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Abstract. The goal of DELOS Task 4.8 Task-centered Information Management
is to provide the user with a Task-centered Information Management system
(TIM), which automates user’s most frequent activities, by exploiting the col-
lection of personal documents. In previous work we have explored the issue of
managing personal data by enriching them with semantics according to a Personal
Ontology, i.e. a user-tailored description of her domain of interest. Moreover, we
have proposed a task specification language and a top-down approach to task in-
ference, where the user specifies main aspects of the tasks using forms of declara-
tive scripting. Recently, we have addressed new challenging issues related to TIM
user’s task inference. More precisely, the first main contribution of this paper is
the investigation of task inference theoretical issues. In particular, we show how
the use of the Personal Ontology helps for computing simple task inference. The
second contribution is an architecture for the system that implements simple task
inference. In the current phase we are implementing a prototype for TIM whose
architecture is the one presented in this paper.

1 Introduction

Personal Information Management (PIM) aims at supporting users in the collection,
storage and retrieval of their personal information. It is a crucial challenge nowadays;
indeed, the collection of digital documents stored within the personal repository of each
one of us increases every day, in terms of both size and “personal” relevance. In a
sense, this collection constitutes the Digital Library that is closest to the user and most
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commonly and frequently used. It is often the starting point or reason for wider ac-
cess to digital resources. Furthermore, the user’s personal document collection is daily
used to perform routine activities, as booking hotels, and organising meetings. The fo-
cus of DELOS Task 4.8 Task-centred Information Management is precisely to provide
the user with a Task-centred Information Management system (TIM), which automates
these user activities, by exploiting the collection of personal documents considered as
a Digital Library.

At the beginning of our investigation, we have faced the issue of providing the user
with a system allowing her to access her data through a Personal Ontology (PO), that
is unified, integrated and virtual, and reflects the user’s view of her own domain of
interest [3,10]. The study of such a system is motivated by the need to assign semantics
to the user’s personal collection of data, in order to help inferring and executing the most
frequent user’s tasks that either take such data as input or produce it as output. Then, we
have focused on defining a task specification language [4], which was appropriate in our
context, in the sense that it was both expressive enough to be effectively helpful to the
user, and simple enough to allow tasks to be inferred. Moreover, such a language had to
be tailored to use the PO to semi-automatically obtain task input and to possibly update
the PO after the task execution, according to the task output and semantics. However,
having a task specification language allows to semi-automatically execute tasks that the
user previously defined. Our further goal is to have the system infer what is the task the
user intends to execute next.

This paper addresses the above mentioned issues. Specifically, our main contribu-
tions can be summarised as follows:

– First, we cope with task inference in TIM. In particular, we investigate the main
task inference theoretical issues. Then we show how to exploit the underlying PO
and the features of our task specification language, in order to provide simple task
inference in our setting. The main idea here is to suggest appropriate tasks from
personal data, based on their semantics.

– Second, we propose a novel architecture for TIM, which implements our solution
to the simple task inference issue. More precisely, we propose to integrate into
the system an existing web bookmarking tool, called Snip!t , whose distinguishing
feature is precisely to “intelligently” suggest appropriate actions to perform starting
from a Web page content.

The paper is organised as follows. After discussing related work in Section 2, we
briefly introduce in Section 3 the previous main task contributions. In Section4 we
discuss task inference related theoretical issues. Then, in Section 5, after introducing
Snip!t and presenting its distinguishing features, we propose a new architecture for
TIM, and show how this provides a simple task inference. Finally, we conclude by
presenting future work.

2 Related Work

The issues faced in DELOS Task 4.8 concern several different areas of research. In the
following we discuss related work in each of the main areas.
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Task management. Recently, research efforts on the problem of managing user’s tasks
have lead to the prototype Activity-Centered Task Assistant (ACTA), implemented as
a Microsoft Outlook add-in [1]. In ACTA, a user’s task, named “ACTA activity”, is
represented as a pre-structured container, that can be created inside the e-mail folder hi-
erarchy. It is a task-specific collection containing structured predefined elements called
“components”, that embody common resources of the task and appear as activity sub-
folders. Thus, for example, by creating an ACTA activity to represent a meeting, and
by inserting the component “contacts”, the user aims at relating the content of this sub-
folder, which will essentially be a list of names, with that particular meeting. More-
over, the population of an activity is done semi-automatically, by allowing the user just
to drag into the appropriate activity component, the document containing the relevant
data, which is afterward automatically extracted and stored. Even though ACTA activ-
ities are built relying on user’s personal data, their approach is not comparable to ours,
since they do not consider tasks as a workflow of actions (e.g. filling and sending the
meeting invitation e-mail), which can be inferred and semi-automatically executed.

