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Abstract
Modeling a collection of similar regression or classification tasks can be improved by making the tasks ‘learn
from each other’. In machine learning, this subject is approached through ‘multitask learning’, where parallel
tasks are modeled as multiple outputs of the same network. In multilevel analysis this is generally implemented
through the mixed-effects linear model where a distinction is made between ‘fixed effects’, which are the
same for all tasks, and ‘random effects’, which may vary between tasks. In the present article we will adopt a
Bayesian approach in which some of the model parameters are shared (the same for all tasks) and others more
loosely connected through a joint prior distribution that can be learned from the data. We seek in this way to
combine the best parts of both the statistical multilevel approach and the neural network machinery.

The standard assumption expressed in both approaches is that each task can learn equally well from any
other task. In this article we extend the model by allowing more differentiation in the similarities between
tasks. One such extension is to make the prior mean depend on higher-level task characteristics. More unsu-
pervised clustering of tasks is obtained if we go from a single Gaussian prior to a mixture of Gaussians. This
can be further generalized to a mixture of experts architecture with the gates depending on task characteristics.

All three extensions are demonstrated through application both on an artificial data set and on two real-
world problems, one a school problem and the other involving single-copy newspaper sales.
Keywords: Empirical Bayes; Multitask learning; Mixture of experts; Multilevel analysis.

1. Introduction

Many real-world problems can be seen as a series of similar, yet self contained tasks. Examples are the school
problems (see e.g. Aitkin and Longford, 1986), and clinical trials. The first example deals with the prediction
of student test results for a collection of schools, based on school demographics. The similar tasks in the
other example can be the prediction of survival of patients in different clinics (see e.g. Daniels and Gatsonis,
1999). The relatedness (and therefore interdependency) of such models is taken into account and benefitted
from in the fields of multitask learning (or learning to learn) and ‘multilevel analysis’. In the present article
we seek to combine insights that are obtained in the multilevel field with methods that have been designed in
the neural network community to create a synergetic new approach.

Multilevel analysis is generally based on the ‘mixed-effects linear model’. This model features a response
that is made up from the sum of a fixed effect and a random effect. The fixed effect implements a ‘hard
sharing’ of parameters, whereas the random effect implies a ‘soft sharing’ through the use of a common
distribution for certain model parameters. A more elaborate description of multilevel analysis is given in
Section 6. A neural network model would use ‘hard shared’ parameters (the same for each of the parallel
tasks) to detect ‘features’ in the covariatesx, and use these features for regression (Baxter, 1997, Caruana,
1997). Feature detection can be implemented, for example, in the hidden layers of a multi-layered perceptron,
or through principal component analysis. This use of features is appropriate when the covariates are relatively
high-dimensional, as they are for the real-world problems addressed in the present article.

In our approach, all shared parameters, including but not restricted to the hyperparameters specifying the
prior, are inferred through a maximum likelihood procedure: they are ‘learned’ from the data. This type of
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Figure 1: Neural network model. The input-to-hidden weightsW are shared by (equal for) all tasks. Each of
the outputs (top layer) represents one task, and has its own set of task-dependent hidden-to-output
weightsAi .

optimization has previously been studied by Baxter (1997): he showed that the risk of overfitting the shared
parameters is an orderN (the number of tasks) smaller than overfitting the task-specific parameters (hidden-
to-output weights). The remaining parameters specific to each task are treated in a Bayesian manner. In the
multitask setting, where data from all tasks can be used to fit the shared parameters, this empirical Bayesian
approach is a natural choice and a close approximation to a full Bayesian treatment.

Any multitask learning model makes use of the fact that the tasks (the parallel sets of responses and
covariates) are somehow related. Although for particular sets of tasks the nature of this relationship may be
immediately clear, on other occasions more subtle relations may exist. Even if all tasks in a set are related,
some may be stronger related to each other than to others. We accommodate for this possibility by suggesting
a form of ‘task clustering’ (Section 4). Allowing a fixed number of task clusters we are able to obtain better
estimates for the responsesy, and discern hidden structure within the set of tasks.

We will describe the general structure of the multitask learning model in Section 2. We present our
Bayesian treatment of multitask learning and knowledge sharing in Section 3, and show how to optimize
the shared parameters of the model. In Section 4 we extend the method so that it may allow a distinction
between (groups of) tasks. The model is tested (Section 5) both on an artificial data set, which consists of
samples drawn from a mixture of Gaussians, and on two real-world data sets: the Junior School Problem
(predicting test results for British school children) and the Telegraaf problem (predicting newspaper sales
in The Netherlands). We show that the method presented in this article yields both better predictions and a
meaningful clustering of the data. Section 6 describes the links of the present article with related work. We
finish with concluding remarks and an outlook on future work in Section 7.

