
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING l&35-44 (i 990)

Task Allocation onto a Hypercube by Recursive Mincut Bipartitioning

F. ERCAL,* J. RAMANUJAM, AND P. SADAvAPP,4Nt

Department of Computer and Information Science, The Ohio State University, Columbus, Ohio 43210

An efficient recursive task allocation scheme, based on the
Kernighan-Lin mincut bisection heuristic, is proposed for the
effective mapping of tasks of a parallel program onto a hyper-
cube parallel computer. It is evaluated by comparison with an
adaptive, scaled simulated annealing method. The recursive al-
location scheme is shown to be effective on a number of large
test task graphs-its solution quality is nearly as good as that
produced by simulated annealing, and its computation time is
several orders of magnitude less. o 1990 Academic PIW, hc.

1. INTRODUCTION

The task allocation problem is one of assigning the tasks
of a parallel program among the processors of a parallel
computer in a manner that minimizes interprocessor com-
munication costs while simultaneously maintaining com-
putational load balance among the processors [21. In gen-
eral, given a weighted task interaction graph (I’, E) charac-
terizing the parallel program, with vertex weights
representing computational load of the processes and edge
weights capturing the interprocess communication de-
mands, the problem is that of assigning the vertices of the
task graph onto processors in a manner that optimizes some
cost criterion. This problem is known to be NP-complete
except under a few special situations [10,261. Hence satis-
factory suboptimal solutions obtainable in a reasonable
amount of computation time are generally sought [5, 7-
1 1, 14, 16, 18-2 1, 23-25 1. In this paper, a very efficient
algorithm, based on the Kernighan-Lin graph-bisection
heuristic [111, is proposed for the task allocation problem
in the context of a hypercube parallel computer. The effec-
tiveness of the algorithm is evaluated by comparing the
quality of mappings obtained with those derived using sim-
ulated annealing [4, 12, 141 on the same sample problems.

The approach proposed in this paper uses a recursive di-
vide-and-conquer strategy. The optimality criterion used is
the total weighted interprocessor communication cost un-

* Current address: Department of Computer Engineering and Informa-

tion Science, Bilkent University, Ankara, Turkey.

‘/’ This work was supported in part by an Air Force DOD-SBIR program

through Universal Energy Systems, Inc. (S-776-000-001), and by the State

of Ohio through the Thomas Alva Edison Program (EES-529769).

der the mapping, subject to the constraint that the compu-
tational loads on the processors be balanced to within a
specified tolerance. Repeated recursive bipartitioning of the
task graph is performed, with the partition at the kth level
determining the kth bit of each task’s processor assignment.

The effectiveness of the proposed recursive allocation
scheme is evaluated by comparing the mappings obtained
on test task graphs with those obtained using the well-
known probabilistic optimization technique of simulated
annealing. Since the task allocation problem with arbitrary
weights for the tasks (graph vertices) must be viewed as a
constrained optimization problem and the simulated an-
nealing technique cannot be directly applied to constrained
optimization, the load-balancing constraint must be incor-
porated through use of a penalty term in the optimized cost
function. The coefficient used for this penalty term is very
critical to the quality of the solutions obtained with simu-
lated annealing-too low a value results in violation of the
constraints while an excessively high value results in local
optima traps for finite-time annealing [171. A scaled an-
nealing approach [171 is therefore used to determine an
effective value for the penalty-term coefficient. The pro-
posed recursive allocation scheme is shown to produce very
good mappings in a significantly shorter time (by several
orders of magnitude) than simulated annealing.

The paper is organized as follows. We begin by explaining
the mapping problem and the formulation of the cost func-
tion in Section 2. Section 3 details the proposed recursive
allocation scheme; the scheme is compared with the two-
phase approach. Section 4 elaborates on the empirical
scaled approach taken in applying simulated annealing to
the task allocation problem. Section 5 compares the recur-
sive allocation approach to the use of simulated annealing,
with respect to quality of mappings produced, as well as the
computation time requirements. A brief summary in Sec-
tion 6 concludes the paper.

2. THE MAPPING PROBLEM

In this section, we formalize the mapping problem con-
sidered and develop the cost function that we attempt to
minimize. The parallel program is characterized by a Task
Interaction Graph (TIG), G(V, E), whose vertices, V = { 1,
2 2 . . . > N) , represent the tasks of a program, and edges, E,

35
0743-7315/90 $3.00

Copyright 0 1990 by Academic Press, Inc.
All rights of reproduction in any form reserved.

36 ERCAL, RAMANUJAM. AND SADAYAPPAN

correspond to the data communication dependencies be-
tween those tasks. The weight of a task i, denoted wi, repre-
sents the computational load of the task. The weight of an
edge (i, j) between i and j, denoted cij, represents the rela-
tive amount of communication required between the two
tasks.

The parallel computer is represented as a graph G(P, E,) .
The vertices P = { 1, 2, . . . , K} represent the processors
and the edges E,, represent the communication links. The
system is assumed to be homogeneous, with all processors
equally powerful and all communication links capable of
the same rate of communication. Hence, in contrast to the
Task Interaction Graph, no weights are associated with the
vertices or edges of the Processor Interconnection Graph
(PIG). The processors are assumed either to execute a com-
putation or to perform a communication at any given time,
but not to do both simultaneously. The cost of a communi-
cation is assumed to be proportional to the size of the mes-
sage and the distance between the sender and receiver. The
distance d,, between processors q and r is defined as the
minimum number of links to be traversed to get from q to
r; i.e., it is the length of the shortest path from q to r. By
definition, d4, = 0 if q = Y.

