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Abstract—The ubiquity of mobile devices creates a rapidly
growing market for mobile applications. Many of these applica-
tions involve complex processing tasks that are difficult to run on
resource constrained mobile devices. This leads to the emergence
of mobile cloud computing, in which cloud-based resources are
used to enhance the computing capabilities of mobile devices. In
this paper, we consider heterogeneous wireless networks in which
multiple resource-rich computing nodes can be used as mobile
clouds, and mobile devices can upload computation extensive
tasks to these mobile clouds. The goal is to minimize the average
task response time through determining whether to upload a task,
and to which cloud the task should be uploaded. We formalize
this task allocation problem, which is proved to be a NP-hard
problem, and propose both offline centralized approach and
online distributed approach to address this problem. Simulation
results show that our approaches outperform others in terms of
task response time in various scenarios.

I. INTRODUCTION

The past few years have witnessed an explosive growth of
mobile devices (e.g., smartphones, tablets). The ubiquity of
mobile devices is accompanied by greater demand for mobile
applications such as image processing, speech and optical
character recognition, and natural language translation. Many
of these applications involve complex processing that requires
high computing speed, memory and battery lifetime. However,
despite advances in manufacture technology, current mobile
devices are still much more resource constrained compared
with traditional desktop computers. In many cases, it is hard
for these mobile devices to execute these computation exten-
sive applications locally.

Recently, the combination of cloud computing and mobile
computing leads to a new research area called mobile cloud
computing, in which resource-constrained mobile devices use
cloud-based resources to enhance their computing capabili-
ties [1], [2]. For example, Satyanarayana [3] proposes a cyber
foraging approach in which mobile devices upload tasks to
some nearby resource-rich computing devices like traditional
non-mobile computers. It has been implemented in many
systems, such as Spectra [4], Chroma [5] and Scavenger [6].
However, resource-rich computing devices do not always exist
in vicinity, which restricts the deployment of such cyber
foraging approach. With access to Internet, some other ap-
proaches (e.g., MAUI [7] and CloneCloud [8]) upload tasks to
the remote cloud infrastructure. In scenarios without Internet
access, a group of mobile devices (connected by WiFi or
Bluetooth) can form a mobile cloud to cooperatively run their
tasks [9], [10], [11]. However, these works do not consider and

exploit the heterogeneity of these mobile nodes in the network;
i.e., some mobile nodes have low computation power whereas
other mobile nodes have much higher computation power.

In this paper, we consider heterogeneous wireless networks
in which multiple resource-rich computing nodes can be used
as mobile clouds, and mobile devices can upload computation
extensive tasks to these mobile clouds. For example, in bat-
tlefields, mobile clouds can be mobile nodes like computers
inside tanks that have much higher computation power than
mobile devices carried by solders, or they can be powerful
computation devices at command center or other moving
vehicles. The goal is to minimize the average task response
time through determining whether to upload a task, and to
which mobile cloud the task should be uploaded. The task
response time may be affected by several factors such as
processing delay, communication delay and queuing delay at
mobile clouds. Always uploading tasks to the nearest mobile
cloud may reduce the communication delay, but its queuing
delay may be long if that mobile cloud has to process many
requests. Thus, we have to carefully consider all three factors
to minimize the task response time.

We first formalize the task allocation problem in heteroge-
neous wireless network, and prove that it is NP-hard. Based
on the technique of linear programming relaxation [12], we
propose an offline centralized approach to solve it. Then,
we propose an online distributed approach in which the
information of future tasks are not known in advance. The
basic idea is for each mobile node to collect some network
information and make task allocation decisions by themselves.
Through extensive simulations, we investigate the tradeoff
between performance and overhead, and demonstrate that our
approaches can significantly outperform other approaches in
terms of task response time.

The remainder of the paper is organized as follows. Sec-
tion II provides an overview of our approaches and the
problem formulation. Section III and Section IV describe
the offline centralized algorithm and the online distributed
algorithm, respectively. Evaluation results are presented in
Section V and Section VI concludes the paper.

