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TASK ANALYSIS IN INSTRUCTIONAL DESIGN:
SOME CASES FROM MATHEMATICS

Lauren 13. Resnick

Leaining Research and Development Center
University of Pittsburgh

This paper takes as its general theme the actual and potential role of
task analysis, particularly information-processing analysis, in instructional
theory and instructional design. Some definitions are needed to make this
opening statement sensible. The term instruction is used here in its most
general sense to refer to any set of environmental conditions that are delib-
erately arranged to foster increases in competence. Instruction thus in-
cludes demonstrating, tolling, and explaining, but it equally includes physi-
cal arrangements, structure of presented material, sequences of task de-
mands, and responses to the learner's actions. A theory of instruction,
therefore, must concern itself with the relation between any modifications
in the learning environment and resultant changes in competence. When
the competence with which we are concerned is intellectual, development
of a theory of instruction requires a description of states of intellectual
competence, and ultimately, of relations between these states and manipu-
lations of the learning environment.

In developing a theory of instruction for intellectual or cognitive
domains, task analysis is central. I mean by task analysis the study of
complex performances so as to reveal the psychological processes involved.
These analyses translate "subject-matter" descriptions into psychological
descriptions of behavior. They provide psychologically rich descriptions.

of intellectual competence and are thus critical in bringing the constructs
of psychology to bear on instructional design.
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Psychological analysis of complex tasks is not a new idea. Task
analyses are performed, although not usually under that name, in virtually
all psychological investigations of cognitive activity. Whenever perform-
ances are analyzed into components- -for experimental, interpretive, or
theoretical purposes--task analysis of some kind is involved. Although

the study of complex cognitive tasks has never dominated empirical psy-
chology, significant occasions exist in which psychologists have turned their
attention to such tasks. Not all have been instructional in intent but several
important attempts bear examination because they have substantially influ-
enced instructional theory or practice, or because, considered with instruc-
tional. questions in mind, they offer insight into the possible nature of a

theory of instruction based on cognitive psychology.

Be Cause task analysis is pervasive in psychological research, delin-
eating the scope of its usefulness is important when instructional concerns
are central. ;.'"e-'rtal criteria can be used to evaluate the potential contri-
bution to instruction of different approaches to the psychological analysis of
tasks. Four such criteria seem particularly important:

Instructional relevance. Are the tasks analyzed ones we want to
teach? That is, are the tasks studied because of their instructional or
general social relevance, or simply because they are easy to study, have
a history of past research that makes results easy to interpret, or are
especially suited to elucidating a point of theory? The criterion of instruc-
tional relevance implies that most tasks analyzed will be complex relative
to many of the laborator'y tasks that experimental psychologists find useful
when pursuing non-instructional questions.

Psychological formulation. Does the analysis yield descriptions of
the task in terms of processes or basic units recognized by the psychologi-
cal research community? Task analysis is a means of bringing complex
tasks, which have generally resisted good experimental analysis, into con-
tact with the concepts, methods, and theories of psychology. Thus, while



the starting point for instructional task analysis is prescribed by social
decisions--what is important to teach--the outcomes of such analysis, the
terms used in breaking apart complex performances, must be determined
by the state of theory and knowledge in psychology.

It is not always easy to fulfill both these criteria at once; instructional
relevance is defined in terms different from those which psychological re-
searchers use in building their theories. Nevertheless, it is important to
try to analyze instructional tasks in terms that contact the current body of
knowledge and constructs in psychology so that instructional practice can

profit from scientific findings as they exist and as they develop.

Instructability. Because our concern here is with task analysis as an
aid to instruction, an obvious question is whether the results of a particular
analysis are useable in instructional practice. In other words, does the

task analysis reveal elements of the task that lend themselves to instruc-
tion, i.e. , that are "instructable?" It is the function of task analysis to
examine complex performances and display in them a substructure that is
teachable--either through direct instruction in the components, or by prac-
tice in tasks that call upon the same or related processes.

Recognition of stages of competence. Does the task analysis recog-
nize a distinction between early and later forms of competence? Analyses
for instructional purposes cannot just describe the expert's performance
(although such description will almost always be a part of such analyses).

They must also describe performance characteristics of novices and
attempt to discover or point to key differences between novices and experts,
suggesting thereby ways of arranging experiences that will help novices be-

come experts. Instructional task analysis, in other words, should eluci-
date the relation between activity during learning and competence that

results from learning. It should suggest ways of organizing knowledge to
assist in acquisition, recognizing that this organization may differ from
organizations that are most efficient for expert use of that knowledge.
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In summary, four criteria can be applied in assessing the contribu-
tions of psychological task analyses to instruction: (a) instructional rele-
vance, (b) psychological formulation, (c) instructability, and (d) recognition
of stages of competence. I shall examine several prominent approaches to
the psychological analysis of camplex tasks and consider their contributions
to instruction in light of these criteria. I begin with some important past
efforts to describe intellectual competence in psychological terms, and then
turn to current information-processing approaches to task analysis. In

order to make the don-lain of the paper manageable, discussion is limited
to analysis of mathematics tasks. The work discussed, however, does not
exhaust task analysis efforts in mathematics. Rather, it highlights certain
cases that have considerably influenced psychology or instruction, or both,
and that form landmarks in whatever might today be written of the history
and current status of this branch of instructional psychology.

A Selective History of Task Analysis

I will discuss first the work of three predecessors of modern informa-
tion-processing task analysis, in each case using work on mathematics as
the substantive example. These are: (a) work in the associationist/behav-
iorist tradition (Thorndike, Gagne); (b) work of the Gestalt school (espec-
ially Max Wertheimer); and (c) the Piagetian task analyses. Both substan-

tively and methodologically, the approaches of these groups to task analysis
reflect differences in their theoretical positions, differences which in turn
affect the kinds of contributions that each can make to instruction.

The Associationist/Behaviorist Tradition

Thorndike's analyses in terms of S-R bonds. In the early part of this
century, experimental and educational psychology were closely allied. Many

of the major psychologists of the period up to about 1930 were actively en-
gaged in both laboratory research and applied research, some of it relevant
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to instructional practice. One of the foremost of these was Edward L.
Thornlike. His work on The Psychology of Arithmetic, published in 1924,

represents his attempt to translate the associationist theory of "laws of
effect," which he himself was active in developing, into a set of prescrip-
tions for teaching arithmetic. In the preface to the book, Thornlike states
that there is now a new point of view concerning the general process of 1
learning. We now understand that learning is essentially the formation of
connections or bonds between situations and responses, that the satisfying-
ness of the result is the force that forms them, and that habit rules in the
realm of thought as truly and as fully as in the realm'of action" (p. v).
Based on this then widely agreed upon theory of psychological functioning,

Thorndike proposed a pedagogy that has extensively influenced educational
practice for many years.

Thorndike proposed the analysis of arithmetic tasks in terms of
specific connections, or bonds, between sets of stimuli and responses,
and the organization of instruction to maximize learning of both the indi-
vidual bonds and the relations among them. His book began by discussing
the general domains of arithmetic for which bonds must be formed-for
example, the meanings of numbers, the nature of decimal notation, the

ability to add, subtract, multiply, and divide, and the ability to apply vari-
ous concepts and operations in solving problems. Thorndike then spent
some fifty pages discussing the types of bonds that give precise meaning
to this br6ad definition of the domain of arithmetic. His analysis did not
approach the level of individual stimulus-response pairs but remained on
the more general level of connections between situations and sets of
responses. Citing numerous examples, he argued that certain kinds of
bonds taught in many of the standard textbooks of the day were misleading
and should not be taught, while other helpful bonds were neglected in peda-
gogical practice. For example, verifying results of computations, learn-
ing addition and subtraction facts for fractions, and solving equLions (even
before algebra was added to the cnrriculum) were considered "desirable"
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bonds; while senseless drill in finding the lowest common denominator of

fractions (when use of any common denominator would lead to solution of

problems) and the posing of problems unrelated to real-life situations led

to formation of "wasteful and harmful" bonds which made arithmetic con-

fusing and unpleasant. Discussion of appropriate and inappropriate forms

of measurement of the bonds or elements of -arithmetic knowledge were

also included. Thus, the book translated a Standard school subject into

terms--collections of bonds--that suggested applications of known laws of

learning to the problems of instruction.