The task-to-processor mapping is a function M: V’ + P.
M(i) gives the processor onto which task i is mapped. The
Task Set (TS,) of a processor q is defined as the set of tasks
mapped onto it:

TS,= {j) M(j)=q}, q= l,..., K.

The Work Load (WL,) of processor q is the total computa-
tional weight of all tasks mapped onto it,

WL,= c w,, q= l)...) K,
jETSq

and the idealized average load is given by WL = (1 /K)
X C ;“=, WLj. The Communication Set (C’S,) of processor q
is the set of the edges of the Task Interaction Graph that go
between it and some other processor under the mapping M:

CS,= {(i,j) I M(i)=qandM(j)#q}, q= l,...,K.

The Communication Load (CL,) of processor q is the total
weighted cost of the edges in its Communication Set, where
each edge is weighted by the physical path length to be tra-
versed under the mapping M:

CL, = 2 cu*dM(i)MO), q = 1,. . .) K.
(i, j)ECS 4

Cost functions that have been used with the task allocation
problem may be broadly categorized as belonging to one of
two models: a minimax cost model [15, 19, 221 or a

summed total cost model. With the minimax cost model,
the total time required (the execution time + communica-
tion time) by each processor under a given mapping is esti-
mated and the maximum cost (time) among all processors
is to be minimized,

min{max(K?“*CL4+K~M*IVL4)},
M 4

(1)

q= I,...,K,

where KyM and KyM are proportionality constants reflect-
ing the relative cost of a unit of communication and a unit
of computation (execution), respectively. The cost here
does not include synchronization delays.

The summed-total-cost model may be motivated as fol-
lows. Ideally, the total computational load should be dis-
tributed uniformly among all processors and no communi-
cation costs should be incurred at all. In practice, of course,
no mapping will match this ideal. The merit of a mapping
may be measured in terms of its deviation from the ideal.
With respect to load distribution, this may be expressed as
the sum among all processors of (the absolute values of) the
deviation of the actually assigned load and the known ideal
average load. With respect to communication, since in the
ideal case we would have no communication at all, the total
communication load in the system serves as a good measure
of the deviation from the ideal.

Cost (M) = Penalty for communication

+ Penalty for computation imbalance

m$(KfC* 5 CL, + Kf”* g 1 WLi - WL I),

(2)

i= I i= I

where KSc and KfC are proportionality constants reflecting
the relative penalties for communication and computa-
tional load imbalance, respectively. Whereas KyM and
KyM used with the minimax cost model capture the physi-
cal system parameters of interprocessor communication la-
tency per word and instruction cycle time, respectively, a
physical interpretation for Ksc and Kfc under the summed
cost model is not as readily given.

Between these two approaches to modeling the effec-
tiveness of a mapping, the minimax model is the conceptu-
ally more accurate one. However, in practice, it is the more
difficult one to work with, especially in the context of local-
search-based optimization techniques, where a cost mea-
sure that is incrementally computable in a distributed fash-
ion is attractive. Hence many studies [7, 8, 13, 17, 18, 231
have used some form of a summed cost model in preference
to the minimax model. The choice of K:c and Kfc has typi-
cally been rather arbitrary. In order to avoid such arbitrary
choices for the relative values of Ksc and KS’, in this study,
a slightly different summed cost criterion is used-minimi-

TASK ALLOCATION BY RECURSIVE PARTITIONING 37

zation of the summed communication cost alone, subject
to load balancing (within a specified tolerance),

mint C CL,), (3)
M Y

subject to the load-balancing constraint

Thus the desirability of load balancing is decoupled from
the communication cost measure. Such an approach is ap-
pealing since an acceptable value of tol, say 5%, can easily
be chosen in practice, whereas a meaningful relative ratio
for Kfc / Kfc in (2) is not as readily determined.

3. TASK ALLOCATION BY RECURSIVE
MINCUT (ARM)

Kern&an and Lin [1 l] proposed an extremely effective
mincut heuristic for graph bisection, with an empirically de-
termined time complexity of 0(,2.4). Their algorithm is
based on finding a favorable sequence of vertex exchanges
between the two partitions to minimize the number of in-
terpartition edges. The evaluation of sequences of perturba-
tions instead of single perturbations endows the method
with hill-climbing ability, rendering it superior to simple lo-
cal search heuristics. Fiduccia and Mattheyses [6] used
efficient data structures and vertex displacements instead of
exchanges to derive a linear time heuristic for graph parti-
tioning, based on a modification of the algorithm in [1 I].
While the original mincut algorithm of Kernighan and Lin
applied only to graphs with uniform vertex weights, the Fi-
duccia-Mattheyses scheme can handle graphs with variable
vertex weights, to divide it into partitions with equitotal ver-
tex weights.