Task inference. There has been a long history of research into task detection, infer-
ence and prediction in human-computer interaction, with a substantial activity in the
early 1990s including Alan Cypher’s work on Eager [5] and several collections [8]. The
line of work has continued (for example [11]), but with less intensity than the early
1990s. Forms of task inference can be found in widely used systems, for example the
detection of lists etc. in Microsoft Office or web browsers that auto-fill forms. The
first example clearly demonstrates how important it is that the interaction is embedded
within an appropriate framework, and how annoying it can be when inference does not
do what you want! Some of this work lies under the area of “programming by demon-
stration” or “programming by example”, where the user is often expected to be aware
of the inferences being made and actively modify their actions to aid the system. This
is the case of [9] where authors present a learning system, called PLIANT, that helps
users anticipating their goal, by learning their preferences and adaptively assisting them
in a particular long-running application such as a calendar assistant. Other work falls
more under user modelling, intelligent help, automatic adaptation or context-aware in-
terfaces where the user may not be explicitly aware that the system is doing any form
of inference [2]. Our work lies with the former as we do expect that users will be aware
of the inferences being made and work symbiotically with the system in order to create
a fluid working environment.

3 Summary of Previous Contributions

In this section we briefly present the DELOS Task 4.8 previous contributions, namely
OntoPIM and the task specification language.

OntoPIM. OntoPIM [10] is a module that allows to manage the whole collection of
heterogeneous personal data usually maintained in a personal computer (e.g. contacts,
documents, e-mails), and to access them through a unified, integrated, virtual and yet
user-tailored view of her data. This view is called Personal Ontology (PO), since it re-
flects the user’s view of her own domain of interest. It is therefore specific to each user.
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As for the language to specify the PO, we use the Description Logic called DL-LiteA

[13,12], since besides allowing to express the most commonly used modelling con-
structs, it allows answering expressive queries, i.e. conjunctive queries, in polynomial
time with respect to the size of the data. This is clearly a distinguishing and desirable
feature of such a language, in a context like ours, since the amount of data is typically
huge in one’s personal computer. In order to achieve the above mentioned result, On-
toPIM proceeds as follows. First it extracts, by means of appropriate wrappers, pieces
of relevant data from the actual personal data contained in the personal computer. Then
it exploits the so-called Semantic Save module, which (i) stores such data in a DBMS,
maintaining also its provenance, and (ii) stores the relationship existing between the
data and the PO, as (implicitly) specified by the user. Note that the latter relationship
reflects indeed the data semantics according to the user.

Task Specification. In order to be able to semi-automatically execute user tasks, we
defined a task specification language [4] having two main features. First, the language
is at the same time expressive enough for actually being helpful to the user, and simple
enough for being effectively “usable” and “learnable” by the system. Second, the lan-
guage allows to specify as a part of the task definition, the input/output data mappings,
i.e. the relationships existing between the task and the PO. Specifically, the input data
mappings specify the query to be posed over the PO in order to obtain the task input,
whereas the output data mapping specify the task output as an update (possibly empty)
to be computed over the personal data, according to the semantics of both the task exe-
cution and the PO. As we will see, the specification of task input/output data mappings
is crucial for task inference/detection/suggestion.

Furthermore, we have explored task inference top-down approaches, where the user
specifies aspects of the task using forms of declarative scripting. Our proposal was
based on the idea of combining task decomposition and a plan language to describe for
each complex task, the execution plan of its sub-tasks. On one hand, a complex task is
decomposed into a set of sub-tasks. This allows for a comprehensible view of the task.
On the other hand, we have proposed a plan language limited to sequence, alternatives
and repetition.

4 Task Inference

In this section, we first address task inference theoretical issues. In particular we focus
on bottom-up approaches to simple task inference. Then, we show how the use of a PO
can help solving simple task inference in our setting.

As discussed in Section 2, the most successful systems have often been within dedi-
cated applications, where there is a single line of activity and detailed semantic under-
standing of each action. This was for example the case with EAGER and PLIANT. For
more generic systems detection and inference is more difficult, particularly where the
user trace data is at a low level either keystroke or click-stream data (which often has to
be the case where application support is not assumed). In fact, two particular problems
for generic systems are:

– interleaving. Users are often performing several tasks simultaneously, perhaps
while waiting for something to complete, or because they notice and alert, get a
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Fig. 1. Untangling interleaved tasks using dependencies

telephone call. Before task inference can begin it is necessary to disentangle these,
otherwise each sub-task is littered with the “noise” of the others.

