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ABSTRACT Task allocation is a key issue in multi-agent systems, and finding the optimal strategy for task

allocation has been proved to be an NP-hard problem. Existing task allocation methods for multi-agent

systems mainly adopt distributed full search strategies or local search strategies. The former requires a

lot of computation and communication costs, while the latter cannot ensure the diversity and quality of

solutions. Therefore, in this paper, we combine a distributed many-objective evolutionary algorithm called

D-NSGA3 with a greedy algorithm to search the task allocation solutions, and we comprehensively consider

the constraints related to space, time, energy consumption and agent function in multi-agent systems.

Specifically, D-NSGA3 is used to optimize multiple objectives simultaneously so as to ensure the search

capability and the diversity of solutions. Alternate search between D-NSGA3 and the greedy algorithm is

conducted to enhance the local optimizing ability. Experimental results show that the proposed method can

effectively solve large-scale task allocation problems (e.g., the number of agents is not less than 250, and

that of tasks is not less than 1000). Compared with the existing work called MSEA, the proposed method

could achieve better and more diverse solutions.

INDEX TERMS Evolutionary algorithm, Greedy algorithm, multi-agent system, NSGA3, task allocation.

I. INTRODUCTION

Internet of Things and Artificial Intelligence technologies

have made great progress in the past decade, and meanwhile,

multi-agent systems [1] begin to be widely employed in real-

world applications, such as unmanned systems [2], intelligent

distributed traffic signal control systems [3], UAV formation

combat systems [4], social networks [5], smart manufactur-

ing [6], collaborative fault diagnosis systems [7], and robot

rescue systems [8]. In a specific scenario, agents usually need

to finish specific tasks, such as firefighting, excavation, obsta-

cle clearing, crowd evacuation, rescue, and transportation of

materials to designated locations.

Task allocation is one of the most important issues in

multi-agent systems and finding the optimal solutions for
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the task allocation has been proved to be an NP-hard prob-

lem [9], [10]. The goal of task allocation is to optimize the

performance or benefits of task execution, such as maximiz-

ing the number of successfully executed tasks andminimizing

the time and resource consumption of task execution. In addi-

tion to optimizing objectives, a large number of constraints

generally need to be satisfied during task allocation. For

example, different types of agents may be able to perform dif-

ferent tasks due to their different configuration, performance,

load and functions, e. g., agents dedicated to firefighting can

only performfirefighting tasks, and agents equippedwith dig-

ging tools can perform multiple tasks like digging, obstacles

clearing and rescue. Besides, different agents and tasks may

distribute at different geographic locations, and tasks may

only be valid in a certain time interval (e. g., a rescue task

in the fire disaster needs to be completed in a short time,

otherwise, victims may have been killed or saved, and the
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task will be disabled). Therefore, it is necessary to consider

the corresponding spatial/resources and temporal constraints

during task allocation [9]. In many applications, agents are

limited to only be able to communicate with the control

server or the agents close to them, and the environment sur-

rounding the agents would change over time. In such cases,

it is more promising to solve the task allocation problem in

the distributed manner.

Presently, many distributed algorithms for task allocation

have been proposed, and they can be divided into the follow-

ing classes: distributed full search algorithms [11]–[15], dis-

tributed local search algorithms [16]–[18], algorithms based

on auction mechanism [19], distributed particle swarm opti-

mization [20], and distributed ant colony algorithm [21]. The

distributed full search algorithms can obtain optimal solutions

for task allocation, but they require high communication and

computation cost, and they would be impractical when solv-

ing large-scale problems. The other four kinds of algorithms

are either unable to guarantee the quality or diversity of

solutions, or unable to optimize multiple objectives simulta-

neously or do not consider the large amount of constraints in

task allocation problems.

Evolutionary algorithm, one of the most widely used intel-

ligent optimization algorithms, has the optimizing ability

comparable to the particle swarm optimization [22]. In the

past decade, a lot of researches have been devoted to dis-

tributed evolutionary algorithms [23], [24], but on which

few task allocation methods for multi-agent systems are

formed. And in most of the methods, simultaneous opti-

mization of multiple objectives in task allocation is not fully

considered. In view of the above, this paper comprehensively

considers constraints related to space, time, energy consump-

tion and function, etc., in task allocation, and simultane-

ously optimizes four objectives, i.e. maximizing the number

of successfully executed tasks, maximizing the benefits of

performing tasks and minimizing task execution time and

resource consumption. This paper adopts a distributed many-

objective evolutionary algorithm called D-NSGA3 [25], [26]

to optimize multiple objectives simultaneously and ensure

the diversity of solutions. Furthermore, this paper combines

the greedy algorithm to compensate for the poor ability of

D-NSGA3 for local optimization. The experimental results

show that the proposed algorithm can effectively solve large-

scale task allocation problems (the number of agents ≥ 250,

and that of tasks ≥1000). Compared with the existing work

called MSEA [26], the proposed algorithm could find better

and more diverse solutions. Overall, our contributions are

listed as follows:

(1) We propose a greedy algorithm that is designed based

on the chromosome structure used in D-NSGA3 for solving

the task allocation problem in multi-agent systems.

(2) We propose an approach for combining the

D-NSGA3 and the greedy algorithm, which could have

higher effectiveness than D-NSGA3, and we apply the

approach to task allocation in multi-agent

systems.