3.1. Two-Phase Approach Using Mincut Heuristic

The mincut bipartitioning procedure can be used recur-
sively to perform a K-way partition of a graph if K is a power
of 2-by first creating two equal-sized partitions, then inde-
pendently dividing each of these into two subpartitions
each, and so on till K partitions are created. Such a K-way
graph partitioning procedure can be used for performing
task allocation on a hypercube using a two-phase approach,
referred to as 2PM from here on [18] :

1. Task clustering: balanced partitioning of the task
graph into K equal-sized clusters by recursive bipartition-
ing, attempting to minimize intercluster communication
volume; and

2. Processor assignment: assignment of each of the K
clusters to one of the K processors attempting to minimize

Such a division of the task-to-processor mapping prob-
lem into two subproblems has the advantage that any of the
various graph partitioning approaches [6, 1 I] can be used
for the mapping problem, but it also has shortcomings. Due
to the decomposition of the problem, even if each subprob-
lem is optimally solvable (which is not the case for general
task graphs, since both the graph partitioning problem of
step 1 and the graph isomorphism problem involved in step
2 are known to be NP-complete), the mapping problem
may not be optimally solved. Figure 1 provides a specific
example to illustrate this point. A simple regular task graph
is shown with 2a2 nodes, interconnected in an a X 2a rec-
tangular mesh. The optimal bisection of this graph to mini-
mize the cut separates it into two a X a meshes. An optimal
second-level bisection will split each a X a mesh into two
a/2 X a meshes. If the second-level bisections are indepen-

a

T

i

- 2a _____+I

Ccmm. cost = a + a + (a/2) + P’(eR) = 3Sa

b

Comm.cost = a+(a/Z)+(aQ)+a = 3a 01 11

E
00 10

Comm.cost = a+a+a = 3a

FIG. 1. Two-phase vs direct approach to task allocation. (a) Two-
interprocessor communication costs. phase approach. (b) Direct approach

38 ERCAL, RAMANUJAM. AND SADAYAPPAN

dently performed, the configuration shown in Fig. la can
result. In performing the second processor assignment step,
it is impossible to assign clusters to processors of a two-di-
mensional hypercube so that all communication is between
directly connected neighbor processors. Thus the minimum
summed communication cost that can be achieved is 35.2,
as shown. If on the other hand, the two second-level bisec-
tions performed identical cuts, as shown in Fig. 1 b, then the
total communication cost that results is only 3a, for either
choice of optimal cut.

3.2. Direct Approach Using Mincut Heuristic

The example illustrates the disadvantage of performing
the partitioning and the processor assignment indepen-
dently in two distinct phases. The task allocation algorithm
proposed here merges the two phases and hence is called a
direct approach. The essential idea is to make partial proces-
sor assignments to the vertices of the task graph during the
recursive bipartitioning steps. At level k in this process, for
each vertex, the kth bit of the address of its processor assign-
ment is determined. Equivalently, the bisections at level k
may be viewed as successively refining the subcube to which
a vertex is to be assigned. Initially, prior to any partitioning,
the entire hypercube is the single subcube under consider-
ation and each vertex clearly is to be assigned within this
subcube. The first bipartitioning of the task graph separates
the vertices into two groups, each to be assigned to a distinct
subcube of size K/2; i.e., the highest-order bit of the proces-
sor to which a vertex is to be assigned is uniquely deter-
mined. At each succeeding level, during bipartitioning, edge
costs are weighted by the number of differing bits in the par-
tial processor assignments of the two relevant vertices. For
the example shown, the first bisection at level 2 will be arbi-
trarily made, as with the two-phase approach. However,
when the second level 2 bisection is made, when node trans-

fers are considered, the costs due to edges going across to
vertices assigned earlier at this level will be weighted appro-
priately. Consequently, one of the two configurations
shown in Fig. 1 b results rather than a configuration as in
Fig. la.

The task allocation algorithm, termed Allocution by Re-
cursive Mincut (ARM), is sketched in C-pseudocode in Fig.
2. Repeated, recursive bipartitioning is performed, using
procedure mincut . After each bipartitioning step, one bit is
set in the processor assignment of the vertices involved in
the partitioning step, according to the outcome of the parti-
tion. The mincut procedure comprises three phases: the first
phase performs the basic cut minimization, using the proce-
dure calc_GAIN (shown in Fig. 3) to compute the im-
provement in weighted communication cost due to a trial
node transfer; the second phase performs fine-tuning, using
the same mincut heuristic, but now allowing node transfers
from either partition, using a composite measure that incor-
porates load imbalance as well as communication costs-
this is done in order to improve load balance if the resulting
partition at the end of phase 1 was not very well balanced;
finally, if the partition resulting at the end of phase 2 is not
load balanced to within the required tolerance, phase 3 at-
tempts to achieve balance, at the price of added communi-
cation cost. The different phases of mincut algorithms are
described below:

Cut-minimization phase (1). The basic mincut algorithm
used here is similar in spirit to the Fiduccia-Mattheyses
variant of the Kernighan-Lin heuristic. An initial two-way
partition is created by assigning the nodes of the graph, one
by one (in decreasing order of node weights) always to the
partition with smaller total weight (randomly if both are
equal). This results in a load-balanced initial partition.
Phase 1 of the algorithm executes several iterations until
there is no improvement as a result of an iteration. At the

Algorithm ARM (V, tol, depth, Maxdepth = log2 C, SC)

/* Allocation by Recursive Mincut */
/* V : vertex set of the graph G = (V, E) to be partitioned into C clusters */

/* SC : Set of clusters obtained “/

if (depth = Maxdepth) then
/* no more bisection of V ; add it to the set of clusters SC */

SC + SC u v
else /* recursively partition */

1
(origC1, origC2) + initpart(V); /* divide V into two equal-weight initial partitions */
(C,, Cz,) + mincut(origC1, origCz, tol, depth);

- Set the kth bit of map[v] for all 2, E C1 to 0;
- Set the kth bit of map[v] for all w E Cz to 1;

ARM(C1, tol, depth + 1, Maxdepth, SC);

ARM(C2, tol, depth + 1, Maxdepth, SC);

1

FIG. 2. Recursive bisection algorithm.

