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1 Introduction

In recent years, with the rapid development of Unmanned aerial vehicle (UAV) tech-

nologies, UAVs have been widely used in many fields. Different types of UAVs can help 

people complete some relatively dangerous, urgent, and even impossible tasks, such as 

environmental investigation, material distribution [1], map reconstruction [2], aerial 

photography, ocean exploration, etc. However, the current UAVs are insufficiently intel-

ligent to perform complex tasks, and most of them still need people’s real-time control. 

A single UAV can only perform relatively simple tasks, but the UAV group can efficiently 

complete many complex and arduous tasks after reasonable task planning. In addition, 

in future 6G mobile communication technology, UAV-assisted marine applications will 

be one of the hot research directions [3, 4].
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�e task planning problem of multiple UAVs can be divided into two parts, the task 

allocation problem and route planning problem, which are interrelated and different 

from each other. �e task allocation problem is equivalent to the combinatorial opti-

mization decision problem for multiple UAVs. It is a combination scheme designed to 

meet UAV performance and the constraints. �e purpose is to make a UAV consume the 

least resources or obtain the maximum benefits with the shortest total path. �e route 

planning problem involves planning a flight route from the starting point to the end-

point in the constrained task space and making the fitness function optimal. In order to 

solve the task planning problem, many scholars have conducted a considerable amount 

of research. �e common task allocation methods include optimization algorithms (e.g., 

the Hungarian algorithm [5], branch definition method, graph theory, etc.), heuristic 

algorithms (e.g., clustering algorithms, ant colony algorithms (ACOs) [6], particle swarm 

optimization algorithms (PSOs) [7], genetic algorithms (GAs) [8], artificial bee colo-

nies, etc.) and distributed algorithms (e.g., the decentralized Markov decision process, 

the contract net auction algorithm [9], etc.). Common route planning methods include 

traditional algorithms (e.g., the Voronoi diagram method, the artificial potential field 

method [10], etc.), heuristic algorithms (the Dijkstra algorithm, the Floyd algorithm, the 

A* algorithm [11], etc.), and intelligent bionic algorithms.

Currently, the inland application of UAV task planning is relatively mature. However, 

in the face of a complex and broad marine environment, UAV task planning still faces 

many challenges. First, due to the vastness of the marine environment, the complexity 

of the constraints, and the difficulty of modeling, an appropriate representation method 

for environmental modeling is needed. In this way, the environmental information of 

task planning can be accurately and reasonably expressed. Second, many task planning 

algorithms have limitations. �erefore, various algorithms should be effectively com-

bined according to specific problems to improve the optimization effect. Furthermore, 

many research target models are too idealized to change according to the actual applica-

tion. �ey are also not easy to adapt and lack universality. �e main contributions of this 

paper are as follows:

(1) An intelligent marine control system composed of UAVs and offshore plat-

forms, including a system model, task allocation model, and route planning model, is 

established.

(2) Partial matching crossover and second transposition mutation, which improve the 

iterative speed and the performance of the optimal solution, are introduced to improve 

the traditional PSO algorithm.

(3) �e task allocation and route planning problems of multiple UAVs with random 

targets and constraints have been solved. A large number of simulation experiments 

show the task allocation efficiency of marine UAVs and anti-interference ability.

2  Related work

To establish a suitable intelligent marine system model, many scholars at home and 

abroad have established a variety of marine systems in different scenarios. A probabil-

ity graph fusion method of consensus theory and state predictors has been proposed 

to establish the communication model between UAVs [12]. In addition, a stochas-

tic dynamic coastal environment model based on a Poisson distribution has been 
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established to capture the environmental impact of coral reefs around the coastline 

[13]. However, the method of using UAVs to absorb solar energy as a communication 

relay node has higher requirements on the marine environment since the communica-

tion quality will be affected in the long-term due to a lack of sunshine and dark days. 

Under the assumption that the target probability map of the marine area is known, the 

marine system model is not suitable for the complex and changeable marine environ-

ment. �e intelligent marine system proposed in this paper is set within the coverage 

of offshore base stations, and the motion model of UAVs satisfies a Gauss Markov pro-

cess. �e communication network is established between the offshore platform and the 

cloud platform through wireless transmission, and the communication link is randomly 

assigned to a UAV.

In UAV task planning research, the allocation of communication resources will 

directly affect the performance of the entire system, especially in future space-ground-

sea integrated networks [14–16]. Many scholars have improved the traditional algorithm 

aiming to improve the task allocation efficiency, optimize the planning route and expand 

the application scenarios [17]. Among the topics, UAV mission planning is relatively 

mature regarding reconnaissance and striking, urban detection, disaster relief, forest 

fire monitoring, agricultural remote sensing, and other fields. To solve the multitarget 

urban tracking route planning problem of multiple UAVs, a novel algorithm combining 

the basic grey wolf optimizer (GWO) and Gaussian estimation of distribution (GED) 

strategy and adjusting the search direction by adjusting the weighted method has been 

proposed [18]. Different algorithms for task allocation and enhancing the effectiveness 

of data perception have been proposed to minimize the incentive costs while ensur-

ing the quality of sensing data [19]. IIn order to solve the new problems of the applica-

tion of multiple UAVs in the rapid assessment of earthquake disaster areas, an efficient 

simulated annealing hybrid particle swarm optimization algorithm, which generates 

high-quality solutions for rapid assessment task allocation problems, has been proposed 

[20]. In addition, an iterative greedy heuristic algorithm based on iterative solution 

destruction and reconstruction processes has been proposed to solve the logistics rout-

ing problem of truck UAV teams [21]. method based on the improved Voronoi diagram 

algorithm to find the best path connecting all pressure areas and their injection points 

has been proposed to complete the agricultural investment task without revisiting [22].

Moreover, due to the limited power endurance of UAVs, UAV systems in marine 

environments must consider network energy consumption [23, 24]. First, the network 

energy efficiency can be improved through the optimization of network resources [25, 

26]. Second, solar energy can be used to improve the coverage of UAVs in the marine 

environment. A method of absorbing and converting solar energy through a solar UAV, 

which can act as the communication relay node of a marine fleet, has been proposed to 

improve marine communication coverage [27].

