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Abstract 
Task complexity is a construct widely used in the behavioral sciences to explore and predict the 
relationship between task characteristics and information processing. Because the creation and 
use of IT in the performance of tasks is a central area of informing science (IS) research, it fol-
lows that better understanding of task complexity should be of great potential benefit to IS re-
searchers and practitioners. Unfortunately, applying task complexity to IS is difficult because no 
complete, consistent definition exists. Furthermore, the most commonly adopted definition, ob-
jective task complexity, tends to be of limited use in situations where discretion or learning is 
present, or where information technology (IT) is available to assist the task performer. These 
limitations prove to be severe in many common IS situations. 

The paper presents a literature review identifying thirteen distinct definitions of task complexity, 
then synthesizes these into a new five-class framework, referred to as the Comprehensive Task 
Complexity Classes (CTCC). It then shows the potential relevance of the CTCC to IS, focusing 
on different ways it could be applied throughout a hypothetical information systems lifecycle. In 
the course of doing so, the paper also illustrates how the interaction between different classes of 
task complexity can serve as a rich source of questions for future investigations. 

Keywords: task complexity, systems development, objective complexity, task structure, software 
complexity, information processing 

Introduction 
The driving force behind the creation of informing environments and delivery systems is 
that a task needs to be accomplished. (Cohen, 1999) 

The concept of a task is central to the Informing Sciences (IS). As the driving force in the devel-
opment of informing systems, the role played by task is of particular significance to the individu-
als responsible for developing such systems, since better insights into the task to be accomplished 

should improve their understanding of 
the resources that will be required. In 
this context, task complexity appears to 
be a particularly important characteris-
tic. The construct is widely used in the 
behavioral sciences to explore the rela-
tionship between task characteristics and 
cognitive activities. It is hypothesized to 
be:  
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1. A determinant of the information processing and cognitive load that will be required 
in order to perform a task (Benbasat & Todd, 1996; Campbell, 1988). 

2. An objective basis for determining compensation for a task (e.g., Auster, 1989). 

3. A key determinant of task performer intrinsic motivation, satisfaction and goal accep-
tance (e.g, Beer, 1968; Jimmieson & Terry, 1999; Seybolt, 1976; Wood, Mento & 
Locke, 1987) 

4. An important determinant of the general and specific knowledge required in order to 
perform a task (Wood, 1986) 

5. An important determinant of appropriate training method for a given task (Bolt, Kil-
lough, & Koh, 2001) 

6. A critical factor in the selection of decision-making strategies and information seek-
ing behaviors (e.g., March & Simon, 1958; Payne, 1976; Vakkari, 1999) 

7. A variable impacting the appropriate method for displaying information in order to 
achieve effective decision-making (Speier & Morris, 2003) 

8. A factor determining the value of data quality information in data warehousing situa-
tions (Fisher, Chengalur-Smith, & Ballou, 2003)  

Given that the coming of the "information age" is being accompanied by a transition from physi-
cal work to "'knowledge work" (Drucker, 1989), and that discontinuous change (Handy, 1990) 
and high-velocity environments (Bourgeois & Eisenhardt, 1988) are leading to dramatic changes 
in the nature of tasks and jobs being performed, it is reasonable to anticipate that the potential 
value of being able to predict how abstract task characteristics will influence the intended task-
completion system (Cohen, 1999) should grow correspondingly. 

Given both task complexity's importance in the behavioral literature and its integral relationship 
to information processing activities, it is somewhat surprising that the construct has not been used 
more extensively in the informing sciences. With few exceptions (e.g., Handzic, 2001), most of 
the research in the area has been situated in the field of management information systems (MIS). 
Even there, its use has been limited to a rapidly growing a number of studies that have used the 
construct as an independent variable (e.g., Barki, Rivard, & Talbot, 1993; Blili, Raymond, & Ri-
vard, 1998; Bolt, et al., 2003; Fisher, et al., 2003; Gill, 1996; Jacko & Salvendi, 1996; Kishore, 
Agrawal, & Rao, 2004; Liao & Palvia, 2000; Mascha, 2001; Mykytyn & Green, 1992; Roberts, 
Cheney, Sweeney, & Hightower, 2004; Speier & Morris, 2003; Swink & Speier, 1999; ) in the 
prediction of some other outcome. There are also examples of research that employ MIS-related 
tasks as part of general investigations of the construct (e.g., Campbell & Gingrich, 1986). What is 
notably absent from the IS literature is a systematic examination of the nature of the construct. As 
the present paper will demonstrate, such an examination is long overdue—as it is hard to imagine 
any other construct could equal task complexity in terms of the level of ambiguity and internal 
inconsistency achieved over the years.  