TASK ALLOCATION BY RECURSIVE PARTITIONING

Algorithm cakGAIN(v, Cl, Cz, k)

/* A global adjacency matrix for the entire graph is used. This routine has access */

/* to all neighbors of v and information about them to calculate the exact gain for */

/* vertex v during any stage of the recursive bipartitioning process */
/* It is assumed that kth bit of map[v] is 0, Vv E C1 and kth bit of map[v] is 1, VW E Cz. */

gv + 0 /* initialize the gain of the vertex v to zero */

for (each neighbor vi of w) do
if (q is in the same cluster where 2, is) then

g,, + gv - cost(v, vi) /* subtract edge-weight from gain */
else

if (edge (vi, v) is in the cut between C’1 and Cz) then

gv + gv + cost(v, vi) /* add edge-weight to the gain */
else /* vi is neither in (2’1 nor in Cz ‘/

if (the k th bit in map[y] is already set) then

/* gain is based on the hamming distance between partial */

/* mappings of 2, and vi considering only the kth bit : */
if (the kth bit of map[v] and map[vi] are identical) then

/* distance will increase by 1 when v is moved to the opposite cluster */
g,, +- gv - cost(v, vi) /* subtract edge-weight from gain */

else /* the kth bit of map[v] and map[vi] are different */
/* distance will decrease by 1 when v is moved to the opposite cluster */

gv + g,, + cost(v, vi) /* add edge-weight to the gain */

endif

endif

endif

endif

endfor /* each neighbor */

FIG. 3. The c&-GAIN algorithm.

39

beginning of each iteration, all nodes are marked as locked
and the gain value of each node is calculated. The gain value
of a node is the resulting reduction in the cost of the cut due
to the transfer of the node from the current partition to the
other partition. After the initial load-balanced partition is
created, a sequence of maximally improving node transfers
from the partition with currently greater load to the parti-
tion with lower load is tried. On each transfer, a node with
the highest gain, i.e., the node which reduces the sum of the
weights of the edges cut maximally, is selected. After each
jransfer, the selected vertex is locked to prevent it from be-
ing chosen more than once in a sequence. Assuming that
the chosen node is transferred, the gains of all unlocked
nodes are updated and a sequence number is associated
with the transfer. The cumulative gain of a sequence of
node transfers is evaluated for each sequence number and
the sequence number that maximizes the cumulative gain
is determined. If the maximum cumulative gain is greater
than zero of if the maximum cumulative gain is zero but
the node transfers lead to better load balancing, all node
transfers with index between 1 and the maximizing se-
quence number are performed and a new iteration is begun.

Fine-tuningphase (2). The second phase of the algorithm
attempts to improve load balancing. The computation in
this phase is similar to that in phase I except that the gain

of each node includes a component indicating the improve-
ment in load balance as a result of the node transfer in addi-
tion to the reduction in the cost of the cut. Thus, for exam-
ple, among nodes that reduce the cost of the cut to the same
extent, node transfers from the heavier partition to the
lighter partition are favored.

Rebalancing for tolerance phase (3). Phase 3 is invoked
only if the sum of weights of vertices in one partition ex-
ceeds that of the other beyond the tolerance level. A mini-
mal sequence of vertex transfers that brings the load imbal-
ance within tolerance is determined and the transfers are
performed as follows: for each node in the heavier partition,
the improvement in load balance is computed and the node
with the greatest improvement is chosen and transferred to
the other partition. If the load imbalance is within toler-
ance, the procedure terminates; otherwise, it is repeated us-
ing the nodes of the heavier partition.

The time complexity of ARM is 0(1 V 1 *log&), because
the depth of recursion is log& and each level has a total of
1 V I vertices to work on.

3.3. Comparison of Two-Phase (2PA4) and Direct (ARM)
Approaches

In this section, we compare 2PM and ARM in terms of
solution quality. Seven test task graphs were used, five of

40 ERCAL, RAMANUJAM, AND SADAYAPPAN

them representative of task graphs arising from finite-ele-
ment applications [7, 191, and two randomly generated
graphs. The target structure is an eight-node hypercube.
The experiments were performed on a Pyramid 9825 pro-
cessor running the Pyramid OSx/4.0 operating system. For
each method, 10 runs were performed, starting each time
with a random initial configuration.

Table I presents a summary of the results obtained, with
respect to the quality of mappings generated; it presents the
minimum, mean, and maximum costs obtained for the
sample runs as well as the standard deviation of the costs.
The mappings generated by ARM were generally slightly
better (~5%) for the first five sample graphs from finite-
element applications, whereas the solutions from ARM for
the last two samples were significantly better (around 10%) .
For larger hypercubes, the difference between 2PM and
ARM is significant for all samples.

