in Figure 1.

Figure 1. What & How framework

3.1. Meta Learning as Task Inference

In fact, many recently proposed meta-learning methods can

be seen as decomposing the problem into What and How

modules. For example, Conditional Neural Processes (CNP)

(Garnelo et al., 2018) embed the observation and target

pairs in context data (xi, yi) ∈ D
ctx
t by an encoder net-

work ri = h(xi, yi; θh). The embeddings are then aggre-

gated by a commutative operation ⊕ (such as the mean

operation) to obtain a single embedding of the context:

rt = F
What(Dctx

t ; θh) =
⊕

xi,yi∈Dctx
t
h(xi, yi; θh). At infer-

ence time, the context embedding is passed as an additional

input to a decoder g to produce the conditional outputs:

FHow(rt) = g(·, rt; θg).

Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017)

infers the current task by applying one or a few steps

of gradient descent on the context data Dctx
t . In this

case, the gradient descent algorithm is the What encoder

and the resulting task-specific parameters can be consid-
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ered a high-dimensional representation of the current task:

θkt = FWhat(Dctx
t ; θinit) = Uk(θinit,Dctx

t , λin) := θk−1
t −

λin∇θL
in(f̂(·; θk−1

t ),Dctx
t ), where the meta parameters θinit

t

are the initial values of the model parameters, Uk is the op-

erator that updates θinit by k steps of gradient descent on the

context data Dctx
t with an inner loop learning rate λin and an

inner loop loss function Lin. The How decoder of MAML

returns the task-specific model by simply re-parametrizing

the model f̂ with θt: F
How(θt) := f̂(·; θt).

In Fast Context Adaptation via Meta-Learning (CAVIA)

(Zintgraf et al., 2019), a neural network model f̂ takes a

context vector ct as an additional input: ŷ = f̂(x, ct; θ).
The context vector is inferred from context data by a few

steps of gradient descent: ct = FWhat(Dctx
t ; θ) := cinit −

λin∇cL
in(f̂(·, c; θ),Dctx

t ). Then a context-dependent model

is returned by the How decoder: FHow(ct) := f̂(·, ct; θ).

In this work, to showcase our framework, we choose a sim-

ple meta learning method called Reptile (Nichol et al., 2018),

mainly for its simplicity and for being computationally in-

expenssive as it does not require second order gradients.

Similar to MAML, Reptile tries to learn an initialization of

model parameters θinit
t such that optimization on a test task

is fast, so its What encoder and How decoder are exactly

the same as those of MAML. To update the meta param-

eters θinit
t , Reptile simply uses the difference between the

task-specific parameters and the initialization as the gradient

direction: gθinit := θinit
t − θkt = θinit

t − Uk(θinit
t ,Dctx

t , λin).

3.2. Continual Meta Learning

In order to train a meta-learning model, one normally needs

access to a task distribution so that i.i.d task samples are

available at the same time during training. This is not possi-

ble in the online learning setting where tasks are presented

sequentially one after the other. Finn et al. (2019) pro-

posed an online meta-learning algorithm called follow the

meta leader (FTML) based on the framework of regret-

minimization. However, the computational cost of FTML

grows linearly over time as new losses are accumulated, and

it requires to store all datapoints from previous tasks, which

is usually considered infeasible in continual learning due

to limited resources or privacy reasons. In this work, we

choose an alternative framework of online learning called

online variational Bayes (Minka et al., 2009; Opper, 1998),

since it does not require unbounded computational and mem-

ory budget. Furthermore, when additional memory budget

are available for storing datapoints, online variational Bayes

can also be extended by combining it with memory-based

online learning methods (Minka et al., 2009; Nguyen et al.,

2017; Kurle et al., 2020). In this work, we focus on an

algorithm that does not have a growing memory cost over

time.