Applying task complexity to IS situations has been made even more difficult by the way the con-
struct has commonly come to be defined. Over the past two decades, the most widely used defini-
tion in the behavioral literature treats the construct as a function of objective task characteristics. 
Defined in this way, task complexity is most relevant to static, well-understood tasks (as will be 
explained later in the present paper). Such a limitation of task domain, however, dramatically re-
duces the construct's potential applicability to the IS field. As IS researchers and practitioners, we 
routinely encounter situations where the tasks we consider are neither static nor fully understood. 
Three important examples are: 
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1. Development of applications to perform tasks. How does the complexity of a task 
impact the design, construction and implementation of information technologies ap-
propriate for performing that task?  

2. Transformation of tasks by IT. How does the complexity of a task change after it has 
been transformed through the adoption of an information system? 

3. Shared tasks. How does the complexity of a task change when the performance of the 
task is shared between a human performer and an information system? 

We believe that the question "how can task complexity be applied to IS?" is an important one. 
The present paper proposes an organizing framework intended to clarify the applicability of task 
complexity to IS theory and practice. We begin by reviewing the many existing definitions of task 
complexity that have been proposed in the behavioral literature. In the course of doing so, we also 
draw parallels to analogous constructs that have been proposed in software engineering and the 
cognitive sciences. These definitions, thirteen in all, are then organized into a taxonomy consist-
ing of five classes of task complexity that we have developed. Finally, we discuss the specific 
application of the complexity classes to a number of IS-related situations, and show how the in-
teraction between different classes of task complexity can serve as a rich source of experimental 
hypotheses. We believe that this research can serve as an important first step in making the task 
complexity construct more applicable to IS research and practice.  

Nature of a Task 
Prior to addressing task complexity, it is useful to present definitions for three terms that are used 
throughout the present paper: task, problem space, and discretion. All three prove to be critical in 
understanding the nature of task complexity. 

Task 
At least four distinct theoretical frameworks for studying tasks have been proposed (Hackman, 
1969), treating tasks 1) in stimulus-response terms ("Task qua task"), 2) as a set of required be-
haviors, 3) as a set of resultant behaviors, and 4) as a set of abilities requirements (Wood, 1986). 
The present paper does not make any judgments regarding the relative suitability of these differ-
ent approaches to defining a task. Indeed, we believe consistent task complexity definitions can 
be established using any of the task conceptions, so long as they are not mixed. As a starting 
point, the present paper adopts a definition of task that has been widely used in the past (Hack-
man, 1969): 

Definition: a task is a set of assigned a) goals to be achieved, b) instructions to be per-
formed, or c) a mix of the two. 

By defining task in this manner, we allow for tasks to be framed either in stimulus-response terms 
or as required behaviors. We also specifically seek to separate task and task-context, the latter 
including broader factors such as the physical and social setting in which the task is performed. 
Later in the paper, we return to this issue by considering how context factors, such as external 
demands on the task performer, can be expected to impact various conceptions of task complex-
ity. 

Problem Space 
As already noted, abilities requirements are sometimes used as an alternative way of defining 
task. Such requirements are central to some task complexity definitions, but to avoid confusion 
we prefer to use another term to refer to them. Specifically, we adopt the term problem space 
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(Newell & Simon, 1972), used extensively in the field of cognitive science. We define it as fol-
lows: 

Definition: A problem space is a representation of the cognitive system that will be used 
to perform a task "described in terms of (1) a set of states of knowledge, (2) operators for 
changing one state into another, (3) constraints on applying operators, and (4) control 
knowledge for deciding what knowledge to apply next" (Card, Moran, & Newell, 1983; 
p. 87). 

Within a problem space, knowledge is often classified in two forms: programs and meta-
knowledge. Programs represent domain-specific knowledge that is normally the result of experi-
ence or training in the specific task to be performed, or very similar tasks. Meta-knowledge, in 
contrast, consists of knowledge about knowledge. It typically provides the task performer with 
access to a variety of search intensive, general problem solving strategies, such as reasoning by 
analogy (Rumelhart & Norman, 1981) and decomposition (Simon, 1981). These strategies (some-
times referred to as "weak methods"—so named because they offer no guarantees of success and 
are often quite inefficient) allow task performance to continue in the absence of programs. 