– generalisation. Where the user entered data is simply sequences of keystrokes,
clicks on locations or basic data types, it is hard to generalise without very large
numbers of examples. The use of the PO helps considerably with these problems.
Specifically, to face the interleaving problem, we will encourage a drill-down model
of interaction where the user either selects previous outputs of actions and then
drills forwards (e.g. recent e-mail → sender → Antonella → University → City
→ Rome → Flights to Rome) or responds to suggested form fills (e.g. from Flight
booking form with field ’City’ select “Rome because it is the City where Antonella
works”). This creates an explicit link either directly between actions or indirectly
between them through ontology relationships, which can then be used to sepa-
rate out interleaved tasks and sub-tasks by tracing lines of dependency, rather like
pulling out a string of pearls from a jewellery box (see Figure 1).

Concerning the generalisation problem, because we have a rich typing of task/action
input and output data through the PO, we are in a much better position to generalise.
If we only know that a form field requires a character string, then given a future char-
acter string we may have many possible previous tasks sequences whose initial actions
require a string. In contrast, if we know that a character string is in fact a person name
or a city name, then faced with a future person name (perhaps from a directory look-up,
or an e-mail sender) it is easier to find past tasks requiring as input a person name. In
other words, our generalisation is not based on the representation in terms of letters, but
in terms of the elements of the ontology.

Let us now focus on simple task inference, where a simple task can include sequences
and/or a repetitions of sub-tasks/actions. Thus, here we do not cope with choices.
Hence, the job of the inference here is to suggest the most likely single actions and
entire task sequences so as to minimise the user’s effort in using the system. Intuitively,
we intend to build a series of increasingly complex inference mechanisms, both in terms
of our development process and in terms of the users’ experience. That is, even if we
have complex inference mechanisms available, these need to be presented incremen-
tally to the user. In fact, to some extent, even simple type matching can be viewed as a
crude form of task inference. However, if this is supplemented by sorting of a few most
likely candidate actions/tasks based on past usage, then a form of task sequence comes
almost “for free”.
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For example, suppose that the user has recently (1) taken a phone number, (2) done
a reverse directory look-up (in some external web service) to find the person’s name,
then (3) done an address look-up to find their address and finally (4) taken the address
and used a web mapping service to show the location. Now, suppose the user has an
e-mail containing a telephone number. The content recogniser finds the number and
so suggests a semantic save of the number and also actions using the number. Top of
the action list would be likely actions on telephone numbers, and notably the reverse
look-up because it was recent. Once this was done, one of the outputs of the reverse
look-up would be the person’s name and similarly its top option would be the address
look-up. So at each stage the previous sequence would be the first option, which means
that the task is not totally automated, but little user effort is required. The next step,
which likewise requires minimal “intelligence”, is simply to offer the entire sequence
of actions as one of the options when the telephone number is encountered. This simply
requires that all recent/previous task sequences are stored and so recent or frequently
performed task sequences starting with the given type are suggested. The user is also
given the option of naming a particular sequence of actions. If the user chooses to do
this, the task can be used in future interactions. Note too that selection and more so
naming is effectively a confirmation by the user that this is a useful task sequence and
so will make it far more likely to be presented in future.

More complex tasks including repetitions of sub tasks can similarly be built bottom-
up, for example, if the user chooses to perform an action sequence on an instance that
is in some visible collection (e.g. selected from a PO concept, or from table of results)
and then proceeds to select a second instance in the collection, one of the options would
be not only to perform the sequence on the selected item but on all the collection (or
selected members of it).

5 Snip!t and TIM

In this section, we first present an existing tool, called Snip!t , that is a web bookmarking
tool, whose distinguishing feature is to suggest appropriate actions to perform starting
from a Web page content. Then we propose a novel architecture for TIM, implementing
task inference as discussed in Section 4, by integrating Snip!t into the system.

Snip!t [6] is a web bookmarking tool, however unlike most web bookmarks, the user
can also select a portion (snip) of the page content and then, using a bookmarklet, this
selection is sent to the Snip!t web application. The snip of the page is stored along with
the page url, title etc. and the user can sort the snip into categories or share it with others
using RSS feeds. In addition, when the selected text contains a recognised type of data
such as a date, post code, person’s name, etc., then actions are suggested. For example,
if the selected text is recognised as a post code and this leads to suggested actions such
as finding the local BBC news for a specific area (see Figure 2).