However, research on UAV task planning in the complex, wide, and communication-

limited marine field is relatively limited. In order to establish a task management archi-

tecture in a restricted marine environment, a new algorithm combining an unsupervised 

learning strategy and an improved K-means algorithm has been proposed [28]. �e algo-

rithm first assigns different tasks to multiple UAV systems and then implements self-

organizing mapping to address the execution problem based on each assigned task. In 
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order to solve the multitask allocation problem of a multiple unmanned surface vehicle 

system, an improved self-organizing mapping algorithm has been proposed [29]. �e 

algorithm can allocate all tasks in the task area and obtain the set of task nodes that 

each UAV needs to access. In order to study the underwater target search and track-

ing task, an improved particle swarm optimization algorithm has been proposed [30]. 

�e algorithm can perform the integrated tasks of unmanned aerial vehicles, unmanned 

ground vehicles, and automatic underwater vehicles. In order to solve the route plan-

ning problem of multiple UAVs in marine target search, an improved route planning 

algorithm based on the K-means algorithm and GA has been proposed [31]. In order to 

search for the best ship route, an algorithm combining the PSO algorithm and tangent 

graph method has been proposed [32]. In order to search for safe and efficient routes in 

the complex environment of wind farm water areas and ensure ship navigation safety, a 

hybrid route planning method based on the A* algorithm and reinforcement learning 

algorithm has been proposed [33].

All the above studies first selected a relatively specific application scenario of marine 

or water environments. Furthermore, the problem model is established under the condi-

tion of meeting the environmental constraints. �en, the model is improved on the basis 

of the traditional algorithm. Finally, the scheme is verified to improve the task planning 

efficiency. �e goal of this paper is to establish an intelligent marine UAV task planning 

system. It is hoped that in the complex and changeable marine environment, according 

to the randomly generated task points, demand, threat area, and other characteristics, 

the system can quickly plan the task and design routes. Furthermore, regarding the sys-

tem, the structure is relatively simple, the calculation costs are low, and the anti-interfer-

ence ability is as strong as possible. �erefore, this paper makes many improvements in 

environment modeling, constraint setting, algorithm structure simplification, and model 

universality.

3  Methods

�e UAV task planning model is divided into three parts: the system model, task alloca-

tion model, and route planning model. �e system model includes a UAV model, mobile 

model, and communication model. �e symbols used in this paper are summarized in 

Table 1.

3.1  System model

3.1.1  UAV model

As shown in Fig. 1, we establish an intelligent ocean control system composed of mul-

tiple offshore platforms and multiple UAVs. As the base station in the intelligent ocean 

system, the offshore platform allocates network resources (bandwidth and channel) to 

UAV and assigns tasks (such as environmental monitoring, material distribution, etc.) to 

UAV. �e communication between the platform and the UAV is established through the 

wireless link.

Offshore platforms are represented by set O, roi represents the coverage radius of off-

shore platform Oi , and ρi represents the maximum density of UAVs within the coverage 

of offshore platform Oi . When ρimin ≤ ρi ≤ ρimax is satisfied, the number of UAVs that 

can be covered by offshore platforms Oi is
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Table 1 Symbol and descriptions in this paper

Symbol Description

U The set of UAVs

O The set of offshore platforms

C The set of tasks. c0 is the warehouse center

Hi The set of wireless links

gp The iterations of particles

ρi The density of UAVs within the coverage of offshore platforms oi

Qk(xi , yi) The coordinates of UAV uk

ϕk,i The Signal noise ratio (SNR) of UAV under offshore platform oi

pk The transmission power of UAV uk

µk ,i The route loss index from UAV uk to offshore platform oi

σ The additive white Gaussian noise

Nu ,Nc The number of UAVs and task points

D The total path of the UAV

qi The material demand of the task point ci

tk , vk The travel time and speed of UAV uk

di,j The distance between task point ci and task point cj

dk The distance that UAV has traveled

lkmax , lkmin The maximum range and minimum inertial distance of UAV uk

lki , Lk Segment i and the total travel of UAV uk

θkmax The maximum horizontal deflection angle of UAV uk

F The fitness function of route planning

G0 The threat zone collision factor

Np The number of particles

P The set of particles

Pbesti ,Gbesti The local optimal solution and global optimal solution of particle

a1 , a2 , c1 , c2 ,ω The acceleration constants, random function, and inertia variable 
of particles, respectively

Fig. 1 Schematic diagram of the intelligent ocean control system
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�en, the total number of UAVs in the system can be expressed as Nu:

3.1.2  Mobile model

We limit the motion of UAVs in the two-dimensional plane of an intelligent ocean sys-

tem. A UAV can be regarded as a type of network communication node when it moves 

over the sea or communicates with a platform. We use coordinates Qk(xi, yi) to repre-

sent the specific location of the UAV. �e trajectory of the UAV is described as several 

track points in the flight period of the UAV, and then the motion process of the UAV 

can be modeled as a Gauss Markov process. �e next movement of the UAV is related 

to the velocity and direction of the current movement. st
k
 and rt

k
 represent the speed and 

direction of the UAV uk at time t, respectively. �ey can be calculated by the following 

formulas:

where α and β are random variables following a Gaussian distribution, and �(� ∈ [0, 1]) 

is the randomness in the Gaussian Markov process. When � = 0 , the track points of the 

UAV are completely random.When � = 1 , the UAV moves at a constant speed and direc-

tion. s̄k and r̄k represent the average velocity and direction of the UAV, respectively.

3.1.3  Communication model

�e wireless links that can be generated by offshore platforms are limited, and the set 

Hi is used to represent the covered wireless link sets of offshore platforms oi . �e off-

shore platform allocates tasks to UAVs by establishing communication links. Due to the 

mutual interference between UAVs covered by the same offshore platform, the signal-to-

noise ratio of UAV uk can be calculated as:

where pk and pj are the transmission power of UAVs uk and uj , respectively. dk ,i and µk ,i 

are the distance and path loss index from UAV uk to offshore platform oi , respectively. σ 

is additive Gaussian white noise.