Discretion 
Under the definition of task that we have chosen, two assignments—1) serve cake for dessert, and 
2) perform the steps in the recipe (for baking a chocolate cake) found on page 675 of The Joy of 
Cooking (Rombauer & Becker, 1975) commencing at 4:30 PM today—would both be valid tasks. 
To distinguish between the two tasks, it is useful to define a final term: 

Definition: the ability of a task performer to choose and/or sequence the activities associ-
ated with performing a given task is referred to as task discretion. 

Using this definition, the first set of instructions (i.e., "serve cake for dessert") offers high levels 
of discretion, while the second offers nearly none.  

Another way of viewing discretion is in terms of the set of acceptable problem spaces that are 
invoked by the task stimulus. For a low discretion task, relatively few problem spaces will meet 
the task requirements. For a high discretion task, on the other hand, many different problem 
spaces may exist that meet task requirements. As a result, rising discretion will typically be ac-
companied by a rise in the variety of task performance behaviors that are observed across differ-
ent performers. 

A Task Model 
The relationship of task, problem space and discretion can be illustrated using a simple model, 
presented in Figure 1: 

• For tasks with little or no discretion, the task stimulus invokes a specific problem space, 
which is then applied during task performance.  

• For tasks with high discretion, the task stimulus invokes a collection of problem spaces 
that all meet, or may meet, task requirements. From that collection, a specific space is se-
lected, which is then applied during task performance. 

For some high-discretion tasks, weak methods may need to be employed because no invoked 
problem space offers an acceptable and fully determined path to task completion. In this case, a 
typical strategy is to use decomposition to break the task into subgoals, then perform each sepa-
rately. This process adds an iterative component to task performance, illustrated by the dotted 
arrow in Figure 1. Such tasks are often referred to as ill-structured. 
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Figure 1: Relationship of Task, Problem Space and Discretion 

Task Complexity: A Review 
In this section, we review existing definitions of task complexity. We begin by discussing the 
most widely used class of definitions—objective complexity. We then present a broader survey of 
the construct as it has been applied in the behavioral literature. 

Objective Complexity 
Within the behavioral literature, two definitions of task complexity are most widely cited, those 
proposed by Wood (1986) and Campbell (1988). The first definition (Wood, 1986) is based on 
the premise that the only task complexity definitions likely to exhibit construct validity are those 
in which the construct is solely a function of the task itself. Referred to as objective task complex-
ity, the definition proposes that task complexity derives from three primary sources: 1) the num-
ber of different components associated with the task (component complexity), 2) the level of in-
teraction between the components (coordinative complexity) and 3) the degree to which the rela-
tionship between task-related input and output cues changes over time (dynamic complexity). 
Total task complexity is further proposed to be a weighted sum (or more complex function) of the 
three objective complexity sources.  

The second definition (Campbell, 1988) similarly favors defining task complexity based upon 
objective task characteristics. The characteristics proposed are: 1) multiple paths, 2) multiple end 
states, 3) conflicting interdependence, and 4) uncertainty or probabilistic linkages. While the two 
definitions seem quite different, there is a strong underlying common theme:  

Definition: objective complexity defines task complexity as a function whose value de-
pends strictly upon the characteristics of the task to be performed. 

Unfortunately, objective complexity definitions have limited potential applicability to many 
common IT-related situations. Throughout the present paper, we focus on three such situations:  

1) the application of task complexity to systems development. 

2) the application of task complexity to tasks transformed by IT, and  
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3) the application of task complexity to situations where task performance is shared be-
tween human performers and IT.  

Relating these to the IS framework (Cohen, 1999), the first situation—systems development—can 
be characterized as an intent to change to the informing environment by creating a system using 
well understood designs or by creating a system of a totally new design. The relevant questions 
then become: what does the complexity of the task to be accomplished tell us about the changes 
we'll have to make to the informing environment and what are the implications for the delivery 
environment? The last two situations specifically relate to the nature of the task completion sys-
tem. The relevant questions here become: what, if any, impact on task complexity occurs when IT 
is introduced to into a task completion system and can better understanding of task complexity 
provide us with useful insights into the nature of that system? We now consider the inherent limi-
tations of objective complexity when applied to these situations. 

Task complexity and systems development 
The development of information systems to perform a given task is an area that is at the heart of 
the informing sciences, the creation of the delivery system (Cohen, 1999). It is also, arguably, the 
area in which objective task complexity (or concepts very similar to it) has been most extensively 
applied. Indeed, a typical system specification represents an almost ideal foundation from which 
objective complexity measures (e.g., number of functional components, component interdepend-
ence) can be estimated. Moreover, systems development has also been used as a domain for in-
vestigations into objective task complexity (Campbell & Gingrich, 1986).  