The laws of learning, and thus of pedagogy, were for Thorndike those

dealing with such drill and practice as would strengthen the bonds. Ques-

tions such as amount of practice, under-. and over-learning, and distribu-

tion of practice were considered. These are easily recognized as topics

that have continued to occupy psychologists--although rarely directly in

the context of school instruction--and that heavily though indirectly influ-
&dm/ 4 ('X. X r,

ence instructional practice even now. What is important about Thorndike's

work, however; is that he was concerned not only with the laws of learning

in general, but also with the laws of learning as applied to a particular dis-

cipline, arithmetic. He left the laboratory to engage in applied research,

but brought with him the theory and to a large extent the methodology of the

experimental laboratory. He thus began a tradition of experimental work

in instruction by psychologists. This tradition was interrupted for many

years but is now being revived.

Gagne's hierarchies of learning sets. While Thorndike recognized

the need for a theory of sequencing in his presentation of bonds as consti-

tuting the subject matter of arithmetic, he proposed no systematic theory

of sequencing. In the decades following Thorndike's work, mathematics

educators and educational psychologists (e.g., Brownell & Stretch, 1931;

Hydle & Clapp, 1927) studied with varying degrees of care and precision,

the relative difficulty of cliiferent kinds of mathematical problems. They

6
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thus empirically, if not theoretically, extended Thorndike's work in instruc-
tional analysis and suggested that arranging tasks according to their order
of difficulty would optimize learning, especially of the more difficult tasks.
Skinner's (1953) prescription for the use of "successive approximations"
in instruction represented a refinement of this basic idea. But neither
Skinner nor his immediate .interpreters proposed a systematic strategy
for generating the order of successive approximationsi. e. , the sequence
of tasks in instruction. Not until the 1960s and Gagne's (1962, 1968) work
on hierarchies of learning did any organized theory of sequencing for in-
structional purposes appear within the behaviorist tradition.

Learning hierarchies are nested sets of tasks in which positive trans-
fer from simpler to more complex tasks is expected. The "simpler" tasks
in a hierarchy are not just easier to learn than the more complex; they are
included in or are components of the more complex ones. Acquiring a com-
plex capability, then, is a matter of cumulating capabilities through succes-
sive levels of complexity. Transfer occurs because simpler tasks are in-
cluded in the more complex. Thus, learning hierarchies embody a special
version of a "common elements" theory of transfer.

Widespread use of hierarchy analysis has begun among instructional
designers. particularly in mathematics and science (see White, 1973). For
the most part, the analyses have been of the kind Gagne originally described.
Thus, hierarchies for instruction are typically generated by answering, for
any particular task, the question, "What kind of capability would an indi-
vidual have to possess to be able to perform this task successfully, were
we to give him only instructions?" One or more subordinate tasks are speci-
fied in response to this question, and the question is applied in turn to the
subordinate tasks themselves.

Figure 1 shows an example of one of Gagne's hierarchies. The tasks
described in the top boxes are the targets for instruction. Lower boxes

show successive layers of subordinate capabilities, simpler tasks whose
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TASK 1 TASK 2

Stating, using specific numbers,
the series of steps necessary to
formulate a definition of addition
of integers, using whatever
properties are needed, assuming
those not previously established

la

Adding integers

Supplying the steps and
identifying the properties
assumed in asserting the
truth of statements involv-
ing the addition of integers

Ila

14

lb

Stating and using the
definition of the sum
of two integers, if at
least one addend is a
negative integer

Supplying other names
for positive Integers in
statements of equality

Ilb

!den ifying and using the
properties that must be
assumed in asserting the
truth of statements of
equality in addition of
integers

II la

Stating and us ng tne
definition of ddition
of an integer and its
additive inverse

IVa

lilb

Stating and using the
definition of addition of
two positive integers

Using the whole
number 0 as the
additive identity

IVb

Supplying other
numerals for whole
numbers, using the
associative property

Supplying other
numerals for whole
numbers, using the
commutative property

lVd

Identifying numerals
for whole numbers,
employing the closure
property

Va

Performing addition
and subtraction of
whole numbers

Vb

Using parentheses to
group names for the
same whole number

Figure 1. A learning hierarchy pertaining to the addition of integers. (From "Factors in
Acquiring Knowledge of a Mathematical Task" by R. M. Gagne, J. R. Mayor,
H, L. Garstens, and N. E. Paradise, Psychological Monographs, 1962, 76 (7, Whole
No. 5261. Copyright 1962 by the American Psychological Association. Re-

printed by permission.)
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mastery facilitates learning the more complex ones. Instruction begins

with the lowest-level capabilities not already mastered and proceeds up-

ward. The tasks at the low end of the hierarchy can. further be analyzed,

depending on assumptions about the learner's knowledge. The more die-
),

mentary capabilities are-assumed to involve more elementary types of

learning. In other words, implicit in a complete learning hierarchy for
tasks such as shown in Figure 1 is another hierarchy of "types of learning,"
progressing from simple S-R learning, through chaining and discrimina-
tion, to higher-level concept and rule learning, as shown in Figure 2. A

more complex task such as problem solving would involve more concept
and rule Learning and would lead to the discovery of progressively higher-

order generalizable rules. There is a kind of implicit process analysis

involved in the method of hierarchy generation. Presumably, to answer
the question that generates subordinate tasks, one must have some idea

of what kinds of operations -- mental or otherwisean individual engages

in when he performs the complex task. But this model of performance

is left implicit in Gagne's work.

Gestalt Psychology and the Analysis of Mathematical Tasks

Gestalt psychology was an immigrant in America. In its first gen-
eration it spoke a language so unlike the rest of American psychology that

it was barely listened to. Now, in a period when we speak easily of cog-

nition and mental operations, the gestalt formulations take on more in-

terest. Gestalt theory was fundamentally concerned with perception and
particularly the apprehension of "structure." With respect to the complex
processes of thinking, the concept of structure led to a concern with "under-

standing" or "insight, " often accompanied by a visual representation of

some kind. With respect to problem solving, the central concern was
with the dynamics of "productive thinking." Several gestalt psychologists,-
particularly 'Wertheimer (1945/1959) and his students (Katona, 1940;

Luchins & Luch ins, 10701, attempted to apply the basic principles of
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Problem Solving (Type 8)

requires as prerequisites:

Rules (Type 7)

which require as prerequisites:

Concepts (Type 61

I4
which require as prerequisites:

Discriminations (Type 5)

which require as prerequisites:

Verbal associations (Type 4)

or other Chains (Type 3)

which require as prerequisites:

Or

StimulusResponse connections (Type 2)

Figure 2. Gagne's hierarchy of types of learning. (From P. M. Gagnb, The Conditions of Learning
(2nd ed.). New York: Holt, Rinehart, and Winston, 1970. Copyright 1970 by Holt,
Rinehart, and Winston, Inc. Reprinted by permission.)
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gestalt interpretation to problems of instruction and, in particular, to the
teaching of mathematics. It is reasonable to imagine that mathematics,
especially geometry, was of particular interest to gestalt theorists because
of its high degree of internal structure and its susceptibility to visual repre-

sentation. ,

Wertheimer contrasted his theory of productive thinking both with tra-
ditional logic and with associationist descriptions of problem solving. Nei-

ther of these, he claimed, gave a complete picture of how new knowledge
is produced by the individual. With respect to teaching, he was concerned
that prevalent methodsof teaching, with emphasis on practice and recall,
produced "senseless combinations" rather than productive problem solving
based on the structure of the problem.