2. A Neural Network Model

Suppose that for taski we are given a data setDi = {xµ
i ,y

µ
i }, with µ = 1. . .ni , the number of examples for

task i. For notational convenience, we assume that the responseyµ
i is one-dimensional. The inputxµ

i is an
ninput-dimensional vector with componentsxµ

ik. Our model assumption is that the responseyµ
i is the output of

a multi-layered perceptron with additional Gaussian noise of standard deviationσ (see also Figure 1). Each
output unit represents the response for one task.

Throughout the article we will use networks with one layer of hidden units, with either linear or nonlinear
(tanh) transfer functions, and bias. The transfer functions on the outputs will be linear. The bottom layer of
this network creates that lower-dimensional representation (see e.g. Baxter, 1997) of the inputs, that is best
suited for the second layer to perform regression on.
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In our model, the input-to-hidden weightsW are shared by (equal for) all tasks, whereas the hidden-to-
output weights are task-dependent (see Figure 1). In this format the expression for the responseyµ

i reads:

yµ
i =

nhidden

∑
j=1

Ai j h
µ
i j +Ai0+noise, hµ

i j = g

(ninput

∑
k=1

Wjkxµ
ik +Wj0

)
, (1)

with W the nhidden× (ninput + 1) matrix of input-to-hidden weights (including bias) andA i an (nhidden+ 1)-
dimensional vector of hidden-to-output weights (and bias). The extra indexi in the hidden unit activityhµ

i
follows from the dependency of the covariatesxµ

i on taski. For notational simplicity we will includehµ
i0 = 1

in hµ
i andAi0 in A i from now on.

3. Computation and Optimization

Let us now consider the full set of tasks, for which we define the complete data setD = {Di}, with i = 1. . .N,
the number of tasks. For notational convenience we will assume all inputsxµ

i fixed and given and omit them
from our notation.A denotes the fullN× (nhidden+1)-dimensional matrix of hidden-to-output weights. Note
that these are specific for each task, whereas all other parameters are shared between tasks. We assume the
tasks to be iid given the hyperparameters, and define a prior distribution for the task-dependent parameters:

A i ∼ N (A i |m,Σ) , (2)

which is a Gaussian with an(nhidden+1)-dimensional meanm and an(nhidden+1)× (nhidden+1) covariance
matrix Σ.

This prior distribution is incorporated into the posterior probability of data and hidden-to-output weights
given the hyperparametersΛ = {W,m,Σ,σ}. The joint distribution of data and model parameters reads

P(D,A|Λ) =
N

∏
i=1

P(Di |A i ,W,σ)P(A i |m,Σ) ,

where we used the assumption that the tasks are iid givenΛ.
Integrating overA we obtain, after some calculations (see Appendix A for details)

P(D|Λ) =
N

∏
i=1

P(Di |Λ) ,

with

P(Di |Λ) ∝
(
|Σ|σ2ni |Qi |

)− 1
2

exp

[
1
2
(RT

i Q−1
i Ri −Si)

]
, (3)

whereQi , Ri andSi are functions ofDi andΛ given by

Qi = σ−2
ni

∑
µ=1

hµ
i hµ

i
T + Σ−1 , Ri = σ−2

ni

∑
µ=1

yµ
i hµ

i + Σ−1m ,

Si = σ−2
ni

∑
µ=1

yµ
i

2 +mTΣ−1m . (4)

(Recall thathµ
i depends onW andxµ

i .) Optimal parametersΛ∗ are now computed by maximizing the like-
lihood (3). This is referred to as empirical Bayes (Robert, 1994), and is similar to MacKay’s evidence
framework (MacKay, 1995). Here it is motivated by the fact that we can use the data of all tasks to optimize
Λ, the dimension of which is independent of and assumed to be much smaller than the number of tasks. In the
limit of infinite tasks the empirical Bayesian approach coincides with the full Bayesian approach. For finite
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numbers of tasks, Baxter (1997) shows that the generalization error as a function of the number of tasksN
and the dimension of the hyperparameters|Λ| is proportional to|Λ| and inversely proportional toN (see also
Heskes, 2000).

Given the maximum likelihood parametersΛ∗, we can easily computeP(A i |Di ,Λ∗) to make predictions,
compute error bars, and so on. The parameter

Ã i = argmax
Ai

P(A i |Di ,Λ∗)

will be referred to as the maximuma posteriorior MAP value forA i .
Wheng(·) in (1) is a linear function, we can simplify Equation 3 significantly (see Appendix A). This

gives us the advantage that instead of using the full data setsDi = {xµ
i ,y

µ
i } for each task, we only need the

sufficient statistics
〈
xixT

i

〉
,〈xiyi〉 and

〈
y2

i

〉
for optimization, where〈..〉 denotes the average over all examples

µ.

4. Making Some Tasks More Similar Than Others

The prior (2) may be useful when we have reason to believe thata priori all tasks are ‘equally similar’. In
many applications, this assumption is a little too simplistic and we have to consider more sophisticated priors.