The first issue that needs to be addressed in applying objective complexity to systems is deter-
mining the proper task domain. Two plausible alternatives exist: 1) we might want to estimate the 
complexity of the task of developing the system or 2) we might want to estimate the complexity 
of the task to be performed by the system. Given a full specification, a reasonable case can be 
made that measures of objective complexity computed on the basis of the specification represent 
the predicted complexity of the development task to be performed (Tran, Lévesque, & Meunier, 
2004). This use of objective complexity comes with important limitations, however. The first 
limitation is that a full design specification must be in place. While specification will normally 
precede development in specification-based models, such as the waterfall model (Sommerville, 
1996), many evolutionary development programming approaches, such as agile methods, permit 
major changes to design and specifications to merge incrementally during the development proc-
ess. The second limitation is one of practicality: the value of being able to predict the complexity 
of the development process is much greater at the outset of the process than in the middle of the 
process. Unfortunately, by the time a full set of specifications and design documents are com-
pleted and signed off in a typical waterfall model development project, developers are often near-
ing the midpoint of the project. 

Even assuming a full specification is in place, there is little basis for treating that specification as 
a proxy for the objective complexity of the task to be performed by the system. For non-trivial 
systems, such specifications are rarely "determined" by the task itself. Instead, they evolve only 
as decisions regarding representation, approach and delivery platform are made. Thus, while it 
might be valid to measure the objective complexity of the development task implied by a particu-
lar system design, it would not be valid to assert that such complexity reflects the "objective" 
complexity of the task to be performed by the system. Referring back to Figure 1, systems devel-
opment tends to be a high-discretion task where the process of moving from task to final problem 
space (i.e., full specification) is central to task performance. 
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Task complexity and tasks transformed by IT 
Objective complexity can also be very difficult to apply in situations where tasks are transformed 
by IT. A recurrent theme in MIS research is that IT is dramatically changing the way we work 
(e.g., Applegate, Cash, & Mills, 1988). The ability to apply a task complexity construct to a con-
tinuous stream of new tasks would therefore be of particular value to the MIS field. In practice, 
however, the objective attributes that will ultimately prove to be relevant to a new task often need 
to be discovered (Jaikumar & Bohn, 1986). To measure objective complexity, however, these 
attributes need to be identified and understood. As a result, in a highly dynamic task environment, 
the objective complexity of new tasks is likely to be immeasurable during the precise period 
when the construct would be of the greatest value. 

Task complexity and shared tasks 
Another serious limitation of objective complexity is evident when tools are used in performing a 
task. The voluntary adoption of an information system in performing a task —such as a decision 
support system (DSS)—would not impact the task's objective complexity, as a matter of defini-
tion. (The use of the term "voluntary" is important here, as a new requirement to use a tool repre-
sents a change to the task itself.) The problem that this creates is that use of a tool can dramati-
cally impact many aspects of task performance that the presence of task complexity is supposed 
to predict (e.g., cognitive demands of the task; Campbell, 1988). Thus, availability of discretion 
in the use of tools can strip objective complexity of nearly all of its predictive power. 

Alternative Task Complexity Definitions 
Although objective complexity is often considered in the context of MIS-related tasks (e.g., Bolt, 
et al., 2001), limitations to its applicability—such as those just presented—significantly reduce its 
potential value in the IS field. Objective complexity, however, is only one form of task complex-
ity present in the behavioral literature. We now turn to a more systematic review and synthesis of 
a broader range of complexity definitions, gathered according to the following procedure: 

1. The task complexity research cited in earlier reviews (Wood, 1986; Campbell, 1988), 
either jointly or individually, was examined.  

2. Usages of task complexity subsequent to the earlier reviews were identified using the 
ABI/Inform database, and a further gathering and analysis of included references was 
performed. 

3. Selected references applying constructs related to task complexity in non-
administrative disciplines (e.g., cognitive science, information theory, computer sci-
ence) were identified as a means of broadening the present paper’s perspective. 

Three distinct issues had to be addressed as part of the review: 1) research that did not specifi-
cally identify how the construct was defined, 2) research where the definition and the operation-
alization were inconsistent, and 3) research where multiple definitions were proposed. In the first 
case, a definition consistent with usage was assumed. In the second and third cases, each defini-
tion was cataloged separately. Upon completing this process, we were able to identify thirteen 
relatively distinct definitions of task complexity, summarized in Table 1. 
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Table 1: Existing Task Complexity Constructs 

Construct 
Type 

Description Examples 
(References may fall in more than 

one category) 

1. Degree of 
difficulty 

Definition treats task complexity as a 
measure of the task's potential for being 
perceived as difficult by the task per-
former. May be operationalized based 
upon performer-reported assessments of 
difficulty, or upon indirect measures, such 
as the degree to which the task must be 
constantly attended to. 