3.2  Task allocation model

To understand more ocean information and conduct rescue and disaster relief, UAVs need 

to perform daily monitoring tasks and emergency tasks. Based on this, the task allocation 

(1)Ni =

1

2
πρir

2
oi, i = 1, 2, . . . , n

(2)Nu =

n∑

i=1

Ni

(3)s
t

k
=�s

t−1

k
+ (1 − �)s̄k +

√

1 + �2αt−1

(4)r
t

k
=�r

t−1

k
+ (1 − �)r̄k +

√

1 + �2βt−1

(5)ϕk ,i =
pkd

−µk ,i

k ,i
∑

k �=i pjd
−µj,i

j,i + σ 2
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of UAVs in the coverage area of offshore communication base stations includes not only 

the number of tasks allocated to UAVs but also the execution sequence of each task, which 

can be summarized as a vehicle routing problem (VRP) [34–36]. �is section only consid-

ers the task allocation order of UAVs in the mission area and does not consider the specific 

flight path of UAVs between each task point, so that the UAVs can meet the requirements 

and constraints of the task point, and, at the same time, the total flight straight path is the 

shortest.

�e target function of the VRP problem can be expressed as:

Formula (6) shows that under the current path, the minimum length of the sum of the 

flight path of each UAV and the total path that will reach the next task point to the desti-

nation. When the value of the fitness function is small, the task allocation result is better.

3.3  Route planning model

Before UAV route planning, environment modeling is needed to convert all types of physi-

cal information into a digital model, which is convenient for computer processing. In this 

paper, the UAVs in the offshore environment used to conduct routine marine investiga-

tion tasks and emergency tasks are the research examples. Considering the environmental 

threat area and the performance constraints of UAVs, an optimal flight route from the start 

to the end is planned.

�ere are threats such as reefs, birds, marine currents, and wind shear in the offshore 

environment, which can be represented by ellipses in a two-dimensional environment. 

Once a UAV enters these areas, it will crash, which means that the damage probability of a 

UAV in this area is 1. �is is represented by the following set:

�erefore, the threat zone can be expressed as (a, b, r), where (xi, yi) are the coordinates 

of the UAV, (a, b) are the coordinates of the center point of the threat area, and r is the 

radius of the threat area.

�e standard used to measure the merits and disadvantages of UAV tracks is a the fitness 

function. Considering the environmental threat, constraints, and the length of the UAV 

range, Formula (8) defines is the fitness function of UAV route planning:

where ϕk is the signal-to-noise ratio of the UAV on offshore platform ok , which can be 

calculated by Formula (5). J1i , J2i , and J3i are the return values of the three constraint 

conditions in the route of segment i, and a value of 1 means that the constraint condition 

is satisfied; otherwise, the value is 0. G0 is the collision factor of the threat area. If a point 

intersecting the threat area is detected in each route, it is determined that the route col-

lides with the threat area, and G0 = 0.1 . If not, then G0 = 0.

(6)D = min(

n∑

i=1

m∑

k=1

(dk + xi−1di−1,i))

(7)
{

(xi, yi) = (xi, yi)|(xi − a)2 + (yi − b)2 ≤ r2
}

(8)F =

∑n
k=1

ϕk ·

∑n−1

i=1
J1iJ2iJ3i

Lk · G0
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Formula (8) shows that when the constraint conditions are met, the communication 

interference of UAVs by the offshore platform is the minimum, and the route does not 

collide with the threat area. �e fitness function with the shortest range should be as 

large as possible.

4  Improvement and implementation of PSO

4.1  Traditional PSO

�e first step of the traditional PSO algorithm is to initialize the particle swarm. �en, 

the fitness of the particles is calculated. �e global optimal solution and local optimal 

solution are updated according to the fitness. Finally, the velocity and position of the 

next generation of particles are calculated by updating the velocity and position formula 

until the maximum number of iterations is reached. �e updating formula of the velocity 

and position of particle i is

where vk
i
 is the component of the velocity vector of particle i in iteration k. yki  is com-

ponent of the position vector of particle i in iteration k. a1 and a1 are acceleration con-

stants, which are responsible for adjusting the maximum speed of particle learning. r1 

and r2 are random functions with values ranging from 0 to 1. w is the inertia weight 

(nonnegative), reflecting the influence of the individual particle history at present.

In Formula (10), the first part represents the previous velocity of the particle. �e 

second part is the “cognition” part, which represents the distance between the current 

position of particle i and its historical optimal position, which is equivalent to the local 

optimal solution. �e third part is the “society” part, which represents the distance 

between the current position of particle i and the optimal position of the population, 

which is equivalent to the global optimal solution. �e final motion direction of particles 

is affected by the above three parts, as shown in Fig. 2.

(9)vki = ωvk−1

i + a1r1(Pbesti − yk−1

i ) + a2r2(Gbesti − yk−1

i )

(10)yki = yk−1

i + vki

Fig. 2 Schematic diagram of particle motion direction
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Compared with the traditional algorithm, PSO has a memory function. �e update 

process is affected by the local optimal solution and the global optimal solution instead 

of blind random selection, which greatly improves the search efficiency. Furthermore, 

fewer parameters need to be adjusted, and the structure is simple and easy to imple-

ment. However, because of these advantages, the PSO algorithm loses diversity of the 

search space. Furthermore, it easily produces premature convergence, has poor local 

searchability, and easily falls into the local optimal solution.

4.2  Improved PSO algorithm

In view of the above shortcomings, many domestic and foreign researchers have pro-

posed some improvement methods. �ese improved methods can be divided into two 

categories. One category improves the inertia weight, contraction factor, velocity, and 

position update process of particles on their own. �e other category combines the PSO 

algorithm with another algorithm that can compensate for its shortcomings so as to 

improve the performance of the algorithm. In this paper, an improved particle swarm 

optimization combined with a genetic algorithm (GA-PSO) is proposed. By introducing 

crossover and variation, the velocity and position updating formula of PSO are improved 

to increase the diversity of the search space and avoid falling into the local optimal 

solution.

4.2.1  Local optimal solution

Partially matched crossover (PMX) refers to two invalid chromosomes or duplicate indi-

vidual genes after randomly selecting two crossover points in individual chromosomes 

for partial gene exchange. In order to repair the chromosomes, the matching relation-

ship of each chromosome is established in the cross-region, and the matching relation-

ship is applied to the duplicate genes outside the cross-region to eliminate the conflict. 