4.1 Task-dependent Prior Mean

We can make the prior distribution task-dependent by introducing higher-level task characteristics, that is,
‘features’ of the task that are known beforehand. We will denote themf i for taski. These features, although
they have different values for different tasks, do not vary within one task. Therefore, rather than adding
them as extra inputs, we use these features to make the prior mean task-dependent. A straightforward way to
include these features into the prior mean is to make it a linear function of these features, that is,

mi = Mf i ,

with M now an(nhidden+1)×nfeaturematrix. We are back to the independent prior mean if we takenfeature= 1
and all fi = 1.

The calculation of the likelihood proceeds as in Section 3, withm in (4) replaced bymi . With a linear form
optimization is hardly more involved, but in principle we can take more complicated nonlinear dependencies
into account as well.

4.2 Clustering of Tasks

Another reasonable assumption might be that we have several clusters of similar tasks instead of a single
cluster. Then we could take as a prior a mixture ofnclusterGaussians,

A i ∼
ncluster

∑
α=1

qαN (mα,Σα) (5)

instead of the single Gaussian (2). Each Gaussian in this mixture can be seen to describe one ‘cluster’ of
tasks. In Equation 5,qα represents thea priori probability for any task to be ‘assigned to’ clusterα (see also
Figure 2). Althougha priori we still do not distinguish between different tasks,a posteriori tasks can be
assigned to different clusters. The posterior data likelihood reads:

P(Di |Λ) =
∫

dA iP(Di |A i ,Λ)
ncluster

∑
α=1

qαP(A i |mα,Σα) . (6)

The major ‘probability mass’ of this integral lies in areas where the parametersA i both lead to high proba-
bilities of the data (are able to fit the data well) and have high probability underP(A i |mα,Σα) themselves. In

86



TASK CLUSTERING FORMULTITASK LEARNING

P (A | m  , Σ )

q
1

A i

h ik

µ

q

111 2 2 2P (A | m  , Σ )

2

inputs x ij
µ bias

bias

µy1

µyn

P (A | m  , Σ )

A i

f1

11
q

111 2 2 2P (A | m  , Σ )

inputs x ij
µ bias

bias

q q
q

12 n1

n2

fn

y
1

y
2

y
3

y
n

h ik

µ

µ µ µ µ

Figure 2: The task clustering (left) and task gating model (right). In task clustering the task-dependent
weightsA i are supposed to be drawn from a weighted sum of Gaussians, where the weightsqα
are equal for all tasks. In task gating these weights become task-dependent and the value forqiα
depends on the task-specific feature vectorf i .

this way, the posterior distribution effectively ‘assigns’ tasks to that cluster that is most compatible with the
data within the task, in the sense that all other clusters (Gaussians) do contribute much less to (6).

We introduce indicator variablesziα whereziα equals one if taski is assigned to clusterα and zero
otherwise. For any taski only oneziα may be one. To optimize the likelihood of the shared parametersΛ,
which now include all cluster means and covariances as well as the prior assignment probabilitiesq, we can
apply an expectation-maximization or EM-algorithm (see e.g. Dempster et al., 1977).

If the cluster assignmentsziα were known, optimization of logP(D,z|Λ) with respect toΛ would be
relatively simple. The values forziα however are not known, so in the E-step weestimatethe expectation
value of logP(D,z|Λ) underP(z|D,Λn), where forΛn we take the current values forΛ (which are initialized
randomly at the start of the procedure). In the M-step the obtained expectation value is maximized forΛ.
This step is of roughly the same complexity as the optimization for a single cluster. Both steps are repeated
until Λ converges to a (local) optimum. This implementation of the EM algorithm is described in more detail
in Appendix B.

4.3 Gating of Tasks

A possible disadvantage of the above task clustering approach is that the prior is task-independent:a priori all
tasks are assigned to each of the clusters with the same probabilitiesqα. A natural extension is to incorporate
the task-dependent featuresf i that were introduced in 4.1 in a gating model (see Figure 2), for example by
defining

qiα = eUT
α fi /∑

α′
eUT

α′ fi ,

with Uα annfeature-dimensional vector. Thea priori assignment probability of taski to clusterα is now task-
dependent.Uα performs a similar function as the matrixM in Section 4.1: for each task, it translates the
task-dependent feature vectorf i to a preference for one or more of the clustersα. Uα is added to the set of
hyperparametersΛ and learned from the data.

The above task clustering approach is a special case withnfeature= 1 and f i = 1 for all tasksi. The
EM algorithm is similar to the one described in Appendix B: we simply replaceqα with qiα. The M-step
for the parametersUα becomes slightly more complicated, and can be solved using an iterative reweighted
least-squares (IRLS) algorithm. The task gating part of our model can be compared to the mixture of experts
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model (Jordan and Jacobs, 1994). An important difference is that we use a separate set of higher-level features
to gate tasks rather than individual inputs.