Blili, et al. (1998); Huber (1985); 
Nordqvist, Hovmark, & Zika-
Viktorsson (2004); O'Donnell, Koch, 
& Boone (2005); Ursic & Helgeson 
(1990); Wofford, Goodwin, & 
Premack (1992) 

2. Sum of JCI 
or JDS fac-
tors 

Defines task complexity in terms of the 
task's potential to induce a state of arousal 
or enrichment in the task performer, op-
erationalized using instruments such as 
the JCI (Job Characteristics Index) or JDS 
(Job Diagnostic Survey). 

Koszowski & Hults (1986); Nordqvist,
et al. (2004); Schanke, Bushardt, & 
Spottswood (1984); Specht (1986) 

3. Degree of 
stimulation 

Definition treats task complexity as a 
measure of the task's potential to induce a 
state of stimulation or arousal in the task 
performer. Similar to degree of difficulty 
except that it is normally measured using 
physiological measurements (e.g., pupil 
dilation) as opposed to self-reporting.  

Driver & Streufert (1966); Gardner 
(1990); Kreitler, Zigler, E. & Kreitler 
(1974)  

4. Amount of 
work re-
quired to 
complete 
the task or 
information 
load asso-
ciated with 
the task 

Definition treats task complexity as a 
measure of a task's potential to induce 
various information processing levels, 
such as peak processing rate (e.g., 
bits/second) or total amount of processing 
(e.g., bits processed). Such processing is 
intended to be measured objectively, in-
stead of being based on task performer 
perceptions or responses. It is also nearly 
always constructed so that task perform-
ance strategy is held constant. 

Asare & McDaniel (1996); Barki, et 
al. (1993); Barrow (1976); Benbasat 
& Todd (1996); Campbell & Gingrich 
(1986); Coll, Coll, & Thakur (1994); 
Earley (1985); Gilliland & Landis 
(1992), Ho & Weigelt (1996), Rob-
erts, et al. (2004); Schweizer (1996), 
Seybolt (1976); Speier, Vessey, & 
Valacich (2003) 

5. Amount of 
knowledge 

Definition is based upon the amount of 
knowledge that must be acquired in order 
to perform the task. Definition may be op-
erationalized using metrics such as the 
amount of time required to learn the task. 

Ackerman (1992); Gill (1996); Wood 
(1986) 

6. Size 

Defines task complexity using the informa-
tion theory of the minimum theoretical size 
of the problem space necessary to per-
form the task. Most commonly used in 
assessing software complexity. 

Li & Vitanyi (1993) 
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7. Number of 
paths 

Defines task complexity in terms of the 
number of alternative paths that are pos-
sible using given performance strategy. 
Has been used for both general tasks and 
for analyzing the complexity of computer 
programs, where it measures the number 
of branches (e.g., if constructs). 

Barki, et al. (1993); Campbell (1988), 
Jacko & Salvendy (1996); McCabe 
(1976),  

8. Degree of 
task struc-
ture 

Defines task complexity as the degree to 
which a task is not programmed, i.e., the 
degree to which accepted task-specific 
procedures for performing the task do not 
exist. Lack of structure can result from a 
number of sources, including the lack of a 
clear goal state to be achieved, the inabil-
ity to establish the initial starting point of 
the task and relevant task attributes, 
and/or a lack of knowledge of strategies 
suitable for moving between the initial 
state and the goal state. 

Abdolmohammadi & Wright (1987); 
Barki, et al. (1993); Bronner (1986); 
Bystrom & Jarvelin (1995); Collins & 
Hull (1986); Gilliland & Landis 
(1992); Jimmieson & Terry (1999); 
Lengnick-Hall & Futterman (1985); 
Mascha (2001); Nordqvist, et al. 
(2004); Sheer & Chen (2004); Smith 
(1988); Vakkari (1998,1999); Ze-
melman, Di Marco, Norton (1985), 

9. Non-
routineness 
or novelty 
of task 

Defines task complexity in terms of the 
degree to which the task is unfamiliar to 
the task performer. A routine task is typi-
cally viewed as the opposite of a complex 
task under this definition. 

Beer (1968); Frew (1981), Jehn, 
Northcraft, & Neale (1999); Jiam-
balvo & Pratt (1982), Jimmieson & 
Terry (1999); Schwartzwald, 
Koslowsky, M. & Ochana-Levin 
(2004); Wagner & Gooding (1987) 

10. Degree of 
uncertainty 

Defines task complexity as the degree to 
which actual performance of the task can-
not be predicted at the outset of the task 
owing to uncertainty. Normally, such un-
certainty can arise as a result of lack of 
structure (see above) or from stochastic 
uncertainties inherent in the task itself. 

