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Abstract

We consider the problem of task assignment in a distributed system (such as a distributed
Web server) in which task sizes are drawn from a heavy-tailed distribution. Many task assign-
ment algorithms are based on the heuristic that balancing the load at the server hosts will result
in optimal performance. We show this conventional wisdom is less true when the task size dis-
tribution is heavy-tailed (as is the case for Web �le sizes). We introduce a new task assignment
policy, called Size Interval Task Assignment with Variable Load (SITA-V). SITA-V purposely
operates the server hosts at di�erent loads, and directs smaller tasks to the lighter-loaded hosts.
The result is that SITA-V provably decreases the mean task slowdown by signi�cant factors
(up to 1000 or more) where the more heavy-tailed the workload, the greater the improvement
factor. We evaluate the tradeo� between improvement in slowdown and increase in waiting time
in a system using SITA-V, and show conditions under which SITA-V represents a particularly
appealing policy. We conclude with a discussion of the use of SITA-V in a distributed Web
server, and show that it is attractive because it has a simple implementation which requires no
communication from the server hosts back to the task router.
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1 Introduction

Increasingly, high performance servers are being implemented as distributed systems { collections
of loosely-coupled hosts, as shown in Figure 1. In such a system, each arriving task must be
assigned to some particular host for service, and the policy used to make that assignment can have
a signi�cant impact on performance. Many task assignment policies have the goal of balancing
the load across the hosts of the system. This heuristic is reasonable because balancing load often
minimizes the expected waiting time for tasks in the system.

In contrast, in this paper we explore systems for which balancing load is not necessarily the best
policy. In particular, we are concerned with a distributed server which uses the processor-sharing
(PS) discipline at the hosts. An important aspect of the systems we consider is that task sizes are
drawn from a heavy-tailed distribution. A heavy-tailed distribution is one whose tail declines like
a power-law, that is, P [X > x] � x�� for 0 < � � 2. Heavy-tailed distributions are increasingly
being observed in a wide range of computer workloads, see Section 7. Since task sizes in our
case follow heavy-tailed distributions, their service demands show extremely high variability. Most
importantly, heavy-tailed task size distributions have the property that while the overwhelming
majority of tasks are very small, more than half of the load is made up by a tiny minority of the
the very largest tasks. Another important aspect of the systems we consider is that it is possible
to determine a task's service demand upon its arrival to the system. Our motivating application
is the design of a distributed Web server|since �rst, Web �le sizes appear to exhibit heavy tailed
distributions [6, 2] and second, task sizes may in most cases be inferred from the names of the �les
being requested.

The metrics by which we judge system performance are user-oriented metrics: mean waiting
time and mean slowdown, where slowdown is the ratio of a task's waiting time to its service
demand. System designers have often focused on developing policies that minimize mean waiting
time. However, in this paper we focus on minimizing slowdown, because slowdown translates
more directly to user-perceived performance. Minimizing waiting time tends to improve system
performance for large tasks (since these contribute most to waiting time) but may not have much
e�ect on short tasks. As a result, in a system with highly variable task sizes, minimizing mean
waiting time alone can nonetheless cause users to wait for extremely long periods for short tasks to
complete. In contrast, minimizing slowdown tends to improve the performance of all jobs equally
in proportion to their demand.

In this paper we show that when task sizes are heavy-tailed, policies that balance load in fact do
a poor job of minimizing slowdown. We demonstrate this fact by introducing a new task assignment
policy for distributed servers called SITA-V (Size Interval Task Assignment with Variable Load)
which operates di�erent hosts at di�erent loads. A server using SITA-V inspects each incoming task
as it arrives, and assigns it to some host based on the task's size. SITA-V exploits the heavy-tailed
task size distribution by running the overwhelming majority of tasks (all small-sized tasks) on hosts
which are loaded below the average system load and running the tiny minority (all large-sized tasks)
on a host which is loaded above the average system load. We show that using this strategy, SITA-V
can reduce mean task slowdown to levels far below that of traditional, load-balancing policies.

In improving mean slowdown, observe that SITA-V does not sacri�ce throughput. The overall
system utilization (�) is not changed; load is merely shifted among hosts. However, SITA-V achieves
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Figure 1: Model for distributed server with task assignment policy (a \server farm").

its result at some cost: an increase in mean task waiting time. We evaluate the tradeo� between
reducing slowdown and increasing waiting time in a system employing SITA-V. We show that the
two factors that determine the nature of the tradeo� are the variability of tasks (as measured by the
exponent � in the task size distribution) and the overall system utilization �. In general, we �nd
that when task sizes are highly variable (� < 1) SITA-V can result in remarkable improvements in
slowdown | by factors as great as 1000 or more. However we also show that under some conditions,
the improvements under SITA-V can come at a high cost in increased waiting time. We conclude
that SITA-V is a particularly appealing policy when � is small; in that case SITA-V results in
signi�cant improvements in slowdown while imposing relatively smaller costs in terms of additional
waiting time.