Wertheimer's (1959) book, Productive Thinking, originally published

in 1945, discussed work on several mathematics problems--for example,
finding the area of a parallelogram, proving the equality of angles, Gauss's
formula for the sum of a series, symmetry of oscillations, arithmetic calcu-
lations, and the sum of angles of a figure. Analysis of these tasks, for
Wertheimer, consisted of displaying the problem structure on which algo-
rithms are based, rather than analyzing actual performance. Thus, for
example, the problem of finding the area of a parallelogram was seen as a
problem of "gap fitting"--too much on one side, too little on the other (see

Figure 3). Once the gap was filled and a rectangle formed, a general princi-
ple for finding area could be applied. Recognizing the nature of the problem- -

the possibility of transforming the parallelogram into a rectangleconsti-
tuted for Wertheimer "understanding" or "insight." Solutions that followed
from this understanding were for him true solutions, elegant ones. Those

that "blindly" applied an algorithm, even if the algorithm should work, were

"ugly."

Though Wertheimer talked little about general schemes for instruction,
he implied the necessity of analyzing tasks into components, perceptual and
structural, so that their nature in relation to the whole problem would be

11



Figure 3. Wertheimer's area or a parallelogram problem.
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clear. Only when the true structures of problems were understood could
principles derived from them be properly generalized. Whenever possible,
the student should be left to discover both the problem and its solution.
Instruction, if necessary, should proceed consistent with the internal struc-
ture of the problem and in the proper sequence, so that a true understand-
ing leading to solution would be gained. Just how the understanding of com-
ponents and their part-whole relations was to be taught was not 7nade clear.

Wertheimer suggested the introduction of exercises to focus students' atten-
tion on certain aspects of the problem structure, thereby increasing the
likelihood of insight. He also spoke of operations involved in thinking- -

grouping, reorganizing, structuring--for which ways of teaching might be
devised.

Piagetian Analyses

In discussing Piagetian task analysis, we will consider two quite dis-
tinct bodies of literature in succession: (a) Piaget's own work (and of others
in Geneva), and (b) attemptslargely by American and British psychologists-
to isolate the specific concepts and processes underlying performance on
Piagetian tasks.

Genevan work. Much of Piaget's own work (on number, geometry,
space, etc. ) is heavily mathematical in orientation. It seeks to character-
ize cognitive development as a succession of logical structures commanded
by individuals over time. Piaget's "clinical method" of research yields
great quantities of raw process data--protocols of children's responses to
various tasks and questions. The protocols are interpreted in terms of the
child's "having" or "not having" structures of different kinds. Explanation
of a task performance for Piaget consists of descriptions of the logical
structures that underlie it, and of the struch2res that ontologically preceded
and therefore in a sense "gave birth to" the current ones.

Piaget's tasks are chosen to exemplify logical structures that are
assumed to be universal. Many turn out to involve mathematics, but not

13



by and large the mathematics taught in school. One result has been con-

siderable debate over whether the Piagetian tasks should become the basis
of the school curriculum, whether they are teachable at all, and whether
they set limits on what other mathematical content can be taught (for differ-
ing points of view on this matter, see Furth, 1970; Kamii, 1972; Kohlberg,
1968; and Rohwer, 1971). Although Piaget's work has not until recently
been motiv..ted by instructional concerns, others have tried to interpret
his wqrk for instruction. Such interpretation has often resulted in at least
partially competing interpretations.

Piaget's most important contribution to task analysis is probably his
pointing out, in compelling fashion, the important differences between chil-
dren and adults in the way they approach certain tasks, the knowledge they
bring to them, and the processes they have available. But his particular
form of logical analysis leaves, questionable the extent to which his descrip-

tions elucidate the "psychologics" of behavior on these tasks, i. e. , what
people actually do. Certainly for psychologists accustomed to the explicit
detail of information-processing analyses, Piaget's leaps from observations
to inferences about logical structure are often difficult to follow.

Experimental analyses of Piaget's tasks. Much of the English-language
research on Piaget has focused on locating specific concepts or component
processes underlying the ability to perform well on particular tasks. Con-

servation tasks have been most heavily studied, classification tasks probably
next most heavily, with relatively little study of tasks characteristic of the
formal rather than concrete stages of operational thinking (see Glaser &
Resnick, 1972).

Two basic strategies can be distinguished in this research. One varies
the task in small ways to allow inferences about the kinds of cognitive proc-
esses being used. For example, Smedslund (1964, 1967a, 1967b) presented
double classification tasks with attributes covered or uncovered, labelled or
perceptually presented. From performance on these variations, he concluded

14



that processing was probably done at a symbolic rather than a perceptual
level, that memory was involved, and that some kind of analytic mechanism
might be involved in committing perceptions or symbols to memory.

The second research strategy is to instruct children in a concept or
process hypothesized to underlie performance on some Piagetian task, and
then to see whether they thereby become able to perform the task. Exam-
ples are Gelman's (1969) training of conservation by teaching discrimina-
tion of length, density, and number; and Bearisons' (1969) induction of con-

servation by training in equal-unit measurement of liquid quantity. Of the

two approaches, the second is more relevant to the present context, be-
cause the strategy of instruction demands an analysis in terms of instruc-
table components.

Assessment of the Approaches with Reference to Instruction

How do these past approaches to task analysis match the criteria out-

lined for instructional relevance? To what extent does each address itself

to tasks of instructional interest? To what extent do the terms of analysis

provide a link to the main body of psychological theory and knowledge? Are ,

instructable units identified? Do the analyses distinguish usefully between
performance of learners and of experts?

Instructional relevance. With respect to the choice of tasks, only

Thorndike and Gagnd show a clear instructional orientation. Their tasks

are drawn from school curricula, and where formal validation studies of
their analyses occur, they are to a large extent based on the effectiveness
of actual instruction in the units identified (e.g., Gagne, Mayor, Garstens,
& Paradise, 1962). Wertheimer and the others of the Gestalt school ana-
lyze a few tasks drawn from mathematics, but make no attempt to analyze

a whole range of subject matter. Further, despite some discussion of pro-
ductive thinking as a generalized phenomenon of educational concern, there
is no analysis of it as such in Wertheirner's work. Wertheimer probably

15
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chose tasks from mathematics that would best lend themselves to analysis
in terms of perceptual "Gestalten" rather than selecting those of particular
importance to instruction. On the criterion of types of tasks analyzed,

Piaget's work is even less directly relevant to instruction. There is, in
fact, serious question whether the tasks he has studied ought to be the
objects of instruction, because they are psychological "indicators" of gen-
eral cognitive status rather than socially important tasks, and because they
appear to be acquired in the course of development, at least in Western and
certain urbanized cultures, without formal schooling (Glaser & Resnick,
1972). It may be, however, that formal operations need to be taught ex-
plicitly, because it is by no means clear that formal operational thinking is
universally acquired (Neimark, 1975).

