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We consider a cloud data center, in which the service provider supplies virtual machines (VMs) on hosts or physical machines
(PMs) to its subscribers for computation in an on-demand fashion. For the cloud data center, we propose a task consolidation
algorithm based on task classi�cation (i.e., computation-intensive and data-intensive) and resource utilization (e.g., CPU and
RAM). Furthermore, we design a VM consolidation algorithm to balance task execution time and energy consumption without
violating a prede�ned service level agreement (SLA). Unlike the existing research on VM consolidation or scheduling that applies
none or single threshold schemes, we focus on a double threshold (upper and lower) scheme, which is used for VM consolidation.
More speci�cally, when a host operates with resource utilization below the lower threshold, all the VMs on the host will be
scheduled to be migrated to other hosts and then the host will be powered down, while when a host operates with resource
utilization above the upper threshold, a VM will be migrated to avoid using 100% of resource utilization. Based on experimental
performance evaluations with real-world traces, we prove that our task classi�cation based energy-aware consolidation algorithm
(TCEA) achieves a signi�cant energy reduction without incurring prede�ned SLA violations.

1. Introduction

Nowadays, cloud computing has become an e	cient
paradigm of o
ering computational capabilities as a service
based on a pay-as-you-go model [1] and many studies have
been conducted in diverse cloud computing research areas,
such as fault tolerance and quality of service (QoS) [2, 3].
Meanwhile, virtualization has been touted as a revolutionary
technology to transform cloud data centers (e.g., Amazon’s
elastic compute cloud and Google’s compute engine) [4]. By
taking advantage of the virtualization technology, running
cloud applications on virtual machines (VMs) has become
an e	cient solution of consolidating data centers because
the utilization rate of data centers has been found to be
low, typically ranging from 10 to 20 percent [5]. In other
words, a single host (physical machine) can run multiple

VMs simultaneously and VMs can be relocated dynamically
by live migration operations, leading to high resource
utilization. Another issue of data centers is high energy
consumption, which results in substantial carbon dioxide
emissions (about 2 percent of the global emissions). A typical

data center consumes as much energy as 25,000 households
do [6]. In this regard, an e	cient energy consumption
strategy in nonvirtualization environments (smart grids) has
been carried out [7].

As the virtualization technology [8, 9] has become pop-
ular widely, organizations or companies began to build their
own private cloud data centers using commodity hardware.
In this regard, there exists a need for designing more e	cient
and e
ective VM consolidation techniques to reduce energy
consumption in cloud data centers. �e simplest way to
achieve energy reduction in cloud computing environments
is to minimize the number of physical machines (PMs) by
allocating more VMs in a PM. However, this solution may
lead to a high degree of service level agreement (SLA) vio-
lations when each VM requires the host’s limited resources.
Moreover, the relationship between CPU utilization and
power consumption is not linear as shown in Figure 1. �e
power consumption of CPU increases more than linearly
as utilization increases. More importantly, when the CPU
utilization is above 90%, the power consumption jumps up
quickly due to the architectural design and turbo boost
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Figure 1: Energy consumption of i5 and i7 CPUs (TB indicates turbo boost).

feature. In other words, the performance to power ratio [10]
exhibits sublinear growth, and therefore, just putting many
VMs to a PM utilizing 100% of CPU is not always the best
solution in terms of performance, energy consumption, and
SLA violations. We take Intel i5 and i7 CPUs in our exper-
iments, rather than server class CPUs in Figure 1, because,
for small and medium sized companies, using commodity
hardware like Intel i5 or i7 to build a private cloud is more
a
ordable and accessible [11].