Finally, we return to our motivating example and discuss applicability of SITA-V in the context
of modern distributed Web servers. We show that modern distributed Web servers all assume that
load should be balanced among the server hosts; and we discuss the potential bene�ts presented
by the deployment of SITA-V in such systems.

The remainder of this paper is structured as follows. In Section 2 we describe the system model
that we use. In Section 3 we present analysis of the balanced-load case, to form a comparison
for what follows. Then in Section 4 we describe the SITA-V policy, and explain how it achieves
minimal slowdown, and in Section 5 we evaluate the tradeo� between slowdown and waiting time
under SITA-V. Next in Section 6 we discuss applicability of SITA-V in distributed Web servers.
Finally in Section 7 we discuss related work, and in Section 8 we present our conclusions.

2 Distributed Server Model

Our model of a distributed server assumes h identical hosts. Tasks arrive to the system according
to a Poisson process2 with rate �. A task corresponds to a request for service. A task-assignment

2We acknowledge that assuming a Poisson arrival process is unrealistic | for web servers the arrival process is

usually more bursty than a Poisson Process.
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policy is an algorithm which assigns each task to one of the hosts for service.

Heavy-Tailed distributions. One of the motivating factors in this work is the recent observation
that �le sizes on Web servers often exhibit heavy-tailed distributions [2, 7, 6]. We say here that a
random variable X follows a heavy-tailed distribution (with tail index �) if

P [X > x] � x��; as x!1; 0 < � < 2;

where a � bmeans that limx!1 a=b = c for some constant c. The simplest heavy-tailed distribution
is the Pareto distribution, with probability mass function

f(x) = �k�x���1; �; k > 0; x � k;

and cumulative distribution function

F (x) = P [X � x] = 1� (k=x)�:

Heavy-tailed distributions are characterized by extremely high variability, which increases sharply
as � decreases. Such a distribution has in�nite variance; and if � � 1 the distribution has in�nite
mean.

Recent work has shown that Web �le sizes on servers often show heavy-tailed size distributions.
Typical values of the tail index � seem to be in range of 1.1 to 1.3 [7, 6]. These values of � are so
low as to motivate particular focus on analyzing the e�ects of high variability in �le size, and on
developing resource management policies that speci�cally address high variability in �le size, which
we do in this paper.

Task sizes. We assume that task sizes show some maximum (but large) value. Note that this
would be the expected case for a Web server, which would have some largest �le. As a result, we
model task sizes using a distribution that follows a power law, but has an upper bound. We refer
to this distribution as a Bounded Pareto. It is characterized by three parameters: �, the exponent
of the power law; k, the smallest possible observation; and p, the largest possible observation. The
probability mass function for the Bounded Pareto B(k; p; �) is de�ned as:

f(x) =
�k�

1� (k=p)�
x���1 k � x � p: (1)

The shape of f(x) is shown in Figure 2 (right). If X is a random variable drawn from a B(k; p; �)
distribution, then the jth moment of X (for � 6= j) is given by:

E
n
Xj

o
=

�k� (kj�� � pj��)

(�� j) (1 � (k=p)�)
(2)

Note that the Bounded Pareto distribution has all its moments �nite. Thus, it is not a heavy-
tailed distribution in the sense we have de�ned above. However, this distribution will still show
high variability if k � p. For example, Figure 2 (left) shows the second moment E

�
X2

	
of this
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Figure 2: Parameters of the Bounded Pareto Distribution (left); Second Moment of B(k; 1010; �)
as a function of �, when E fXg = 3000 (right).

distribution as a function of � for p = 1010, where k is chosen to keep E fXg constant at 3000
(0 < k � 1500). The �gure shows that the second moment explodes exponentially as � declines.

Finally, we make the additional simplifying assumption that the service times of the tasks are
independent; in particular, the sizes of the ith and i+ 1st arriving tasks are uncorrelated.

Known task sizes. We assume that a centralized task router is able to inspect the service
demands of each arriving task. The fact that in this model of a distributed server a task's service
time is known at the time of its arrival greatly di�erentiates this model from a typical network
of workstations load balancing model where task sizes are not known in advance and must be
estimated as the task runs (e.g., see [13]). The design of a centralized router for distributed Web
servers that can inspect task service demands is described in [14].