(3) Several experiments are conducted to demonstrate the

effectiveness of the proposed approach, and results show

that our approach is able to solve large-scale task allocation

problems.

The rest of this paper is arranged as follows: Section II

introduces the formal description of the task allocation

problem in multi-agent systems; Section III introduces the

combination scheme of D-NSGA3 algorithm and a greedy

algorithm proposed in this paper; Section IV presents the

experimental results and analysis; The proposed work is dis-

cussed in Section V; Section VI presents the related work

about task allocation methods; Section VII summarizes the

work in this paper.

II. PRELIMINARIES

This section introduces the formal description of task allo-

cation problem in multi-agent systems. The elements are

defined as follows:

(1) Agent: A = {a1. . .am}, where m is the number of

agents. The initial positions of the agents are defined as

LA = {la1. . . lam}, where lai (i = 1. . .m) represents the initial

position of the agent ai. Each agent will be equipped with a

certain amount of resources (e.g. energy and electricity) at the

beginning for executing tasks, and the resources are denoted

as: R = {r1. . . rm}, where ri (i =1. . .m) represents the amount

of resources allocated to the agent ai.

(2) Task: V = {v1. . .vn}, where n is the number of tasks.

The locations of the tasks are defined as LV = {lv1...lvn},

where lvi(i = 1. . .n) represents the current location of the

task vi. We assume that each task is limited to be executable

among a certain time interval, which is denoted by the earliest

executable time and the latest executable time, i.e. TV =

{[low1, up1]. . . [lown, upn]}, where lowi is the earliest exe-

cutable time and upi is the latest executable time. The time

cost by executing tasks is represented asTC = {tc1. . . tcn},

where tci represents the time taken to execute the task vi.

The amount of resources required to execute the tasks is

expressed as RC ={rc1. . . rcn}, where rci (i = 1. . .n) repre-

sents the amount of resources needed to execute the task vi.

The benefits gained by executing tasks are expressed asGain

={gain1. . . gainn}, where gaini (i = 1. . .n) represents the

benefits achieved by executing the task vi.

(3) Allocation Relation: π = {π1 . . . πn, where πi(i =

1. . .n) represents the allocation of the task vi. For example,

πi = vi→ aj indicates that the task viis assigned to the agent

aj for execution (it also implies aj can successfully execute

vi), and πj = vj → ∅ indicates that vjis not assigned to any

agents. For simplicity, πi = vi → aj and πj = vj → ∅

are simplified as πi = aj and πj = Null respectively in this

paper. Similar to [9], [15], [26], [27], to simplify the problem

model, this paper assumes that time is discretized (e.g. in

milliseconds), and each agent can only perform one task at

a piece of time, and each task only needs be executed and

completed by one agent.

(4) Execution Sequence: Q = {q1. . .qm}, where

qi = {qi1. . .qik} denotes the sequence of k tasks to be
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executed by the agent ai (k might be different for different

agents), for example qi = {v2, v3, v6} indicates tasks v2, v3
and v6 are allocated to the agent ai, and ai will execute these

three tasks, respectively.

(5)Objectives: The four most widely studied objectives in

task allocation are considered in this paper:

1) Maximizing the number of successfully executed tasks:

f1 = maximize∀π
∑n

i=1
{πi 6= Null} (1)

where {πi 6= Null} returns 1 when the conditionπi 6=

Null is true, otherwise, it returns 0.

2) Maximizing the benefits of executing tasks:

f2 = maximize∀π
∑n

i=1
{πi 6= Null} × gaini (2)

3) Minimizing the resources consumed in executing tasks:

f3 = minimize∀Q
∑m

i=1

(

travel_cost
(

lai, lvqi1
)

+
∑|qi|

j=2
travel_cost

(

lvqi(j−1) , lvqij
)

+
∑|qi|

j=1
rcqij

)

(3)

where travel_cost
(

lx , ly
)

denotes the resources

required for the agent to move from locationlx to ly,

and |qi| is the length of the sequence qi.

4) Minimizing the maximum time spent by agents to exe-

cute tasks:

f4 = minimize∀Qmax
m
i=1Tcost(qi, |qi|) (4)

where Tcost(qi, j) denotes the time spent by the agent

ai to execute the first j tasks in qi.Tcost (qi, 1) =

travel_time
(

lai, lvqi1
)

+ tcqi1 , and for j = 2. . . |qi| we

have:

Tcost (qi, j) = max {Tcost (qi, j− 1)

+travel_time
(

lvqi(j−1) , lvqij
)

, lowqij
}

+tcqij

where travel_time
(

lx , ly
)

represents the time needed

for the agent to move from the location lx to ly.

(6) Constraint Conditions: Generally, time, resources (or

space), and function constraints are involved in the task allo-

cation, which are formally expressed as:

1) Time Constraints: if an agentai (1≤ i ≤ m) wants to

successfully execute the task vj, it must arrive at the

location of vj and execute the task before time upj.

The execution sequence qi needs to meet the following

requirements:

gTi1 = arrival_time(qi, 1)

= travel_time
(

lai, lvqi1
)

≤ upqi1

For 2 ≤ j ≤ |qi|, we have:

gTij = arrival_time (qi, j)

= Tcost (qi, j− 1)+ travel_time
(

lvqi(j−1) , lvqij
)

≤ upqij (5)

where arrival_time (qi, j) denotes the time when ai
arrives at the position of the jth task in qi.