In this paper, we present a new VM and task consoli-
dation mechanism in cloud computing environments. �e
proposed method is based on task classi�cation, in which
we divide cloud tasks into two categories: computation-
intensive and data-intensive tasks. A computation-intensive
task refers to a computation-bounded application program.
Such applications devotemost of their execution time to ful�ll
computational requirements as opposed to I/O and typically
require small volumes of data, while a data-intensive task
refers an I/O-bounded application with a need to process
large volumes of data. Such applications devote most of
their processing time to I/O, movement, and manipulation
of data. �e basic idea of our approach is twofold. One is
that when we need to migrate cloud tasks due to a migration
policy, we favor a computation-intensive task for migration
rather than a data-intensive task since the migration time
for computation-intensive tasks is shorter than that of data-
intensive tasks. In order to migrate data-intensive tasks,
it is necessary to move data for processing as well, and
this transferring of data generates communication over-
heads. �en, we prefer the target VM with no computation-
intensive tasks because data-intensive tasks consume less
CPU resources, thereby providing a comfortable executing
environment for the computation-intensive task.�e other is
to use a double threshold approach (i.e., upper threshold and
lower threshold) for VMmigrations and optimization.When
aVM’s utilization is either above the upper threshold or below
the lower threshold, the VM is scheduled for migration. Our

double threshold approach is di
erent from previous work
in that no algorithm is proposed to use the upper and lower
thresholds simultaneously in an e
ective way to the best of
our knowledge.With an extensivemeasurement observation,
we identi�ed that there is much room for optimization by
balancing performance and energy consumption.

Our work di
ers from traditional scheduling algorithms
in the literature by designing and implementing a novel con-
solidationmechanismbased on a task classi�cation approach.
We develop corresponding task scheduling and VM alloca-
tion algorithms for cloud tasks executed in virtualized data
centers.

�e major contributions of this paper are summarized as
follows:

(i) We designed an energy-aware cloud data center
consolidationmechanismbased on task classi�cation,
while preserving performance and SLA guarantee.

(ii) We developed a cloud task scheduling and VM
allocation algorithms that solve problems about when
and how to migrate tasks and VMs in an energy
e	cient way.

(iii) We formulated a double threshold algorithm for
further optimization to improve the performance to
power ratio.

(iv) We undertook a comprehensive analysis and per-
formance evaluation based on real-world workload
traces.

�e rest of this paper is organized as follows. Section 2
describes our research motivation and our intuition for
consolidation in virtualized clouds. In Section 3, the task
classi�cation based energy-aware consolidation scheduling
mechanism and the main principles behind it are presented.
�e experiments and performance analysis are given in
Section 4. �e related work in the literature is summarized
in Section 5. Finally, Section 6 concludes the paper.
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Figure 2: Energy consumption and execution time of matrix multiplication of i5 and i7 CPUs.
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Figure 3: An illustrative example of TCEA.

2. Motivation and the Basic Idea

As the virtualization technology has been widely used, it is
easily possible to construct a private cloud computing envi-
ronment with open-source infrastructure as a service (IaaS)
solutions and commodity hardware (e.g., desktop-level CPUs
and peripherals). Figure 2 shows execution time of a matrix
multiplication benchmark program and its performance to
power ratio with CPUutilization for Intel i5-3570 and i7-3770
CPUs. With CPU utilization below 50%, the performance
gain from the CPUs is noticeable as CPU utilization increases
as the performance to power ratio indicates. However, when
CPU utilization is above 50% the performance to power
ratio grows sublinearly. �is means that using high CPU
utilization is not always an energy-e	cient way to perform
tasks. Even when we use a turbo boost feature, one of
dynamic voltage and frequency scaling (DVFS) techniques,
the performance gain of high frequency of CPU operations is
not big considering the performance to power ratio.

Hence, we devise another approach using a threshold
of CPU utilization so that a host that manages a couple of
VMs does not exceed a prede�ned CPU utilization thresh-
old. When a host exceeds the threshold, our consolidation
algorithm determines to migrate one of the tasks or VMs
on the host to another as depicted in Figure 3. Each task is
categorized as C-task (computation-intensive task) or D-task
(data-intensive task) and is assumed to use 25% of resources
or utilization for a VM for simplicity in this example. Note
that the task categorization mechanism of C-task and D-task
is explained in the next section. Assuming that the threshold
is 75% for a VM, tasks in VM 1 and VM 8 should be migrated
to underutilized VMs. For Case A, in which there are C-tasks
and D-tasks in a VM, our consolidation algorithm chooses a
C-task to be migrated and preferentially selects a target VM
with no C-tasks since migrating a C-task takes much shorter
time compared to aD-task andmigrating aD-task introduces
a major I/O bottleneck in the host. For Case B, in which there
are only D-tasks but C-tasks, we only consider underutilized
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Figure 4: Energy consumption and SLA violations with threshold
and migration policies.