II. OVERVIEW

A. The Big Picture

We consider a heterogeneous wireless network formed by
mobile clouds and mobile devices based on ad hoc connec-
tions. Since mobile devices usually have limited moving speed
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(e.g., they are carried by soldiers in battlefields), we assume
their relative position to mobile clouds may not change too
much during a short period of time, so the network can be
modeled as a graph shown in Figure 1. Each mobile device
generates a number of tasks over time and may upload them
to some mobile clouds. It is possible that a mobile cloud is
busy processing some existing tasks and has to put the new
task into a waiting queue. In our model, each mobile cloud
maintains a queue to buffer pending tasks which cannot be
immediately processed. Tasks in the queue are processed on a
first-come-first-serve basis, and the queuing delay may differ
from one mobile cloud to another.

As shown in Figure 1, suppose a new task is generated
by the mobile device encircled. The task can be completed
by itself or uploaded to mobile cloud A or B. To upload
the task, the task response time may be affected by several
factors such as the processing delay at the mobile cloud, the
communication delay from the mobile device to the mobile
cloud, and the queuing delay at the mobile cloud. In this
example, allocating the task to mobile cloud A incurs less
communication delay than mobile cloud B, since there are
fewer hops between mobile cloud A and the task generator.
However, as mobile cloud A has more neighboring nodes
(than mobile cloud B), mobile cloud A generally has higher
task queuing delay. Thus, these three factors should be jointly
considered to find the optimal task allocation.

In this paper, we address the task allocation problem under
two settings: centralized setting and distributed setting.

1) Centralized Setting: Suppose all task information is
known as a priori. Then, the task allocation problem can
be reduced to the NP-hard scheduling problem [13] which
schedules a number of jobs (tasks) on multiple nodes. We
can design a centralized scheme based on the technique of
linear programming relaxation [12]. Specifically, the problem
can be formulated as an integer linear programming problem,
and then the integer constraint (each variable must be 0 or 1)
can be replaced by a weaker constraint (each variable belongs
to [0,1]). The resulting relaxation is a linear program, which
can be solved by GLPK [14] in polynomial time. Finally, we
transform the solution to meet the integer constraint, and then
derive the task allocation decisions.

2) Distributed Setting: In practice, the information of future
tasks is not known as a priori, and we propose a distributed ap-
proach in which each mobile device makes allocation decisions
locally. More specifically, when a new task is generated, the
task generator makes a greedy allocation decision to minimize
the response time of that task. To achieve this, the task
generator has to collect the information about processing delay,
communication delay and queuing delay of mobile clouds.
Here the queuing delay of a mobile cloud is frequently updated
whenever a new task is received, so each mobile cloud has
to periodically broadcast its queuing delay to inform all task
generators (mobile devices). By increasing the frequency of
broadcast, the information collected by the task generator will
be more accurate. Then, the task generator will most likely
make good allocation decisions, but at the cost of more control
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Fig. 1: Network Scenario

message overhead. The tradeoff between performance and
overhead will be investigated in the performance evaluation
section.

B. Problem Formulation

We first describe the network model and the task model,
and then formulate the task allocation problem.

1) Network Model: The network is modeled as a graph
G(V,E), where each node i ∈ V corresponds to either
a mobile cloud or a mobile device, and an edge e ∈ E
represents the link between the two end nodes if they fall
in the communication range. Each edge is associated with the
communication link delay. In general, for any two nodes i1
and i2, the communication delay between them is modeled
by the length of the shortest i1-i2 path in G where the edge
weight is the communication link delay. Note that it can be
obtained by Dijkstra’s shortest path algorithm [15].

2) Task Model: There are a number of tasks generated in
the network. Let pi,j be the processing delay of task j if it
is processed by node i. A task can be processed by either its
generator or a mobile cloud who has much shorter processing
delay than the generator, and the processing delay by any other
node (except the generator or mobile cloud) is infinity long.
Let Ti,j be the time if task j is completed by node i, then

Ti,j = tj + 2di,j + qi + pi,j

where tj is the generation time of task j, di,j is the communi-
cation delay between node i and the generator of task j, and
qi is the queuing delay at node i.