Psychological formulation. Each approach addresses well the analy-

sis of complex tasks in terms of the fundamental psychological constructs
relevant to their own times and theories. Thus, Thorndike's analyses
describe arithmetic in terms of the basic psychological unit of then current
theory, the associationist bond, and thus suggest specific pedagogical prac-
tices drawn from known principles of learning. Gagne" Is analyses interpret

instructional tasks in terms of behavioral learning psychology: transfer,
generalization, and so forth. His concern for the learning of "higher proc-

esses" such as, rules and principles suggests some concern shared with
cognitive psychology, but basic cognitive processes such as memory and
perception are alluded to only as general abilities assumed to be neither
instructable nor further analyzable. Wertheimer's analyses of mathemati-
cal tasks explicitly indicate how gestalt field theory would interpret prob-
lem solving and learning in these domains. Finally, Piaget's analyses,
like Wertheimer's, attempt to show that performance on complex tasks can
be interpreted in terms of underlying structures. For Piaget and Wertheimer,
explication of the structures constitutes psychological explanation of the per-

formance. Both are concerned with characterizing the broad outlines of
cognitive structures rather than with detailing the processes involved in

16
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building or using these structures. Only in the experimental analyses of

Piagetian tasks do we begin to find attempts to interpret performance more
explicitly, that is, in information-processing terms.

Instructability. With respect to the criterion of instructability,
Thorndike and Gagne are directly on target. Their aim in task analysis
is to facilitate instruction, and the bonds or subordinate capabilities identi-
fied are quite clearly described as instructable components. Wertheimer
is more difficult to assess with respect to this criterion. His analyses are
specific to particular tasks. They do display the basic structure of each
task and therefore quite directly suggest ways of teaching that are likely to
produce maximum understanding, transfer, and elegance of solution. But

there are no general units identified which would be useful across a number
of tasks. Piaget's own analyses involve no identification of instructable

units. However, a review of studies involving instruction in Piagetian
tasks (Glaser & Resnick, 1972) suggests that Piagetian concepts are indeed
instructable, or at least lend themselves to analysis into certain prerequi-
site skills which may be instructable. The studies also suggest how deli-
cate the process of task analysis and instruction is for tasks of any psycho-
logical complexity. It is necessary both to identify the appropriate under-
lying processes or concepts and to find effective ways of teaching them.
Identifying one underlying concept will rarely suffice for full success in
instructional efforts because there may be several abilities which must be
combined, and the absence of any one may lead to failure to learn the target

task. Further, "instruction" itself is a very delicate matter. No rules
suggest how to construct situations that will convey the concepts or proc-
esses.to be taught in a clear way. Even with an appropriate task analysis,
the mapping from identified components to instructional strategies remains
very much a matter of artful development.

Recognition of stages of competence. Finally, we turn to the novice-
expert distinction, the criterion of recognition of stages of competence. On
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this matter Thorndike is not very exp
quencing instruction scientifically,
how to proceed. Indeed, the impr
novices and experts lies solely in
how well practiced these are.
the organization of knowledge f

and not seriously explored.
'Loral perspective is a pracli
table tasks. In his general
more complex onesGag
instruction for purposes
Thus, at a certain leve
ferences between novi

analyses. Wertheim
tinction between novices and experts. The implicit assumption is that be-

havior in accord with good structural principles is "native" and has simply
been stamped out by the drill orientation of schools.

licit. He recognizes a need for se-
but offers no psychological theory as to

ession left is that the difference between
how many bonds have been learned and

That there may be important differences in
or novices and experts is at best only hinted,

Gagne's particular contribution within 'the behav-

cal method for generating sequences of instruc-
notion of transfer--inclusion of simple tasks in

ne offers a strong suggestion for how to organize
of acquiring higher-order knowledge and skills.

1, the criterion of recognizing and dealing with dff-
ces and experts is explicitly met in learning hierarchy

er's analyses, by contrast, attend not at all to the dis-

Piaget, of
tures available
with respect
the identific

course, is particularly attuned to changes in the struc-
,'

at different stages of intellectual developh In fact,

to instruction, Piaget's largest contributipirfs,ve'ry possibly
ation of substantive changes in competence in the course of

development. In Piaget's work it is impossible to ignore differences. be-
tween performance strategies of novices and expertswhether or not we
find his particular analyses convincing or accept his (partially nativist)

explanation of how these changes occur. By contrast:, the experimental or

neo-Piagetian work is uneven on this criterion. For the most part, these
studies investigate single tasks and look for competence versus incornpe-
fence rather than for stages or transformations of competence. There are

a few exceptions, largely in recent attempts to interpret changes in per-
ormance on Piagetian tasks in terms of information-processing constructs

(see Klahr, in press). Investigators hove attempt 'd to .maly.i.e sequences
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of Piagetian tasks so that adding one or two simple processes to an indi-
vidual's repertoire, or modification of extant processes, can be shown to
account for successively more complex performances on the Piagetian

tasks. This work takes "information processing" as its theoretical orien-
tation and makes heavy use of computer simulation strategies for formal
analyses. It thus forms a useful bridge to the second part of this paper,
which is concerned specifically with the present and potential role of
information-processing task analysis in instructional design.

Information-Processing Analyses for Instructional Purposes

A major branch of cognitive psychology today carries the label "infor-
mation processing." As is often the case with an emerging branch of study,
it is easier to point to examples of information-processing research than to
give a complete. or consensual definition of it. Nevertheless, psychologists

working in this area tend to share certain assumptions and research strate-
gies.

Information-processing studies attempt to account for performance on
cognitive tasks in terms of actions (internal or external) that take place in a
temporally ordered flow. A distinction is generally drawn between data, or
information, and operations on data, or processes. Thus, the concern of

information-processing psychology is with how humans act upon (process)

data (information). Frequently, but not universally, information-processing
models for cognitive tasks are expressed as "programs" for performance of
particular tasks. These are often formalized as computer programs whose
theoretical validity is judged by their ability to simulate actual human per-
formance.

Most information- processing theories and models find it useful to

characterize the human mind in terms of the way information is stored,
accessed, and operated upon. Distinctions are made among different kinds

or "levels" of memory. While the details and labels vary, most theories
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distinguish between a sensory intake register of some kind through which
information from the environment enters the system, a working memory
(sometimes called short-term or intermediate-term memory) in which
processing occurs and a long-term (semantic) memory in which everything
one knows is stored, probably permanently. Within this general structure,
working memory is pivotal. It is only by being processed in working mem-
ory that material from the external environment can enter the individual's
long-term store of knowledge, and it is only by entering working memory
that information from the long-term store can be accessed and used in the
course of thinking. Processing in working memory is usually assumed to
be serial--one action at a time. Further, working memory is considered
to have a limited number of "slots" that can be filled, so that it is only by
rehearsing or by "chunking" material into larger units (so that a body of
interrelated information takes up a single slot) that loss of information from
working memory can be avoided.

Information-processing analyses of instructional tasks share these
general assumptions as well as a body of research methods developed for
testing the validity of models of cognitive performance. Information-
processing analyses are clearly distinguished from behaviorist ones
(Thornlike and Gagne in the present case) by their explicit attempts to
describe internal processing. They differ from the cognitivist gestalt and
Piagetian positions in their attempts to describe the actual flow of perform -
ance--to translate "restructuring" or "logical operations" into temporally
organized sequences of actions.

In characterizing information-processing analyses of complex tasks,
it is useful to distinguish between rational and empirical analyses. Rational
analyses are descriptions of "idealized" performancesthat is, perform-
ances that succeed in responding to task demands, often in highly efficient
ways, but not necessarily in the ways in which humans actually perform
the tasks. Work in artificial intelligence can be considered a form of
rational task analysis which is today being applied to increasingly complex
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kinds of tasks. So can some much less ambitious analyses of simple tasks,
some of which are discussed below. Empirical task analyses are based on
interpretation of the data (errors, latencies, sell-reports, eye or hand
movements, etc. ) from human performance of a task; the aim of such analy-
ses is to develop a description (model) of processes that would account for
those data. In practice, rational and empirical analyses are rarely sharply
separated. Rational analyses, for example, may provide the starting point
for empirical data collection, leading to an iterative process in which suc-
cessively closer matches to human performance models are made. Never-
theless, the distinction is a useful one in considering the kinds of investment
in information-processing analyses that will be most valuable for instruction.