VMs for target, disregarding the category of tasks running on
the target VM. For task migration, there are many prevalent
so�ware and management technologies, such as openMosix,
which is a Linux kernel extension that allows processes to
migrate to other nodes seamlessly.

On the other hand, choosing a proper threshold value is
an important factor that in�uences the overall performance
and there is a tradeo
 between the threshold value and SLA
violation. Figure 4 shows the tradeo
 with various migration
policies. Obviously, lowering the threshold value leads to
lower energy consumption, but it causes SLA violations,
meaning a user’s request for tasks cannot guarantee to be
succeeded in preagreed metrics. In a condensed situation,
where there is no host that can a
ord additional VMs and
the ratio of PM to VM is low, it is more desirable to use
a higher threshold value, whereas, in a sparse situation,
where there are many free hosts available for additional
VMs and the ratio of PM to VM is high, it allows having a
lower threshold value but it is energy consuming and wastes
resources. As far as the latter case is concerned, we use a
double threshold approach to reduce energy consumption
more, while incurring the overall SLA violation as little as
possible. �e resource types for a system are CPU, memory,
storage, network, and so forth. Among them, CPU is the
most dominant factor that in�uences energy consumption
[12]. In this paper, we focus on CPU utilization for migration
policies and leave integrating other types of resource into the
migration policies as future work.

3. Task Classification Based Energy-Aware
Consolidation Algorithm (TCEA)

As shown in Figure 5, we consider a typical cloud data center
with a cloud portal. When a user submits a task to the

cloud portal, TCEA�rst performs a task classi�cation process
based on con�gurations of the task and historical logs. �e
task is categorized as either computation-intensive or data-
intensive. �en, with this task classi�cation information, we
assign the task to an appropriate VM and consolidate VMs
in the data center in an energy-aware way. A�er that, TCEA
periodically checks hosts with a prede�ned threshold value
so that unnecessary hosts are powered down a�er migrating
their VM to others, while maintaining SLA. �e detailed
description of our proposed algorithms is given below.

(A) Double �reshold Scheme. Our consolidation algorithms
are based on the double threshold scheme. In order to
save energy consumption of a cloud data center, one may
consider using the minimum number of hosts by utilizing
CPU as much as possible for VMs. However, this approach
is not an energy e	cient solution because it disregards the
performance to power ratio. �us, TCEA uses the upper
threshold to prevent heating CPUs up. On the other hand,
when many of the hosts are easygoing as a whole, it is
necessary tominimize active hosts to save super�uous energy
consumption by consolidating VMs. For that purpose, we
employ the lower threshold.With the lower threshold, TCEA
periodically checks hosts and VMs whether it requires VM
or task consolidation. For example, if a host operates with
CPU utilization below the lower threshold, we migrate VMs
on the host to other hosts as long as there are available hosts
to accommodate the VMs without restricting VMs’ liberty.
With these in mind, it is important to choose proper values
for the double threshold scheme, that is, the upper threshold
and lower threshold, considering the tradeo
 between perfor-
mance and energy consumption. To determine the conditions
of suitable threshold values, we conduct several experiments
in Section 4.

(B) Task Classi�er. Unlike previous work, we consider a task’s
characteristics in consolidating a cloud data center. Towards
this end, we place a task classi�er module to categorize tasks
into computational-intensive or data-intensive tasks. When
a user submits a task, it examines history log �les to check
whether it has been performed before. If so, TCEA uses
the previous classi�cation information without performing
the task classi�cation process. If not, it performs the task
classi�cation process as shown in Algorithm 1.

�e criteria of classifying tasks in the task classi�er
function are based on the communication to computation
ratio [13]. By examining the execution time and task transfer
time of a task, it puts the task to the corresponding queue.
In other words, when computation time is greater than
task transfer time of a task, the task classi�er makes the
task resident in �����������������	�
. Otherwise, the task is
considered as data-intensive. �e classi�cation information
of the task is also stored in the storage for future use.