Let Tj be the complete time of task j. Then,

Tj = min
i∈V

Ti,j

and the response time of task j is Tj − tj .
We formulate the task allocation problem as follows.
Definition 1: Task Allocation Problem

Given a set of tasks (denoted by U ) to be completed by nodes
in a heterogeneous wireless network, how to allocation tasks to
minimize the average task response time 1

|U |
∑

j∈U (Tj − tj)?
Note that 1

|U |
∑

j∈U (Tj − tj) = 1
|U |

∑
j∈U Tj − 1

|U |
∑

j∈U tj
and 1

|U |
∑

j∈U tj is a constant, so we simplify the objective
to minimize the average task complete time 1

|U |
∑

j∈U Tj .
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III. OFFLINE CENTRALIZED APPROACH

In this section, we first reduce the task allocation problem to
the scheduling problem for proving the NP-hardness, and then
propose a centralized algorithm based on linear programming
relaxation.

A. Reduction to the Scheduling Problem

Definition 2: Scheduling Problem
Given a set of jobs (denoted by U ) to be completed by a
number of nodes. Each job j is associated with a positive
weight wj , a nonnegative processing time and a nonnegative
release time (i.e., the earliest possible start time) on each node.
The jobs must be processed without interruption, and a node
can process at most one job at a time. Let Tj denote the
complete time of job j, how to schedule jobs to minimize
the average job complete time 1

|U |
∑

j∈U wjTj?
Theorem 1: The scheduling problem is NP-hard [13].
The task allocation problem can be reduced to the schedul-

ing problem as follows: each task corresponds to a job, and
the task arrival time corresponds to the job release time. Our
goal is to minimize the average task complete time, which
corresponds to minimizing the weighted job complete time
in the scheduling problem by assigning unit weight to every
task. Since the scheduling problem is NP-hard, we have the
following theorem.

Theorem 2: The task allocation problem is NP-hard.

B. Algorithm Description

1) Linear Programming Relaxation: Let n denote the num-
ber of nodes and m denote the number of tasks. We formulate
our problem as the following integer linear programming
problem.

minimize
1
m

n∑
i=1

m∑
j=1

h∑
k=1

τk−1xi,j,k (1)

subject to
n∑

i=1

h∑
k=1

xi,j,k = 1 (2)

m∑
j=1

h′∑
k=1

pi,jxi,j,k ≤ τk, h′ = 1, 2, . . . , h (3)

xi,j,k = 0 if τk < tj + di,j + pi,j (4)

xi,j,k ∈ {0, 1} (5)

Here we divide the time horizon into the following intervals:
[1, 1], (1, 2], (2, 4], . . . , (2h−2, 2h−1], where h is the smallest
integer such that

2h−1 ≥ max
i,j

(tj + di,j) +
m∑

j=1

max
i,pi,j<∞

pi,j

That is, 2h−1 is the latest possible time when all tasks are
completed. For conciseness, let τ0 = 1, τk = 2k−1 (k =
1, 2, . . . , h), so the kth interval can be denoted by (τk−1, τk]
(k = 1, 2, . . . , h).

In the program, xi,j,k indicates whether task j is scheduled
to complete on node i within the interval (τk−1, τk]. If xi,j,k

is 1, τk−1 is used as an approximation of the actual complete
time to calculate the average task complete time (the objective
function (1)). Constraint (2) ensures that only one node is
scheduled to complete each task. Constraint (3) ensures that
the complete time requirement indicated by xi,j,k is satisfied.
Constraint (4) ensures that each task j that completes by time
τk on node i must have tj + di,j + pi,j ≤ τk.