The remainder of this paper considers information-processing analy-
ses of several of these kinds. I describe first some of our work in rational
process analysis, work that was explicitly concerned with instructional-
design requirements. Next, I describe some empirical analyses of the
same kinds of relatively simple tasks, and consider the relation between
rational and empirical analysis for instructional purposes. In a final sec-
tion. I consider the problem of more complex tasksproblem solving,
reasoning, tasks that we use as measures of "intelligence" and aptitude- -

and what the role of formal simulations and empirically studied information
process models might be in such domains.

Rational Task Analysis for Curriculum Design

Rational task analysis can be defined as an attempt to specify proc-
esses or procedures that would be used in the highly efficient performance
of some task. The result is a detailed description of an "idealized" per-
formanceone that solves the problem in minimal moves, does little "back-
tracking," makes few or no errors. Typically, a rational task analysis is
derived from the structure of the subject matter and makes few explicit
assumptions about the limitations of human memory capacity or perceptual
encoding processes. in many cases, informal rational task analysis of this
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kind can serve as a way of prescribing what to teach (i. e. , teach children
to perform the processes laid out in the analyses), and instructional effec-
tiveness serves as a partial validation of the analysis.

To convey the flavor and intent of rational process analysis as applied
to instruction, I will describe in some detail part of our own early work on
simple arithmetic tasks. The work initially grew out of an attempt to apply

learning hierarchy theory to the problem of designing a preschool and kin-
dergarten mathematics curriculum. We found it necessary, in order to
secure agreement among our own staff on the probable ordering of tasks,
to introduce a method in which the processes hypothesized to be involved in
a particular task performance were explicitly laid out (see Resnick, Wang,
& Kaplan, 1973). Figures 4 and 5 show examples of the analyses that re-

sulted. The top box in each figure shows the task being analyzed, the entry
above the line describing the presented stimulus and the entry below the line
the expected response. The second row in each figure shows a hypothesized

sequence of behaviors engaged in as the presented task is performed. Ar-
rows indicate a temporally organized procedure or routine. The lower por-

tions of the charts identify capabilities that are thought to be either neces-
sary to performance (i. e. , prerequisite to) or helpful in learning (i.e.,
propadeutic to) the main task. The identified prerequisite and propadeutic
tasks were used to build hierarchies of objectives that formed the basis of
a curriculum.

At the outset, the process analyses functioned as aids in developing
prescriptions for instruction. We carried out the kind of research that
seemed most directly relevant to that prescriptive function. That is, we
looked at the extent to which the analyses generated valid task sequences,
sequences which aided learning of the most complex tasks in the set. Two

research strategies were involved. First, we conducted scaling studies.
In these studies, tests on a number of tasks were given to a sample of the
children prior to instruction, and the results were evaluated for the extent
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la

Fixed ordered set of objects

Count objects

Ila

Fixed ordered set

Touch first object and
say first numeral ("one").

I lb

Fixed ordered set

Touch next object and
say next numeral.

Ile

When last object
has been touched

State last numeral
as number in set.

II la

Set of objects

Synchronize touching
object and saying a word.

Illb

Recite numerals in order.

IVa

Word repeated by
another person

Touch an object or tap
each time word is stated.

I Vb

Repeated tap or touch
by another person

Say a word each time
there is a tap.

IIIc
Fixed set of objects

Touch each object once
and only once (i.e.,
"remember" which objects
have been touched).

IVc

Row of objects

Touch each object in
order beginning at an
end of the row.

Figure 4. Analysis of Objective 1-2:C, "Given a fixed ordered set of objects, the child can '72

count We objects." (From "Task Analysis in Curriculum Design: A HierarchiCalici
Sequenced Introductory Mathematics Curriculum" by L. B. Resnick, M. C. Wang,
and J. Kaplan, Journal of Applied llehavior Analysis, 1973, 6, 679-710. Copyright
1973 by the Society for the Experimental Analysis of Behavior, Inc. Reprinted by
permission.)
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la

Numeral stated and
a set of objects

Count out subset
of stated size.

Ita

Numeral stated

"Store" numeral.

1lb

Set of moveable objects

Begin counting the objects,
moving them out of set as
they are counted.

Ilc
When stored numeral
is reached 1

Stop counting.

II la

I See further
1 analysis in
11, 1 -2: B.

Illb
Numeral stated

Remember numeral
while counting.

Figure 5. Analysis of Objective 1-2:E, "Given a numeral stated and a set of objects, the
child can count out a subset of stated size." (From "Task Analysis in Curricu-
lum Design: A Hierarchically Sequenced Introductory Mathematics Curriculum"
by L. B. Resnick, M. C. Wang, and J. Kaplan, Journal of Applied Behavior Analy-
sis, 1973, 6, 679-710. Copyright 1973 by the Society for the Experimental Analy-
sis of Behavior, Inc. Reprinted by permission.)
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to which the tests formed a Guttman scale in accord with the predicted pre-
requisite relations (e.g., Wang, 1973; Wang, Resnick, & Boozer, 1971).
A good approximation to a Guriman scale implied strong prerequisite rela-

tions among the tasks--relations that specified optimal teaching orders. A
second set of studies (Caruso & Resnick. 1971; Resnick, Siegel, & Kresh,
1971) involved more direct aezossment of transfer relations among small
sets of tasks. Tasks in a small hierarchy were taught in simple-to-complex
and complex-to-simple orders. Wt then looked at transfer effects on trials
to criterion and related measures. These studies showed that teaching in
hierarchical sequence was the best way of assuring that most or all of the
children in a group learned all the objectives. For the minority who were
.capable of learning the more complex objectives' without intervening instruc-

tion, however, "skipping" of prerequisites was a faster way to learn. What
these children apparently did was to acquire the "prerequisites" in the course
of learning the most complex tasks. An important instructional question
raised by these results is whether we can match instructional strategic F to

individuals' relative ability to learn on their own--i. e.,. without going through
direct instruction in ali of the steps of a hierarchy. Before we are likely to
answer that question well, however, we will probably need more systematic
theories than are now available of how learning occurs with minimal instruc-
tion (see Resnick & Glaser, in press).

The kind of task analysis used in these stue,ii.:6 served to describe per-
formance in temporally organized sequences and identify general information-
processing abilities, such as perceptual processing (e.g., Figure 4, Mc
and IVc), memory (e.g., Figure 5, IIa and fib), and temporal synchrony
(e.g., FiguFe 4, Ma), that are called on in perfcirming a specific complex
task. As information-processing models, however, the analyses were incom-
plete because they did not specify every step (for example, stop rules were
not typically specified where recursive loops occurred), nor did they explic-
itly deal with overall control mechanisms or total memory load. In addition,
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they were not empirically verified as process analyses. Although many

observations of performance were made, there was no attempt to match

predicted or "ideal." performance against actual performances. The hier-

archy rests confirmed the validity of the task sequencing decisions made on

the basis of the analyses, but they did not necessarily confirm the details
of the analyses. Performance strategies different from those in our analy-

ses might have produced similar sequences of acquisition or transfer effects.

Thus, while the scaling and transfer studies met instructional needs quite
well, they did not constitute validations of the models' details. For this

purpose, the strategies of empirical task analysis are needed.

Analyset,r.-cf Specific Tasks

What can empirical analyses suggest about teaching specific tasks?