Performance metrics. The e�ectiveness of the SITA-V task assignment scheme will be measured
in terms of mean waiting time, E fWg, and mean slowdown, E fSg, as de�ned below:

Waiting time (W). The waiting time for a task is de�ned as the time from when the task arrives
at the system until the task leaves the system, minus its service time. We evaluate the mean
waiting time, i.e., the average task waiting time, over all tasks. A related commonly used
metric is mean response time which is the sum of mean waiting time plus mean service time.

Slowdown (S). A task's slowdown is its waiting time divided by its size (execution time). That
is, the task's waiting time is normalized by its size. Minimizing slowdown is often cited as
the most important performance objective because it results in short tasks waiting less time
and long tasks waiting longer.

Note that if task sizes are denoted by X, then mean slowdown is:

E fSg = E fW=Xg ;
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where W and X are not independent for the PS discipline.

If we consider tasks to be analagous to �les being served, then task size can be thought of
in units of bytes. Then we can also de�ne a metric B, per-byte slowdown, where the per-byte
slowdown of a task is the task's slowdown multiplied by its �le size. Observe that

E fBg = E fSXg = E fWX=Xg = E fWg ;

where all expectations are task averages.

This means that minimizing waiting time can be thought of as minimizing per-byte slowdown;
and that minimizing (what we are calling) slowdown can be thought of as minimizing per-�le
slowdown.

Of these two metrics (slowdown and waiting time), we consider slowdown to be most important,
because it is desirable that a task's delay be proportional to its size. That is, in a system in which
task sizes are highly variable, users are likely to anticipate short delays for short tasks, and are likely
to tolerate long delays for longer tasks. This may be especially true in the case of Web requests,
where users may typically have a feeling for the rough order of magnitude of their request.

Parameteric ranges used in evaluation. In evaluating SITA-V throughout the paper we
choose speci�c values or ranges for the system parameters, as summarized in Table 1. These values
are chosen with the aim of being realistic for a medium-scale distributed system with heavy-tailed
workload, such as a distributed Web server.

Number of hosts h = 2 { 16
System load � = :2 { .9
Mean service time E fXg = 3000 time units

Task arrival rate � = � � 1

EfXg
� h tasks/unit time

Maximum task service time p = 1010 time units
� parameter :5 < � � 2
Minimum task service time chosen so that mean task service time

stays constant as � varies (0 < k � 1500)

Table 1: Parameters used in evaluating task assignment policies

We consider a range in the number of hosts h from 2 to 16, representative of a medium-scale
distributed system and a range in the overall system load � from lightly loaded to heavily loaded.
The mean task execution time, E fXg, is chosen to be 3000 time units. This could be interpreted
as the number of bytes in an average Web page [8]. The arrival rate � is then determined by the
above formula.

For completeness we consider a range of � from :5 to 2; as discussed in Section 2 this means that
task variability spans a wide range from moderately variable (� = 2) to highly variable (� � 0).
Recent measurements indicate that a Web server might experience � in the range of approximately
1.1 to 1.3 [7].

If k and p are held constant, an increase in � results in a decrease in the mean task size.
Therefore, to hold E fXg constant, we decrease k, the lower bound on the B(k; p; �) distribution,
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as we increase �. In practice, changing p has a relatively less pronounced e�ect on E fXg, so we
choose to hold p constant at 1010. Again, this value corresponds to a reasonable value for a largest
�le on a Web server, measured in bytes. Thus � and k are throughout de�ned in pairs, where

3000 = E fXg =
�k�(k1�� � p1��)

(�� 1)(1 � (k=p)�)
: (3)

As � ranges from :5 to 2, k ranges from just slightly greater than 0 (time units) to 1500 (time
units).

3 Performance of Distributed Server With Balanced Load

In this section we review the mean slowdown for a distributed server with any task assignment
policy which balances the expected load at the server hosts. For the purposes of analysis, we
assume that the arrival process at each host is Poisson.

We begin by reviewing the analysis of the M/G/1 PS queue. Recall that in a M/G/1 PS queue
all tasks experience the same slowdown, independent of their size. Speci�cally, (see [17]),

E fW jtasksize = xg =
�

1� �
� x; (4)

where W denotes the waiting time for the M/G/1 PS queue and � denotes the expected load.
Equation 4 can be used to derive E fWg and E fSg for the M/G/1 PS:

E fWg =
�

1� �
E fTasksizeg

E fSg =
�

1� �

Now consider a distributed server employing any task assignment policy which balances the
expected load among its hosts. Then if � denotes the system load, then the load at every host
is also �, so the mean slowdown at each host is �=(1 � �) by the above analysis. Thus the mean
slowdown for the system is �=(1 � �). This fact holds independently of the distribution of task
sizes, and also independently of the particular task assignment policy.