(C) Task Assignment. �e next step a�er performing the task
classi�cation process is to assign tasks to appropriate VMs.
When assigning a task, TCEA �rst tries to �nd a host whose
utilization is relatively low as shown in Algorithm 2. �en,
it checks all the VMs in the host by counting the number
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Figure 5: System architecture of TCEA.

of computation-intensive tasks. Out of the VMs, a VM that
has the least number of computation-intensive tasks can be
a candidate when the task is computation-intensive. A�er
iterating this phase, the task assignment function selects a
VM for the task.

When the type of a task is data-intensive, TCEA does
not care about the types of tasks for �nding target VMs.
�e only consideration is the number of tasks running in
VMs. �us, it �nds a VM that runs the minimum number
of tasks in order to balance the load. For optimization, the
task assignment function migrates a task to another VM. At
this stage, we favor computation-intensive tasks formigration
because migrating data-intensive tasks is ine	cient. In other
words, migrating data-intensive tasks takes more time than
migrating computation-intensive tasks since it is necessary to
move the data of data-intensive tasks aswell.When �nding an
overutilized host, TCEA prefers a VM that runs the largest
number of computation-intensive tasks for migration. �is
is based on the fact that migrating a computation-intensive
task ismore e	cient thanmigrating a data-intensive taskwith
regard to the number of migrations and utilization shi�ing.
Once a task is chosen for migration, the next step is to choose
a target VM. �ere are two conditions for choosing a target
VM. One is CPU utilization and the other is the number
of computation-intensive tasks. Among VMs whose host’s
CPU utilization is low, a VM that runs the least number of
computation-intensive tasks will be chosen for the target VM.
�en, the task is scheduled to be migrated accordingly.

(D) Consolidation of VMs. For VM consolidation, it is
essential to handle and manage VMs and hosts chosen by
the double threshold scheme. Algorithm 3 shows the VM
consolidation in TCEA in detail. When a host’s utilization
is above the upper threshold (i.e., overutilized hosts), TCEA

chooses a VM to be migrated considering the number of
computation-intensive tasks. �e more computation tasks
a VM has, the more likely the VM is to be a source for
migration. Once a source VM is selected, a target host
selection phase is performed. Since a source VM will occupy
a large portion of utilization, it is preferable to choose a
target host whose utilization is relatively low. �erefore, the
chosen target host may have fewer numbers of computation-
intensive tasks than others. On the other hand, when man-
aging underutilized hosts chosen by the lower threshold,
all the VMs in the host will be migrated to hosts whose
utilization is normal across the data center. �e reason why
TCEA chooses normally utilized hosts as migration targets
is to exploit the performance to power ratio. Choosing a
host of full utilization as a target will result in more energy
consumption and consolidation management overheads. For
example, when a host becomes overutilized and is chosen as
a target host, TCEA will perform redundant load balancing
operations.

(E) Task Classi�cation Based Energy-Aware Consolidation
Algorithm (TCEA). Algorithm 4 covers our overall consoli-
dation and scheduling scheme. Note that the procedure of
lines (1)–(6) is triggered upon receipt of a set of tasks and that
of lines (7)–(18) is performed periodically. �e task classi�er
function and the task assignment function are responsible
for consolidation and management of tasks in TCEA. TCEA
monitors VMs and hosts in the cloud data center for status
updates. With the prede�ned values including the upper
and lower thresholds, TCEA maintains 	
�������, 	
��
����
,
and 	
��lower of hosts. To balance performance and energy
consumption, VMs in 	
������� and 	
��lower will bemigrated to
	
��
����
. It is worth noting that choosing the proper values
of the upper threshold, lower threshold, and the number of
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(1) if ����	 has no historical log �le
(2) if VM execution time is greater than data movement time
(3) �����������������	�
 ← �����������������	�
 ∪ ����	;
(4) else
(5) ������������� ← ������������� ∪ ����	;
(6) end if
(7) else // �e ����	 has historical log �le
(8) Retrieve information from the con�guration �le;
(9) Classify data type using obtained information;
(10) end if

Algorithm 1: Task Classi�er ( ).