2) Resource Constraints: If the agent ai (1≤ i ≤ m) wants

to successfully execute a task vj, its current resources

should be sufficient to support itto move to vj and

execute the task, that is:

gRij = resource_cost (qi, j) = travel_cost(lai, lvqi1 )

+
∑j

k=2
travel_cost

(

lvqi(k−1) , lvqik
)

+
∑j

k=1
rcqik ≤ ri (6)

where resource_cost(qi, j) denotes the amount of

resources required for aito execute the firstj tasks in qi.

3) Function Constraints: In real-world applications,

agents may have different functions and different tasks

that can be performed. Each agent can only perform the

tasks supported by its functions. Therefore:

a) For an agent ai (1≤ i ≤ m), we have:

gFAi =
{

vi1 , . . . , vib
}

:→ai (7)

This constraint defines that the functions of ai only

support executing the tasks in the set
{

vi1 , . . . , vib
}

.

b) For a taskvj(1≤ j ≤ n), we have:

gFTj = vj:→
{

aj1 , . . . , ajc
}

(8)

This constraint defines that vj can only be allocated

to the agents in the set
{

aj1 , . . . ,ajc
}

for execution

according to its function requirements.

III. TASK ALLOCATION BASED ON D-NSGA3 AND

GREEDY ALGORITHM

This paper mainly combines a distributed many-objective

evolutionary algorithm called D-NSGA3 and a greedy algo-

rithm to solve the above task allocation problem in multi-

agent systems. The following firstly presents the hybrid

framework of D-NSGA3 and the greedy algorithm, then

introduces chromosome encoding, crossover and mutation

strategies and the evaluation model adopted in this paper, and

finally introduces the greedy algorithm.

A. FRAMEWORK OF PROPOSED METHOD

The NSGA3 algorithm was proposed by Deb and Jain [25]

in 2013, and it mainly improves the NSGA-II algorithm

to solve high-dimensional optimization problems, i.e. opti-

mization problems with more than 3 objectives. This paper

combines NSGA3 with the Master-Slave distributed model

[24], and the framework is shown in Figure 1.

In multi-agent systems, the command and control server

(CCS) can act as a master node to be responsible for the

population initialization, iterative evolution, crossover, muta-

tion, selection operations in NSGA3. In many scenarios, as

the environment in which the agents are located may change

at any time, task-related indicators and information (e.g. the

energy consumption required to execute the task and the

benefits from executing the task) will also change, which will
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FIGURE 1. Master-Slave model used by D-NSGA3.

eventually leads to changes in the evaluation of task allocation

strategies. On the other hand, as the communication speed and

scope are limited, an agent can only perceive the surrounding

environment information. Therefore, agents can only eval-

uate the part of the task allocation strategy that involves

this information. Hence, an agent or a group of locally and

perceptively interconnected agents is taken as a slave node

in this paper. Master node will divide and distribute the task

allocation strategy (i.e. chromosome in NSGA3) according

to the evaluation capability of each slave node. And slave

nodes will return the evaluation results to the master node

after evaluation. In multi-agent systems, CCS can better

complete most of the operations during the evolution with

its strong computing power and communication broadband.

While agents can only complete lightweight computation and

communication, because of its limited computing and com-

munication capabilities. Therefore, the Master-Slave model

is very suitable for multi-agent systems.

The framework of combining D-NSGA3 with the greedy

algorithm (called D-NSGA3-Greedy for simplicity) is shown

in algorithm 1, and its general idea is as follows:

1) The master node first randomly generates an initial

population with a size of N ;

2) The master node segments the population according to

the evaluation capability of each slave node, and sends

segments to corresponding slave nodes for evaluation;

3) Slave nodes evaluate the segments sent from the master

node, and send back the results;

4) The master node collects the results from slave nodes,

and calculates the overall objective values of each indi-

vidual;

5) The master node generates the offspring population

through crossover and mutation operators;

6) The master node and slave nodes evaluate the offspring

individuals cooperatively;

7) The master node performs non-dominated sorting on

the union set of parent population and offspring pop-

ulation to form H non-dominated layers F1. . .FH

and finds out the individuals of the first h non-

dominated layers to make |F1 ∪ . . . ∪ Fh−1| < N ≤

|F1 ∪ . . . ∪ Fh|;

8) The master node determines the population for next

generation through the selection operation. Specifi-

cally, if |F1 ∪ . . . ∪ Fh| = N , then the individuals of

the first h layers are directly selected for the next gen-

eration. Otherwise, N − |F1 ∪ . . . ∪ Fh−1| individuals

are selected from the critical layer Fh through refer-

ence points, and they are taken for the next generation

together with the individuals in F1. . .Fh−1 layers. Due

to the limited space, this paper will not introduce the

details of NSGA3 (such as the selection operator based

on reference points), please refer to [25] for details.

9) By every D generations, the greedy algorithm in

Section III.C is used to locally optimize the selected

individuals.

10) Repeat the above steps 5-9 until the population con-

verges or the algorithm exceeds the maximum number

of iterations.