Because PMX can ensure that the genes in each chromosome only appear once, we 

choose this crossover strategy to solve the traveling salesman problem (TSP) and VRP.

As shown in Fig. 3, PMX crossover mainly consists of the following steps:

Fig. 3 Schematic diagram of PMX
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(1) Two intersections are randomly selected, and the sequences between the two inter-

sections are the exchanged segments.

(2) �e new parent sequence is obtained by exchanging the positions of the exchanged 

segments.

(3) Conflict detection is performed on sequences. According to the exchange segment 

of the two-parent sequences, the two-child sequences with mapping relationships can be 

obtained. �e traversal repeat points in the offspring sequence outside the exchange seg-

ment are exchanged one by one according to the mapping relationship of the exchanged 

segments until there is no conflict.

(4) �e final offspring sequence is obtained.

In this paper, each particle represents a task planning path, so the parent sequence is 

the particles before the crossover operation, and the points that compose the sequence 

are the task points. Finally, the target function values of the new particle sequence and 

the parent sequence are compared. If the target function after crossover is small, the 

cross-particle sequence is stored in the local optimal solution, and the corresponding 

target function value is updated.

4.2.2  Global optimal solution

�e crossover process of the global optimal solution is the same as that of the local opti-

mal solution. �e final new particle sequence is compared with the target function value 

of the parent sequence. If the target function value after crossover is smaller, the crossed 

particle sequence is stored in the global optimal solution, and the corresponding target 

function value is updated. �e global optimal solution is updated according to the mini-

mum value of the local optimal solution.

4.2.3  The particle itself

According to Formula (9), each particle will generate a pair of random numbers in the 

process of an iteration. Transposition mutation is equivalent to exchanging the order of 

task points in a path corresponding to two random numbers. �is occurs as shown in 

Fig. 4.

Finally, the target function values of the new particle sequence and the parent 

sequence are compared. If the mutated target function value is smaller, the mutated par-

ticle sequence is stored in the local optimal solution, and the corresponding target func-

tion value is updated.

4.3  Algorithm implementation for the task allocation problem

UAVs need to meet some constraints in task allocation. In the intelligent marine system 

studied in this paper, the constraints can be divided into the task point constraints, the 

task order constraints, and the constraints of the UAV itself. �e details are as follows:

Fig. 4 Diagram of secondary transposition variation
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Formulas (11) and (12) indicate that each task point can only be accessed by one UAV 

once. xki,j is the decision variable. When UAV uk arrives at task point ci from task point 

ci , the value is 1. Otherwise, the value is 0.

Formula (13) indicates that the UAV starts from the warehouse and finally needs to 

return to the warehouse. Formula (14) represents the node balance constraint, and the 

total number of UAVs starting from the task point must be consistent with the total 

number of UAVs arriving at the task point.

Formulas (15) and (16) represent the material loading constraint and travel constraint of 

each UAV, respectively. �e material requirement qi of task point i must be less than the 

maximum material loading q − i of UAV uk . �e flight distance from task point ci to task 

point cj must be less than the maximum travel lk of UAV uk.

Formula (17) indicates that the time for the UAV to go to the task point must be within 

the task time window. �e time window tωi,j is an interval, and only when the task is 

completed in this interval can it be regarded as an effective task.

Formula (18) indicates that the material loading capacity qk , maximum range lk and 

time window tωi,j from task point ci to task point cj of UAV uk are all positive numbers.

Algorithm  1 describes the constraint process in the UAV task allocation problem. 

�e input part sets the maximum material loading capacity, flight speed, and maximum 

range of UAVs. �e number, location, material demand, and time window of task points 

are set randomly. �en, initialization and memory preallocation are conducted. �en, 

(11)

n∑

i=1

m∑

k=1

xki,j = 1

(12)

n∑

j=1

m∑

k=1

xki,j = 1

(13)

n∑

j=0

xk0,j =

n∑

i=0

xki,0

(14)

n∑

j=1

xkl,j −

n∑

i=1

xki,l = 0

(15)

n∑

i=0

n∑

j=1

xki,jqi ≤ qk

(16)

n∑

i=0

n∑

j=1

xki,jdi,j ≤kmax

(17)tk + xi−1,itu(i−1),i ≤ tω(i−1),i

(18)qk , lkmax, tωi,j > 0
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when proceeding to the next task point from the current position, it is necessary to judge 

whether the constraint conditions are satisfied in turn according to the above formulas 

(11–18). If all of the constraint conditions are met, the implementation will continue. If 

the constraints are not met, the UAV returns to the warehouse and a new UAV is arranged 

to perform the task. After all task points are completed, all UAVs return to the warehouse.

Algorithm 2 describes the UAV task allocation problem based on improved GA-PSO. 

First, the UAV, task point, warehouse, and particle are input and set initially, and the 

memory is preallocated. �en, the optimal solution of the target function of each gen-

eration of particles is compared. �e PMX operation is performed on the local optimal 

solution and the global optimal solution, and the secondary transposition mutation is 

performed on the particle itself, which is compared and updated with the current posi-

tion. �is continues until the maximum number of iterations is reached.
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4.4  Algorithm implementation for the route planning problem

�ere are many self-constraints in the actual route planning of UAVs, such as the maxi-

mum travel distance, the minimum inertial distance, and the maximum horizontal 

deflection angle.

4.4.1  Maximum travel distance

Suppose the maximum travel distance of UAV uk is lkmax . If the entire travel route is 

composed of n flight points, the entire travel route can be divided into n − 1 segments, 

the flight of segment i can be expressed as lki , and the total travel route Lk can meet the 

following requirements:

4.4.2  Minimum inertial distance

�e minimum inertial distance refers to the shortest flight distance that a UAV needs to 

maintain the original direction due to the inertial effect when it suddenly changes direc-

tion. If the minimum inertial distance of UAV uk is lkmin , the minimum inertial distance 

constraint is:

4.4.3  Maximum horizontal de�ection angle

The maximum horizontal deflection constraint means that the UAV can-

not complete large-angle turning in the horizontal direction, and can only turn 

in a certain angle range. If the horizontal projection of segment i of UAV uk is 

eki = (xi − xi−1, yi − yi−1) , and the maximum horizontal deflection angle is θkmax , 

then the maximum horizontal deflection angle constraint is:

Algorithm 3 describes the constraint process in a UAV two-dimensional route planning 

problem. First, the maximum range, minimum inertial distance, and maximum hori-

zontal deflection angle of the UAV are input and set. �e positions of the threat area, 

starting point, and target point are set randomly. �e memory is preallocated, a route is 

randomly generated, and the number of flights of the route is counted. �en, it is neces-

sary to judge whether each flight meets Formulas (20–21). If this occurs, it is necessary 

to calculate the total travel distance and judge whether Formula (19) is satisfied. If this 

is not satisfied for any UAV, it will jump out. If both conditions are met, the travel is 

recorded, and the constraint parameters and threat factors are returned.