(1) if ����	 ∈ �����������������	�

(2) for all ℎ���	 ∈ 	
��
����
, ∀
 ∈ {1, 2, . . . , �};
(3) Find a ℎ���	 with the lowest CPU utilization;
(4) for all V�	 ∈ ℎ���	, ∀
 ∈ {1, 2, . . . , �};
(5) Check the number of computation-intensive tasks;
(6) Find a V�	 having the least number of computation-intensive tasks;
(7) end for
(8) end for
(9) Assign ����	 to V�	
(10) else if ����	 ∈ �������������
(11) for all ℎ���	 ∈ 	
��
����
, ∀
 ∈ {1, 2, . . . , �};
(12) Find a ℎ���	 with the lowest CPU utilization;
(13) for all V�	 ℎ���	, ∀
 ∈ {1, 2, . . . , �};
(14) Check the number of tasks;
(15) Find a V�	 having the least number of tasks;
(16) end for
(17) end for
(18) Assign ����	 to V�	;
(19) end if

Algorithm 2: Assign Task ( ).

(1) // for over-utilized hosts ∈ 	
�������
(2) Find a ℎ���	 with the highest CPU utilization ∈ 	
�������;
(3) for all V�	 ∈ ℎ���	, ∀
 ∈ {1, 2, . . . , �};
(4) Check the number of computation-intensive tasks;
(5) Find a V�	 having the largest number of computation-intensive tasks;
(6) end for
(7) for all ℎ���� ∈ 	
��
����
;
(8) Check the number of computation-intensive tasks;
(9) Find a ℎ���� having the least number of computation-intensive tasks;

(10) end for
(11) Migrate V�	 to ℎ����;
(12) // for under-utilized hosts ∈ listlower
(13) for all ℎ���� ∈ listlower, ∀� ∈ {1, 2, . . . , �};
(14) Find a ℎ���� with the lowest CPU utilization;

(15) end for
(16) Migrate all VMs ∈ ℎ���� to ℎ���� ∈ 	
��
����
;
(17) Switch o
 ℎ����;

Algorithm 3: Consolidate VM ( ).
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(1) for all ����	, where ����	 ∈ Task, ∀
 ∈ {1, 2, . . . , �};
(2) Task Classi�er ( )
(3) Assign Task ( )
(4) end for
(5) Update the status of each task;
(6) Store monitored status information;
(7) for all ℎ���	, where ℎ���	 ∈Host, ∀
 ∈ {1, 2, . . . , �};
(8) Monitor the status of host;
(9) if CPU utilization is higher than �ℎ���ℎ�	������
(10) 	
������� ← 	
������� ∪ ℎ���	;
(11) else if CPU utilization is lower than thresholdlower
(12) listlower ← listlower ∪ ℎ���	;
(13) else
(14) 	
��
����
 ← 	
��
����
 ∪ ℎ���	;
(15) end if
(16) Store monitored status information;
(17) end for
(18) Consolidate VM ( )

Algorithm 4: Task classi�cation based energy-aware consolidation
algorithm.

VMs to be migrated in�uences the performance of TCEA. In
the next section, we validate TCEA for energy e	ciency and
performance with these parameters.

4. Performance Evaluation

In this section, we present experimental results that demon-
strate the performance of TCEA for reducing energy con-
sumption by managing VM consolidation while achieving
SLA satisfaction. As input, we use real task traces (Intel Net-
batch logs [14]) and artifact task logs for a �xed combination
of computation-intensive tasks and data-intensive tasks. For
experiments, we assume that there are 50 hosts and 100 VMs
running in the cloud data center unless speci�ed otherwise.
A host is equippedwith a quad-core CPU (i7-3770) with 4GB
of RAM and gigabit Ethernet. A user can specify the type
of a VM such as the number of vCPU, RAM, and storage
capacity. Otherwise, a default VM setting with 1 GB of RAM
and 1 vCPU is used.