Snip!t had two contributing origins. In a study of bookmarking organisation some
years ago [7] some subjects said that they would sometimes like to bookmark a portion
of a page. While the study had different aims this suggestion led to the first version
of Snip!t in 2003. In addition, this gave an opportunity to use the new platform for
data-detector technology originally developed as part of onCue, the key product of an
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Fig. 2. Snip!t in action (actions for a post code)

Fig. 3. onCue architecture

ex-dot.com company aQtive [6]. So Snip!t combines a way of storing and sorting data
(portions of web pages) and intelligent suggestion of actions to perform based on the
data. Thus it shares some characteristics with the TIM vision.

Internally the bookmarking side of Snip!t is fairly straightforward with simple hier-
archical categorisation scheme and the ability to assign snips to multiple categories. The
snipping of the page contents itself is done using a bookmarklet, that is a small piece of
Javascript that is placed as a browser bookmark, usually on the browser toolbar. When
the user clicks the bookmarklet the Javascript executes extracts the selected content and
then creates a HTTP request to the Snip!t server.

The ”intelligent” parts of Snip!t use an architecture inherited from onCue. It consists
of two main types of agents: recognisers and services (cf. Figure 3). Recognisers work
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on plain text and discover various data types whilst services take these data types and
suggest actions based on them (usually creating invocations of web applications). The
recognisers within Snip!t are of several types:

– basic recognisers: can be based either on large table look-up, e.g. common sur-
names and forenames, place names, or on regular expression / pattern matching,
e.g. telephone number, ISBN.

– chained recognisers: where the semantics of data recognised by a recogniser is used
by another to:

• look for a wider data representation, e.g. postcode suggests looking for address;
these recognisers are used to allow scalability and reduce false positives;

• look for a semantically related data, e.g. URL suggests looking for the domain
name; these recognisers are used to reduce false negatives;

• look for inner representation, e.g. from Amazon author URL to author name;
these recognisers are also used to allow scalability.

Each agent, recogniser and service, is relatively simple, however the combinations of
these small components create an emergent effect that intelligently suggests appropriate
actions based on the snipped text. Let us now turn attention to TIM, and the way the
user interacts with the system in order to execute a task. The starting point may be of
three kinds:

(i) explicit invocation of a particular task (e.g. selecting it from an application menu),
(ii) choosing a data value in a document, e-mail etc. then drilling down into tasks

possible from it,
(iii) selecting an item in the PO and then, drilling into available tasks (that is one’s

with matching types).

Consider now the architecture illustrated in Figure 4. The main idea is to integrate
Snip!t within the system. In particular, in case (i) the user will directly indicate among
all Snip!t services the one he wants to execute next. In contrast, cases (ii) and (iii) are
closer to the typical Snip!t scenario. Indeed, in both cases, given a (collection of) data
value(s), the system suggests tasks to perform from it. Apart from OntoPIM and Snip!t ,
this new architecture includes the three main TIM modules discussed below.

– TIM application wrapper: This module, which is dependent on the particular ap-
plication enables the user to select any piece of document and send it to Snip!t in an
appropriate form (cf. snip S). As for a demonstration, we have extended the func-
tionality of Thunderbird mail client, so as to allow the user to select the TIM button
while reading a message. A script running on the mail client saves the message,
parses the MIME headers filling-in an HTML form which appears in a new browser
window. The user can then press the submit button to send the message to Snip!t .

– Personal Ontology Interaction Module (POIM): Given a collection of data W
each with its associated type as returned by Snip!t recognisers, this module access
the PO and returns a collection of data W ′ somehow related to W according to the
PO. Such data is then used to perform appropriate tasks.

– Task Inferencer: This module is responsible for task inference. Intuitively, given
a collection of data W ′ from the POIM and its provenance, the Task Inferencer
suggests what is the next task/action to be executed from W .
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Fig. 4. Integrating Snip!t into a personal task-centric system

6 Conclusion and Future Work

In this paper we have investigated new challenges toward a fully equipped TIM system.
In particular, we have addressed theoretical task inference issues, and we have proposed
a first implementation providing a solution to simple task inference in one’s personal
computer provided with a PO.

Many other aspects deserve to be further investigated, in particular concerning task
inference. Indeed, we have concentrated on simple tasks, possibly including sequences
and repetitions of actions, whereas we have not coped with alternatives, i.e. choices.
These may arise either where a selection has to be made from a collection (e.g. 1 − m
relations in the ontology) or where tasks sequences vary slightly depending on aspects
of the context or instance (e.g. compress files larger than 100K). Various machine learn-
ing techniques can be applied here, which we plan to study in future work.
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