Formally, let φ be the collection of meta parameters inFWhat

and FHow (for instance, θinit in MAML and Reptile) such

that f̂t = F
How ◦ FWhat(Dctx

t ;φ). Using the Bayes rule, the

posterior p(φ|D0:t) can be recursively updated by

p(φ|D0:t) =
p(Dt|φ,D0:t−1)p(φ|D0:t−1)

p(Dt|D0:t−1)
(1)

where Dt = {(xt, yt)} and D0:t is the union of all data-

points up to t. By our assumption that a moving window of

context data is informative enough about the task variable,

we have

p(Dt|φ,D0:t−1) ≈ p(Dt|φ,D
ctx
t ) = p(yt|f̂t(xt))

= p(yt|F
How ◦ FWhat(Dctx

t ;φ)(xt)) (2)

In online variational Bayes, the true posterior is approxi-

mated by a parametric distribution qt(φ) by minimizing the

Kullback-Leibler divergence

qt(φ) = argmin
q(φ)

KL(q(φ)||p(φ|Dt0:tn)) (3)

and if we use a parametric distribution at every time

step, the optimization problem above can be simpli-

fied as maximizing the evidence lower bound (ELBO)

E(q(φ),D0:t, qt−1(φ)) = Eq(φ)[log p(Dt|φ,D0:t−1)] −
KL(q(φ)||qt−1(φ)).

In this work, we choose the parametric distribution to be a

factorized Gaussian qt(φ) =
∏

iN (φi|µi(t), σi(t)), where

φi is the i-th component of φ. Using the re-parametrization

trick: φi = µi + σiǫi, ǫi ∼ N (0, 1) and let qt−1(φ) =
∏

iN (φi|µi(t− 1), σi(t− 1)), we can find the maximum

of the ELBO by solving the following equations

∂

∂µi(t)
E(q(φ),D0:t, qt−1(φ)) = 0 (4)

∂

∂σi(t)
E(q(φ),D0:t, qt−1(φ)) = 0 (5)

and the results are update rules for µi and σi that are similar

to Bayesian Online Learning (Opper, 1998) and Bayesian

Gradient Descent (BGD) (Zeno et al., 2018), but on the

meta-level:

µi(t) =µi(t− 1)− σ2
i (t− 1)Eǫ

[∂Lt(φ)

∂φi

]

, (6)

σi(t) =σi(t− 1)

√

1 +
(1

2
σi(t− 1)Eǫ

[∂Lt(φ)

∂φi

ǫi
]

)2

−
1

2
σ2
i (t− 1)Eǫ

[∂Lt(φ)

∂φi

ǫi
]

, (7)

where Lt(φ) = − log p(Dt|φ,D0:t−1). An intuitive inter-

pretation of these learning rules is that weights µi with
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Algorithm 1 What & How (using Reptile)

Input: µ, σ, λin, k, J,Dctx
0 , ηµ, ησ ,

for t = 0, 1, . . . do

ct ← θt = Uk(µ;Dctx
t , λin) = FWhat(Dctx

t ;µ),

ŷt ← f̂(xt; θt) = F
How(ct)(xt)

∆µ ← ηµ
∂Lt(φ)

∂φ

∣

∣

∣

φ=µ
≈ ηµ(µ− Uk(µ,Dctx

t , λin))

for j = 1 to J do

ǫj ∼ N (0, 1)
φj = ǫjσ + µ

∆j
σ ← ǫj

∂Lt(φ)
∂φ

∣

∣

∣

φ=φj
≈ ǫj(φj−Uk(φj ,Dctx

t , λin))

end for

∆σ ← ησ
1
J

∑

j=1 ∆
j
σ

µi ← µi − σ2
i∆µi

σi ← σi

√

1 +
(

1
2σi∆σi

)2

− 1
2σ

2
i∆σi

,

Update Dctx
t with {(xt, yt)} to get Dctx

t+1

end for

smaller uncertainty σi are more important for the knowl-

edge accumulated so far, thus they should change slower in

the future in order to preserve the learned knowledge.

In practice, we introduce learning rates for both 6 and 7.

Maximum a posterior (MAP) estimate of φ is used for pre-

diction. We approximate the expectation in the µ update

rule 6 by the gradient at the mean, and for the expectation in

the σ update rule 7, we estimate it by Monte Carlo sampling

method. The final algorithm called W&H is described in

Algorithm 1.

Complexity The number of parameters required by the

W&H algorithm is 3 times that of the base model, since

it needs to store the mean and the standard deviation of

the initialization and a copy of the current task-specific

parameters. In terms of time complexity, the computation

of the mean update ∆µ and the Monte Carlo (MC) sample

of the standard deviation update ∆j
σ can be parallelized. In

that case, W&H has only constant computational overhead

compared to Reptile due to sampling and gradient averaging.