(19)Lk ≤ lkmax, Lk =

n−1∑

i=1

lki

(20)Lk ≥ lkmin

(21)
e
T

ki
ek(i+1)

� eki � · � eki+1 �
≥ cosθkmax
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Algorithm 4 describes the process of two-dimensional route planning of UAVs based 

on improved GA-PSO. First, the initial settings of the UAV, threat area, target point, 

starting point, link, communication environment, and particle are input and initially 

set. Memory is preallocated. It is necessary to calculate the speed and direction of 

UAVs and calculate the signal-to-noise ratio of UAVs in the marine communication 

environment. �en, we need to compare the optimal solution of the fitness function 

for each generation of particles. �e PMX operation is performed on the local opti-

mal solution and the global optimal solution. �e second transposition mutation of 

the particle itself is conducted and compared with the current position to determine 

updates. �is process repeats until the maximum number of iterations is reached.
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5  Results and discussion

In order to verify the effectiveness of the improved PSO algorithm proposed in this 

paper in UAV task allocation and route planning, MATLAB R2016a software is used 

to simulate and verify on a notebook with 3.0  GHz dominant frequency and 16  GB 

memory.

5.1  Task allocation

�e improved GA-PSO is compared with the SA, the GA, and the ACO in the same 

environment; and three groups of experiments are set to verify the performance of the 

algorithm. �e parameter settings of each group of experiments are shown in Table 2. 

�e coordinates, material demand, and time windows of task points are generated 

randomly.

�e simulation results of the first group are shown in Fig. 5, and the details of the opti-

mal solution are shown in Table 3.

Figure 5a shows the initial distribution of 10 random task points in the two-dimen-

sional plane and the location of the warehouse. �e dots represent the task points, 

and the five-pointed star represents the warehouse. (b), (c), (d), and (e) in Fig. 5 are 

the optimal solutions of GA-PSO, the SA, the GA, and ACO after 50 independent 

runs, respectively. �e figures show that the optimal solution of GA-PSO, which 

requires the cooperation of three UAVs, is consistent with those of the SA and GA. 

Figure 5f shows the solutions of the target function in 200 iterations of the four algo-

rithms. �e figure shows that GA-PSO has the fastest iteration speed to find the opti-

mal solution, followed by the GA and SA; and ACO has poor performance and a slow 

iteration speed.

Table 3 compares the optimal solutions of the four functions in terms of the task allo-

cation path, total path length, total time, and average material loading rate. �e results 

show that the optimal solutions of the SA, the GA, and GA-PSO are consistent. �e task 

execution paths of the six UAVs are 3-9-4, 6-7-2-1-10, and 5-8. �e total path length is 

55.7 km, the total time is 331.9 min, and the average material loading rate is 90%. ACO 

has the longest total path and time, and the average material loading rates are the same.

�e simulation results of the second group are shown in Fig. 6, and the details of the 

optimal solution are shown in Table 4.

Table 2 The parameter settings of task allocation

Parameter Group 1 Group 2 Group 3

The task allocation area 10*10 km 10*10 km 10*10 km

The number of warehouses 1 1 1

The material loading capacity of a UAV 20 kg 20 kg 20 kg

The flight speed of UAVs 1.5 km/min 1.5 km/min 1.5 km/min

lkmax 75 km 75 km 75 km

Nc 10 20 30

Np 100 100 100

Iterations 200 200 300

Independent runs 50 50 50
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Figure 6a shows the initial distribution of 20 random task points in the two-dimen-

sional plane and the location of the warehouse. (b), (c), (d), and (e) in Fig. 6 are the opti-

mal solutions of GA-PSO, the SA, the GA, and ACO, respectively, after 50 independent 

runs. �e figure shows that GA-PSO and the GA need 6 UAVs to cooperate, and the SA 

and ACO need 7 UAVs to cooperate. Figure 6f shows the solutions of the target function 

in 200 iterations of the four algorithms. �e figure shows that GA-PSO has the smallest 

target function to find the optimal solution, the SA has the fastest iteration speed, and 

ACO has the worst optimal solution and the slowest iteration speed.

�e results in Table 4 show that GA-PSO has the smallest optimal solution. �e task 

execution paths of the six UAVs are 13-2-7-10-8, 4-16-15, 5-20, 3-1-12-17, 6-9-18 and 

14-11-19. �e total path length is 110.1 km, the total time is 640.5 min, and the average 

material loading rate is 98.3%. �e results show that the optimal solution of the SA is 

better than that of the GA and that of ACO is the worst.

�e simulation results of the third group are shown in Fig. 7, and the details of the 

optimal solution are shown in Table 5.

Figure  7a shows the initial distribution of 30 random task points in the two-

dimensional plane and the location of the warehouse. (b), (c), (d), and (e) in Fig. 7 

Fig. 5 The results of the first group of the experimental optimal solutions of task allocation

Table 3 Details of the optimal solutions of the first experiment

Algorithm Task allocation General path Total time Average 
material loading 
rate (%)

ACO (3-9-7-1)(6-5-8)(4-10-2) 61.5 798 90

SA (3-9-4)(6-7-2-1-10)(5-8) 55.7 331.9 90

GA (3-9-4)(6-7-2-1-10)(5-8) 55.7 331.9 90

GA-PSO (3-9-4)(6-7-2-1-10)(5-8) 55.7 331.9 90
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are the optimal solutions of GA-PSO, the SA, the GA, and ACO, respectively, after 

50 independent operations. The figures show that the four algorithms need 10 UAVs 

to cooperate. Figure 7f shows the solutions of the target function in 300 iterations of 

the four algorithms. The figure shows that GA-PSO has the smallest target function 

to find the optimal solution, the SA has the fastest iteration speed, the GA and ACO 

have the slowest iteration speeds, and ACO has the worst optimal solution.