Barki, et al. (1993); Belardo & Pazer 
(1985); Kishore, et al. (2004); Taylor 
(1987), Te'eni (1989); Wagner & 
Gooding (1987) 

11. Complex-
ity of under-
lying sys-
tem or envi-
ronment 

Definition specifically relates to the task of 
controlling or predicting the behavior of 
systems. Defines task complexity in terms 
of the objective attributes of the system 
(e.g., number of components, degree of 
interrelationships). 

Culnan (1983); Dorner & Scholkopf 
(1991); Funke (1991); Kottlemann & 
Remus (1989) 

12. Function 
of alterna-
tives and 
attributes 

Specifically focused on choice tasks, defi-
nition treats task complexity to be an ob-
jective function of the alternatives avail-
able in the task (e.g., number of alterna-
tives, discriminability) and the task's at-
tributes (e.g., the number of criteria need-
ing to be considered, the degree to which 
they are interdependent).  

Fisher, et al. (2003); Javalgi (1988); 
Klemz & Gruca (2003); Lussier & 
Olshavsky (1979); Olshavsky (1979); 
Paquette & Kida (1988); Payne 
(1976); Pollay (1970); Swink & 
Speier (1999),. 
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13. Function 
of task 
characteris-
tics 

A more general version of the attributes-
alternatives definition of task complexity, it 
defines task complexity to be direct func-
tion of all possible task characteristics, 
such as inherent uncertainties in the na-
ture of the task, tradeoffs that must be 
made between different goal criteria, and 
the degree to which steps taken in per-
forming the task are irreversible. 

Argote, Insko, Yovetich, & Romero 
(1995); Auster (1989); Belardo & 
Pazer (1985); Bolt, et al. (2001); 
Campbell (1988); Chesney & Locke 
(1991); Earley (1985); Fisher (1993); 
Jones, Hesterly, & Borgatti (1997); 
Klein, Wesson, Hollenbeck, Wright, 
& DeShon (2001); Korsgaard & Did-
dams (1996); Liao & Palvia (2000); 
Mykytyn and Green (1992); Roberts, 
et al. (2004); Speier & Morris (2003), 
Speier, et al. (2003), Tran, et al. 
(2004); Weingart (1992); White & Lui 
(2005); Wood (1986), Wood, Ban-
dura, & Bailey (1990); Wood, Mento, 
& Locke (1987) 

 

In organizing these thirteen definitions, we initially attempted to group them into three previously 
proposed perspectives (Campbell, 1988). These perspectives are: 

1. The psychological experience perspective, defining task complexity in terms of its 
impact on task performers (e.g., perceived difficulty).  

2. The task-person interaction perspective, defining task complexity as a construct that 
can only be determined when both the task and the individual performing the task are 
taken into account.  

3. The objective characteristics perspective, defining task complexity in a manner con-
sistent with objective complexity, as previously discussed. 

A number of definitions we identified fell readily into the first group. In three of these definitions, 
task complexity was defined to be the underlying source of some observable performer-
experienced outcome, such as performer-perceived difficulty (definition 1), enrichment (defini-
tion 2), and arousal (definition 3). A fourth definition, information processing (IP) activity (defi-
nition 4), was similar except that the outcome—IP activity—could be extended to non-human 
performers (e.g., processing cycles, bits processed). 

At the other extreme, there was a cluster of objective complexity definitions (i.e., definitions 11-
13). While the specific task attributes viewed as relevant varied considerably across these defini-
tions, all viewed the complexity of the task to be independent of performer and task-context is-
sues that were not part of the task itself. 

The middle group of definitions proved to be the most difficult to classify. With the psychological 
experience group, they shared a tendency to define task complexity in terms of variables that 
were, at least in part, likely to be a function of the performer rather than the specific task (e.g., 
amount of knowledge, task structure, routineness). On the other hand, similar to the objective 
characteristics group, they treated task complexity as an observable variable in its own right, and 
not merely as the underlying source of some measurable task-related outcome. 