4 Improving Performance by Unbalancing Load: SITA-V

In the previous section we studied a distributed system of h PS server hosts employing any task
assignment policy which balances the load at the server hosts. We found that this distributed
system has the same mean slowdown as a single PS server of equal power to the h hosts combined.

In this section we ask whether it is possible to improve upon the performance of such a dis-
tributed server system. The answer is yes|by unbalancing the load at the server hosts.
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We introduce a task assignment policy called SITA-V: Size Interval Task Assignment with
Variable Load. SITA-V is based on the following idea: mean slowdown could be reduced if many
tasks were run on a host with reduced load (and therefore low mean slowdown), while the remaining
few tasks were run on a host with high load. For traditional task size distributions this doesn't
seem possible because the host with many tasks also will experience high load and the host with
few tasks will experience low load. However, when the task size distribution is heavy-tailed the
reverse is often true. A tiny fraction of the very largest tasks can constitute more than half the
load|hence the name \heavy-tail". The more heavy-tailed the task size distribution (i.e., the
smaller �) the smaller is this tiny fraction, and thus the greater the number of tasks which are
bene�tted by running at a reduced load.

To see concretely exactly how the algorithm operates, we present in the next section the SITA-V
algorithm for the case of just 2 hosts: SITA-V2. Then in Section 4.2 we present the general SITA-V
algorithm.

4.1 SITA-V in the 2-Host Case

SITA-V2 is de�ned as follows. Let k denote the smallest possible task size, let p denote the largest
possible task size, and let x1 be some number between k and p. Under SITA-V2 all tasks of size
between k and x1 are assigned to host 1, all tasks of size between x1 and p are directed to host
2, and the cuto� x1 is uniquely de�ned so as to minimize E fSg for the system. Note that legal
values of x1 must respect the constraint that the load on both hosts must stay below 1.

An important special case of SITA-V2 is EQ-LOAD where x1 is chosen so that the load on the
two hosts is equal, x1 = xe. We will use EQ-LOAD as a comparison case for SITA-V2 because it is
representative of load-balancing schemes. We begin by presenting a thought-experiment to explain
why it is that SITA-V2 works and what precisely it is doing. Then we will present a collection of
graphs which demonstrate this intuition in action for a range of �s and �s.

Consider a 2-host system in which tasks of size less than x1 are sent to host 1, and tasks of size
greater than x1 are sent to host 2. Let pi (i = 1; 2) be the fraction of tasks that are assigned to
host i, and let Si be the slowdown for tasks assigned to host i. Then:

E fSg = p1E fS1g+ p2E fS2g (5)

where the values of pi and E fSig depend on the cuto� point x1. Then, when x1 = xe, we have

E fS1g = E fS2g and E fSg = E
n
SEQ�LOAD

o
. Figure 3 depicts E fS1g and E fS2g as a function

of the cuto�, x1. E fS1g increases as the cuto� x1 is increased, and E fS2g decreases as x1 is
increased.

First we ask the question: might E fSg be lower for some value of x1 6= xe? To answer this,
suppose that when x1 = xe, p1 is very large|i.e., p1 � 1. Then if we decrease x1 by a small
amount, it will still be the case that p1 � 1 and p2 � 0. In that case E fSg will be close to the
E fS1g curve, because E fSg will be dominated by E fS1g (as shown by Equation 5). But that
means the value of E fSg will be below the value at the crosspoint. That is, the system will have
achieved a lower value of E fSg.
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Figure 3: E fS1g and E fS2g shown as a function of the cuto� x1. The point x1 = xe depicts
balanced load among the hosts (EQ-LOAD).

Now we examine the question of whether it is in fact the case that p1 � 1 when x1 = xe.
Remember that half of the work is contained in the tasks whose size is larger than xe. Therefore p1
will be close to 1 only when those largest tasks (containing half the work) constitute a tiny fraction
of all tasks. That is, p1 � 1 if half the work is contained in only a tiny fraction of the largest
tasks|which in fact is exactly the case for heavy-tailed distributions.

The fraction of largest tasks containing half the work decreases as � decreases|consistent with
the idea that tails grow \heavier" with decreasing �. So, the lower the � parameter, the greater
is p1 when x1 = xe. For example, when � = 1:1, p1 = :997, while when � = :5, p1 increases to
:9999996. This is reected in the relative improvement of SITA-V2 over EQ-LOAD: for � = 1:1,
the improvement is about a factor of 2, while for � = 0:5, the improvement is about a factor of 33.