The results in Table 4 show that GA-PSO has the smallest optimal solution. The 

task execution paths of 10 UAVs are 18-5, 22-8-20-1, 13-2-25, 17-28-5, 27-30, 14-23-

10, 29-24-9, 26-3-11-21, 12-6 and 19-4-16-7, respectively. The total path length is 

173.9km, the total time is 1219.4 min, and the average material loading rate is 89.5%. 

The optimal solutions of SA and GA are better than ACO.

From the above three groups of experiments, it can be concluded that GA-PSO 

has a certain effect on the UAV task allocation process. Under the constraints, it 

can quickly and effectively find the optimal allocation scheme and save time and 

materials.

Fig. 6 The results of the second group of the experimental optimal solutions of task allocation

Table 4 Details of the optimal solutions of the second experiment

Algorithm Task allocation General path Total time Average material 
loading rate (%)

ACO (12-1-3-7)(14-11-19)(13-2-10-8)(17-15)(4-20) (16-
9-18)(6-5)

123.8 713.4 84.3

SA (12-16-5)(13-2-7-10-8)(14-20)(11-3-1-15)(4-17-19) 
(6-9-18)

114.1 665.6 98.3

GA (13-11-17)(6-9-18)(14-8-2)(5-20)(4-16-15) (12-1-3-
7-10)(19)

115.8 753.4 84.3

GA-PSO (13-2-7-10-8)(4-16-15)(5-20)(3-1-12-17)(6-9-18) 
(14-11-19)

110.1 640.5 98.3
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5.2  Route planning

GA-PSO is compared with the SA, the GA, and ACO in the same environment; and 

two groups of experiments are set to verify the performance of the algorithm. In the fol-

lowing experiments, the threat types in the two-dimensional plane include reefs, wind 

shear areas, and birds. �e parameter settings of each group of experiments are shown 

in Table 6, and the center coordinates, target points, and radius of three or five threat 

areas were randomly generated.

�e simulation results of the first group are shown in Fig. 8, and the shortest travel is 

shown in Table 7.

Figure 8a shows the initial distribution of the three threat areas in the two-dimen-

sional plane and the positions of the starting and target points. (b), (c), (d), and (e) in 

Fig. 8 are the optimal solutions of GA-PSO, the SA, the GA, and ACO after 50 inde-

pendent runs, respectively. �e figures show that GA-PSO, the SA, and the GA need 6 

flights from the starting point to the target point, ACO needs 5 flights, and all meth-

ods can effectively avoid the threat area. Figure 8f shows the solutions of the fitness 

Fig. 7 The results of the third group of the experimental optimal solutions of task allocation

Table 5 Details of the optimal solutions of the third experiment

Algorithm Task allocation General path Total time Average material 
loading rate (%)

ACO (29-24-9)(26-7-16-20)(14-25)(27-30)(3-4-21)(12-15) 
(13-2-1-28)(18-23-10)(11-22-19-8)(5-17-6)

189.5 1297.8 89.5

SA (18-3-10)(27-24)(25-1-20)(13-30-2)(22-16-4-19) 
(5-17)(14-8-11)(12-15)(28-9-29-6)(26-23-7-21)

178.1 1271.2 89.5

GA (8-19-20-1)(18-3-15)(30-2-5)(13-27-28)(7-22-16-4) 
(5-21)(26-23-10)(29-24-9)(12-17-6)(14-11)

178.3 1257.5 89.5

GA-PSO (18-15)(22-8-20-1)(13-2-25)(17-28-5)(27-30) (14-23-
10)(29-24-9)(26-3-11-21)(12-6 (19-4-16-7)

173.9 1219.4 89.5
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function in 200 iterations of the four algorithms. �e figure shows that the fitness 

function of GA-PSO to find the optimal solution is the largest. �e iteration speed of 

the GA is the fastest, but there are mutation cases. �e iteration speed of ACO is the 

slowest, and the fitness function of the SA is the smallest.

�e simulation results of the second group are shown in Fig.  9, and the shortest 

travel is shown in Table 7.

Figure  9a shows the initial distribution of the five threat areas in the two-dimen-

sional plane and the positions of the starting and target points. (b), (c), (d), and (e) in 

Fig. 9 are the optimal solutions of GA-PSO, the SA, the GA, and ACO after 50 inde-

pendent runs, respectively. �e figures show that GA-PSO, the GA, and ACO need 4 

Table 6 The parameter settings of route planning

Parameter Group 1 Group 2

The starting point (0,0) (0,0)

The UAV flight area 7*10 km 7*10 km

lkmax 15 km 15 km

lkmin 100 m 100 m

θkmax 60 60

Pk 100 100

µk 0.3 0.3

σ 1.0 1.0

The weight coefficient 0.9 0.9

The learning factor 2 2

The number of threat areas 3 5

Target points (1.5,8.9) (5.0,6.5)

Iterations 200 200

Independent runs 50 50

Fig. 8 Optimal solutions of the first route planning test
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flights from the starting point to the target point, the SA needs 5 flights, and all meth-

ods can effectively avoid the threat area. Figure 9f shows the solutions of the fitness 

function in 200 iterations of the three algorithms. �e figure shows that the fitness 

function of GA-PSO to find the optimal solution is the largest, and the iteration speed 

is faster. �e iteration speed of the GA is the fastest, but there are mutation cases. 

�e fitness function of the SA is the smallest, and the iteration speed of ACO is the 

slowest.

Table 7 shows the shortest total travel of the four algorithms in the two groups of 

experiments. �e table shows that the GA-PSO in this paper has shorter total travel 

distances in the two experiments, which are 10.61 km and 8.53 km, respectively. 

Although ACO has the shortest total travel distances of 10.23 km in the first group, 

its path is close to the edge of the threat area, which is not conducive to UAV flight in 

practice. �e results of the above two groups of random experiments can prove that 

the improved GA-PSO has high efficiency and a certain anti-jamming effect in the 

two-dimensional plane route planning of UAVs.