In this experiment, we analyze the runtime of TCEAwith
varying upper thresholds from 100% to 60%. We conduct
this experiment for the real world datasets mentioned above.
In Figure 6, �-axis denotes the upper threshold and �-
axis represents the energy consumption, the number of VM
migrations, and the number of host shutdowns. �e number
of VM migrations and the number of host shutdowns are
constantly going down as the upper threshold decreases.With
decreased upper threshold, the available hosts tend to remain
alive because VMs should reside in hosts whose utilization
is below the upper threshold, and therefore, the number of
VM migrations is reduced as well. For energy consumption,
90% is optimal. �is indicates that (1) although hosts with
100% of upper threshold maintain more VMs, 100% is not
the best threshold due to the performance to power ratio,
(2) even though the number of host shutdowns peaks with
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Figure 6: Performance results for upper threshold.

100% of upper threshold, the energy reduction of using
the lower threshold (90%) dominates that of the number
of host shutdowns, and (3) the number of VM migrations
decreases with lower upper threshold because the probability
of �nding satisfactory target VMs gets lower too. For the
rest of experiments, we use 90% of upper threshold unless
speci�ed otherwise.

For a sparse situation, where there are many free hosts
available for additional VMs and the ratio of PM to VM
is high, we devise an optimization algorithm to migrate
VMs from underutilized hosts to others and shutdown the
hosts, thereby reducing energy consumption. To this end,
we use a lower threshold such that VMs in a host below
the lower threshold are scheduled to be migrated to other
hosts, and then the host gets shutdown. Figure 7 shows energy
consumption, the number ofVMmigrations, and the number
of host shutdowns with varying lower thresholds (e.g., 0.8
of �-axis means that 20% of hosts are chosen by the lower
threshold). Comparing with default (no task classi�cation is
performed), TCEA consumes 14.05% less energy on average.
When the lower threshold is 50%, the di
erence between
default and TCEA reaches a peak. With respect to energy
consumption, the number ofVMmigrations, and the number
of host shutdowns, we use 50% of lower threshold for the rest
of experiments unless speci�ed otherwise.

To verify the e
ectiveness of lower thresholds, we conduct
another experiment showing energy consumption, the num-
ber of VM migrations, and the number of host shutdowns
with VM ratios by increasing the number of VMs and hosts
(1x means a default setting of 100 VMs and 50 hosts). Note
that, in this experiment, 0.9 of VM ratio means that 10%
of hosts whose utilization is below the lower threshold are
scheduled to be powered down by migrating their VMs.
As shown in Figure 8, around 50% of the VM ratio suits
our purpose in terms of energy consumption, the number
of VM migrations, the number of host shutdowns, and
SLA violations. �e ratio below 0.5 leads to SLA violations;
therefore we do not use ratio lower than 0.5.
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Figure 7: Performance results for lower threshold.

To investigate the respective improvement brought by
TCEA’s double threshold scheme, we compare the perfor-
mance of TCEA (double threshold) with the single threshold
scheme and default (no threshold and no task classi�cation)
setting. In this experiment, we use real task trace logs and
artifact task logs for a �xed combination of computation tasks
and data-intensive tasks. In Figure 9, “Job” indicates real task
traces, Job c indicates only computation-intensive tasks, Job d
indicates only data-intensive tasks, and Job cd indicates 50%
of computation-intensive tasks and 50% of data-intensive
tasks.

As shown in Figure 9, there is no di
erence for the results
with the default setting (no threshold) in terms of energy
consumption because a threshold scheme is not applicable.
Nevertheless, we leave them for comparison. �e double
threshold scheme saves 47.6% of energy compared to the
default setting. For the single threshold scheme, there is no
big di
erence between 90% and 100% but there are more
VM migration operations with 100% of upper threshold,
which leads to overheads. Of job categories (Job, Job c, Job d,
and Job cd), Job d shows a little performance impact with
single threshold because it uses relatively less CPUutilization,
and Job cd has performance improvement when the single
threshold is above 80%.�e result for double threshold shows
similar phenomenonwhen the single threshold is used. How-
ever, the double threshold scheme further reduces energy

consumption by 14.2% compared to the single threshold
scheme.