B. CHROMOSOME ENCODING, INITIALIZATION,

CROSSOVER, MUTATION AND EVALUATION

In EAs, the chromosome encoding, initialization, crossover

and mutation strategies take significant effect on the converg-

ing speed and diversity of population evolution, thus affect

the quality of solutions. In this paper, the chromosome is

encoded as: x = x1. . .xm, where xi is a sequence of tasks that

the agent ai attempts to perform. For example, in view of the

function constraints of ai is g
FA
i =

{

vi1 , . . . ,vib
}

:→ai, then

xi = vj1 , . . . ,vjb is a permutation of vi1 , . . . ,vib , indicating

that ai will consider the execution of tasks vj1 , . . . ,vjb in order.

If, after executing tasksvj1 , . . . ,vjk , ai cannot execute vjk+1 due

to the lack of time or resources, then ai will skip this task

and consider executing the next taskvjk+2 . If ai can execute

the task vj under the condition of satisfying the constraints,

then subsequent agents ai+1. . .am will no longer consider

executing vj. For example, suppose there are two agents and
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Algorithm 1 D-NSGA3-Greedy Algorithm

Input: Population size (N ), maximum number of iterations

(MaxIterN), reference point set (RP)

Output: Pareto solution set

Master node executes:

1: i← 1;

2: Randomly initialize population Pi with N individu-

als;

3: Segment each individual in Pi and send each segment

to the corresponding slave node for evaluation;

Each slave node executes:

4: Evaluate individual segments after receiving from the

master node, and return the evaluation results to the

master node;

Master node executes:

5: Receive all evaluation results from slave nodes, and

calculate the overall objective values of each individ-

ual in Pi;

6: While i ≤ MaxIterN do

7: Carry out crossover and mutation operators on Pi
to generate an offspring populationQi;

8: Segment each individual in Qi and send each seg-

ment to the corresponding slave node for evaluation;

Each slave node executes:

9: Evaluate individual segments after receiving from the

master node, and return the evaluation results to the

master node;

Master node executes:

10: Receive all evaluation results from slave nodes, and

calculate the overall objective values of each individ-

ual in Qi;

11: According to the objective values, perform non-

dominated sorting on Pi ∪ Qi to obtain the non-

dominated layers F1. . .FH ;

12: Find the h s.t. |F1 ∪ . . . ∪ Fh−1| < N ≤

|F1 ∪ . . . ∪ Fh|;

13: If |F1 + . . .+ Fh| = N then

14: ← Pi+1F1 ∪ . . . ∪ Fh;

15: Else

16: ← Pi+1F1 ∪ . . . ∪ Fh−1;

17: Find other N − |F1 ∪ . . . ∪ Fh−1| individuals

based on reference points in RP, and add them to

Pi+1;

18: End if

19: Ifi%D =0then

20: Foreach individualx ∈ Pi+1do;

21: Greedy(x);

22: End for

23: End if

24: If the population has converged then

25: Return F1 as the pareto solution set;

26: End if

27: i← i+1;

28: End while

29: Return F1 as the pareto solution set.

five tasks, according to function constraints, if a1 is able to

perform tasks v1, v2 and v3; a2 is able to perform tasks v3, v4
and v5. Therefore, the chromosome x = 3 1 2 4 3 5 indicates

that a1 will consider executing v3, v1 and v2 in order, and a2
will consider executing v4, v3 and v5 in order. If a1 cannot

successfully execute v2 within resource constraints or time

constraints after executing v3 and v1, then a1 can successfully

execute 2 tasks at last. As v3 has been allocated to a1 for

execution, a2 only needs to consider executing v4 and v5
in order. The advantages of this encoding are as follows:

1) fixed encoding length for all individuals; 2) no need to

consider function constraints when evaluating individuals;

3) simplifying the evaluation process; 4) simplifying initial-

ization, crossover, and mutation operators.

This paper adopts random population initialization.

According to the above encoding method, the master node

obtains the set of tasks
{

vi1 , . . . ,vib
}

that each agent ai is able

to execute according to the function constraints, and then

generates a random permutation ofvi1 , . . . ,vibas the part i (i.e.

xi) of an initial individual x.

This paper adopts the single-point crossover operator. For

two parent individuals, x = x1. . .xm and y = y1. . .ym,

the master node randomly generates a number k between

1 and m, and then, it exchanges the first k sequences between

x and y to obtain the offspring x
′
= y1 . . . ykxk+1 . . . xm and

y
′
= x1 . . . xkyk+1 . . . ym.

In mutation operator, this paper adopts a parameter mutPr

to control the probability of random mutation. If the ith

sequence xi of an individual is selected for mutation accord-

ing to this probability, then the master node will generate a

random permutation of vi1 , . . . ,vib to replace the original xi.

All the objective functions in Section II are converted into

a ‘‘minimize’’ form to facilitate the evaluation, specifically,

we have:

1) Evaluation function of the first objective:

f1(x) = 1.0−

∑m
i=1 h1 (xi)

n
(9)

where h1 (xi) =
∑b

w=1 Add(jw) denotes the number of

tasks in xi that ai can successfully execute, and

Add (jw)

=



















0 ifvjw has been allocated,

orarrival_time(xEi + vjw , |x
E
i | + 1) > upjw

orresource_cost(xEi + vjw , |x
E
i | + 1) > ri

1 otherwise

calculates whether ai can successfully execute vjw in

the current state. xEi denotes the current sequence of

tasks that have been checked and can be successfully

executed (initially the empty set), and xEi + vjw denotes

adding vjw to the sequence xEi .