4. SIMULATED ANNEALING (SA)

Simulated annealing is a powerful general-purpose com-
binatorial optimization technique proposed in [4, 12, 141;
this is an extension of a Monte Carlo method developed by
Metropolis et al. [161 to determine the equilibrium state
of a collection of particles at any given temperature. The
approach is based on an analogy between the annealing pro-
cess in which a material is melted and cooled very slowly
and the solution of difficult combinatorial optimization
problems. Its basic feature is the ability to explore the con-
figuration space of the problem allowing controlled hill-
climbing moves (changes to a configuration that worsens
the solution) in an attempt to reduce the probability of be-
coming stuck at high-lying local minima. The acceptance
of hill-climbing moves is controlled by a parameter, analo-
gous to the temperature of the material in the annealing
process, that makes them less and less likely toward the end
of the process. In abstracting the method to solve combina-
torial optimization problems, the objective function or the
cost to be optimized is identified with the energy in the an-
nealing process. The method starts with a random initial

configuration, SO, which has a certain cost associated with
it, C,. A new configuration, S, is generated by a perturba-
tion of &, resulting in a new cost, C. The change in cost
AC = C - C,,, is estimated or calculated; if AC < 0, the
move is accepted; if AC > 0, then the move is accepted with
a probability exp(- AC/ T), where T is the parameter that
controls the hill climbing; the parameter T, called tempera-
ture, is gradually reduced during the execution of the algo-
rithm. (See Fig. 4.)

The annealing algorithm
following:

l the perturbation function;
l the acceptance criterion

stated here;

is characterized by the

which has been explicitly

l the temperature update function which is typically of
the form T,,,, = QI(T) * T, where (Y is a function of tempera-
tureandO<ol(T)< 1;

l the equilibrium condition at current temperature,
which is usually referred to as the inner-loop criterion; and

l the freezing point condition, usually referred to as the
stopping criterion.

In general, the inner-loop criterion is specified as a certain
number of iterations of the inner loop, i.e., the number of
attempted new configurations at a given temperature; this
number should be high enough to allow the system to come
to equilibrium at the current temperature. The stopping cri-
terion is usually a certain “low” temperature (Tstop) near
the “freezing” point of the system, i.e., a small positive
value of temperature where the acceptance probability of
hill-climbing moves is extremely low. It is interesting to ob-
serve that if Twere set equal to infinity, the above algorithm
would be nothing but a totally randomized algorithm for
searching through the configuration space; and if Twere set
equal to zero, no hill climbing moves would be accepted,
giving rise to the iterative improvement or local search algo-
rithm. It has been observed that a high constant value of (Y
(around 0.95) has yielded consistently good results for
many applications of simulated annealing [2 1,231.

TABLE I

Comparison of Solution Quality of ARM and Two-Phase Mincut on Sample Graphs

No.

Graph Min cost Mean cost Max cost Std. dev.

I VI 2PM ARM 2PM ARM 2PM ARM 2PM ARM

1 144 102 100 106.1 106.1 112 112 3.3 4.1

2 192 80 80 99.9 91.3 125 117 16.9 Il.4
3 256 69 64 77.5 69.2 94 80 7.8 5.7

4 505 166 163 175.9 175.9 211 203 12.8 12.6

5 602 254 252 278.0 280.0 312 305 17.5 15.2

6 200 16 16 16.6 16 19 16 1.2 0.0

7 400 221 205 233.6 216.4 246 223 8.4 4.6

TASK ALLOCATION BY RECURSIVE PARTITIONING 41

T + T,,;

s +- so;

c + c,;

while (“the freezing point has not yet been reached”) do {

while (“equilibrium at current temperature has not yet been reached”) do {

S new c perturb(S);

c new + estimate of the cost the new configuration, S,,,;

AC + C,,, - C;

ifAC<Othen{

s + LJJ;

c +- GeuJ
} else {

T + random number between 0 and 1;
if r < exp -ACJT then {

s + .%,,;

c +- Glew;

1
T neuJ + update(T)

>

FIG. 4. Simulated annealing algorilhm.

The implementation of simulated annealing described
here uses starting or initial configurations that are generated
by random allocation of tasks among processors. The start-
ing temperature T,, (or T,,) is then determined so as to
give an acceptance probability of 0.9 for the mean increase
in the cost function, for all possible changes to the initial
configuration resulting from a single move from that con-
figuration, i.e., moving a task from one processor to any
processor. With V vertices in the graph and K processors
available for the assignment, a single vertex could be moved
from one processor to any of the remaining K - 1 proces-
sors, giving rise to a total of N = V * (K - 1) possible neigh-
boring moves. The freezing point is set so that a move in-
creasing the cost function by a unit value has an acceptance
probability of 2 P31. The inner-loop criterion, i.e., the num-
ber of moves attempted at each temperature to allow the
system to attain equilibrium at that temperature, is speci-
fied as a multiple (M) of N; it is set to M* N. It has been
observed experimentally that as the value of A4 is increased
from a small value such as 0.01, the quality of solutions
obtained improves till a certain value of M, say 1, after
which further increase of A4 results in no significant im-
provement in the solution quality; in addition, the running
time of simulated annealing is proportional to the value of
M. The sequence of values chosen for temperature T
through the update function is known as the cooling sched-
ule. The cooling schedule used here is given by

T new = 0.95 * T;

i.e., after M*N moves at T are attempted, the temper-
ature is lowered to T,,,. The time complexity of simu-

lated annealing for task allocation as implemented is

O(M*l vl*K*log(T,,,,/T,,,,)).