If the MC sampling process is implemented sequentially,

the total time complexity is O(J + 1) times that of the

Reptile algorithm. Similar to the findings in Zeno et al.

(2018), we find that in practice the number of MC samples

has negligible effect on the performance of the algorithm.

4. Related Work

Continual learning has seen a surge in popularity in the

last few years, with multiple approaches being proposed to

address the problem of catastrophic forgetting. These ap-

proaches can be largely categorized into the following types

(Parisi et al., 2019): Rehearsal based methods focus on

techniques to either efficiently store data points from previ-

ous tasks (Robins, 1995; Lopez-Paz et al., 2017) or to create

pseudo datasets that are representative of past tasks. Then

the stored or generated data can be used to approximate the

losses of previous tasks. For example, Learning without

Forgetting (LwF) (Li & Hoiem, 2017) first labels the inputs

of the current task with the previous model, then use the

resulting input-output pairs for rehearsal. Deep Generative

Replay (DGR) (Shin et al., 2017) trains a generative model

together with a classifier, and when the task switches, the

previous generative model can be used to produce pseudo-

examples for rehearsing the old tasks. Structural based

methods exploit modularity to reduce interference, localiz-

ing the updates to a subset of weights. Rusu et al. (2016)

proposed to learn a new module for each task with lateral

connection to previous modules. This prevents catastrophic

forgetting by construction and allows forward transfer, at the

cost of quadratic growth in model size. He & Jaeger (2018)

proposed to use Conceptors to identify the linear subspaces

in a network that are not used by previous tasks for learning

future tasks. This method does not increase the size of the

network as long as the linear subspaces are not exhausted,

but the network capacity will eventually saturate. In (Golkar

et al., 2019), pruning techniques were applied to minimize

the growth of the model after each task. Finally, Regu-

larization based methods draw inspiration from Bayesian

learning, and can be seen as utilizing the posterior after

learning a sequence of tasks as a prior to regularize learning

of the new task. These methods differ from each other in

how the prior and implicitly the posterior are parametrized

and approximated. For instance, Elastic Weight Consolida-

tion (EWC) (Kirkpatrick et al., 2017) relies on a Gaussian

approximation with a diagonal covariance, estimated using

a Laplace approximation. Variational Continual Learning

(VCL) (Nguyen et al., 2017) learns directly the parame-

ters of the Gaussian relying on the re-parametrization trick.

(Ritter et al., 2018) achieved better approximation with a

block-diagonal covariance. Synaptic Intelligence (SI) by

Zenke et al. (2017) proposed to estimate the importance

of parameters by the path length of the updates on the pre-

vious task, then discourage future changes on important

parameters by a quadratic penalty.

While effective at preventing forgetting, the above-

mentioned methods either rely on knowledge of task bound-

aries or require task labels to select a sub-module for adap-

tation and prediction, hence cannot be directly applied in

the task agnostic scenario considered here. To circumvent

this issue, (Kirkpatrick et al., 2017) used Forget-Me-Not

(FMN) (Milan et al., 2016) to detect task boundaries and

combined it with EWC to consolidate memory when task

switches. However, FMN requires a generative model that

computes exact data likelihood, which limits it from scaling

to complex tasks. Bayesian Gradient Descent (BGD) (Zeno
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et al., 2018), as we discussed before, adopts the framework

of online variational Bayes, and approximates the poste-

rior with a diagonal Gaussian distribution. More recently,

(Aljundi et al., 2019) proposed a rehearsal-based method

to select a finite number of data that are representative of

all data seen so far. All of these methods assume that it

is possible to learn one model that fits all previous data,

neglecting the scenario where different tasks may conflict

each other, hence does not allow task-specific adaptations.