2) Evaluation function of the second objective:

f2(x) = 1.0−

∑m
i=1 h2 (xi)

∑n
i=1 gaini

(10)
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where h2 (xi) =
∑b

w=1 Add(jw)× gainjw denotes the

benefits that ai can obtain from executing tasks in xi.

3) Evaluation function of the third objective:

f3(x) =
∑m

i=1

h3 (xi)

m× max_r
(11)

where max_r represents the maximum amount of

resources an agent can equip, and h3 (xi) =
∑b

w=1 Add(jw)×
(

travel_cost
(

llast , lvjw
)

+ rcjw
)

denotes the amount of resources consumed by ai in

executing tasks in xi.llast represents the location of the

last task executed by ai, and initially llast is the position

of ai.

4) Evaluation function of the fourth objective:

f4(x) = maxmi=1
h4 (xi)

m× max_t
(12)

where max_t denotes the latest time that all tasks

can be completed. And h4(xi) =
∑k

w=1 Add(jw) ×

(travel_time(llast , lvjw )+ tcjw ) denotes the time cost by

ai to execute tasks in xi.

C. GREEDY ALGORITHM

This paper designs a greedy algorithm for locally fast opti-

mization of the individuals in D-NSGA3 so as to accelerate

the search and convergence speed, and thus to improve the

quality of solutions. The pseudo code is shown in algorithm 2.

The main steps are as follows:

1) CCS sets the weight of each objective for an individual

x and calculates the weighted sum of four objectives as

the optimization objective F ;

2) For each sequence xi, CCS exchanges each pair of

positions of two tasks in xi, and sends the segments of

the updated x to each agent for re-evaluation;

3) The agents evaluate the segments of the updated x and

return the evaluation results to CCS;

4) CCS receives the evaluation results from agents and

calculates the F value. If the F value is not improved,

CCS will restore xi;

5) CCS iteratively performs steps 2)-4) until F cannot be

improved and then returns x.

The F value is calculated as follow:

F =
∑4

i=1
wi × fi(x) (13)

where wi, the weight of the objective function fi(x), can be

set according to the importance, urgency and other factors

of the objective in a certain scenario. w is used in the func-

tion getFvalue(x), which calculates the F value. This paper

adopts randomly generated test cases of the task allocation

problem for experiments, so we use the reference points in

D-NSGA3 as the weights of individuals in the greedy algo-

rithm as they distribute uniformly in the objective domain.

For example, for the ith individual x in the population of

D-NSGA3, the weight w = RF [i% |RF |], where ‘%’ is the

modulus operator, and |RF| denotes the number of reference

points.

Algorithm 2 Greedy Algorithm

Input: individual x

Output: optimized individual x

CCS executes:

1: oldF← getFvalue(x);

2: do

3: for i = 1 tomdo

4: for∀vij , vik ∈ xi (j 6= k)do

5: Exchange the positions of vij andvik in xi;

6: Send the segments of x to agents for evalua-

tion;

Agents execute:

7: Receive the segments of xfrom CCS and con-

duct evaluation, and return the evaluation results to

CCS;

CCS executes:

8: Receive the evaluation results from the agents

and calculate newF← getFvalue(x);

9: if oldF − newF ≤ 0 then

10: Restore the positions of vij and vik in xi;

11: end if

12: end for

13: end for

14: while(xis updated)

15: return x

D. TIME COMPLEXITY

To evaluate the time cost of the proposedmethod, we estimate

the time complexity of computation at both the Master node

(i.e. CCS) and each Slave node (i.e. agent).

The Master node is responsible for conducting the popu-

lation initialization (step 1 in algorithm 1), individual seg-

mentation (step 2 in algorithm 1), calculating the overall

objective values (step 5) and population evolution (step 6-8,

10-28). The time complexity of population initialization is

O(N × m × n) at the worst case (i.e. each agent is able to

execute all tasks), where N is the population size andm is the

number of agents and n is the number of tasks. The process of

individual segmentation also takesO(N×m×n) computations

at the worst case. The time complexity of calculating the

overall objective values is O(N × m × n) at the worst case.

In the process of population evolution, maxIterN iterations

will be carried out at the worst case that the population

cannot converge successfully. At each iteration, the crossover

operator takes O(N ×m× n) computations, and the mutation

operator takes O(N × m × n) computations in step 7. The

segmentation in step 8 and the calculation of overall objective

values in step 10 also take O(N × m × n) computations.

In step 11-12, the non-dominated sorting takes O(N×log2N )

comparisons. In steps 13-18, if |F1 + . . .+ Fh| = N , then

it takes O(N × m × n) computations; otherwise, it takes

O(N × m × n) + O(N × |RP|) computations where |RP|

is the size of RP and it is usually set as a constant. The

greedy algorithm is called perD iterations, so it will be called
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maxIterN/D times at the worst case. Each call of the greedy

algorithm takes O(N ×m× n× n) operators. Overall, for the

worst case, the total complexity at the Master node is:

TCM = O (N × m× n)+ O (N × m× n)+ O (N × m× n)

+maxIterN × [O (N × m×n)+ O (N × m× n)

+O
(

N × logN2

)

+ O (N × m× n)+O (N × |RP|)]

+
maxIterN

D
× O(N×m× n2)

= O

(

maxIterN × N ×

(

m× n+ logN2 +
m× n2

D

))

.