Since the program has an integer constraint (Constraint
(5)), there is no polynomial time algorithm to find the so-
lution. Thus, we relax Constraint (5) to Constraint (6) and
use GLPK [14] to solve the linear program (1)-(4),(6) in
polynomial time.

xi,j,k ≥ 0 (6)

2) Rounding: Let x∗
i,j,k denote the solution for the linear

program (1)-(4),(6). However, x∗
i,j,k may be fractional, and

hence does not represent a feasible solution to the task
allocation problem. We apply the rounding technique [16]
to transform x∗

i,j,k into integers by constructing a weighted
bipartite graph G(U ,V, E). One side of the bipartite graph has
the tasks, i.e.,

U = {uj |j = 1, 2, . . . ,m}

The other side has the nodes, i.e.,

V = {vi,s|i = 1, 2, . . . , n; s = 1, 2, . . . , si}

where si = �∑m
j=1

∑h
k=1 xi,j,k�, and the si vertices

{vi,s|s = 1, 2, . . . , si} correspond to node i.
For conciseness, let xi,j denote

∑h
k=1 xi,j,k. The edges of

the bipartite graph correspond to node-task pairs (i, j) such
that xi,j > 0. More specifically, the edges connecting vertices
{vi,s|s = 1, 2, . . . , si} are constructed as follows:

1) Find the smallest index j1 such that
∑j1

i=1 xi,j ≥ 1.
2) For j = 1, 2, . . . , j1 − 1, if xi,j > 0, add an edge

(uj , vi,1) with weight xi,j .
3) Add an edge (uj1 , vi,1) with weight 1−∑j1−1

i=1 xi,j . This
ensures that the total weight of edges connecting vi,1 is
at most 1.

4) If
∑j1

i=1 xi,j > 1, add an edge (uj1 , vi,2) with weight∑j1
i=1 xi,j − 1.

5) In a similar way, continue adding edges to
vi,2, vi,3, . . . , vi,si

.

Based on the matching theory [17], there exists a matching
in bipartite graph G(U ,V, E) which matches all tasks in U . We
use the Hungarian algorithm [18] to find a maximum weighted
matching whose total edge weight is the maximum among all
matchings. If an edge (uj , vi,s) is in the matching, we set x̄i,j

to 1; otherwise, x̄i,j is set to 0. This minimizes the difference
between the fractional solution xi,j and the rounding result
x̄i,j .
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Fig. 2: An example bipartite graph. The weight of solid edge
is 2/3, and the weight of dashed edge is 1/3.

Algorithm 1 Offline Centralized Algorithm
Input: task set U , node set V , and tj , di,j , pi,j for ∀i ∈ V, j ∈
U

1: Calculate h and τk, k = 0, 1, . . . , h
2: Solve linear program (1)-(4),(6) by GLPK
3: Construct weighted bipartite graph G based on the frac-

tional solution xi,j,k

4: Run Hungarian algorithm to find a maximum weighted
bipartite matching x̄i,j

5: Output the task allocation decisions

We use an example to illustrate the aforementioned proce-
dure. Suppose we are given the following (xi,j).

(xi,j) =

⎡
⎣

1/3 1 0 0
1/3 0 1 0
1/3 0 0 1

⎤
⎦

The corresponding bipartite graph is shown in Figure 2.
The maximum weighted matching is (u1, v1,1), (u2, v1,2),
(u3, v2,1), (u4, v3,1), which corresponds to the following
(x̄i,j).

(x̄i,j) =

⎡
⎣

1 1 0 0
0 0 1 0
0 0 0 1

⎤
⎦

3) Deriving the Task Allocation Decisions: A task j is
allocated to node i if x̄i,j > 0. If there are multiple tasks
allocated to node i, they are scheduled in a non-descending
order of the task arrival time.

The entire flow of offline centralized algorithm is summa-
rized in Algorithm 1.

IV. ONLINE DISTRIBUTED APPROACH

In this section, we first describe how to collect the required
information, and then propose a distributed algorithm.