5. Results

We tested our method on three databases, which are described in the following paragraphs. We implemented
neural networks that feature two hidden units with hyperbolic tangents as transfer functions, and linear output
units. Networks with more (or less) hidden units did not significantly improve prediction. Each hidden
and each output unit contains an additive bias (see also Figure 1). For each dataset we also consider the
performance of the single task learning method (training a separate neural network for each task). For the
school and the newspaper data, we also look at non-Bayesian multitask learning: in this intermediate model
we applied the same network structure as in the Bayesian multitask learning model, yet instead of estimating
a prior distribution we learned all model parameters directly. For these two non-Bayesian methods we applied
early stopping (see e.g. Caruana et al., 2001) to prevent overfitting on the training data (the model parameters
were optimized on a training set, and the optimization process stopped when no more improvement was found
on a separate validation set).

All algorithms were implemented inMATLAB , and can be downloaded from the authors’ website
(http://www.snn.kun.nl/ ˜bartb/) or fromhttp://www.jmlr.org .

5.1 Description of the Data

Artificial Data. We created a data set of artificial data, by drawing random covariatesxµ
i and shared pa-

rametersΛ (see Appendix C for the exact values.). Thexµ
i were scaled per task to have zero mean and unit

variance. The responsesyµ
i were drawn according to (1), where we used a generative model with one hidden

unit and two clusters (two choices formα). The artificial data did not include task-dependent featuresf i . We
studied both data sets forg(x) = tanh(x), andg(x) = x. To test our methods we ran 10 independent simu-
lations, where each time we used a random selection of 10 covariates and their corresponding responses per
task for optimization, and a large independent test set (300 samples per task) to check the performance of the
model. In each simulation, we used 250 parallel tasks.
School Data.This data set, made available by the Inner London Education Authority (ILEA), consists of ex-
amination records from 139 secondary schools in years 1985, 1986 and 1987. It is a random 50% sample with
15362 students. The data set has been used to study the effectiveness of schools. A file containing the database
can be downloaded from the ‘Multilevel Page’ (http://multilevel.ioe.ac.uk/intro/datasets.html ).
See also Mortimore et al. (1988).

Each task in this setting is to predict exam scores for students in one school, based on eight inputs. The
first four inputs (year of the exam, gender, VR band and ethnic group) are student-dependent, the next four
(percentage of students eligible for free school meals, percentage of students in VR band one, school gender
(mixed or (fe)male only) and school denomination) are school-dependent. The categorical variables (year,
ethnic group and school denomination) were split up in binary variables, one for each category, making a new
total of 16 student-dependent inputs, and six school-dependent inputs. We scaled each covariate and output
to have zero mean and unit variance. All performance measures are obtained after making 10 independent
random splits of each school’s data (covariates and corresponding responses) into a ‘training set’ (containing
on average 80 samples), used both for fitting the shared parameters and computing theMAP hidden-to-output
weights, and a ‘test set’ (comprised of the remaining samples, 30 on average) for assessing the generalization
performance.
Prediction of Newspaper Sales.We also applied our methods on a database of single-copy sales figures
for one of the major Dutch newspapers. The database contains the numbers of newspapers sold on 156
consecutive Saturdays, at 343 outlets in The Netherlands. Inputs include recent sales (four to six weeks in
the past), last year’s sales (51 to 53 weeks in the past), weather information (temperature, wind, sunshine,
precipitation quantity and duration) and season (cosine and sine of scaled week number). The responses are
the realized sales figures. Considering a single task, our model can be interpreted as an auto-regressive model

88



TASK CLUSTERING FORMULTITASK LEARNING

Table 1: Explained variance for each of the combinations of model and database.

single cluster task clustering
linear model on linear data 40.5±0.5 % 43.3±0.5 %
linear model on nonlinear data 22.0±0.3 % 23.8±0.9 %
nonlinear model on linear data 40.9±0.4 % 40.9±0.5 %
nonlinear model on nonlinear data23.3±0.5 % 24.9±0.6 %

with additional covariates. All covariates and responses were scaled per task (outlet) to zero mean and unit
variance. Performance measures were obtained as for the school data, where now the ‘training set’ contains
100 samples per task and the ‘test set’ contains the remaining 56 samples. For the task-dependent mean and
the gating of tasks we constructed two features depending on the outlet’s location: the first feature codes the
number of local inhabitants (from zero, less than 15,000, to four, more than 300,000), the second one the
level of tourism (from zero, hardly any tourism, to two, very touristic).

5.2 Generalization Performance

Artificial Data. We applied both the linear and the nonlinear method to the two databases we created,
resulting in four combinations. In each of these four combinations we applied both the multitask learning
method with one cluster, and model clustering. As can be seen in Figure 3, in all four cases the method was
able to discern the two clusters. Note that in the second panel (linear model working on nonlinear data) one
of the priors is ‘flattened’, indicating that in this case only part of the (nonlinear) structure could be found.