An obvious possibility is that we might use process models of competent

performance as direct speFifications for what to teach. Such models of

skilled performance are potentially powerful. However, these alone do
not take into account the capabilities of the learner as he or she enters the

instructional. situation. I want to describe some experiments we have done
that suggest a different way of looking at the relation between what is taught

and how skilled performance proceeds. The experiments suggest that what

we teach children to do and how they perform a relatively short time after
instruction are not identical--but neither are they unrelated. They suggest

that children seek simplifying procedures that lead them to construct, or
"invent," more efficient routines that might be quite difficult to teach

directly.

Subtraction. In one study (Woods, Resnick, & Groen, in press) we

examined simple subtraction processes (e. g. , 5 4 , ?) in second and

fourth graders. The method was borrowed from Groen and others' work

on simple addition processes (Groom & Parkn an, I97Z) and open-sentence

equations (Groen tt: Poll, 19731. That is, we gave children a set of sub-

traction problems and collected response latencies. Five possible models

Z6



for performing subtraction problems (of the form m - n = ? with 0 < m < 9,

0 < n < 9) were hypothesized, and predicted response latencies for each prob-
lem for each performance model were worked out based on the number of
steps that would be required according to the model. Regression analysis
was then used to fit observed to predicted latency functions and thus select
the model an individual child was using.

Of five models tested, two accounted for the performance of all but a
few subjects:

Decrementing Model. Set a counter to m, decrease it n times,
then "read" counter. For this model, latencies should rise'as
a function of the value of n, and the slope of the regression
line should reflect the speed of each decrementing operation.
This function is shown in Figure 6.

Choice Model. Depending on which has fewer steps, perform
either the decrementing routine (previously described) or an-
other in which a counter is set to n and is then incremented
until the counter reading matches in. The number of incre-
ments is then "read" as the answer. For this model, it is
necessary to assume a process of choosing whether to "incre-
ment up" or "decrement down." We assume that the choice
process takes the same amount of time regardless of the
values of m and n. On this assumption, latencies should
rise as a function of whichever is smaller, n or (in - n).

This function is shown in Figure 7.

Individual data were analyzed first and a best-fit model selected for
each child. Then children were grouped according to the model they fit,

and the pooled data were analyzed. All fourth graders and most second

graders were best fit by the choice model. It seems unlikely that the chil-

dren had been directly taught the choice model for solving subtraction

27



5.

97

9

5.0 497

$5 ....."" 76

113 114 _.475
4.0 94 ,,'

43,53 ,, 54 65

93 , ' 74

91,91

32

62,82, ...'
63
,,

73

64

3.0 21.31.41 . 42,72 il 55 77 11
111 .... .... 52
51,71

,
,, 92

. '''' l't a .

50,60,70 11

2.0 10,20,30
$0,90

Figure 6.

n

Plot of reaction times for second graders solving subtraction problems of the for
m - n = Decrementing Model. Numbers beside solid dots denote actual prob.
lems (e.g., 54, 65 signifies that problems 5 . 4 and 6 - 5 both had a mean success
latency specified by the el. Underlined problems were omitted in the regression
analysis. (From "An Experimental Test of Five Process Models for Subtraction"
by S. S. Woods, L. B. Resnick, and G. J. Groen, Journal of Educational Psychology,
1975, 67(1), 17-21. Copyright 1975 by the American Psychological Association.
Reprinted by permission.)
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problems during their arithmetic. training. The procedure would be diffi-

cult to communicate to 6- and 7-year-olds, and might confuse rather than
enlighten children at their first exposure to subtraction. Most probably,
the children had been taught initially to construct the m set (increment the
counter m, times), count out the n set (decrement n times), and then count

("read-out") the remainder. This algorithm is close to the one described

as the decrementing model. The decrementing model is in fact derivable

from the algorithm we assume is typically taught by simply dropping the
steps of constructing the m set and counting the remainder. Thus, it seems
reasonable that a child would develop the decrementing.model quite quickly.
The choice model, however, cannot be derived from the teaching algorithm

in sp direct a way. Instead, an invention (the possibility of cowiting up from

n) must be made. This invention is probably based on observation of the

relations between numbers in addition and subtraction over a large number

of instances. Yet the inventionappears to have been made as early as the

end of second grade by most of the children.

Addition. In another study, Guy Groen and I are looking more directly

at the relation between the algorithm taught and later performance. In the

subtraction study we could only guess at what children had been taught,

based on our general knowledge of elementary school practice. In the addi-

tion study, we controlled the teaching by doing it ourselves. We taught
4-year-olds to solve.single-digit addition problems of the form in + n = ?

(where m and n ranged from 0 to 5) by using the following algorithm: (a)

count out m blocks, (b) count out n blocks, (c) combine the subsets, and
(d) count the combined set. We then kept the children coming hack for about
two practice sessions a week for many weeks. As soon as each child was
performing the addition process smoothly using blocks, we took the blocks

away and asked the children to give their answers on a device that allowed

us to collect latency data. The children's typical response when blocks

were removed was to begin counting out sets on their fingers. Eventually,

however, most shifted to internal processing.
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Suppes and Groen (1967) had earlier shown that by the end of the
first grade, most children added using a choice-type model in which they
set a counter to m or n, whichever was larger, and then incremented by
the smaller of the two numbers. This is known as the min (minimum)
model (because the latencies fit min fm, n 1). A few children used a model
of incrementing r,7 timce, then incrementing n more times, and then read-
ing the counter. This is known as the sum model (latencies fit [m + n]).
The sum model can be derived from the procedure we taught by simply
dropping steps (c) and (d) of our algorithm, and it requires no choice. The

min model, however, requires an invention based on the recognition that
sums are the same regardless of the order in which numbers are added

that it is fa str- to inc reale:1.1-.22y the smaller quantity.

For five of the six children whose data have been analyzed thus far,
it is clear that by the final two test sessions the min model gave significant
and "best" fit. In general, the trend over blocks of trials was for subjects'
data to be fit well by the min model as soon as they stopped counting overtly
on most of the trials. It is as if these children discovered cornmutativity
as soon as they were confident enough to stop counting on their fingers.
In these studies, children are taught one routine derived from the subject
matter. After some practice--but no direct instruction - -they perform a
different and more efficient routine. The efficiency is a result of fewer
steps (not, apparently, faster performance of component operations), which
in turn requires a choice or decision on the part of the child. A strictly
algorithmic routine, in other words, is converted into another rautine which
turns out to solve the presented problem more efficiently.

re.,<"

Wallace (Note 1) has reported a similar finding in a study of information-
processing models of class inclusion. After training in the prerequisite skills
as hypothesized on the basis of an information-processing analysis, subjects
were presented a typical class inclusion task in which they were asked to
tell, for example, "Which is more, the red ones or the triangles?" They
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had been taught to pass through the object array twice, each time quanti-
fying the objects on one of the different value dimensions named and then
comparing them to determine which was more. AL the posttest adminis-
tered immediately after training, some of the children were able to perform
more efficiently by quantifying on the first pass objects having only one of

the dimensions named by the experimenter. For exal,,gle, Wallace pre-
sented a subject with eight triangles, seven of which were red and one green.
Asked "Which is more, the red ones or the triangles?", one subject an-

.swered, "There's one green triangle and that makes it more triangles"
(Wallace, Note 1). Because the set having only one of the named dimen-

sions in the class inclusion task is usually the minor subset, this proce-
..dur,e quickly yields, the answer. It seems likely that a phenomeno4 of ,this

kind, that is, the transformation of algorithms by the learner, is more
general than we have thought up to now. At least some process data that
appear difficult to interpret when averaged over lime may show interpre-
table regularity when early and later phases of performance are examined

separately.