A. Information Collection

Suppose a new task j is generated by node i0. Node i0
makes the task allocation decision based on the following
information of each candidate node i (i.e., either node i0 or a
mobile cloud):

• Communication delay (di,j): As aforementioned in Sec-
tion II-B1, di,j can be obtained by running Dijkstra’s

Protocol 1 Information Dissemination Protocol
For each mobile cloud:

1: if node profile is updated then
2: Broadcast message (node id, profile, timestamp) to all

neighboring nodes
3: end if
4: if timestamp− last timestamp ≥ T then
5: If queuing delay �= last queuing delay, broadcast mes-

sage (node id, queuing delay, timestamp) to all neigh-
boring nodes

6: last queuing delay← queuing delay
7: last timestamp← timestamp
8: end if

For each mobile device:
1: if message (node id, profile, timestamp) is received and

timestamp is newer then
2: Broadcast the message to all neighboring nodes and

update (node id, profile, timestamp) in record
3: end if
4: if message (node id, queuing delay, timestamp) is re-

ceived and timestamp is newer then
5: Broadcast the message to all neighboring nodes and

update (node id, queuing delay, timestamp) in record
6: end if

shortest path algorithm on graph G. However, such cen-
tralized algorithm is difficult to implement in a distributed
environment where node i0 do not have the entire network
information. This issue is addressed as follows. Similar
to routing discovery in AODV [19], node i0 discovers
a number of paths to node i, during which the delay
information of each path is also collected. Node i0
records the path with the minimum delay, whose value is
assigned to di,j .

• Queuing delay (qi): As aforementioned in Section II-A,
qi is frequently updated whenever a new task arrives at
node i. Thus, node i0 has to be informed of the up-to-date
qi periodically. This will be achieved by the following
information dissemination protocol.

• Processing delay (pi,j): As in several prior work [7], [8],
[9], pi,j can be obtained based on the node profile of
node i and the execution profile of task j. Here a node
profile includes the execution speed which is estimated by
running benchmarks [20]; an execution profile includes
the CPU cycles required for running the task. A node
profile remains relatively stable over a long period of
time. In case of an update, the node will share with all
other nodes by the following information dissemination
protocol.

The formal description of the information dissemination
protocol is shown in Protocol 1, which consists of two parts:
at mobile cloud side and at mobile device side.

• At mobile cloud side: Whenever the node profile is
updated, the mobile cloud broadcasts the up-to-date node
profile through message (node id, profile, timestamp).
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Algorithm 2 Online Distributed Algorithm at Node i0
Input: task j and the collected information

1: V0 ← {i0}
⋃

the set of mobile clouds
2: for each node i in V0 do
3: Ti,j ← tj + 2di,j + qi + pi,j

4: end for
5: i1 ← the node whose Ti,j is the smallest among the

nodes in V0

6: Send task j to node i1 along the predetermined shortest
i0-i1 path

Here node id denotes the ID which is unique to each
node, and timestamp denotes the time when sending the
message. Each mobile cloud also checks whether the
queuing delay is different from the last recorded value
every T time units. If there is an update, the mobile cloud
broadcasts the up-to-date queuing delay to all neighboring
nodes. The effect of T on network performance in will
be investigated in Section V.

• At mobile device side: When receiving a message about
node profile (or queuing delay), the mobile device checks
whether the timestamp of the message is newer compared
with the recorded information. If so, it updates the
recorded information and re-broadcasts the message, in
order to inform all other mobile devices about the update.

B. Algorithm Description

When a new task is generated, the task generator tries to
make a greedy allocation decision to minimize the complete
time of that task. More specifically, it uses the collected
information to estimate the complete time for each possible
task allocation. Then, the task is sent to the node with the
minimum complete time. Here the generator includes in the
task the predetermined shortest path (as aforementioned in
Section IV-A) as a subfield, so other nodes in the network
know to which node to forward the task. Through this source
routing approach, the communication delay is minimized and
thus the quality of task allocation is ensured. The online
distributed algorithm is summarized in Algorithm 2.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the designed
solutions through extensive simulations, which includes two
parts: the first part compares the offline and online approaches,
and the second part compares the online approach with other
approaches based on the NS-3 network simulator.

A. Comparison between Offline and Online Approaches

1) Simulation Setup: To obtain the future task information
required for the offline approach, we set up a simple simulation
scenario and then compare it with the online approach. In
our simulations, we randomly place 50 mobile devices and
5 mobile clouds in a 3000m × 3000m square area. The
transmission range is 250m. If two nodes are within the
transmission range, there is a link between them. The default
wireless bandwidth is set to 24Mbps. As in previous study [9],
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Fig. 3: Effect of information dissemination period

large tasks can be divided into multiple uniform small tasks.
The task size, i.e., the size of code and data, is set to 2Mb.
For each task, the processing delay by a mobile device is 20s,
while the processing delay by a mobile cloud is 2s. Here we do
not investigate the scenarios that different mobile clouds have
different computing speed, which will be left as future work.
The tasks are generated in a homogeneous Poisson process.
Due to the memoryless property of Poisson process, the task
generation interval follows an exponential distribution.