Our analysis of these definitions suggested that a number of problems arise from lumping them 
together in a single, catchall person-task perspective. For example, many of the definitions within 
the group were only weakly related to each other, such as the novelty of a task (definition 9) and 
the number of paths available for task performance (definition 7). In addition, the use of the term 
“person” in "person-task" appeared unduly restrictive, especially if we are interested in person-IT 
pairings. Furthermore, a number of useful ways of thinking about task complexity have been de-
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veloped in the field of computer science (e.g., Kolmogorov complexity (Li & Vitanyi, 1993); cyc-
lomatic complexity (McCabe, 1976)), where the task performer is not a person. Finally, some of 
the definitions could move between perspective categories depending upon how a task is pre-
sented. For example, where a task consists solely of prescribed activities (i.e., programs), both 
uncertainty (definition 10) and number of paths (definition 7) are likely to be objective character-
istics of the task itself (Campbell, 1988). On the other hand, where a task is presented purely in 
terms of goals, and discretion is present, these same definitions can be highly dependent upon the 
problem space utilized by the task performer. For example, if we have two task experts who 
choose to perform a given task in different ways, can we really state that the number of paths ex-
perienced by each expert is an objective attribute of the task itself? 

The middle group of definitions also proves to be particularly important because many involve 
concepts that have demonstrated relevance to MIS development and implementation. For exam-
ple: 

• Size (definition 6), lack of structure (definition 8) and inexperience with technology 
(definition 9) have been found to be the primary sources of development risk in large IT 
projects (Cash, McFarlan, & McKenney, 1988),  

• Number of paths (definition 7) per unit of software has been found to be a predictor of 
software defects (e.g., Gill & Kemerer, 1991). 

• Lack of structure (definition 8) has been identified as an important task characteristic in 
choosing between types of IT (e.g., conventional system, DSS and expert system; Luconi, 
Malone, & Scott Morton, 1986). 

To derive an internally consistent classification, we extended the three original perspectives into 
five classes of complexity definitions that, taken together, seemed to encompass all widely used 
definitions that we identified in the literature. 

Five Classes of Task Complexity 
In rethinking the three task complexity perspectives, we found that existing definitions could be 
organized using two dimensions: performer dependence and area of focus.  

Performer Dependence 
The performer dependence dimension deals with the question of whether or not the defined com-
plexity of a task necessarily depends on the nature of the performer. Five of the Table 1 defini-
tions are inherently performer dependent. The first three of these—(1) degree of difficulty, (2) 
sum of JCI or JDS factors, (3) degree of stimulation—are strongly influenced by a broad range of 
non-task factors, including attitudes and personal capabilities. Two additional definitions—(8) 
degree of task structure, and (9) non-routineness or novelty of task—are likely to be influenced 
both by experience performing the task and by the meta-knowledge that the performer has accu-
mulated since birth. One could, in theory, overcome these dependencies by applying these con-
structs only to low-discretion, practiced tasks—both eliminating the need for meta-knowledge 
and controlling for experience. Doing so would be pointless, however, since it would guarantee 
that the resulting tasks would be characterized as both structured and routine—making them "low 
complexity" by definition. 

Seven definitions, in contrast, are specifically constructed so that they are not necessarily per-
former dependent. One of these definitions—(4) amount of work required to complete the task or 
information load associated with the task using specific strategy—is nearly always applied in 
situations where task performance strategy is controlled (i.e., it is measured for a particular prob-
lem space). Three of the definitions—(5) amount of knowledge, (6) size, (7) number of paths—
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are metrics of a specific problem space, which could (at least in theory) be employed by different 
performers. The last three definitions—(11) complexity of underlying system or environment, 
(12) function of alternatives and attributes, and (13) function of task characteristics—are forms of 
objective complexity, specifically limited to task attributes.  

Only one definition, degree of uncertainty (10), cannot readily be classified along the performer 
dependence dimension. The problem here is the ambiguity in its usage present in the literature. 
Sometimes, "uncertainty" is used to describe the inability to identify the most appropriate avail-
able strategy during performance of the task owing to lack of task performer knowledge. In such 
cases, uncertainty can be classified as performer dependent, and is closely related to lack of struc-
ture. On other occasions, however, the term is used to describe probabilistic linkages inherent in 
the task (e.g., Campbell, 1988), such as outcomes in a game that depend upon the roll of a die. In 
such cases, uncertainty is performer independent. 

Area of Focus 
The second dimension used in classifying complexity definitions is area of focus. Task complex-
ity definitions generally emphasize one or more of three areas: 1) task complexity as the underly-
ing source of some measurable outcome during task performance (e.g., information processing 
activity), 2) task complexity as a descriptor of the characteristics of the internal process to be used 
to perform the task (e.g., the problem space) and 3) task complexity as a function of some collec-
tion of inputs that are determined by the task itself (e.g., number of attributes and alternatives). 