Fig. 9 Optimal solutions of the second route planning test

Table 7 The shortest total travel distances of the four algorithms in the two groups of experiments

Algorithm Shortest total travel

Group 1 Group 2

SA 11.36 8.81

GA 10.98 9.24

ACO 10.23 9.26

GA-PSO 10.61 8.53
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6  Conclusion

�is paper presents an improved GA-PSO algorithm for UAV task planning in an 

intelligent marine environment. First, the system model of the UAV intelligent marine 

system is constructed from the UAV model, mobile model, communication model, 

task allocation model, and route planning model. Next, we describe the principle of 

traditional PSO and propose an improved strategy that combines the idea of crosso-

ver mutation in the GA with PSO through PMX and secondary transposition muta-

tion. �en, we set the constraints and target function of UAV task planning and use 

the improved GA-PSO to realize the multi-UAV random task allocation problem and 

UAV two-dimensional route planning problem. Finally, several groups of compara-

tive experiments are conducted in the same environment. �e ACO, the GA, and the 

SA are compared with the improved GA-PSO. Finally, it can be concluded that the 

improved GA-PSO proposed in this paper has high efficiency in solving the UAV task 

allocation and route planning problem and can adapt to interference factors in the 

marine environment. However, the accuracy and iterative speed of this algorithm still 

need to be improved. In the future, we will continue to study the dynamic task alloca-

tion and three-dimensional route planning of UAVs with the improved GA-PSO so 

as to establish a better marine environment model and more accurately express the 

routes of UAVs.

Abbreviations

UAV: Unmanned aerial vehicle; PSO: Particle swarm optimization; ACO: Ant colony algorithm; GA: Genetic algorithm; 

GWO: Grey wolf optimizer; GED: Gaussian estimation of distribution; SNR: Signal noise ratio; VRP: Vehicle routing problem; 

PMX: Partially matched crossover; TSP: Traveling salesman problem; GA-PSO: Particle swarm optimization combined with 

genetic algorithm.

Acknowledgements

The authors would like to thank CUC for their support and anyone who supported the publication of this paper.

Authors’ contributions

MY contributed to the development of ideas and provided solid support in the theoretical analysis. HMY conducted 

both theoretical and numerical analysis. JX participated in the concept design. YY and LBJ helped draft the manuscript 

and was responsible for proofreading this work. All authors read and approved the final manuscript.

Funding

This paper was supported in part by the National Natural Science Foundation of China (Grant No. 61971382), and the 

Fundamental Research Funds for the Central Universities (Grant Nos. CUC200B015, CUC210B022, CUC19ZD001).

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Declarations

Ethics approval and consent to participate

Ethical approval. 

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1 School of Information and Communications Engineering, Communication University of China, Beijing, China. 2 State Key 

Laboratory of Media Convergence and Communication, Communication University of China, Beijing, China. 3 Academy 

of Broadcasting Science, National Radio and Television Administration, Beijing, China. 

Received: 16 August 2021   Accepted: 26 September 2021



Page 22 of 23Yan et al. EURASIP J. Adv. Signal Process.         (2021) 2021:94 

References

 1. C. Pfeifer, A. Barbosa, O. Mustafa, H.-U. Peter, M.-C. Rümmler, A. Brenning, Using fixed-wing UAV for detecting and 

mapping the distribution and abundance of penguins on the South Shetlands Islands. Antarctica Drones 3(2), 39 

(2019)

 2. K. Themistocleous, C. Mettas, E. Evagorou, D. Hadjimitsis, The use of satellite remote sensing and UAV for the map-

ping of coastal areas for the use of marine spatial planning 11156, 1115610 (2019)

 3. B. Ji, Y. Han, S. Liu, F. Tao, G. Zhang, Z. Fu, C. Li, Several key technologies for 6G: challenges and opportunities. IEEE 

Commun. Stand. Mag. 5(2), 44–51 (2021)

 4. X. Liu, X. Zhang, M. Jia, L. Fan, W. Lu, X. Zhai, 5G-based green broadband communication system design with simul-

taneous wireless information and power transfer. Phys. Commun. 28, 130–137 (2018)

 5. A. Samiei, S. Ismail, L. Sun, Cluster-based Hungarian approach to task allocation for unmanned aerial vehicles. In: 

2019 IEEE National Aerospace and Electronics Conference (NAECON), pp. 148–154 (2019)

 6. H. Yavuz, H. Göktas, H. Cevikalp, H. Saribas, Optimal task allocation for multiple UAVs. In: 2020 28th Signal Processing 

and Communications Applications Conference (SIU), pp. 1–4 (2020)

 7. B. Abhishek, S. Ranjit, T. Shankar, G. Eappen, P. Sivasankar, A. Rajesh, Hybrid PSO-HSA and PSO-GA algorithm for 3D 

path planning in autonomous UAVs. SN Appl. Sci. 2(11), 1–16 (2020)

 8. W. Ongcunaruk, P. Ongkunaruk, G.K. Janssens, Genetic algorithm for a delivery problem with mixed time windows. 

Comput. Ind. Eng. 107478 (2021)

 9. Z.-l. Tang, J.-l. Wan, Research on dynamic assignment of distributed tasks based on improved contract network 

protocol. In: International Conference on Advanced Hybrid Information Processing, pp. 482–497 (2020). Springer

 10. H. Sang, Y. You, X. Sun, Y. Zhou, F. Liu, The hybrid path planning algorithm based on improved A* and artificial poten-

tial field for unmanned surface vehicle formations. Ocean Eng. 223, 108–709 (2021)

 11. C. Liang, X. Zhang, Y. Watanabe, Y. Deng, Autonomous collision avoidance of unmanned surface vehicles based on 

improved A star and minimum course alteration algorithms. Appl. Ocean Res. 113, 102755 (2021)

 12. P. Yao, X. Wang, K. Yi, Optimal search for marine target using multiple unmanned aerial vehicles. In: 2018 37th Chinese 

Control Conference (CCC), pp. 4552–4556 (2018). IEEE

 13. N. Wang, X. Jin, M.J. Er, A multilayer path planner for a USV under complex marine environments. Ocean Eng. 184, 

1–10 (2019)

 14. X. Liu, X. Zhang, NOMA-based resource allocation for cluster-based cognitive industrial internet of things. IEEE Trans. 