Table 1 presents a model evaluation in terms of the percentage of variance explained by both models
with and without clustering. Percentage explained variance is defined as the total variance of the data minus
the sum-squared error on the test set as a percentage of the total data variance. All combinations of model
and database except the nonlinear model on the linear database showed significant improvements when task
clustering is implemented. Note also that nonlinear multitask learning on the linear database performed
equally well as the linear method. Apart from this, the nonlinear model worked best for the nonlinear database
and the linear model for the linear database. For both databases, single task learning explained less than one
percent of the variance.
School Data.We applied single task learning, non-Bayesian and Bayesian multitask learning on the school
data. The results are expressed in Table 2. Single task learning explained 9.7% of the variance, which was
much less than any of the multitask learning methods. Non-Bayesian multitask learning explained 29.2%
of the variance. The overall winners were the Bayesian methods with one and two priors (clusters) with an
explained variance of 29.5%. Implementation of the methods described in Section 4 yielded no improvement
on the ‘single cluster’ multitask learning method. This lack of improvement was also reflected in the clusters
obtained: either two very similar priors were created, or one cluster was found to contain all tasks, whereas
the other was empty. Although task clustering did not yield a significant improvement here, at least the results
show that the method does not force structure on the data where there is no structure present.
Prediction of Newspaper Sales.The model of Section 2 (single Gaussian prior) managed to explain 11.1%
of the variance in the test data, much better than the 9.0% explained variance with the same multitask model
regularized through early stopping instead of through a ‘learned’ prior. Note that this regression problem has
a very low signal-to-noise ratio, also due to the fact that, for a fair real-world comparison, only sales figures
from at least four weeks ago can be used as covariates. When all tasks were optimized independently using
all 13 covariates, less than one percent explained variance was achieved. These results are consistent with the
more extended simulation studies in (Heskes, 1998, 2000).

The more involved methods of Section 4 all led to a slightly, but significantly better performance, explain-
ing another 0.1% of the variance. Although not spectacular, translated to the set of more than 10,000 Dutch
outlets for which predictions have to be made on a daily basis, this might still be worthwhile.
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Figure 3: Maximum likelihood (upper panels, markedML) and maximuma posteriori(lower panels, marked
MAP) values for the model parametersAi in the artificial data paradigm. Each dot or diamond
refers to one task, where (in the lower panels) identical marks (dots or diamonds) indicate tasks
that belong to the same cluster (are generated around the same mean). In each panel, the horizontal
axis corresponds to the hidden-to-output weight, the vertical axis to the bias. The 95% confidence
intervals for the two estimated priors are plotted in the lower panels. From left to right and up to
down, the panels show the results for the linear model on the linear data, the same model on the
nonlinear data, the nonlinear model on the linear data and on the nonlinear data. The meansmα
used for generation of the data sets (corrected for the difference between the true and estimated
hidden unit activity) are depicted by stars in the 8 panels.

Although for each database the more involved methods (such as task clustering or gating) required more
computation time than the simpler methods (such as non-Bayesian multitask learning), all times were in the
same order of magnitude. None of the simulations took more than 30 minutes (on a Pentium 3). In general,
when a method was able to explain a higher percentage of the variance, it also required more computation
time. The one exception to this rule was the single task learning method: although it performed (relatively)
poorly on all of the databases, it actually required more time than non-Bayesian multitask learning. This is
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Table 2: Explained variance for the school data and the newspaper data. The evaluated methods are sin-
gle task learning (STL), maximum likelihood multitask learning (ML MTL), Bayesian multitask
learning, task clustering with two clusters and task gating with two clusters.

STL ML MTL Bayesian MTL task clustering task gating
school data 9.7±0.7 % 29.2±0.3 % 29.5±0.4 % 29.5±0.4 % –
newspaper sales < 1 % 9.0±0.3 % 11.1±0.4 % 11.2±0.4 % 11.2±0.3 %
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Figure 4: Explained variance for multitask learning with one (dashed line) and two clusters (solid line): for
less training samples the effect of clustering grows stronger.

caused by the fact that for single task learning the input-to-hidden weights need to be optimized for each task
separately, whereas these weights are equal for all tasks in the other methods.

More in general, multitask learning is most useful in circumstances where many parallel tasks are avail-
able, but few training samples per task. To test under such conditions, we compared the single Gaussian prior
model to the model with two clusters for lower numbers of training samples per task, ranging from 30 to 100
samples. Figure 4 shows the explained variances for both models, which are (as before) the averages over 10
independent splits of the data into a training and a test set. The figure clearly shows that although for larger
numbers of training samples the more involved model does not perform much better than the simpler model,
for less training samples it yields a substantial improvement.

5.3 Interpretation of the Newspaper Results

The solutions that we obtained make sense and provide a lot of interesting information. Figure 5 displays a
Hinton diagram (Bishop, 1995) of the input-to-hidden weights typically and consistently (up to permutation
and sign flips) found in all of the multitask learning approaches. It can be seen that one hidden unit focuses
on recent sales figures (referred to as ‘short term’) and the other on last year’s sales and season (referred to as
‘seasonal’).