Figure 4 shows SITA-V2's improvement over EQ-LOAD using the same type of drawing as
Figure 3 over a range of �s and a range of �s, so that we can better understand the e�ect of � and
� on SITA-V2's performance. Each graph in the �gure plots E fS1g ;E fS2g ; and E fSg; di�erent
graphs in the �gure are for di�erent values of � and �. In each row of graphs, system load (�) is
held constant; the top row has � = 0:3; the next rows have � = 0:5 and 0:7; and the lowest row has
� = 0:9. In each column, task size variability (measured by �) is held constant; � varies from 0.7
on the left, through 1.1 and 1.3, to 1.9 on the right.

In each graph, the dotted line moving from bottom left to top right represents E fS1g. E fS1g
increases as x1 increases because more load is then sent to host 1. The dotted line moving from
top left to bottom right represents E fS2g, which decreases as x1 increases because then less load
is directed to host 2.

Note from Figure 4 that the crosspoint (xe) depends only on �. As explained above, the smaller
the � parameter, the further right is the crosspoint. Now the important point is that since the
crosspoint is larger for smaller �, p1 is also larger. Therefore there is more room for improvement;
i.e., E fSg is dominated by E fS1g over a larger region, when moving left from xe, as illustrated in
the graphs.

Now consider the e�ect of increasing �. SITA-V2's improvement factor with respect to mean
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slowdown drops as � is increased. This e�ect is most pronounced when � > :5. The reason is that
for � > :5, E fSg is only de�ned within the legal region|the region in which the load at both hosts
is less than 1. This legal region lies between the vertical asymptotes of the E fS1g and E fS2g
curves. As � increases, the legal region gets narrower, so there is less exibility for the value of x1.
The problem is that if when x1 approaches the limit of the narrow legal region, E fS2g explodes.
This means that E fSg has no alternative but to explode as well, regardless of how high p1 is.

Luckily, this observation concerning high � is largely speci�c to the 2-host case. In Section 5
we will show that it is possible to compensate for the reduced exibility of high load by increasing
the number of hosts (h).

4.2 SITA-V for More Than 2 Hosts

For SITA-V2, the value of x1 that minimizes E fSg can be found in a straightforward way, since
it is the inection point of the E fSg curve (i.e., the unique point within the legal region at which
dE fSg =dx1 = 0).

The SITA-V algorithm for h > 2 hosts requires determining h�1 cuto� points, xi, i = 1 : : : h�1,
such that k = x0 < x1 < x2 < : : : < xh�1 < xh = p: All tasks of size between xi�1 and xi are
assigned to host i.

There are a number of ways to extend SITA-V2 to the case h > 2. We have explored three
methods:

Increasing i. In this approach, the xis are determined in increasing order of i. That is, we �rst
decompose the system into a single lightly-loaded host (number 1) and a \virtual" host with
processing power equal to the remaining h�1 hosts. This determines x1, and then the process
is repeated recursively on tasks between size x1 and xh.

Decreasing i. This approach is just like the previous one, except that the heaviest-loaded host is
considered �rst.

Divide-and-Conquer. This approach �rst �nds the xi corresponding to the division of the system
into two (nearly) equal-sized subsystems; starting from lower bound x0 and upper bound xh,
determine xbh=2c. The �rst group of bh=2c hosts are assigned all tasks of size between x0 and
xbh=2c and the remaining group of dh=2e hosts receive all tasks of size between xbh=2c and xh.
Then this process is repeated recursively within each of the two subsystems.

Although SITA-V2 is by de�nition the optimal policy with respect to minimizingE fSg, we have
not shown that any of the three polices above are optimal for h > 2. Nonetheless, we �nd that in
practice the three approaches described above typically provide similar results. Furthermore, their
results are often quite good, as will be shown in the next section. As a result, for the remainder of
the paper we present results obtained using just one policy: divide-and-conquer.
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5 Evaluating SITA-V

In the previous section we showed how it is possible for SITA-V to reduce mean slowdown in a dis-
tributed system with heavy-tailed task sizes. However, although SITA-V reduces mean slowdown,
it also increases mean waiting time E fWg in such a system|which is to be expected since minimal
mean waiting time only occurs when load is balanced.

Therefore it is important to understand the tradeo� between decreases in slowdown and in-
creases in waiting time in a system employing SITA-V. In this section we explore that tradeo�, by
examining the performance metrics E fSg and E fWg for SITA-V over the wide range of values of
�, �, and h shown in Table 1.