4. I. Constrained Optimization by Simulated Annealing

The simulated annealing algorithm outlined in the previ-
ous section is applicable to the unconstrained optimization
of an objective function. However, the mapping problem
addressed here requires the minimization of interprocessor
communication costs, subject to the load-balance con-
straint. The way to incorporate such constraints in the ap-
plication of simulated annealing is through the addition of
penalty terms in the function being minimized, so that vio-
lation of any constraint(s) results in a significant contribu-
tion to the total cost function from the penalty term(s). For
the task allocation problem, besides the communication
cost to be minimized, an additional penalty term propor-
tional to the sum of load deviations from the ideal average
is added, to give a two-part cost function similar to Eq. (2)
in Section 2:

Cost(M)= ; CLi+/3*&vLi- WL,. (4)
1=1 I=1

The value of the coefficient ,6 used in such a two-part
summed cost function is crucial in determining the quality
of solutions generated. Clearly, if p is very small, the penalty
term will make an insignificant contribution to the total
cost and consequently will be ineffective in generating map-
pings that satisfy the load-balance constraint. On the other
hand, if ,f3 is very large, the penalty term will have a domi-
nant effect and the resulting mappings may have relatively

42 ERCAL, RAMANUJAM, AND SADAYAPPAN

high communication costs. In fact, a large ,L3 has a detrimen-
tal effect even during the mapping of task graphs that have
perfectly load-balanced optimal mappings. This is a conse-
quence of a local optimum trap phenomenon that manifests
itself with finite-step simulated annealing. This phenome-
non is explored in greater detail in [17] and is briefly ex-
plained below.

An examination of the move acceptance/rejection trace
of annealing runs with a high /3 reveals that the annealing
algorithm invariably gets “trapped” in a configuration that
is almost perfectly load-balanced but has high total commu-
nication costs. Whereas a sequence of moves from this con-
figuration could lead to a cumulative cost improvement,
any single move would only result in an overall increase in
cost due to the increased load-imbalance cost in going from
a balanced configuration to a load-imbalanced configura-
tion. Except at high temperatures, the probability of accep-
tance of any move out of such a local optimum trap is ex-
tremely small. The annealer thus gets trapped into a local
optimum configuration and stays in that configuration for
a significant fraction of the tail end of the cooling schedule,
resulting in poor solutions. As might be expected, this ten-
dency to fall into a local optimum trap is dependent on the
value of p used-the higher its value, the greater the ten-
dency to get stuck at a local optimum.

Two approaches to avoiding such local optima traps are
evaluated in [17 1. One approach involves the empirical de-
termination of the relative values for the coefficients of the
terms of the two-part cost function that results in the best
mappings. This can be done by performing simulated an-
nealing runs for chosen values of /3. As /3 is decreased, the
communication cost of the mapping obtained tends to de-
crease. As fl becomes very low, however, the load-balance
constraint is violated. The following strategy is used to select
p values. Starting with some initial value of p, say 1, simu-
lated annealing is tried and p doubled if the solution ob-
tained violates the load-balance criterion. This value of &
p”, is an upper bound on the optimal value of fi to be used.
Starting with the previously tried value of ,6 (or 0 if the first

trial provided a valid mapping) as P’, the interval between
@and p” is repeatedly halved, with one of the two endpoints
changed to the newly tried mean value, until a termination
criteiron (e.g., three successive invalid mappings) is met.
The final value of fl” is taken as the optimal value to use.
Since a number of trial runs are required, the computation
time required is increased. However, the trial runs can be
performed with a much smaller value of M (say one-tenth)
than the final optimization runs.

An alternate approach is to use vertex swaps as the con-
figuration perturbation mechanism for simulated annealing
instead of vertex displacements. If this is done, for the case
of graphs with uniform vertex weights, it is easy to see that
the penalty term in (4) will stay unchanged for all configu-
rations reachable from the initial configuration-thus the
use of a two-part cost function will not lead to local optima
traps during simulated annealing. Even when the vertex
weights of the task graph are variable, if a perfectly load-
balanced configuration is reached, there will likely be many
other load-balanced configurations that can be reached
from the current one by a single task exchange. It is found
in practice [17] that local optima traps do not occur with
this approach in general, but the quality of solutions ob-
tained with the scaled approach is consistently superior.
Hence the scaled annealing approach is used in deriving
mappings for comparison with solutions obtained with the
proposed recursive allocation scheme.

In the case of the scaled simulated annealing approach,
different values of A4 were tried. Recall that the value of M
prescribes the inner-loop criterion in the implementation
described here; i.e., the number of moves attempted at each
temperature is M* N, where N = I’(K - 1) and V is the
number of vertices in the task graph and K is the number
of processors. The results are given in Table II-the table
presents results for three different values of M, namely 1,5,
and 15. At A4 = 1, SA produced very poor quality mappings
but as the value of A4 is increased, the solution quality is
significantly better, as expected. At A4 = 15, we observe the
best solutions we have obtained for several sample graphs.