Meta-learning, or learning to learn (Schmidhuber, 1987),

trains a model on a distribution of tasks and focuses on its

ability to quickly learn a new task at meta-testing time. As

with continual learning, different families of approaches

exist for meta-learning. Memory based methods Santoro

et al. (2016) rely on a recurrent model (optimizer) such as

LSTM to learn a history-dependent update function for the

lower-level learner (optimizee). Andrychowicz et al. (2016)

trained an LSTM to replace the stochastic gradient descent

algorithm by minimizing the sum of the losses of the opti-

mizees on multiple prior tasks. Ravi & Larochelle (2016)

use an LSTM-based meta-learner to transform the gradient

and loss of the base-learners on every new example to the fi-

nal updates of the model parameters. Metric based methods

learn an embedding space in which new tasks can be solved

efficiently. Koch (2015) trained siamese networks to tell if

two images are similar by converting the distance between

their feature embeddings to the probability of whether they

are from the same class. Vinyals et al. (2016) proposed

the matching network to improve the embeddings of a test

image and the support images by taking the entire support

set as context input. The approaches discussed in Section

3.1 instead belong to the family of optimization based meta-

learning methods. Beside the online meta learning work

(Finn et al., 2019) discussed before, the most relevant work

in this domain is from (Nagabandi et al., 2019), where they

studied fast adaptation in a non-stationary environment by

learning an ensemble of networks, one for each task. Un-

like our work, they used MAML for initialization of new

networks in the ensemble instead of task inference. A draw-

back of this approach is that the size of the ensemble grows

over time and is unbounded, hence can become memory-

consuming when there are many tasks.

5. Experiments

We design a series of experiments to thoroughly evaluate the

effectiveness of the What & How framework, and compare it

to BGD and other CL methods (EWC, online EWC, SI, LwF,

DGR, DGR+Distill) implemented by van de Ven & Tolias

(2019). We also include the following baselines: None: the

model is trained sequentially using Adam (Kingma & Ba,

2014) in the standard way without applying any continual

learning method; Joint: all tasks seen so far are trained at

Table 1. Zero-shot and few-shot recall (k = 5 steps) accuracies

for different continual learning methods on the label-permuted

MNIST tasks. The results are average accuracies over all tasks.

The mean and the standard error of mean (SEM) are computed

over 5 runs with different random seeds for each method.

METHODS ZERO-SHOT FEW-SHOT

NONE 28.07± 1.19 27.68± 0.98
JOINT 35.74± 0.99 33.44± 1.79
BGD 28.18± 1.17 27.67± 1.04
EWC 27.86± 1.19 29.85± 0.95
ONLINE EWC 27.85± 1.20 30.42± 0.69
SI 28.06± 1.19 29.50± 1.07
LWF 33.70± 1.02 32.91± 1.29
DGR 27.88± 1.12 23.06± 0.89
DGR+DISTILL 28.03± 1.14 28.88± 1.26
W&H (OURS) 28.16± 1.19 88.88± 1.00

the same time, this scheme usually sets the upper bound for

continual learning methods.

5.1. Label-Permuted MNIST

In this experiment, we first create a different permutation of

10 classes for every task, with which we shuffle the classes

in the labels. For instance, digit 0 might be the first class

in one task but the second class in another task. The reason

for this design is to ensure that a multi-task solution does

not exist since the network has to map the same image to

different labels for different tasks. In this way, we can test

whether our framework is able to quickly adapt its behavior

according to the current context. Five tasks are created

with this method and are presented sequentially for 1000

iterations each to an MLP with 2 hidden layers of 1000

neurons. In each iteration, a mini-batch of 128 images is

presented to the network. Note that except BGD, None

and our method, all the other baselines simply cannot be

directly applied in the task agnostic scenario, so we provide

the necessary task information for these methods in order to

perform the comparison.

Zero-shot vs. Few-shot Recall at the end of the entire

learning process, we test the learner’s classification accuracy

of each task in two ways. The first way is to directly apply

the final model on the testing data without any adaptations,

this corresponds to the zero-shot recall accuracy tradition-

ally used in continual learning. For the W&H algorithm,

this means we apply the model simply with the learned ini-

tialization. In the second way, we provide the final model

with a mini-batch of 128 images from the training set of

each task as context data, then let the model take k = 5
steps of gradient descent on the context data before it is

tested on the testing data of that task. We call this metric

few-shot recall accuracy.
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Table 2. Average test accuracy (over all 10 tasks) on the permuted

MNIST experiment. The accuracies for BGD and W&H reported

here are the mean (± SEM) over 5 runs. Other results are taken

directly from van de Ven & Tolias (2019)