Ind. Inf. 16(8), 5379–5388 (2019)

 15. F. Li, K.-Y. Lam, X. Liu, J. Wang, K. Zhao, L. Wang, Joint pricing and power allocation for multibeam satellite systems 

with dynamic game model. IEEE Trans. Veh. Technol. 67(3), 2398–2408 (2017)

 16. X. Liu, X.B. Zhai, W. Lu, C. Wu, QoS-guarantee resource allocation for multibeam satellite industrial Internet of things 

with NOMA. IEEE Trans. Ind. Inf. 17(3), 2052–2061 (2019)

 17. C. Li, P. Liu, C. Zou, F. Sun, J.M. Cioffi, L. Yang, Spectral-efficient cellular communications with coexistent one-and 

two-hop transmissions. IEEE Trans. Veh. Technol. 65(8), 6765–6772 (2015)

 18. X. Wang, H. Zhao, T. Han, H. Zhou, C. Li, A grey wolf optimizer using Gaussian estimation of distribution and its appli-

cation in the multi-uav multi-target urban tracking problem. Appl. Soft Comput. 78, 240–260 (2019)

 19. S. Xu, J. Zhang, S. Meng, J. Xu, Task allocation for unmanned aerial vehicles in mobile crowdsensing. Wirel. Netw. 

1–13 (2021)

 20. M. Zhu, X. Du, X. Zhang, H. Luo, G. Wang, Multi-UAV rapid-assessment task-assignment problem in a post-earth-

quake scenario. IEEE Access 7, 74542–74557 (2019)

 21. P.L. Gonzalez-R, D. Canca, J.L. Andrade-Pineda, M. Calle, J.M. Leon-Blanco, Truck-drone team logistics: a heuristic 

approach to multi-drop route planning. Trans. Res. Part C Emerging Technol. 114, 657–680 (2020)

 22. K. Srivastava, P.C. Pandey, J.K. Sharma, An approach for route optimization in applications of precision agriculture 

using UAVs. Drones 4(3), 58 (2020)

 23. C. Li, Y. Li, K. Song, L. Yang, Energy efficient design for multiuser downlink energy and uplink information transfer in 

5G. Sci. China Inf. Sci. 59(2), 1–8 (2016)

 24. M. Yan, C.A. Chan, A.F. Gygax, J. Yan, L. Campbell, A. Nirmalathas, C. Leckie, Modeling the total energy consumption 

of mobile network services and applications. Energies 12(1), 184 (2019)

 25. X. Liu, X. Zhang, Rate and energy efficiency improvements for 5G-based IoT with simultaneous transfer. IEEE Internet 

Things J. 6(4), 5971–5980 (2018)

 26. M. Yan, H. Yuan, Z. Li, Q. Lin, J. Li, Energy savings of wireless communication networks based on mobile user environ-

mental prediction. J. Environ. Prot. Ecol. 22(1), 206–217 (2021)

 27. Y. Lun, P. Yao, Y. Wang, Trajectory optimization of SUAV for marine vessels communication relay mission. IEEE Syst. J. 

14(4), 5014–5024 (2020)

 28. S. Ma, W. Guo, R. Song, Y. Liu, Unsupervised learning based coordinated multi-task allocation for unmanned surface 

vehicles. Neurocomputing 420, 227–245 (2021)

 29. G. Xia, X. Sun, X. Xia, Multiple task assignment and path planning of a multiple unmanned surface vehicles system 

based on improved self-organizing mapping and improved genetic algorithm. J. Mar. Sci. Eng. 9(6), 556 (2021)

 30. Y. Wu, K.H. Low, C. Lv, Cooperative path planning for heterogeneous unmanned vehicles in a search-and-track mis-

sion aiming at an underwater target. IEEE Trans. Veh. Technol. 69(6), 6782–6787 (2020)

 31. L. Li, Q. Gu, L. Liu, Research on path planning algorithm for multi-UAV maritime targets search based on genetic 

algorithm. In: 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), 

vol. 1, pp. 840–843 (2020)

 32. Y. Shen, F. Wang, P. Zhao, X. Tong, J. Huang, K. Chen, H. Zhang, Ship route planning based on particle swarm opti-

mization. In: 2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 211–215 

(2019)

 33. T. Zha, L. Xie, J. Chang, Wind farm water area path planning algorithm based on A* and reinforcement learning. In: 

2019 5th International Conference on Transportation Information and Safety (ICTIS), pp. 1314–1318 (2019)



Page 23 of 23Yan et al. EURASIP J. Adv. Signal Process.         (2021) 2021:94  

 34. X. Cheng, A travel route recommendation algorithm based on interest theme and distance matching. EURASIP J. 

Adv. Signal Process. 57, 1–10 (2021)

 35. M. Yan, S. Li, C.A. Chan, Y. Shen, Y. Yu, Mobility prediction using a weighted Markov model based on mobile user clas-

sification. Sensors 21(5), 1740 (2021)

 36. D. Aggarwal, V. Kumar, Performance evaluation of distance metrics on firefly algorithm for VRP with time windows. 

Int. J. Inf. Technol. 1–8 (2019)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Task allocation and route planning of multiple UAVs in a marine environment based on an improved particle swarm optimization algorithm
	Abstract 
	1 Introduction
	2 Related work
	3 Methods
	3.1 System model
	3.1.1 UAV model
	3.1.2 Mobile model
	3.1.3 Communication model

	3.2 Task allocation model
	3.3 Route planning model

	4 Improvement and implementation of PSO
	4.1 Traditional PSO
	4.2 Improved PSO algorithm
	4.2.1 Local optimal solution
	4.2.2 Global optimal solution
	4.2.3 The particle itself

	4.3 Algorithm implementation for the task allocation problem
	4.4 Algorithm implementation for the route planning problem
	4.4.1 Maximum travel distance
	4.4.2 Minimum inertial distance
	4.4.3 Maximum horizontal deflection angle


	5 Results and discussion
	5.1 Task allocation
	5.2 Route planning

	6 Conclusion
	Acknowledgements
	References