2) Tradeoff in Information Dissemination: Figure 3 shows
the effect of information dissemination period T on the
average task response time. Here the mean task generation
interval is set to 18s. The average response time increases as
T increases. As T increases, the accuracy of the information
collected by the task generators decreases. Then, these nodes
are less likely to make good allocation decisions, which leads
to the increase of average response time. When T increases
from 2s to 10s, the average response time increases by 25%.
When T further increases from 10s to 20s, the average
response time only increases by 13%.

3) Performance Comparisons: Figure 4 shows the perfor-
mance of offline and online approaches in various settings.
Since the computational complexity of the offline approach
increases significantly as the number of tasks increases, the
offline approach is evaluated using a trace of 500 tasks. The
offline approach is compared with the online approach under
different settings of information dissemination period T . Note
that the mean task generation interval is set to 30s in default.

Figure 4a shows the effect of task generation interval on the
average task response time. As shown in the figure, with the
increase of task generation interval, the average task response
time decreases for both offline and online approaches, because
longer task generation interval results less queuing delay at
mobile clouds. In addition, the online approach with smaller
information dissemination period T has better performance.
Figure 4b shows the effect of the number of mobile clouds on
the average task response time. As expected, the increase of
mobile clouds reduces the number of tasks processed at each
mobile cloud, and thus decreases the average task response
time. When the number of mobile clouds further increases,
there is no queuing delay at mobile clouds and thus the
task response time that only includes processing delay and
communication delay becomes stable. Figure 4c shows the
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Fig. 4: Performance of offline and online approaches when 500 tasks are generated in various settings, where the default
processing delay at mobile devices is 20s, the default processing delay at mobile clouds is 2s, the default number of mobile
clouds is 5, and the default value of mean task generation interval is 30s.

effect of processing speed ratio on the average task response
time. Here we fix the processing delay by a mobile device
to 20s, and denote the processing speed ratio as the ratio
between the processing time by a mobile device and that
by a mobile cloud. Similarly, the average task response time
decreases when the processing speed ratio increases, because
smaller processing delay leads to less queuing delay at mobile
clouds.

As illustrated in Figure 4, the offline approach outperforms
the online approaches; among the online approaches, smaller
information dissemination period corresponds to better perfor-
mance.

B. Comparisons between Online Approach and Other Ap-
proaches

1) Simulation Setup: To simulate more realistic network
environments, we use NS-3 simulator to more accurately
capture the characteristics of heterogeneous wireless networks.
The simulation setup is similar as before. We randomly place
50 mobile devices and 5 mobile clouds in 3000m × 3000m
area. Nodes move according to the random waypoint mobility
model with a speed randomly chosen between 2 and 5m/s
for mobile devices and between 5 and 10m/s for mobile
clouds, and there is no pause time. WiFi ad hoc mode is
used for wireless communication with a rate 24Mb/s rate
(802.11a) and a Friis loss model. The transmission power
is set to 17 dBm. The information dissemination protocol
is implemented with broadcast interval 6 seconds to collect
the information required for the online approach. Tasks are
generated in Poisson processes and the mean task generation
interval for each mobile device is randomly chosen between
40s and 60s or between 60s and 120s or between 120s and
180s. The task size is set to 1Mb or 2Mb. Tasks are transmitted
through TCP connections. The processing delay at mobile
clouds is set to 10s, and the processing delay at mobile devices
is set to 50s or 100s. Each simulation runs for one hour.

We compare our online approach with the following ap-
proaches:

• Random: The task generator randomly selects a mobile
cloud to allocate the task.

• Nearest: The task generator selects the mobile cloud with
the minimum communication delay for task allocation.