An important requirement for achieving the optimal
performance of virtualized cloud environments is to �nd the
appropriate number ofVMs per PM. In such an environment,
the ratio of PM to VM a
ects the overall performance. To
validate the e
ect of the ratio of PM to VM, we compare the
threshold schemes (default, single, and double). �e double
scheme achieves the largest energy reduction, followed by
the single scheme and by the default scheme as shown
in Figure 10. �e double threshold scheme saves energy
consumption by 11.3% and 27.2% comparing with single and
default, respectively. For the number of VMmigrations, there
are some points where the double threshold scheme exhibits
more VMmigrations than the single threshold scheme does,
but it stabilizes when the ratio of PM to VM is 1 : 9 or more.
In addition, the double threshold scheme always outperforms
with respect to the number of host shutdowns.

To measure the scalability for the number of PMs and
VMs, we increase the number of PMs and VMs from 1 : 2
up to 10 : 20 as shown in Figure 11. As expected, TCEA
consumes less energy by 17.9% on average than the default
scheme and outnumbers the default scheme in terms of the
number of shutdowns. For VM consolidation, TCEA has a
higher number of VM migrations. For task scalability, we
compare energy consumption by increasing the task log size



Scienti�c Programming 9

E
n

er
g

y
(k

W
h

)

0
100
200
300
400
500

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.11.0

�e ratio of VM (%)

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

(a) Energy consumption

N
u

m
b

er
 o

f
m

ig
ra

ti
o

n
s

0
100
200
300
400
500
600

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.11.0

�e ratio of VM (%)

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

(b) �e number of migrations

N
u

m
b

er
 o

f
h

o
st

 s
h

u
td

o
w

n
s

0
100
200
300
400
500

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.11.0

�e ratio of VM (%)

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

(c) �e number of host shutdowns

Figure 8: Performance scalability for the number of nodes with lower threshold.

up to 10 times as depicted in Figure 12. Comparing with the
default scheme, TCEA consumes less energy by 15.8% on
average. Obviously, TCEA has more VM migration and host
shutdown operations than the default scheme has for VM
consolidation.

5. Related Work

We summarize the related work across three perspectives:
resource allocation and scheduling in data centers and
clouds, threshold-based schemes with di
erent objectives,
and energy savings in data centers. To balance energy
consumption and VM utilization, the authors of [10] used
a performance to power ratio. It schedules VM migra-
tion dynamically and consolidates servers in clouds. �ey
compared their proposed algorithm with three di
erent

algorithms including the DVFS algorithm using real trace
log �les. �e authors of [13] proposed a criterion to divide
computation-intensive tasks and data-intensive tasks using a
communication to computation ratio. �e rationale of this
task classi�cation is to employ resource allocation methods
based on tasks or work�ows to improve performance.

In [15], they developed an energy-aware scheduling to
reduce total processing time for VMs in a precedence-
constrained condition, while maximizing PM’s utilization
considering communication costs. In [16], they proposed a
prediction algorithm for �nding overutilized servers and a
best-�t algorithm for hosts and VMs. �e results show that
the algorithms reduce the number of migration operations,
rebooting servers, and energy consumption, while achieving
SLA guarantee. A separation mechanism of I/O tasks to
perform computation-intensive tasks in a batch in virtualized
servers to mitigate virtualization overheads is proposed in
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Figure 9: Performance comparison with task types and threshold schemes.

[17]. Because energy consumption and the frequency of SLA
violations determine the quality of service [18], in this paper,
we balance the tradeo
 between energy consumption and
SLA violations using the double threshold schemes based on
tack classi�cation and none of the abovementioned studies
consider the energy saving objectives in the context of task
classi�cation.

For data-intensive work�ows, where the majority of
energy consumption accounts for storing and retrieving
data, the authors of [19] consider not using DVFS. Instead,
they installed and used an independent node to store data-
intensive tasks.�ey endeavor to reduce energy consumption
by minimizing data access and then performed evaluations
by increasing the communication to computation ratio. �e
authors of [20] proposed a VM scheduling algorithm to
reduce energy consumption with DVFS. By dynamically
adjusting clock frequency and its corresponding voltage, it
results in energy reduction in idle and computation stages.
In [21], they proposed a scheduling algorithm based on
priority and weight with DVFS. It increases servers’ resource

utilization to reduce energy consumption of the servers.
In [22], they used a threshold value to migrate a VM to
another host. When a host’s utilization is below the threshold
value, all the VMs belonging to the host are scheduled to be
migrated to other hosts to save idle power consumption. In
addition, some VMs are scheduled to be migrated when the
host’s utilization exceeds a certain threshold value to avoid
SLA violations. A service framework that allows monitoring
energy consumption and provisioning of VMs to appropriate
location in an energy-e	cient way is designed in [23].