Figures 5 and 6 show the performance of SITA-V for � ranging from very high variability (0:5)
to low variability (2:0), and h ranging from 2 to 16 in powers of two. Figure 5 shows results for
conditions of high load (0:6 � � � 0:9), while Figure 6 shows results for conditions of low load
(0:2 � � � 0:5). The left column in these �gures indicates the improvement factor of SITA-V over

an EQ-LOAD policy with respect to mean slowdown, that is, E
n
SEQ�LOAD

o
=E

n
SSITA�V

o
:

The right column in these �gures indicates the corresponding relative increase in waiting time:

E
n
W SITA�V

o
=E

n
WEQ�LOAD

o
: Note that all of these plots use a log scale on the y axis, and

that scales across all plots are the same.

We begin by restricting our attention to the left column of Figures 5 and 6, which show the
improvement factor in mean slowdown. Several trends are clear: First, observe that regardless of the
load, the lower the � value, the greater the improvement in slowdown. When � > 1:2, performance
improvements under SITA-V are not very large (between 1 and 2), but as � approaches 0:5, the
factor improvement in slowdown rises to between 103 and 105 depending on load. To understand
this e�ect of �, we return to a fundamental property of heavy-tailed distributions. Heavy-tailed
task size distributions have the property that while the overwhelming majority of tasks are very
small, more than half of the load is made up a tiny minority of the very largest tasks. SITA-V
exploits heavy-tailed task size distributions by running the overwhelming majority on hosts which
are loaded below the average system load, while running the tiny minority on hosts which are loaded
above the average system load. Since mean slowdown is a per-task average, and most tasks are
doing better, mean slowdown decreases. The smaller the �, the greater the size of the overwhelming
majority, and thus the greater the improvement on mean slowdown.

Given this sensitivity to �, we can immediately ask how SITA-V would a�ect systems under
empirically measured workloads. Empirical measurements of � vary. Our results show that for �
values that seem to be at the high end of the range measured for Web servers (� � 1:1) [6, 7], the
improvement factor when using SITA-V (on more than 4 hosts) is around 2:5, across a wide range
of loads. However, if �le sizes in the Web have lower � values, as some measurements indicate [2],
then SITA-V could exhibit much larger speedup improvements in practice.

Next we consider the e�ect of the load, �, and the number of hosts, h, on the mean slowdown
improvement. The Figures show that decreasing the load or increasing the number of hosts results
in an increase in mean slowdown improvement. The reason is that when the load is high, SITA-V
has less exibility for shifting around tasks (given the restriction that the load at all hosts must
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stay below 1). Increasing the number of hosts increases this exibility. This e�ect can be seen
most clearly in the left-hand graphs in Figure 5. The uppermost of these graphs shows the case
when � = 0:9 | extremely high load. In that case, the improvements possible under small � are
not achieved until the number of hosts is large (h = 16). Moving to the next graph downward, in
which � has decreased to 0.8, we see that the maximum improvements are now achieved at a lower
number of hosts (h = 8). Progressing downward again, we see that this \knee" continues to move
toward lower h values. Thus we can conclude that when � is small, signi�cant improvements are
possible if either � is small, or h is large.

Now we turn to the tradeo� issues represented by the factor increases in waiting time shown in
the right-hand columns of Figures 5 and 6). First consider the e�ect of �. Similarly to slowdown,
the increase in waiting time goes up as � goes down. However, this increase tapers o� for the lower
� (below � = :9), whereas the improvement in slowdown continues to increase as � is dropped.
Next consider the e�ect of �. The load, �, e�ects the size of the range on the y-axis as we move
from � = 2:0 to � = :5. For high �, the factor increase in waiting time varies from around 1 to
around 600 as � varies. For low � (� = :2) this range shrinks to 1 to 20. These e�ects combine
so that SITA-V appears especially attractive for low � and low � where its factor improvement in
mean slowdown is on the order of 105 whereas its factor increase in mean waiting time is only on
the order of 20.

The tradeo� between the improvement in slowdown and the increase in waiting time is summa-
rized in Figure 7. This �gure plots relative decrease in slowdown and relative increase in waiting
time for four representative cases from the range of � and �; note that in this �gure the y-axes are
not all to the same scale.

For high � (� = 1:5), the �gure shows that only modest improvements in slowdown are possible,
and that the corresponding costs in waiting time are also small; this holds regardless of the load
�. However, for low � (� = 0:5) we can distinguish two cases based on the value of �. For � = 0:2,
signi�cant improvements in slowdown are possible, while waiting time is not increased by the same
factor. When load on the system is high (� = 0:8), the cost in increased waiting time in using
SITA-V is also high; however the improvements in slowdown due to SITA-V can also be high, if
enough hosts are used (h > 8).