APPROACHES METHODS DOMAIN-IL

BASELINES
NONE 78.51± 0.24
JOINT 97.59± 0.01

REGULERIZATION

EWC 94.31± 0.11
ONLINE EWC 94.42± 0.13
SI 95.33± 0.11

LWF 72.64± 0.52

REPLAY

DGR 95.09± 0.04
DGR+DISTILL 97.35± 0.02

ONLINE BAYESIAN
BGD 93.02± 0.33
W&H (OURS) 93.37± 0.33

Table 3. Average test accuracy (over all 5 tasks) on the split MNIST

experiment. The accuracies for BGD and W&H reported here are

the mean (± SEM) over 5 runs. Other results are taken directly

from van de Ven & Tolias (2019)

APPROACHES METHODS DOMAIN-IL

BASELINES
NONE 59.21± 2.04
JOINT 98.42± 0.06

REGULERIZATION

EWC 63.95± 1.90
ONLINE EWC 64.32± 1.90
SI 65.36± 1.57

REPLAY

LWF 71.50± 1.63
DGR 95.72± 0.25
DGR+DISTILL 96.83± 0.20

ONLINE BAYESIAN
BGD 66.07± 2.13
W&H (OURS) 67.33± 2.03

Table 1 summarizes the performance of our method and

other CL methods. Note that in this experiment, it is im-

possible to achieve good performance with zero-shot recall

since a multi-task solution does not exist. Even the joint

training scheme which is considered the upper bound for

CL achieves very poor accuracies. In the few-shot setting,

our framework significantly outperforms the other baselines,

even without access to any task information during training.

Interestingly, some baselines perform worse in the few-shot

setting due to over-fitting on the context data.

5.2. Permuted and Split MNIST

We also test the What & How framework on the standard

CL benchmarks called Permuted MNIST (Goodfellow et al.,

2013; Kirkpatrick et al., 2017) and Split MNIST (Zenke

et al., 2017). In these experiments, tasks are not con-

flicting with each other, so multi-task solutions do exist.

van de Ven & Tolias (2019) described three scenarios for

these experiments based on what task information are avail-

able at test time: task-incremental learning: models are

always informed about which task is presented; domain-

incremental learning: task ID is not provided at test time;

class-incremental learning: task ID is not provided and

should be inferred at test time. However, they assumed

that during training there are clear and well-defined task

boundaries available for the learner. Since our focus is task

agnostic CL during training, we only consider the domain-

incremental scenario at test time, because in the other two

scenarios, the task boundaries are anyways available during

training (in the class-incremental case, a class corresponds

to a task, which can be simply detected from the labels), it

is not necessary to apply a task-agnostic method.

In the permuted MNIST protocol, a new task is created by

shuffling the pixels of all images in MNIST by a fixed per-

mutation. We present 10 such tasks sequentially for 5000

iterations each. After all tasks are learned, the network

has to predict the digit from an image without knowing the

permutation. For the split MNIST protocol, the original

MNIST dataset is divided into 5 subsets with 2 digits each.

We present one of these subsets at a time for 2000 iterations.

At the end of the training, the network has to predict if an

image was the first class or the second class in its subset,

without knowing which subset the image is from. To be com-

parable with the results from van de Ven & Tolias (2019),

we use exactly the same network architecture, experiment

setup and hyper-parameters for these two experiments.

The results of these two experiments are displayed in Table

2 and Table 3. Again, BGD and our method do not have

access to any task information, while the other methods

cannot be directly applied without task information. For

our method, we use the previous mini-batch as context data

during training, and at testing time, the learned initialization

was directly used without any context-dependent adaption,

it can be seen from the tables that our method performs

the same as BGD, which also has similar performance to

the regularization-based task-aware methods. This means

our framework is also applicable when multi-task solutions

Figure 2. Few-shot adaptation on sine curves after trained on 200

such Sine curves. Left: predictions on the first presented Sine

curve. Right: predictions of different learners on a Sine curve that

did not occur during training.
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exist.

5.3. Sine Regression

One desideratum of continual learning is the ability of for-

ward transfer. Lopez-Paz et al. (2017) defined a metric

for forward transfer based on a model’s “zero-shot” per-

formance on a future task. We generalize the concept of

forward transfer to the “few-shot” setting: positive forward

transfer should allow a model to learn faster on a future task

similar to the ones it has learned. This definition coincides

with generalization in meta-learning, which refers to how

fast a meta-learner can learn a new task at meta-test time.