• Local: All tasks are completed by the task generator itself
(i.e., not uploaded to any mobile cloud).

2) Performance Comparisons: Figure 5 shows the perfor-
mance of these approaches when the processing delay at
mobile devices and mobile clouds is 100s and 10s, respec-
tively, and the mean task generation interval is randomly
chosen between 60s and 120s for each mobile device. Figure
5a compares the four approaches in terms of average task
response time which consists of processing delay, queueing
delay, and communication delay. Among them, Online per-
forms the best and the task response time is much less than
the other three approaches, while Local performs the worst.
For all these approaches, the proportion of the queuing delay
in the task response time is large, but the queuing delay of
Online is much less than other approaches. Random has the
highest communication delay, because Random allocates tasks
to a randomly selected mobile cloud without considering the
communication delay and hence the communication delay of
the task can be very long when the task generators is far from
the selected mobile cloud. Since Online processes some tasks
locally (no communication delay), it has less communication
delay than Nearest on average and the processing delay
is also between 10s and 100s. Local does not incur any
communication delay since it only processes tasks locally.
Online outperforms others in terms of average task response
time because it considers the processing delay, communication
delay and queue delay jointly while the other three approaches
could not.

Figures 5b, 5c and 5d show the average queuing delay
and the number of received tasks at each mobile cloud (also
locally processed tasks for Online) for Random, Nearest and
Online, respectively. From these figures, we can see Random
allocates tasks more equally than Nearest and Online. Nearest
allocates each task at the mobile cloud with the minimum
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Fig. 5: Performance of Random, Nearest, Local and Online when the task size is 1Mb, the processing delay at mobile devices
and mobile clouds is 100s and 10s, respectively, and the mean task generation interval is between 60s and 120s.
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Fig. 6: Performance of Random, Nearest, Local and Online when the task size is 1Mb, the processing delay at mobile devices
and mobile clouds is 100s and 10s, respectively, and the mean task generation interval is between 120s and 180s.

communication delay and thus tasks can gather at some
specific mobile cloud if there are many mobile devices nearby,
e.g., mobile cloud 1 in Figure 5c. Online allocates tasks evenly
on each mobile cloud (about 350 tasks at each mobile cloud)
and allocates 12 tasks at each mobile device on average, as
shown in Figure 5d. Moreover, the average queuing delay at
mobile devices is much less than that at mobile clouds (i.e.,
about 20 seconds at mobile devices and 80 seconds at mobile
clouds.

Figure 6 shows the performance of these approaches when
tasks are generated at each mobile devices with the mean
interval between 120s and 180s. Since less tasks are generated
compared to Figure 5, the queueing delay at mobile clouds and
mobile devices decreases and thus the average task response
time of all these approaches drops significantly as shown in
Figure 6a, where Online still outperforms others. For Random
and Nearest, as shown in Figures 6b and 6c, the distribution of
tasks at each mobile cloud is similar as in Figures 5b and 5c,
however the number of tasks and the queuing delay at each
mobile cloud decrease. For Online, as shown Figure 7d due
to the reduction of queuing delay at mobile clouds, Online
are more likely to allocate tasks at mobile cloud and very
few tasks are allocated at mobile devices (less than 1 task per
mobile device).

Figure 7 shows the performance of these approaches when

the processing delay at mobile devices is set to 50s and
the mean task generation interval is between 60s and 120s.
As shown in Figure 7a, the task response time of Local
decreases significantly due to the reduced processing delay
at mobile devices, compared to Figure 5a. Since the change
of processing delay at mobile devices does not affect the task
allocation decisions of Random and Nearest, their performance
is similar as in Figure 5. For Online, the average task response
time also decreases due to the reduced processing delay and
queuing delay. As shown in Figure 7d, Online allocates less
tasks at mobile clouds and more tasks at mobile devices
compared to Figure 5d. Due to the reduced processing delay
at mobile devices, processing tasks locally is more likely to
obtain better task response time when the queuing delay at
mobile clouds is high.