Implications for instruction. What are the implications of tindings of

this kind for instruction? On the face of it, it would seem that wesought to

abandon the algorithmic routines suggested by rational task analysis in
favor of directly teaching the more environmentally responsive processes
that appear to characterize even semi-skilled performance. We ought, in
other words, to conclude that the initial rational analyses are wrong be-
cause they do not match skilled performance, and that therefore they should

not be used in instruction. Rather, we should perform detailed empirical
analyses of skilled performance on all of the tasks that a curriculum com-
prises, and leach directly the routines uncovered in the course of such

analyses.

Such a conclusion, I believe, would be mistaken, It rests on the
assumption that efficient instruction is necessarily direct instruction in
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skilled performance strategies, rather than instruction in routines that put
14arners in a good position to discover or invent efficient strategies for
themselves. That is what the children did in the studies just reported.
They learned a routine but then invented a more efficient performance for
,themselves. It seems reasonable to suppose -- although empirical tests
r.,----iparing different instructional strategies are needed to draw a strong
conclusion--that the teaching routines were good ones, because they taught
the specific skills in a way that called upon children's discovery and inven-
tion abilities.

Task Structure, Skilled Performance, and Teaching Routines

. To put Che case in its most general form, it would seem useful to
think in terms of a "triangulation" between the structure of a task as defined
by the subject matter, the performance of skilled individuals on a task, and
a teaching or acquisition routine that helps novices learn the task. There

are three terms in this conceptualization; all three must stand in strong
relation to each of the others -thus the image of triangulation. These rela-
tions are schematized in Figure 8. Most empirical information-processing
analyses have been concerned with the relations between the elements defin-
ing the base of the triangle--that is, with the relations between the structure
of the subject matter, or "task environment" (A), and performance(C).
Thus, most information-processing task analyses are state theories, de-
scribing performance on a given kind of task at a given point in learning or
development, but not attenptiag to account for acquisition of the perform-
ance. The rational process analyses that we have developed in the course
of our instructional work have been concerned primarily with the structure
of the task (A) and an idealized routine that represents the subject matter
well and thus prescribes a good teaching routine (B). Our validation studies
have in effect been tests of the extent to which the teaching routines and
sequences derived through these analyses succeeded in conveying the subject
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matter to learners. The preceding discussion has concerned the relation
becween teaching routines (B) and performance routines (C). Gaining under-
standing of the "transformation" processes that link these two routines is
necessary to complete the triangulation that clearly relates information-
processing models to instructional design.

According to this "triangulation," there are three criteria to be met
in choosing a teaching routine:

1. It must adequately display the underlying structure of the subject
matte r.

2. It must be easy to demonstrate or teach.

3- It must be capable of transformation into' an+,.;:acient perform-
ance routine.

The teaching routine, then, is designed to help facilitate acquisition.
It provides the connecting link between the structure of the subject matter
and skilled performance- -which is often so elliptical as to obscure rather
than reveal the basic structure of the task.

Teaching routines, in other words, are constructed specifically to
aid acquisition. The design of teaching routines may require considerable
artistry, and not all routines will be successful in meeting the criteria just
laid out. Let us consider some examples. To begin with our own work, the
addition routine Groen and I taught is an instance of the "union of sets" defi-
nition of addition. Thus, it is a mathematically "correct" procedure and
represents the subject-matter structure clearly. The routine is also easy
to demonstrate and to learn. Our 4-year-old subjects (who knew only how
to count objects when they began the experiment) were performing addition
virtually perfectly, using the blocks, after about a half hour of practice.
The routine we taught is awkward and slow to perform, however, None of
us would like to have to use it in our daily activities, and neither apparently
did the 4-year-olds. Nevertheless, the data show that the routine is
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transformableby a series of steps we can imagine but cannot. for the
moment document empiricallyto the more efficient performance routine
eg-the min model. Further, this performance routine exemplifies another
aspect of the subject-matter structure, cornmutativity. Thus, the proposed

triangulation is completed. A teaching routine derived by rational process
analysis of the subject-matter structure is transformed to a performance
routine that reflects an even more sophisticated definition of the subject
matter.

The case, is similar Eor the subtraction study. The routine that we

presume was taught exemplified a partitioning-of-sets definition of subtrac-
tion. The performance routine derived by the children is not only more
efficient; it also reflects a .-,u're"sophistics..i.,d aspect ofa.:-.-. 7.-..:bject-rnatter.

structure, namely the complementary relation between addition and sub-
traction operations.

Not all teaching routines meet the criteria enumerated above. Some
are awkward to teach; such would be the case, Eor example, were one to
undertake to teach 4-year-olds the min model for addition. Others fail to
display the subject-matter structure in a way that is transparent to children.
This is true, for example, in the case of traditional algorithmic methods of
teaching carrying and borrowing that do nol display the underlying structure
(base arithmetic and its notation) from which the routines are derived.

Sometirnps instructional routines are developed in order to display
the subject-matter structure but do not meet the transformability criterion- -
that is, they are not easily mapped onto a performance routine that is effi-
cient and direct. An example of a performance ruidine ihat fails on the
criterion of transformability is one that eras propubed by 1;rnner (1964) Eor

teaching factoring of quadratic expressions. Bruner was successful in
teaching third graders to perform the factoring opg,,,dinn by 1-paling a

"model" of the expressimi using blocks. As siwwo ;c1 Vigure9:(a), the

largo squaw is + nnirs tont.; and 111.1s (.<2 'MP.. rod is x units
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Figure 9. (a) Three components for quadratic construction. (b) Squares of ever increasing size
constructed with components. (From "Some Theorems of Instruction Illustrated
with Reference to Mathematics" by J. S. Bruner, in E. R. Hilgard (Ed.), Theories of
Learning and Instruction, The h3rd Yearbook of the NSSE (Part 1). Chicago: Univer-
sity of Chicago Press, 1964. Copyright 1964 by the National Society for the Study of
Education. Reprinted by permission.)
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long and one unit wide, thus (x). The small cube is 1 x 1, thus (1). As

shown at the right of the figure (b), children can arrange these three ele-
ments in squares which will have equal factorse.g., (x + 1) (x + 1);

(x + 2) (x + 2)--and which can also be expressed as quadratics--e.g.,
2 2+ 2x + 1); ( x( x + 4x + 4). Allowing children to manipulate the blocks

may be excellent for displaying and promoting insight into the structure of
the subject matter, but there appears to be no way to transform the square-
arrangement routine to a factoring procedure used without the blocks.

Certain other teaching routines in early mathematics do meet the
transformability criterion while still representing the mathematical struc-

ture. For example, measurement can be taught as a process of dividing

into equal units. Wertheimer (1945/1959) did this when he used division of

a figure into squares as means of finding its area. Bearison (1969), in a

less widely known experiment, induced a generalized conservation concept

by showing children how to count the number of 30-milliliter beakers of
liquid that were poured into beakers of different sizes, and demonstrating
the principle of conservation by pouring equal quantities of liquid into con-

tainers of different shapes. This generalized principle of measurement, .
exemplified in the liquid measurement procedure taught, produced conser-
vation responses in tests of number, mass, length, and continuous and dis-
continuous area and quantity that lasted for at least six months. Similarly,

the number base system (including carrying and borrowing) can be taught
using blocks in sizes of one, ten, and one hundred, placed in units, tens,
and hundreds columns, as in Figure 10 (cf. Dienes, 1966, 1967). With

these blocks, carrying can be represented by trading or exchanging extra

(i. e. , more than r le) blocks in a column for a larger block that is placed
in the next column. Such an exchange would be necessary for the bottom

display in Figure 10 before the block display could be notated. A reverse

exchange operation can be used to represent subtraction. In each of these

cases, as the physical representation is dropped, a performance routine
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Figure 10. [dock displays for notation problem. (From "Problem Solving and Intelligence"
by L. B. Resnick and R. Glaser, in L. B. Resnick (Ed.), Th... Nutiirc of intelli-
gence. Hillsdale, N..1.. Lawrence Erlbaurn Associates, in press
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can be constructed which initially performs "as if" the representation were
present, and then gradually becomes more abstracted from it. -This is the
kind of thing we believe occurred in our addition teaching experiment.