We show that our method is capable of forward transfer by

comparing it to Reptile, BGD and SGD on the sine regres-

sion tasks commonly used in meta learning literature. We

randomly generate 200 different sine curves and present

them sequentially to the learners for 100 iterations each. At

the end of the learning process, we evaluate the few-shot per-

formance (mean squared error) of all learners on these 200

sine curves as well as 200 new sine curves it has not seen

before. In particular, the learners are evaluated after they

takes k = 5 steps of SGD on a mini-batch of 64 context data.

Table 4 summarizes the results of this experiment. The other

baselines perform poorly due to catastrophic forgetting and

no multi-task solution. Figure 2 visualizes the predictions

of different learners on the first seen and a unseen sine curve

at the end of the entire training procedure.

5.4. Continual GAN

Finally, we apply our framework in the setting of GAN train-

ing, where the ultimate goal is to find the optimal parameters

θ∗G for a generator G(z; θG) by optimizing a minimax ob-

jective (e.g. Goodfellow et al., 2014; Metz et al., 2016):

θ∗G =argmin
θG

max
θD

l(θG, θD)

= argmin
θG

l(θG, θ
∗
D(θG)) (8)

where θ∗D(θG) = argmaxθD l(θG, θD) and l(θG, θD) =
Ex∼pdata(x)[log(D(x; θD))] + Ez∼N (0,1)[log(1 −
D(G(z; θG); θD))].

Following our discussion in the Section 1, continually learn-

ing D(·; θD) is impossible, because at different moments t

and t′ during training, the generator distributions may be dif-

ferent (pG 6= pG′ ), hence the corresponding optimal discrim-

inator parameters cannot be the same: θ∗D(θG) 6= θ∗D(θG′).
In other words, the tasks for the discriminator at time t and

t′ are conflicting with each other. Adopting the What &
How framework, we focus on continually learning a model

for θ∗D(·) in Eq.8 instead of the discriminator D(·). This

model corresponds to our What encoder: given a set of

data points DG := {G(zn; θG)}n sampled from the current

generator as context data, the What encoder is trained to ap-

Table 4. Average MSE of different methods on the sine curve re-

gression tasks at the end of training. The “Seen” column contains

the MSE over 200 sine curves presented during training. The

“Unseen” column contains the MSE over 200 new sine curves the

learners have not seen before. The results reported here are the

mean (± SEM) over 5 trials.

METHODS SEEN UNSEEN

SGD 3.71± 0.39 3.82± 0.40
BGD 3.34± 0.24 3.27± 0.22
REPTILE 3.23 ± 0.68 3.08± 0.65
W&H (OURS) 1.04 ± 0.09 1.08 ± 0.12

proximate the optimal discriminator parameters θ∗D(θG) ≈
FWhat(DG;φ) by k steps of inner loop updates on the con-

text data, where the meta parameter φ corresponding to an

initialization of the discriminator φ := θinit
D is learned by

Alg.1. The generator-specific discriminator returned by the

How decoder FHow ◦FWhat(DG;φ) := D(·;FWhat(DG;φ))
is used to compute the loss of θG and to update the current

generator1. This way, the conflict at the level of θD is re-

solved at the level of φ: it is possible, in theory, to find

a single φ that maximizes both l(θG,F
What(DG;φ)) and

l(θG′ ,FWhat(DG′ ;φ)), even when θG 6= θG′ .

Thanh-Tung & Tran (2019) and Liang et al. (2019) showed

that a notorious problem for GAN training called mode

collapse (Che et al., 2016) is interrelated with catastrophic

forgetting and can cause the training process to never con-

verge, since the generator is always optimized to revisit a

mode that the discriminator has forgotten. Therefore, over-

coming catastrophic forgetting problem in the discriminator

should be able to break this mode revisiting cycles and

reduce mode collapse, as shown in the experiments below.

2D Mixture of Gaussian To directly visualize the effect

of our method, we first apply it to train a simple GAN

from synthetic data generated from a mixture of 8 Gaussian

distributions on 2D space. The network architecture and ex-

periment setup are exactly the same as in (Metz et al., 2016).