Various CPU consolidation techniques including DVFS,
dynamic power shutdown (DPS), and core-level power gating
(CPG) are introduced in [24]. �e authors of [25] used
a threshold value to migrate VMs and consider resource,
temperature, and network conditions for optimization. �ey
considered migration time to minimize the number of
VMs that are in progress of migration simultaneously. �e
authors of [26] designed an energy-aware resource allocation
heuristic for VMs’ initial placement, VM selection policy
for migration, and migration policy in virtualized cloud



Scienti�c Programming 11

E
n

er
g

y
(k

W
h

)

0
2
4
6
8

10
12
14

1 : 3 1 : 5 1 : 61 : 2 1 : 4 1 : 7 1 : 8 1 : 9 1 : 101 : 1

Mapping rate (PM : VM)

Default

Upper

Upper + lower

(a) Energy consumption

0
10
20
30
40
50
60
70

N
u

m
b

er
 o

f
m

ig
ra

ti
o

n
s

1 : 3 1 : 5 1 : 61 : 2 1 : 4 1 : 7 1 : 8 1 : 9 1 : 101 : 1

Mapping rate (PM : VM)

Default

Upper

Upper + lower

(b) �e number of migrations

0
2
4
6
8

10

N
u

m
b

er
 o

f
h

o
st

 s
h

u
td

o
w

n
s

1 : 3 1 : 5 1 : 61 : 2 1 : 4 1 : 7 1 : 8 1 : 9 1 : 101 : 1

Mapping rate (PM : VM)

Default

Upper

Upper + lower

(c) �e number of host shutdowns

Figure 10: Performance comparison with PM to VM ratio.

computing environments. �e authors of [27] developed a
resource allocation method at the cloud application level.
In the application’s perspective, it allocates virtual resources
for the application with a threshold-based dynamic resource
allocation algorithm to improve resource utilization. In [28],
they developed a VM placement algorithm based on the
evolutionary game theory. According to their experiments,
when the loads of the data center are above 50%, the
optimizations are unnecessary.

However, the design objective and the implementation
methods of these cloud data center schedulers and consoli-
dation algorithms are di
erent from TCEA in terms of the
following aspects. First, the target of these cloud data center
schedulers is to enforce resource allocation strategy based
on fairness or priorities when sharing the resources of large-
scale cloud data centers among VMs, while TCEA is aimed at
improving both energy consumption and the performance of
tasks by dynamically migrating VMs in runtime. Second, we
extend a single threshold scheme to further improve the over-
all performance and energy consumption by incorporating
the double threshold scheme and task classi�cation together.
Finally, they cannot solve both the maximum utilization
problem and the host shutdown problem in an e	cient

way, while TCEA takes the performance to power ratio into
consideration and employs the host shutdown mechanism
by migrating VMs on underutilized hosts while maintaining
SLA violations.

6. Conclusions

As green IT and its related technologies have received much
attention recently, reducing the power consumption of cloud
data centers is one of the critical issues to address, thereby
reducing the carbon dioxide footprints. In this paper, we pro-
pose two consolidation mechanisms for a cloud data center.
One is the task consolidation based on task classi�cation
(computation-intensive or data-intensive) and the other is
the VM consolidation that uses a double threshold scheme
(upper and lower). We optimize energy consumption in a
virtualized data center not bymaximizing resource utilization
but by balancing resource utilization of hosts with migrating
appropriate VMs. We prove that our task classi�cation based
energy-aware consolidation algorithm (TCEA) achieves sig-
ni�cant energy reduction without incurring prede�ned SLA
violations.
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