The general suggestion that I would like to draw from these observa-
tions is that most people--even quite young children- -use environmental
feedback to simplify performance routines. They do not accept the routines

they are shown as "givens" but rather as starting points. They invent even

when we teach them algorithms. One implication is that the traditional line
between algorithmic and inventive teaching disappears. We are not faced so
much with a choice between teaching by rules and teaching by discovery, as
with a problem of finding teaching rules that will enhance the probability of
discovery--rules that somehow invite simplification or combination with
other rules. This way of thinking also draws attention to the extent to
which we presently depend, in our normal instructional practices, on this
kind of invention and discovery by learners. Our instruction is rarely com-
plete, and rather than taking care to point out the simplifying and organizing
principles that underlie what we teach, we often not only choose less than
elegant instances but also expect learners to find the underlying principles
for themselves. This suggests that differences in learning ability--often
expressed as intelligence or aptitude--may in fact be differences in the
amount of support individuals. require in making the simplifying and organiz-
ing inventions that produce skilled performance. Some individuals will seek
and find order in the most disordered presentations; most will do well if the
presentations (i.e., the teaching routines) are good representations of
underlying structures; still others may need explicit help in finding efficient
strategies for performance.

Analyzing and Teaching Generalized "Learning-to-Learn" Abilities

People apparently invent even within the confines of algorithmic in-
struction of particular tasks. Nevertheless, as just suggested, individuals
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differ substantially in how good they are at these inventions. Thus, one
appropriate concern for instruction is the possibility of teaching general
strategies for invention and discovery -- strategies that will help learners
to be less dependent on the instructor's elegance in presenting particular
tasks. An interest in teaching such general "learning-to-learn" abilities,
as they are often called, has been widely expressed by educators and psy-
chologists. But few successes have been reported, and there is little scien-
tific basis at the present time for such instruction. As in the instruction of
any other ability, the first step in teaching general learning abilities is de-
veloping a psychological description - -a task analysisof the competence
sought. SUch analyses are only now beginning to becom--.... available.

A growing number of information-processing analyses of problem-
solving tasks of various kinds provide a potential basis for instruction.
However, it is by no means evident, without further testing and experimen-
tation, that analysis of skilled performance on complex problems can be di-
rectly translated into instructional interventions. One test of this possibility
has been carried out recently by Thomas Holzman (197'5). In an effort to
determine the instructability of a generalized pattern detection skill, Holzman
looked at an analysis of behavior on series completion tasks that had been
carried Out earlier by Kotovsky and Simon (1973). The Kotovsky and Simon
analysis identified three principal subroutines for discovering the pattern in
letter-series completion tasks similar to those used on many intelligence
tests. These were: (a) detecting the "period" of the patterni.e., the
repeating units of a certain number of letters; such as three in the pattern
abmcdrnefm . . . or four in the pattern defgefghfg . . .; (b) determining
the rule that generates each symbol in the period; and (c) testing the inferred
rule to see if it holds for all the letters that have been presented. These sub-
routines in turn ...,ere shown to be dependent upon recognizing three basic

relations between items in the series presented: identity (e.g., E to f); next

in the alphabet: (e.g. , E to g I; or backward next (e. g,. , h to L). These three
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relations exhaust those that were used in the Thurstone letter-series com-
pletion task (Thorndike & Thurstone, 1941) which the Kotovsky and Simon

study used as a basis, although a much more extended and complex list of
relations could of course be used in generating series completion problems.

Based on the Kotovsky and Simon analysis, Holzman taught children

from first through sixth grade the strategies for recognizing the three basic
relations and for finding periods. Instruction in finding periods was done
in such a way as to prevent extrapolation to other subroutines. Children

trained in these relations and periodicity subroutines improved significantly
on the letter- series completion task from pre- to posttest. They also im-
proved significantly more than control children who simply took the pre-

and posttest and did not practice the series completion task. Comparisons

of particular types of errors for the training and control groups showed
that the trained children improved significantly more than the controls
where there were more difficult relations (e.g., next as opposed to iden-
tity) and on the generally more difficult problems. Control children showed

a practice effect, due to experience with the test itself, which was limited
largely to improvement on the most easily detectable relation (i. e. , iden-

tity). This study suggests that as information-processing analyses succeed
in identifying the processes underlying problem solution, these processes- -
at least some of them- -can be directly taught, and that individuals will then
be able to apply them to solving relatively large classes of problems.

What possibilities exist for analyses of problem-solving abilities that
are even more general than those Holzman found, and what might these
yield as a basis for instruction that would truly generate learning-to-learn
abilities? Robert Glaser and I have considered this question in another
paper (Resnick & Glaser, in press) in which we describe several studies
of invention behavior in mathematics and related tasks. We argue there
that the processes involved in problem solving of certain kinds are probably
the same ones involved in learning in the absence of direct or complete
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instruction, and that instruction in those processes may constitute a means
of increasing an individual's intelligence.

We have developed a model of problem solving in which three inter-

acting phases are identified: (a) problem detection, in which the inapplica-
bility of "usual routines" is noted and a problem or goal formulated; (b) fea-
ture scanning, in which the task environment (the external situation, which
includes both physical and social features) is scanned for cues to appropri-
ate responses; and (c) goal analysis, in which goals are successively re-
formulated, partly on the basis of external task cues, in order to yield solu-
ble subgoals that contribute eventually to solution of the task as presented.
A study by Pellegrino and Schad ler (Note 2) has shown that requiring the sub-
ject to verbalize the goals of the problem and his or her strategies for solv-
ing it before making overt moves toward solution greatly enhances the like-

lihood of invention. Along similar lines, it seems likely that ways can be
found to make individuals more conscious of the role of environmental cues

in problem solving. Strategies of feature scanning and analysis may per-
haps be taught that will enhance the likelihood of thcir noticing cues that
prompt effective, actions, while recognizing and somehow "deactivating"

those that prompt ineffective actions. Extending this general argument of

self-regulation as a major characteristic of successful learning and prob-
lem solving, Resnick and Beck (in piess) have suggested that a similar form
of instruction in self-questioning and self-monitoring strategies might be an
effective way of enhancing reading comprehension abilities.

The specific suggestions that can now be offered for instruction of
generalized learning abilities are limited, because relatively little work
has been done thus far on developing task analyses that characterize these
general processes in instructable terms. Rational analysis seems less
likely to yield good suggestions for generalized abilities than for specific
tasks; thus empical task analyses seem to be called for. Further, the
rigor of formal models seems especially important where the processes
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are little understood and the task environments loosely structured, as is
often the case where problem solving and discovery are called for. Thus,

with respect to this most important goal of instruction, it will probably be
necessary to engage in the most costly and extended forms of task analysis,
that is, those that are formally stated and empirically validated. To the

extent that the analyses identify instructable processes, instructional experi-
ments can serve as one of the major forms of empirical validation of the
performance models proposed. A mutual interaction between scientific and
instructional concerns can thus be envisaged. With respect to these general
abilities in learning, thinking, and problem solving, information-processing
analysis may have the most to offer to instruction, just as instructional
efforts may have the most to offer to psychological knowledge.

I
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