We first train a vanilla GAN with standard techniques on this

dataset, the first row (Vanilla GAN) of Figure 3 shows that

it enters a non-convergent cycle of revisiting the modes. We

then apply the What & How method (with k = 3 steps in the

inner loop) to the discriminator while keeping the rest of the

experiment setup and hyper-parameters the same. As can

be seen in the second row (WHGAN) of Figure 3, although

mode collapse also occurs at the beginning of the training

1Unlike the Unrolled GAN (Metz et al., 2016), we do not
backprop through the inner loop optimization of the discriminator
when we compute the gradients of the generator, even though this
can provide more accurate gradients for the generator and further
improve the performance of our GANs. The reason is that we want
to isolate the effect of our method from that of the Unrolled GAN.
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Figure 3. The What and How framework prevents mode collapse on the 2D mixture of Gaussians dataset. The first six columns show KDE

plots of 512 samples from the generator at different training steps. The last column are created from 512 samples of the real distribution.

The first row shows standard training of a vanilla GAN. The second row shows the same GAN with the discriminator trained by the What

and How framework.

Table 5. Quantitative Evaluation of DCGAN and WHGAN on CI-

FAR10. The results reported here are the mean (± SEM) over 5

random trials. ↓ (resp. ↑) indicates lower (resp. higher) is better.

Metrics DCGAN WHGAN(Ours)

NDB↓ 48.20± 4.68 26.00 ± 0.89
JSD↓ 0.013± 0.0016 0.0069 ± 0.00019
FID↓ 47.52± 0.49 46.78 ± 0.63
IS ↑ 4.40 ± 0.028 4.47 ± 0.027

process, our networks can avoid the repeating cycle, and

eventually converge to a distribution that covers all modes.

DCGAN on CIFAR10 In this experiment, we compare

the differences between a DCGAN (Radford et al., 2015)

trained with and without our method on the CIFAR10

dataset (Krizhevsky et al., 2009). Since it is hard to vi-

sualize mode collapse for high dimensional image data, we

use two bin-based metrics called NDB and JSD (Richardson

& Weiss, 2018) to evaluate the resulting GANs. To com-

pute NDB, the real samples are first clustered by K-means

into K = 200 bins, which can be considered as modes of

the data distribution. Then N = 50000 images sampled

from the generator are assigned to their nearest bins. For

each bin, a two-sample test is performed to decide if the

synthesized samples are statistically different from the real

samples. NDB is then simply the number of statistically

different bins and JSD is the Jensen-Shannon divergence

between the real distribution and the generator distribution

over these bins. Lower NDB and JSD scores imply more

similarity between two distributions, and hence less mode

collapse. In addition, we also evaluate the resulting GANs

with the Inception Score (IS) (Salimans et al., 2016) and

the Fréchet Inception Distance (FID) (Heusel et al., 2017),

which are metrics based on the image features extracted by

the Inception Network (Szegedy et al., 2015). Higher IS and

lower FID indicate better quality of the generated images.

Table 5 compares the performance of the original DCGAN

and one trained with our framework (WHGAN). Again, we

keep the network architecture and all hyper-parameters the

same, except that the discriminator in WHGAN is trained

with the What & How method. In both cases, we train the

networks for 50000 iterations with a mini-batch size 64. For

our method, k = 3 steps are used in the inner loop of the

What encoder. The results show that WHGAN achieved

significantly lower NDB and JSD while maintaining the

same image quality.

6. Conclusions

In this work, we showed that when a multi-task solution

does not exist, catastrophic forgetting is inevitable. A frame-

work that can infer task information explicitly from context

data was proposed to resolve this problem. The framework

separates the inference process into two components: one

for representing What task is presented, and the other for

describing How to solve the given task. In addition, our

framework unifies many meta learning methods and estab-

lishes a connection between continual learning and meta

learning, leveraging the advantages of both.

From the meta learning perspective, our framework ad-

dresses the continual meta learning problem by applying CL

techniques on the meta variables, therefore allowing meta

knowledge to accumulate over an extended period; from

the continual learning perspective, our framework addresses

the task agnostic continual learning problem by explicitly

inferring the task when the task information is not available

and a multi-task solution does not exist. This allows us to

shift the focus of continual learning from less forgetting to

faster remembering, given the right context.
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