No.

Graph

I VI

TABLE II

Comparison of Solution Quality of SA for Different Values of M

Min cost Mean cost Max cost Std. dev.

1 5 15 I 5 15 1 5 15 I 5 15

I 144 98 98 98 102.9 99.7 98.0 110 105 98 5.1 2.7 0.0
2 192 81 80 80 104.1 94.7 90.0 124 120 100 14.1 12.3 10.0
3 256 66 75 64 84.0 80.6 69.5 94 85 78 7.8 2.8 5.6
4 505 169 158 157 234.5 173.7 169.0 277 202 180 35.6 17.9 10.8
5 602 264 252 241 343.4 282.3 259.2 402 347 288 33.3 26.6 15.3
6 200 20 18 19 23.6 23.9 21.6 28 29 26 2.5 3.5 2.1
7 400 196 185 178 212.6 192.8 185.6 226 198 200 9.0 3.5 5.9

TASK ALLOCATION BY RECURSIVE PARTITIONING 43

5. COMPARISON OF ARM AND SA

In this section, we compare ARM and SA in terms of
solution quality and running times. Seven test task graphs
were used, five of them representative of task graphs arising
from finite-element applications [7, 191, and two randomly
generated graphs. The target structure is an eight-node hy-
percube. The experiments were performed on a Pyramid
9825 processor running the Pyramid OSx/4.0 operating
system. For each method, 10 runs were performed, each
starting with a random initial configuration. We note that
each method produces mappings that are significantly bet-
ter than random mappings. The mappings generated by SA
were generally slightly better, although the solutions ob-
tained by ARM were never worse by more than 10% in
terms of total communication costs. We note from Section
4.1 that the quality of solutions from SA is a function of M.

Table III presents the running times required for each test
case by the following methods: 2PM, ARM, and SA for A4
= l,M=5,andM= 15.Itcanbeseenthat2PMandARM
are over 100 times as fast as SA for M = 5. A smaller value
of M results in a proportionately smaller running time.
However, with A4 = 1, the solutions obtained are poorer
than ARM’s mappings, while the running times are at least
20 times worse. The running times required by SA are thus
excessive. In fact, in the case of the samples motivated from
finite-element analysis, the time taken to perform the map-
ping was larger than the time that would be required for a
typical finite-element run on such a sample! ARM is thus
clearly preferable in a practical context.

6. CONCLUSIONS

A computationally efficient approach to mapping task
graphs onto a hypercube parallel computer was presented.
The algorithm was based on a recursive divide-and-conquer

TABLE III

Comparison of Running Times of ARM and SA
on Sample Graphs

Running times(s)

Graph characteristics Mincut Simulated annealing

No. /VI Description 2PM ARM M=l M=5 M=15

U-shaped
1 144 mesh 4.9 4.9 371.7 1743.5 5169.4
2 192 Donut S-point 6.6 6.6 485.7 2319.0 7055.9
3 256 Regular mesh 7.4 7.4 475.4 2384.6 6841.4
4 505 Irregular mesh 22.9 24.7 1388.2 6486.1 19391.8
5 602 Plate nonmesh 29.3 30.1 1673.3 7928.5 23652.6
6 200 Random 4.9 5.0 386.0 1850.3 5390.9
7 400 Random 11.8 11.8 733.6 3487.4 10843.2

strategy, using a variant of the Kernighan-Lin mincut bi-
partitioning heuristic. The effectiveness of the scheme was
evaluated by comparison with the combinatorial optimiza-
tion technique of simulated annealing. The constrained op-
timization problem of balanced mapping of a task graph
onto a hypercube was modeled for simulated annealing us-
ing a penalty term in the optimization function to enforce
the load-balance constraint. A problem with severe local
optima traps to finite-step annealing led to the use of an
adaptive, scaled annealing approach. The quality of solu-
tions produced by the recursive allocation approach was
within 10% of the solutions from simulated annealing, but
required less than one-hundredth the computation time.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

REFERENCES

Berman, F. Experience with an automatic solution to the mapping
problem. In Jamieson, L. H., Gannon, D. B., and Douglass, R. J.
(Eds.). The Characteristics of Parallel Algorithms. MIT Press, Cam-
bridge, MA, 1987, pp. 307-334.

Bokhari, S. H. On the mapping problem. IEEE Trans. Comput. C-30,
(Mar. 1981),207-214.

Bollinger, S. W., and Midkiff, S. F. Processor and link assignment in
multicomputers using simulated annealing. Proc. I988 International
Conji?rence on Parallel Processing, Vol. I, Architecture, pp. l-7.

Cerny, V. Minimization of continuous functions by simulated anneal-
ing. Research Report, Research Institute for Theoretical Physics, Uni-
versity of Helsinki, No. HU-TIT-84-5 1, 1984.

Efe, K. Heuristic models of task assignment scheduling in distributed
systems. Computer 15,6 (June 1982), 50-56.

Fiduccia. C. M., and Mattheyses, R. M. A linear-time heuristic for
improving network partitions. Proc. 19th Design Automation Confer-
ence, June 1982,~~. 175-181.

Flower, J. W., Otto, S. W.. and Salama, M. C. A preprocessor for irreg-
ular linite element problems. Tech. Rep. Caltech Concurrent Compu-
tation Project, Report No. 292, June 1985.