The Slave nodes are responsible for individual evaluation.

For evaluating an individual, it takes O(m× n) computations.

The Slave ai only evaluates the part xi, so it takes O(|xi|)

computations, where |xi| is the number of tasks that ai is able

to execute according to the function constraints. It should

evaluate N individuals at each iteration. Moreover, in the

greedy algorithm, each Slave node should evaluate O(m ×

|xi|
2) individuals, where the ‘‘do . . .while’’ loop is assumed

to iterate O(1) times. Overall, for the worst case, the total

complexity at Slave node ai is:

TCS = O (|xi|)×N × maxIterN +
maxIterN

D
× m× |xi|

2

×N × O(|xi|)

= O

(

|xi| × N×maxIterN ×

(

1+
m× |xi|

2

D

))

|xi| is usually about O
(

n
m

)

, so the average complexity at

a Slave node is O
(

n
m
×N × maxIterN ×

(

1+ n2

m×D

))

. It is

worth mentioning that the computation complexity is ana-

lyzed at the worst case, and the computation cost might vary

significantly according to different task allocation problems

in different scenarios.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To verify and analyze the performance of the proposed algo-

rithm, several experiments are carried out: 1) Experiments

on the performance of D-NSGA3-Greedy algorithm on task

allocation problems of different scales; 2) Comparison of

D-NSGA3-Greedy algorithm and the algorithm proposed in

[26] (called MSEA for simplicity). Similar to [26], this paper

assumes that all agents move at the same speed and the time

and resources cost is proportional to the distance.

The experimental environment in this paper is as follows:

64-bitWindow 7 SP1; 3.40GHz Intel i7-6700 CPU; 8GMem-

ory; programming environment: Visual Studio 2013.

In the experiments, m agents and n tasks are randomly

generated. Specifically, for the initial position lai = (x, y)

(i =1. . .m) of an agent ai, x and y are random integers from [0,

100). The quantity of resources ri equipped with each agent

is fixed to 500 to facilitate the experiment. For the position

lvi = (x, y) (i =1. . .n) of each task vi, x and y are also

set as random integers in [0, 100). The earliest executable

time lowi of vi is a random number between [0, 100], and

TABLE 1. Results of D-NSGA3-Greedy for m = 10 and n=40.

the latest executable time upi is a random number between

[lowi, 150). The time tci required to execute the task vi is a

random number between [1, 10), and the resource rci required

to execute the task vi is a random number between [0, 100).

The benefitsgaini from executing the task vi is a random

number between [0, 1). For function constraints, this paper

assumes that each task can be executed by at least one agent

(otherwise the task can be directly excluded), therefore we

firstly randomly distribute all tasks into the executable task

sets of agents. Besides, additional 0∼4n/m tasks are randomly

added to the executable task set of each agent to increase the

difficulty of the problem. The generated dataset is available

at: http://www.wut-dscl.cn/in_data/.

We adopt the implementation version of NSGA3 by Chi-

ang [28] in the experiments. The maximum number of

iterations in D-NSGA3-Greedy algorithm is set to 500,

the crossover probability is 1.0, and mutation probability

is 1
ChromosomeLength

. The parameter D is set to 250 by default.

The data precision in the greedy algorithm is set to 0.001.

A. VARYING PROBLEM SCALE

We test the task allocation problem of three scales, that is,

m =10, n =40; m =50, n =200; m =250, n =1000.

The experimental results of D-NSGA3-Greedy algorithm are

shown in Table 1-3.

Table 1 shows the results of D-NSGA3-Greedy algorithm

on four objectives for m =10 and n =40 (where the data

precision is kept to 2 decimal places). Due to the limited
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FIGURE 2. Distribution of the results for m = 10 and n = 40.

TABLE 2. Results of D-NSGA3-Greedy for m=50 and n=200.

space, only part of the results are presented. Specifically, for

similar data (i.e. if the difference between the two data is

within 0.01 on f1 ∼ f4), only one of them is presented in the

table, and finally 29 pieces of data are obtained. As shown

in Table 1, the D-NSGA3-Greedy algorithm can optimize f1
to 0.33, which indicates that 67% of the tasks can be assigned

and successfully executed through the solutions; D-NSGA3-

Greedy algorithm can optimize f2, f3, f4 to 0.25, 0.20 and 0.64,

respectively. The spans of f1, f2, f3 and f4 achieved by the

29 solutions are 0.37, 0.44, 0.22 and 0.29, respectively.

Table 2 shows the results of D-NSGA3-Greedy algorithm

on four objectives for m =50 and n =200, with totally

TABLE 3. Results of D-NSGA3-Greedy for m=250 and n=1000.

24 pieces of data. D-NSGA3-Greedy algorithm can optimize

f1 to 0.31, which indicates that 69% of the tasks can be

allocated and successfully executed by agents; D-NSGA3-

Greedy algorithm can optimize f2, f3, f4 to 0.22, 0.21 and

0.73, respectively. The spans of f1, f2, f3 and f4 achieved by

the 24 solutions are 0.29, 0.34, 0.22 and 0.23, respectively.