The left panel in Figure 6 plots the maximum likelihood solutions for the hidden-to-output weights of the
different outlets. The next panel visualizes the effect of a single Gaussian prior by plotting the corresponding
MAP solutions. Task clustering yielded two distinct clusters: a ‘seasonal’ cluster with hardly any variation
in short-term effects and a ‘short-term’ cluster with much less variation in the seasonal effect. The solution
obtained through task gating is just slightly different. Although this particular distinction between the two
clusters is not what we had expected to find (i.e. clusters with different meansMα and similar covariances
Σα), it does make a lot of sense. Tasks in the seasonal cluster all have relatively small weights connected to
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Figure 5: Hinton diagram of the input-to-hidden weights. Positive weights are white, negative weights are
black. The absolute magnitude of each weight corresponds to the size of its square. Past sales
figures are coded in the first 6 inputs, the next 5 inputs represent weather information, and the last
2 inputs indicate the season. The rightmost squares represent the biases of the hidden units.

−1 0 1 2

0

1

2

s
h

o
rt

 t
e

rm
 e

ff
e

c
ts

maximum likelihood

−1 0 1 2

0

1

2
no clustering (MAP)

<−− seasonal effects −−>

−1 0 1 2

0

1

2
task clustering (MAP)

−1 0 1 2

0

1

2
task gating (MAP)

Figure 6: The maximum likelihood values for the hidden-to-output weights (left panel), and theirMAP values
(right panels). The horizontal axis of each plot refers to the hidden-to-output weight connected to
the hidden unit with input-to-hidden weights that are sensitive to seasonal effects, as demonstrated
in Figure 5. The vertical axis refers to the weights connected to the hidden unit that is sensitive to
short term effects. Each mark represents the hidden-to-output weights for one task. The ellipses
drawn in the right panels visualize the priors imposed on the task-dependent parametersA i . They
indicate 95% confidence intervals of these priors. The prior depicted in the second panel is uni-
modal (single cluster): all task-dependent weights have the same prior distribution. In the right two
panels there are two clusters, formed through task clustering (third panel) and task gating (fourth
panel).

the hidden unit that focuses on short term effects, yet they do display moderate to strong connections to the
seasonal hidden unit. The reverse is true for the short term cluster.

The distinction between seasonal and short term tasks can be visualized on the map of the Netherlands. In
Figure 7 on the left we marked the locations of the outlets that with weightρiα larger than 0.85 are assigned
to the ‘seasonal’ cluster and have a positive ‘seasonal’ hidden-to-output weight, which corresponds to higher
sales in summer than in winter. Most of them are located in touristic areas (e.g. close to beaches). The right
plot visualizes the outlets that with weight larger than 0.85 are assigned to the short-term cluster. These are
located in the Randstad, Holland’s most densely populated area, and other cities of reasonable size.
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Figure 7: Clustering of Dutch outlets. Circles mark outlets assigned with weight larger than 0.85 to either
the ‘seasonal’ cluster (left panel) or the ‘short term’ cluster (right panel).

5.4 Difference Between Task Clustering and Task Gating

It is no surprise that task gating manages to pick up the correlations between short term or seasonal effects and
location of the outlet. For example, after training theprior assignment of an outlet in a large non-touristic
city to the short-term cluster equals 0.87, whereas an outlet in a small touristic village is assigned to the
seasonal cluster with weight 0.80. The reason that this prior information does not lead to (significantly) better
generalization performance is that thea posterioriassignments based on 100 training examples appear to be
of about the same quality for task clustering and gating. With less examples, thea priori assignments will
become more important (see Section 5.4), making the gating method preferable over the clustering approach,
as can be seen in Figure 8.

Another way to illustrate the difference between task clustering and task gating is through the ‘entropy’
of the clusters formed by each method. We define the entropy of a set of clusters in this setting as

S(ρ) =−
N

∑
i=1

ncluster

∑
α=1

ρiα log(ρiα) ,

where
ρiα = P(ziα = 1|Λ,Di) ,

the probability for taski to be in clusterα. The entropyS(ρ) reaches its maximum when each task is assigned
to any cluster with equal probability, and its minimum when each task is assigned to one particular cluster
with probability one.

For both task clustering and gating the entropy depends on the number of samples present in the dataD.
For very low numbers of samples the cluster assignmentρiα will depend mainly on the chosen prior, whereas
for larger numbers of samples the data likelihood will become the dominant factor. Figure 9 plots the entropy
for task assignments obtained from both methods as a function of the number of samples per task. The data
set used here is the Telegraaf data set, but for the purpose of this illustration it could be any data set in which
a meaningful clustering can be found.