Fox, G. C. Load balancing and sparse matrix vector multiplication on
the hypercube. Tech. Rep. Caltech Concurrent Computation Project,
Report No. 327, July 1985.

Fox, G. C., and Otto, S. W. Concurrent computation and the theory
of complex systems. In Moler, C. B. (Ed.). Hypercuhe Multiprocessors
1986. SIAM, Philadelphia, PA, 1987, pp. 244-268.

Kasahara, H., and Narita, S. Practical multiprocessor scheduling algo-
rithms for efficient parallel processing. IEEE Trans. Comput. C-33, 1 I
(Nov. 1984), 1023-1029.

Kernighan, B. W., and Lin, S. An efficient heuristic procedure for par-
titioninggraphs. Eel/Systems Tech. J. 49,2 (1970), 29 l-308.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by sim-
ulated annealing. Science 220 (1983), 67 l-680.

Kramer, O., and Muhlenbein, H. Mapping strategies in message-based
multiprocessor systems. Proc. PARLE 87, Vol. 1. Lecture Notes in
Computer Science, Vol. 258. Springer-Verlag, Berlin, June 1987.

van Laarhoven. P. J. M, and Aarts, E. H. L. Simulated Annealing:
Theory and Applications. Reidel, Dordrecht, 1987.

Lo, V. M. Heuristic algorithms for task assignment in distributed sys-
tems. IEEE Trans. Comput. C-37, 11 (Nov. 1988), 1384-1397.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and

44 ERCAL, RAMANUJAM. AND SADAYAPPAN

Teller, E. Equation of state calculations by fast computing machines.
J. Chem. Phys. 21(1953), 1087-1092.

17. Ramanujam, J., Ercal, F., and Sadayappan, P. Task allocation by sim-
ulated annealing. Proc. International Conference on Supercomputing,
Boston, MA, May 1988, Vol. III, Hardware& Software, pp. 471-480.

18. Sadayappan, P., and Ercal, F. Cluster partitioning approaches to map-
ping parallel programs onto a hypercube. Proc. International Confer-
ence on Supercomputing. Lecture Notes in Computer Science, Vol.
297. Springer-Verlag, Berlin, June 1987, pp. 475-497.

19. Sadayappan, P., and Ercal, F. Nearest-neighbor mapping of finite ele-
ment graphs onto processor meshes. IEEE Trans. Comput. C-36, 12
(Dec. 1987), 14081424.

20. Schwan, K., and Gaimon, C. Automating resource allocation in the
Cm* multiprocessor. Proc. 5th International Conference on Distrib-
uted Computing Systems, May 1985, pp. 310-320.

2 1. Sechen, C., and Sangiovanni-Vincentelli, A. The TimberWolf place-
ment and routing package. IEEE J. Solid-State Circuit.% SC-20, 2
(Apr. 1985), 510-522.

22. Shen, C., and Tsai, W. A graph matching approach to optimal task
assignment in distributed computing systems using a minimax crite-
rion. IEEE Trans. Comput. C-34,3 (Mar. 1985), 197-203.

23. Shield, J. Partitioning concurrent VLSI simulation programs onto a
multiprocessor by simulated annealing. IEEE Proc. Part G, 134, 1
(Jan. 1987), 24-28.

24. Sinclair, J. B. Efficient computation ofoptimal assignments for distrib-
uted tasks. J. Parallel Distrib. Comput. 4,4 (Aug. 1987), 342-362.

25. Sinclair, J. B., and Lu, M. Module assignments in distributed systems.
Proc. 1984 Computer Networking Symposium, Gaithersburg, MD,
Dec. 1984, pp. 105-I 11.

Received December 8, 1988

26. Stone, H. S. Multiprocessor scheduling with the aid of network flow
algorithms. IEEE Trans. Software Engrg. SE-3, 1 (Jan. 1977), 85-93.

FIKRET ERCAL was born in Konya, Turkey. He received the B.S.
(with highest honors) and MS. degrees in electronics and communication
engineering from the Technical University of Istanbul, Turkey, in 1979
and 198 1, respectively, and the Ph.D. degree in computer and information
science from The Ohio State University in 1988. From 1979 to 1982, he
served as a teaching and research assistant in the Department of Electrical
Engineering, Technical University of Istanbul. He has been a scholar of
the Turkish Scientific and Technical Research Council since 197 I. Cur-
rently, he is an assistant professor at Bilkent University, Ankara, Turkey.
His research interests include parallel computer architectures, algorithms,
and parallel and distributed computing systems. Dr. Ercal is a member of
Phi Kappa Phi.

J. RAMANUJAM received the B. Tech degree in electrical engineering
from the Indian Institute of Technology, Madras, in 1983 and the MS.
degree in computer science from The Ohio State University in 1987, where
he is currently working toward the Ph.D. degree. His research interests
include parallel computer architecture, parallelizing compilers, and paral-
lel algorithms.

P. SADAYAPPAN received the B. Tech degree from the Indian Institute
of Technology, Madras, and the M.S. and Ph.D. degrees from the State
University of New York at Stony Brook, all in electrical engineering. Since
1983 he has been an assistant professor with the Department of Computer
and Information Science, The Ohio State University, Columbus. His re-
search interests include parallel computer architecture, parallel algorithms,
and applied parallel computing.