Table 3 shows the results of D-NSGA3-Greedy algorithm

on four objectives for m =250 and n =1000, with totally 8

pieces of data. D-NSGA3-Greedy algorithm can optimize f1
to 0.34, which indicates that 66% of tasks can be successfully

allocated and successfully executed by agents; D-NSGA3-

Greedy algorithm can optimize f2, f3, f4 to 0.30, 0.27 and

0.85, respectively. The spans of f1, f2, f3 and f4 achieved by

the 8 solutions are 0.19, 0.20, 0.13 and 0.11, respectively.

From Table 1-3, it can be learned that the number of

solutions obtained decreases as the scale of the problem

increases, and so do the value ranges of objectives achieved

by the solutions. Therefore, the diversity of solutions gradu-

ally decreases with the increase of the problem scale, and the

difficulty of solving the problem increases with the increase

of the scale of the problem. Overall, the results also demon-

strate that the proposed algorithm could effectively solve the

large-scale task allocation problem with even m = 250 and

n = 1000, which could be significantly difficult to solve for

the full search algorithms.
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FIGURE 3. Distribution of the results for m = 50 and n = 200.

FIGURE 4. Distribution of the results for m = 250 and n = 1000.

B. ALGORITHM COMPARISON

In this section, we compare D-NSGA3-Greedy with MSEA

proposed in [26] in terms of the quality and diversity of

solutions, and we also investigate the efficiency of the pro-

posed method with/without using the Master-Slave model.

Table 4-6 and figure 1-3 show the comparison results of

D-NSGA3-Greedy and MSEA for (m = 10, n = 40),

(m = 50, n = 200) and (m = 250, n = 1000). When

(m = 10, n = 40), 7 solutions found by D-NSGA3-Greedy

algorithm are better than the corresponding solutions found

by MSEA and 3 solutions are worse than that of MSEA.

When (m = 50, n = 200), 2 solutions of D-NSGA3-Greedy

algorithm are better than that of MSEA and no solution is

worse than that of MSEA. When (m = 250, n = 1000),

1 solution of D-NSGA3-Greedy algorithm is better than that

of MSEA and no solution is worse than that of MSEA.

Under the three parameter settings, D-NSGA3-Greedy

algorithm finds 29, 24, 8 solutions, respectively, while

MSEA finds 27, 13, 4 solutions, respectively. As shown

in figure 2-4, the solutions found by D-NSGA3-Greedy

distribute more uniformly in the objective domain than

the solutions found by MSEA. It demonstrates that

D-NSGA3-Greedy algorithm could find more diverse solu-

tions than MSEA, and D-NSGA3-Greedy algorithm shows

stronger optimization capability than MSEA.

Table 7 shows the time cost by running the proposed

method with/without using the distributed Master-Slave

model (denoted as D-NSGA3-Greedy and NSGA3-Greedy,

respectively). Each algorithm is executed 30 times, and aver-

age time cost is recorded. The parameter D is set to 250,

and other parameters are set as default. The data are accurate

to 2 decimal places. When m = 10 and n = 40, using

the Master-Slave model decreases the time cost by CSS

from 320.94 seconds to 261.27 seconds. The 10 agents share

amount of computations costing 66.14 seconds for evaluation

in total, and each agent spends 6.61 seconds on average.
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TABLE 4. Comparison Results of D-NSGA3-Greedy and MSEA for
m=10 and n=40.

When m = 50 and n = 200, using the Master-Slave

model decreases the time cost by CCS from 2225.61 sec-

onds to 312.81seconds. The 50 agents share 1951.84 sec-

onds of computations for evaluation from CCS, and each

agent spends 39.04 seconds on average. When m = 250 and

n = 1000, using the Master-Slave model decreases the time

cost by CCS from 37379.89 seconds to 495.85 seconds.

The 250 agents share 37032.17 seconds of computations for

evaluation from CCS, and each agent spends 148.13 seconds

on average. It demonstrates that the distributed model has

higher efficiency in larger task allocation problems because

the agents will share more computations from CCS by exe-

cuting the evaluation and this is identical to the analysis

in Section III.D. Moreover, for large-scale task allocation

problems (m = 250, n = 1000), the distributed model

enhances the computation efficiency by about two orders of

magnitude.

TABLE 5. Comparison Results of D-NSGA3-Greedy and MSEA for
m=50 and n=200.

TABLE 6. Comparison Results of D-NSGA3-Greedy and MSEA for
m=250 and n=1000.

V. DISCUSSION

In this paper, we propose a distributed task allocation method

based on the NSGA3 algorithm and a greedy algorithm. The

main difficulty of this work is:

(1) How to handle the large amount of constraints related

to time, resources, locations and functions while opti-

mizing four objectives: for this issue, we introduce

a special encoding of chromosomes which consist of

ordered sequences of tasks that are able to be executed

by each agent. Function constraints are handled by only

encoding the tasks that are able to be executed by an
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TABLE 7. Time cost by D-NSGA3-Greedy and NSGA3-Greedy.

agent to the sequence of that agent. Time, resources and

locations constraints are embedded into the evaluation

function. When calculating the four objective values,

only the tasks that can be successfully executed by

agents while satisfying all constraints are taken into

account. By this way, we can handle the constraints

efficiently while optimizing the four objectives.