Figure 9 shows clearly that although for increasing numbers of samples the two entropies converge to
the same value, in the case of very few samples the entropy after task gating is significantly lower. This can
easily be understood by noting that for task gating the prior distribution already discriminates between tasks
whereas task clustering treats all tasks equallya priori, resulting in a stronger predefined order for the gating
method.
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Figure 8: Difference in explained variance between the task gating and clustering approach: the less training

samples, the better the gating method.

6. Related Work

Multitask learning is very similar to multilevel analysis in statistics. Here, a distinction is made between
level one variation between different samples within the same task (e.g. from student to student, from patient
to patient) and level two variation between different tasks (e.g. between schools or hospitals). The leading
model to account for such variations is the mixed-effects linear model. In this model the user is presented
with a series of parallel units, each containing a set of covariates and responses. The predicted value for the
µth response of uniti in this model reads

yµ
i = xµ

i
Tβ+zµ

i
Tbi ,

wherexµ
i is a vector of covariates,β is a vector of fixed effects parameters,bi is the task-dependent random

effect assumed to be (normal) distributed around zero with covarianceΣ andzµ
i is a vector of parameters re-

lated to this effect. The parameters in this model are generally estimated through iteration of linear regression
on the parametersβ, and fitting of the covarianceΣ to the residuals ˜yµ

i = yµ
i − xµ

i
Tβ. An alternative to this

method is the empirical Bayesian approach, where probability distributions over bothbi andβ are defined.
The parameters of these distributions (called hyperparameters) are optimized directly, resulting in distribu-
tions around the maximuma posteriorivalues forbi andβ. Both approaches are described in e.g. (Bryk and
Raudenbush, 1992). In thefull Bayesian approach (see e.g. Seltzer et al., 1996) further prior distributions are
defined for these hyperparameters, which are chosena priori. In this approach, however, one has to resort to
sampling, which becomes infeasible for large numbers of tasks.

Over the past years many proposals have been made to incorporate nonlinearity into these models, through
B-splines (see e.g. Lin and Zhang, 1999) and other methods (Brumback and Rice, 1998, Arora et al., 1997).
To the best of our knowledge, the ideas of task clustering and gating are new to this field.

An alternative approach to multitask learning has been taken by Thrun and O’Sullivan (1996) and Pratt
(1992), who have devised elegant ways to transfer knowledge obtained by one network to another network
learning a similar task. Thrun and O’Sullivan (1996) also suggest a task clustering algorithm, where a distance
metric between parallel tasks is learned, and used to classify new learning tasks. In learning these new tasks,
(only) the information contained in the corresponding cluster is exploited.

Trajectory clustering (Cadez et al., 2000) can be derived as a special case of task clustering without
hidden units and with all covariance matricesΣα set to zero. On a more philosophical level, clustering in our
approach is an interesting by-product of a better generalizing model, not a goal by itself.

The gating in Section 4.3 yields an EM algorithm that is similar to the one for a mixture-of-experts
architecture (see Jordan and Jacobs, 1994, Jiang and Tanner, 1999), but the application of it is quite different.
In our case the gating is at the level of tasks rather than covariates and depends on task-specific propertiesf i ,
completely independent of the covariatesxµ

i .
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Figure 9: The entropy of the task-cluster assignment probabilitiesρiα as a function of the number of samples
for the task clustering method (dashed line) and the gating method (solid line). For few samples,
the gating method clusters more strongly (has a lower entropy) than the task clustering method.
For higher numbers of samples, the two methods behave similarly.

7. Discussion

Our work has been inspired by Baxter (1997), Caruana (1997) and Thrun and O’Sullivan (1996). We have
adopted the idea of recognizing parallel tasks and learning their underlying structure from the data, and
considered an extension through the use of task clustering, which has been implemented in a different form
by Thrun and O’Sullivan (1996). In the present article we implement this clustering through the design of
prior distributions that are able to discriminate between tasks. The result is a hierarchical Bayesian approach
to multitask learning, where some of the model parameters are shared explicitly (the input-to-hidden weights
among others) and others are soft-shared through a prior distribution. Two of these prior distributions make
use of task-dependent features which are known in advance, the other distribution makes the distinction
between tasks purely from the data samples in the training set. The applicability of this model to real-world
problems was demonstrated (among others) on the newspaper data, where we showed the usefulness of the
model both in terms of explained variance and independent detection of features in the data.

Application of our methods on an artificial data set demonstrated that appropriately structured regression
problems can benefit significantly both from the multitask learning approach and from task clustering. The
well-known school problem was also modeled better through Bayesian multitask learning. No substructures
within the collection of tasks were found however, either because they are not present at all, or because
another form of (neural network) model (e.g. other transfer functions than tanh(x) or linear) is needed to
exploit them. For the Telegraaf problem we found a small yet significant increase in explained variance when
task clustering was applied. However, simulations for smaller numbers of training samples showed a much
more substantial improvement for smaller data sets. Interesting results were obtained on a descriptive level:
the model was able to make a meaningful distinction between outlets in touristic and urban areas, without
being presented with this information in advance. By examining the obtained clusters more closely, a better
understanding of the tasks themselves can be gained.