In summary we note that SITA-V and EQ-LOAD represent ends of a spectrum. SITA-V
minimizes slowdown while EQ-LOAD minimizes waiting time. These two metrics correspond re-
spectively to optimizing the per-�le case, and the per-byte case (as discussed in Section 2). Thus,
these results may be interpreted as an indication of how far apart these two operating points are
when workloads are heavy tailed. This suggests that there may be more desirable policies that
operate the system at an intermediate point between these two extremes.

6 Using SITA-V in a Distributed Web Server

One of the most common bottlenecks in the Web is the performance of servers. To increase capacity,
builders of high performance Web servers are increasingly turning to distributed systems because
of their potential support for scalability [16, 12, 20, 24]. For example, Netscape's home site has
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evolved from a 6-processor tightly-coupled multiprocessor serving about 5 million hits per day, to a
distributed system with more than 20 hosts serving more than 100 million hits per day [12, 25, 26].

Recent performance measurements of the Web and Web servers show that Web �le sizes exhibit
heavy-tailed distributions, leading to very high variability [2, 6]. As a result, practical resource
allocation methods for Web servers must address the basic problems that arise from highly variable
�le sizes.

In this section we review the state of the art in distributed Web servers, and show that task
assignment is an important problem in such systems; we show that mechanisms for centralized
task assignment are commercially available; and we suggest how SITA-V could be useful in such
systems.

The most commonly used task-assignment mechanism in current distributed Web servers em-
ploys a feature of the Domain Name System (DNS) called Round-Robin DNS [4, 16]; this approach
attempts to balance load among hosts by equalizing the number of tasks assigned to each host.
However, the time scale at which RR-DNS balances load is relatively coarse, which leads to sig-
ni�cant load imbalance in practice [5, 12, 23]. This has motivated the development of �ne-grained
load balancing mechanisms, such as the TCP router. The TCP router modi�es the destination IP
address within each packet in such a way that all packets stemming from one request go to the
same server host, but successive requests are mapped to successive hosts in a round-robin fashion;
this allows equality in work assignment at a very �ne time scale. TCP routers have been employed
in experimental Web servers [1, 10, 22]. Such routers may introduce delays because they must
modify each packet that ows through them. However, because they achieve better load balance,
they are commonly proposed for high-performance distributed Web servers [10, 22], and a number
of commercial products have appeared that implement this functionality.

A recent enhancement of TCP routers, also aimed at better load balance, is dynamic task
assignment based on information about the current load on each host. In this approach, hosts
update the task router constantly on their load status, and the task router sends an incoming
task to the least-loaded host. This method is used in commercial products such as IBM's Network
Dispatcher, Cisco's Local Director, F5 Labs's Big/IP, RND Network's Web Server Director and
others. These products are called \load balancers" by popular magazines and their task assignment
schemes have received much recent attention, [3, 30]. However using a dynamic task assignment
scheme has two serious drawbacks: �rst, the large amount of information collection at a single
point (the router) is an impediment to scaling; and second, the load data received by the router is
often stale, resulting in tasks being mistakenly routed to a server host that is already overloaded.

Regardless of the approach used, most current methods attempt to equalize load across hosts.
In this paper we have shown that, in contrast to systems with low variability in task size, the high
variability in task sizes present in the Web suggests that assigning equal amounts of work to each
host of a distributed Web server is not necessarily the best policy.

Implementation of SITA-V in a TCP router requires that the task assignment policy can de-
termine a task's service demand upon its arrival to the system. We assume that a task's service
demand can be inferred from the name of the �le being requested, which is reasonable for static
data. The implementation of a TCP router that can inspect �le names before forwarding requests
to hosts is described, for example, in [14].
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In addition to improving performance, SITA-V has practical bene�ts as well. No data collection
from the hosts is required, so neither of the problems listed above associated with dynamic task
assignment schemes are an issue. An additional design bene�t of SITA-V is that it doesn't require
duplicating all the �les onto every host; each host is only responsible for a subset of all �les.

7 Related Work

There is a huge body of literature on load balancing in general distributed systems, including an-
alytic, simulation, and implementation work (see [13] for a number of references). More recently,
analytic work on load balancing has considered more general task size distributions than the tra-
ditional exponential distribution (this usually requires some decomposition approximation where
the nodes of the network are assumed to behave independently of each other, see for example,
[9]). However the speci�c properties of heavy-tailed task sizes are only just now beginning to be
incorporated into the design of load balancing policies [13]. Performance analysis of load balancing
policies under heavy-tailed task sizes is usually di�cult. Heavy-tailed distributions have however
been considered in some load balancing simulations [21, 18, 13].