In Figure 8, we set the mean generation interval between
40s and 60s and keep other parameters same as in Figure 7.
As shown in Figure 8a, the average task response time of
all these approaches increases, compared to Figure 7a, due
to the increased queuing delay incurred by more generated
tasks. For Random and Nearest, although the generated tasks
increase, the distribution of tasks among mobile clouds is
similar with Figures 7b and 7c, respectively. When more tasks
are generated, Online tends to process more tasks locally
due to the increased queuing delay at mobile clouds and
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Fig. 7: Performance of Random, Nearest, Local and Online when the task size is 1Mb, the processing delay at mobile devices
and mobile clouds is 50s and 10s, respectively, and the mean task generation interval is between 60s and 120s.
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1 2 3 4 5
0

6

12

mobile cloud index

av
er

ag
e 

qu
eu

in
g 

de
la

y 
(1

02  ×
 s

)

 

 

per mobile
device

37

600

1200

co
m

pl
et

ed
ta

sk
s

queueing delay
received tasks

(d) queuing delay and # of tasks
received at each mobile cloud for
Online

Fig. 8: Performance of Random, Nearest, Local and Online when the task size is 1Mb, the processing delay at mobile devices
and mobile clouds is 50s and 10s, respectively, and the mean task generation interval is between 40s and 60s.

the raised communication delay (incurred by the increased
network traffic); i.e., 37 tasks on average are allocated at
each mobile device in Figure 8d, while 15 tasks are processed
locally at each mobile device in Figure 7d.

Finally, we investigate how the task size affects the perfor-
mance of these approaches. Figure 9 shows the results when
the task size is set to 2Mb, the processing delay at mobile
devices is set to 50s, and the mean task generation interval is
between 60s and 120s. Compared to Figure 7a where the task
size is 1Mb, the communication delay of Random and Nearest
increases due to the increase of task size, and thus the average
task response time also increases, as shown in Figure 9a.
Since the task size does not affect Local, its performance is
the same as in Figure 7a. For Online, due to the increase of
communication delay to mobile clouds, Online allocates more
tasks at mobile devices and less tasks at mobile clouds than
that in Figure 7d. Moreover, tasks are balanced among mobile
clouds as before.

Figure 10 shows the results when the task size is 2Mb
and the tasks are generated more frequently (the mean task
generation interval is between 40s and 60s). As shown in
Figure 10a, due to the increase of task size, the communication
delay of Random, Nearest and Online increases, compared
to Figure 8a. Moreover, comparing to Figure 9a, since more
tasks are generated, the queueing delay increases for all

these approaches. Due to the increase of task size, Online
is more likely to allocate tasks at mobile devices, when the
communication delay to mobile clouds is high, so as to achieve
better task response time.

In summary, Random allocates tasks randomly at mobile
clouds; Nearest allocates more tasks at the mobile clouds that
have more mobile devices in vicinity; Local always allocates
tasks locally at mobile devices; Online allocates tasks at mo-
bile clouds and mobile device accordingly to minimize the task
response time, considering the queuing delay, communication
delay and processing delay together. Therefore, Online adapts
to the variations of parameter settings and outperforms other
approaches in all simulation settings.

VI. CONCLUSIONS

This paper studied the task allocation problem for mobile
cloud computing in heterogeneous wireless networks, where
multiple resource-rich computing nodes can be used as mobile
clouds, and mobile devices can upload computation extensive
tasks to these mobile clouds. The objective is to minimize the
average task response time of all tasks considering communi-
cation delay, queuing delay and processing delay. To address
this NP-hard problem, we first designed an offline central-
ized approach based on the technique of linear programming
relaxation and then proposed an online distributed approach.
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Fig. 9: Performance of Random, Nearest, Local and Online when the task size is 2Mb, the processing delay at mobile devices
and mobile clouds is 50s and 10s, respectively, and the mean task generation interval is between 60s and 120s.
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Fig. 10: Performance of Random, Nearest, Local and Online when the task size is 2Mb, the processing delay at mobile devices
and mobile clouds is 50s and 10s, respectively, and the mean task generation interval is between 40s and 60s.

Evaluation results show that our approaches outperform others
in terms of task response time in various scenarios.
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