(2) How to design a greedy algorithm dedicated to

NSGA3 such that it can effectively improve the local

optimizing ability of NSGA3: for this issue, we design

a greedy algorithm based on the chromosome struc-

ture used in NSGA3. The greedy algorithm takes the

chromosome of individuals of NSGA3 as input, and it

locally explores the exchanges of tasks that greedily

improve the solution quality on the chromosome. To

combine the greedy algorithm with NSGA3, we use

a parameter D to control the frequency of calling

the greedy strategy during the population evolution of

NSGA3. When D is smaller, the greedy strategy will

be called more frequently and better solutions would

be found, but more computation and communication

cost is required. In a specific scenario, we can choose

properD according to the requirement on solutions and

available computation and communication resources.

Although experimental results have demonstrated the

effectiveness of the proposed method, but it still has some

room for improvement. For example, the agents in the pro-

posed method are only responsible for evaluating the task

allocation solutions and their computational and commu-

nication resources would not be sufficiently used in some

scenarios where agents are equipped with high-performance

devices. Moreover, dynamic environment change has not

been fully considered in this work, e.g. new agents or tasks

come over time, and some agents or tasks would be destroyed

due to accidents. We will improve the proposed method to

solve the two issues in future work.

VI. RELATED WORK

At present, some algorithms have been proposed for task allo-

cation in multi-agent systems. In most of the early methods,

a center node with high performance is adopted to per-

form all the computations and searching. Finally, the cen-

ter node finds the solutions for task allocation and sends

them to all agents [8], [29]. However, several drawbacks

exist in these methods, such as the single point of failure

and poor fault tolerance. In recent years, a large number

of distributed task allocation methods have been proposed,

which can be roughly divided into the following types: dis-

tributed full search algorithms [11]–[15], distributed local

search algorithms [16]–[18], algorithms based on auction

mechanism [19], distributed particle swarm optimization

[20], and distributed ant colony algorithm [21]. Distributed

full search algorithms [14] use distributed depth-first search

or breadth-first search to find the optimal solution for task

allocation. These methods can ensure the solution is glob-

ally optimal, but they require high communication cost and

computation cost [15]. These methods are difficult to be

applied in the situation that agents are equipped with low

computation or communication resources. Distributed local

search algorithms [17] greatly reduce the cost of commu-

nication and computation. Each agent searches locally for

the most suitable task allocation scheme, and then realizes

the global unification and coordination of task allocation

through communication and thus to avoid conflict [18]. But

it is usually difficult for such methods to ensure the diver-

sity and quality of solutions. The algorithms based on the

auction mechanism can be regarded as a special case of dis-

tributed local search algorithms, which simulate the auction

mechanism from economic market [19]. Specifically, each

agent bids on tasks based on their resources and capabili-

ties and performs the tasks won from auction. Distributed

ant colony algorithm/particle swarm optimization takes the

agents/robotics as ants/particles, and simulates the group

behavior of ants/particles when they are foraging for food to

get the optimal task allocation solutions [20], [21]. The two

methods utilize intelligent heuristic optimization strategies

to search optimal solutions. However, it is difficult for them

to deal with the large number of constraints. Besides, they

are easy to trap in local optimum, and could not even get

solutions that satisfy the constraint conditions. Moreover, few

of existing works consider optimizing many (more than 3)

objectives simultaneously together with the constraints in

task allocation problems in multi-agent systems.

Overall, compared with existing distributed full search

algorithms for task allocation in multi-agent systems, the pro-

posed method has lower computational and communica-

tion cost because it uses D-NSGA3 and the greedy strategy

for heuristic search instead of enumerating every possible

solutions. Compared with existing distributed local search

algorithms and auction mechanism-based algorithms for task

allocation in multi-agent systems, the proposed method could

achieve solutions with better diversity and quality because

D-NSGA3 employs the non-dominated sorting on four objec-

tives (instead of a simple sorting on the weighted sum of

objectives in local search algorithms) and uses a selection

operator based on a set of reference points, which is spe-

cially designed for maintaining solution diversity. Compared

with existing distributed ant colony algorithms and particle

swarm optimization algorithms for task allocation in multi-

agent systems, the proposed method comprehensively con-

siders a large amount of constraints related to time, resources,

locations and agent functions usually involved in large-

scaled multi-agent systems, and this makes the proposed

method produces more reasonable and practical task alloca-

tion solutions. Moreover, the proposed algorithm considers
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the optimization of four widely-used objectives simultane-

ously, which is rarely considered in existing methods.

VII. CONCLUSION

This paper proposes a distributed task allocation algorithm

called D-NSGA3-Greedy for multi-agent systems based on

a many-objective evolutionary algorithm, the Master-Slave

model and a greedy algorithm. D-NSGA3-Greedy is used

to optimize the four widely-studied objectives, i.e., maxi-

mizing the number of successfully executed tasks, maximiz-

ing the benefits of task execution, minimizing the resource

consumption, and minimizing the time cost, simultaneously.

D-NSGA3-Greedy exploits the population diversity of many-

objective evolutionary algorithms to improve the horizontal

searching ability, and it combines the greedy algorithm to

improve the vertical local optimizing ability. The experi-

mental results show that D-NSGA3-Greedy can effectively

solve large-scale task allocation problems. And compared

with MSEA, D-NSGA3-Greedy can obtain better and more

diverse non-dominated solutions.
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