The previous section described related work in the context of distributed Web servers. Previous
Web server load balancing research has not considered the e�ects of a heavy-tailed task size dis-
tribution. For example, the work described in [5] has looked at load balancing in distributed Web
servers but has concentrated on developing coarse-grained load balancing policies for use within
DNS; variability in request sizes is not considered.

Nonetheless, heavy-tailed distributions are important because they are beginning to appear in
many measurements of computer systems. Work in [6, 7, 2] has shown that Web �le sizes often
exhibit heavy tails. The ranges of � reported in [6, 7] are approximately 1.1 to 1.3. There is
evidence that �le sizes in systems other than the Web may show heavy tails as well: Unix �le size
measurements are presented in [15], and I/O in a general computing enviroment is presented in [28].
Also, the authors in [27] found that the upper tail of the distribution of data bytes in FTP bursts
(�le transfers over the Internet) was well �t to a heavy-tailed distribution with 0:9 � � � 1:1.

In addition to �les and I/O traces, other computer system attributes have also been shown to
exhibit heavy tailed distributions. In particular, the lifetime of processes in some systems can show
heavy tails: [21] found that Unix process lifetimes showed heavy tails with 1:05 � � � 1:25 and
[13] found that Unix process lifetimes showed heavy tails with � � 1.

Analysis of heavy-tailed distributions has been developed only recently in the area of queuing
theory. All has been in the context of a single queue. Analysis of a M/G/1 queue with heavy-
tailed task service times has appeared in [29]. Analysis of queues with in�nite variance task sizes is
di�cult. For this reason �nite variance approximations to heavy-tailed distributions are increasingly
being used [11].
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8 Conclusion

In this paper we've shown that for distributed systems with heavy-tailed workloads employing a
processor-sharing policy at the hosts, mean slowdown can be improved by large factors by adopting
a policy that does not balance load. We have introduced a new policy, SITA-V, that reduces mean
slowdown to levels far below those that a balanced-load policy would achieve. The key idea of
SITA-V is to direct the small but numerous tasks to lightly-loaded hosts, while sending the large
but rare tasks to heavily-loaded hosts.

We have argued that slowdown is an important metric because it relates a task's waiting time
to its service demand. In a system with highly variable task sizes, users may be willing to wait
longer for large tasks to complete, but expect that small tasks should complete quickly. Reducing
mean waiting time does not by itself insure that this will be the case.

In addition, we have suggested that SITA-V may have applicability in the context of modern
distributed Web servers. We showed that modern distributed Web servers all assume that load
should be balanced among the server hosts, in contrast to the SITA-V strategy. In addition we
showed that implementing SITA-V is feasible given current distributed Web server technology, and
that it has design advantages over currently used task assignment policies.

The cost in employing SITA-V comes in increased mean waiting time. We have evaluated the
tradeo� between reducing slowdown and increasing waiting time in a system employing SITA-V.
The two factors that determine the nature of the tradeo� are the variability of tasks (as measured
by the exponent � in the task size distribution) and the overall system utilization �. In general, we
�nd that when task sizes are highly variable (� < 1) SITA-V can result in remarkable improvements
in slowdown | by factors as great as 1000 or more. For task size distributions similar to those
found on the Web, (� � 1:1), the improvement is on the order of a factor of 2:5. For high � this
improvement is possible using only a small number of hosts (4), however for large � more hosts
(16) are needed.

These results suggest that the variability present in heavy-tailed workloads is so high as to
suggest that some traditional issues in system design need to be reconsidered. For example, a
common rule of thumb among computer systems designers is to \optimize the common case" [19].
However when task sizes follow a heavy-tailed distribution, an important question becomes: what
is the common case? Consider a set of �les in which most �les are small, but half of the bytes are
contained in the 0.3% largest �les. Then there are two answers to this question: there is a \common
�le," (i.e., a small �le) and there is a \common byte" (i.e., those in large �les). We show in this
paper that these two answers to the common case question lead to radically di�erent system designs
in practice. As discussed at the end of Section 2, waiting time can be considered to be equivalent
to per-byte slowdown. So we can observe that a system that focuses on good per-�le performance
(that is, one that minimizes slowdown) is remarkably di�erent from a system that focuses on good
per-byte performance (that is, one that minimizes waiting time). We conclude that the nature of
heavy-tailed workloads places the per-byte metric and the per-�le metric in strong opposition.
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