From a technical point of view, the empirical Bayesian approaches proposed in this article become feasi-
ble and tractable even for large databases because we can analytically integrate out all task-specific param-
eters [cf. Equation (3)]. For e.g. multitask classification problems, we would have to resort to appropriate
approximations, perhaps similar to those used in Gaussian processes for classification (Williams and Barber,
1998).
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We have assumed from the start that all of the parallel tasks may be assumed iid given the hyperparame-
ters. Although for the artificial data this is true by construction, for the newspaper data it may not be entirely
correct. In fact, each task in this database describes a time series, and parallel tasks imply parallel times. In
this paper we have made no use of any algorithm specifically designed to model such data. In future work
however, we plan to further extend our model to exploit this characteristic of the data. Here we hope to make
a connection between multilevel analysis and dynamic hierarchical models (Gamerman and Migon, 1993).
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Appendix A

The data likelihood is calculated as follows:

P(Di |Λ) =
∫

dA iP(Di ,A i |Λ)

=
∫

dA iP(Di |A i ,Λ)P(A i |Λ)

∝ σ−ni |Σ|−1/2
∫

dA i exp

[
−1

2
AT

i QiA i +RT
i A i − 1

2
Si

]

∝ σ−ni |Σ|−1/2|Qi |− 1
2 exp

[
1
2
(RT

i Q−1
i Ri −Si)

]
,

whereQi , Ri andSi are given by

Qi = σ−2
ni

∑
µ=1

hµ
i hµ

i
T + Σ−1 , Ri = σ−2

ni

∑
µ=1

yµ
i hµ

i + Σ−1m , Si = σ−2
ni

∑
µ=1

yµ
i

2 +mTΣ−1m .

For the linear case, the expressions forQi , Ri andSi simplify considerably by enforcing the constraint〈
hihT

i

〉
=
〈
Wxix

T
i W
〉

= I

(where〈..〉 denotes the average over all examplesµ andI is the unit matrix):

Qi = niσ−2I + Σ−1 , Ri = σ−2niW 〈xiyi〉+ Σ−1m , Si = σ−2ni
〈
y2

i

〉
+mTΣ−1m .

In this case, sufficient statistics can be calculated beforehand, after which optimizing the shared parameters
no longer scales with the number of tasks (Heskes, 2000).

Appendix B

To optimize logP(D|Λ), first we add the parameterz, which refers to a particular choice of cluster assignments
ziα, assigning taski to clusterα. Averaging over the distributionP(z|Λn,D) given the current value ofΛ, we
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obtain

logP(Di |Λ) = log∑
{z}

P(Di ,z|Λ)

= log∑
{z}

P(z|Λn,Di)
P(Di ,z|Λ)
P(z|Λn,Di)

≥ ∑
{z}

P(z|Λn,Di) logP(Di ,z|Λ)−∑
{z}

P(z|Λn,Di) logP(z|Λn,Di)

= ∑
{z}

P(z|Λn,Di) logP(Di |z,Λ)+∑
{z}

P(z|Λn,Di) logP(z|Λ) ,

where we dropped the negative term in the third line since it does not depend onΛ.
In the E-step we have to compute the assignments probabilities through

P(ziα = 1|Λ,Di) ∝ qαP(Di |Λ) .

and sum logP(Di |z,Λ) and logP(z|Λ) over all possible assignments, weighted by their probabilities. Note
that if the assignments were not given, the log-likelihood ofD would read

logP(D|Λ) = ∑
i

log∑
α

qαP(Di |Λα) ,

which due to the summation within the log function would be much more difficult to maximize.
After each maximization (M-step) we setΛn = Λ, and take a next step, until convergence. With this

choice ofΛn (standard for the EM-algorithm) the Jensen bound in line 3 becomes an equality, and the bound
ensures that in the subsequent maximization step logP(D|Λ) will never decrease.

Appendix C

Table 3 presents the parameters that are used to generate the artificial data in Section 5.1. Note thatW andσ
do not vary between clusters.

Table 3: Numerical values for the parameters generating the linear and nonlinear data.

linear data cluster 1 cluster 2
W

(
0.023 −1.24 −0.041

) (
0.023 −1.24 −0.041

)
mα

( −3.67 3.63
) (

0.048 −2.43
)

Σα

(
0.80 0.23
0.23 1.19

) (
0.97 −0.23
−0.23 1.07

)
σ 5 5

nonlinear data cluster 1 cluster 2
W

(
0.033 −0.62 −0.051

) (
0.033 −0.62 −0.051

)
mα

( −3.67 3.63
) (

0.048 −2.43
)

Σα

(
0.80 0.23
0.23 1.19

) (
0.97 −0.23
−0.23 1.07

)
W0 0.27 0.27
σ 5 5
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