Of the thirteen definitions, four fall into the outcome category: (1) degree of difficulty, (2) sum of 
JCI or JDS factors, (3) degree of stimulation, and (4) amount of work required to complete the 
task or information load associated with the task. In these definitions, presence of the specified 
outcome is de facto proof that task complexity is present. Another three fall into the internal 
process category: (5) amount of knowledge, (6) size, and (7) number of paths. In these defini-
tions, task complexity cannot be determined without knowing quantitative and/or qualitative in-
formation regarding how the task is to be performed. Three of the remaining definitions define 
complexity as a function of inputs that are strictly determined by the task itself: (11) complexity 
of underlying system or environment, (12) function of alternatives and attributes, and (13) func-
tion of task characteristics.  

A final set of definitions, (8) degree of task structure, (9) non-routineness or novelty of task, and 
(10) task uncertainty, are best described as constructs that depend on the interaction between the 
inputs and internal problem space areas of focus. For example, a given task may have some cases 
(i.e., combinations of inputs) that are routine and some that are novel for a given performer. The 
degree of structure present in a task, and associated levels of uncertainty associated with task per-
formance, can also be sensitive to inputs. A good example of this, drawn from the MIS area, is 
the problem of scalability, occurring where a well-defined approach to a task involving a small 
number of inputs (e.g., low objective complexity) ceases to be effective for larger versions of the 
same task. In artificial intelligence, the frequent failure of "toy problem" systems to grow into 
practical intelligent systems is well documented (Dreyfus, 1981).  

Five Task Complexity Classes 
The thirteen complexity definitions, organized according to the performer dependence and area of 
focus dimensions, are presented in Table 2. 
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Table 2: Definitions Organized by Performer Dependence and Area of Focus 
 Area of Focus 

  Outcomes Internal Inputs 

Dependent 

1. Degree of difficulty 
2. Sum of JCI or JDS 

factors 
3. Degree of stimula-

tion 

8.  Degree of task structure 
9.  Non-routineness or novelty of task 
10. Degree of uncertainty (present during 

task performance) 

Pe
rf

or
m

er
 D

ep
en

de
nc

e 

Independent 

4. Amount of work 
required to com-
plete the task or 
information load 
associated with 
the task (using a 
specified strategy). 

5. Amount of 
knowledge 

6. Size 
7. Number of 

paths 

10. Degree of uncertainty 
(inherent to task) 

11. Complexity of underlying 
system or environment 

12. Function of alternatives 
and attributes 

13. Function of task charac-
teristics 

Based upon this analysis, we concluded that existing complexity definitions fall into five classes, 
collectively referred to as the comprehensive task complexity classes (CTCC): 

1. Experienced complexity: definitions where complexity is defined in terms of what the 
task performer experiences. 

2. Information processing complexity: definitions where complexity is defined to be the 
underlying source of IP capacity requirements or throughput experienced while per-
forming the task. 

3. Problem space complexity: definitions where complexity is measured as a function of 
the characteristics of a problems space used to perform the task. 

4. Lack of structure complexity: definitions where complexity represents the degree to 
which a task is fully programmed. 

5. Objective complexity: definitions where complexity is measured as a function de-
pendent upon characteristics strictly specified by the task itself. 

The area of focus for each of the five classes of complexity, presented in the context of our task 
model, is illustrated in Figure 2. 

High Discretion
Task

Task
Performance

Selected
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Figure 2: Complexity Classes and Area of Focus 
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Five Questions 
To support the existence of the CTCC, some analysis of construct validity and discriminability is 
warranted. In this context, we propose that five questions can be particularly helpful: 

A. Does the definition explicitly require that high task complexity be accompanied by 
high levels of information processing? 

B. Does the definition directly relate the complexity of a task to the amount of, or quali-
tative nature of, knowledge employed in performing the task?  

C. Does the definition allow task complexity to be influenced by factors external to the 
task? 

D. Does the definition treat task complexity as a construct that can be meaningfully de-
termined for a single instance of a specific task?  

E. Does the definition allow the level of complexity to vary according to the approach 
chosen by the task performer in completing the task? 

Each of these questions is now considered. 

Question A  
Does the definition explicitly require that high task complexity be accompanied by high 
levels of information processing? 

Some relationship between IP requirements (e.g., information load and cues to be attended to; 
Steinmann, 1976) and task complexity is expected to exist in most of the definitions examined. In 
the case of definition 4, the relationship is effectively tautological: IP activity is the visible mani-
festation of underlying task complexity. In other words, task complexity is defined as the task’s 
potential to induce IP activity. Such IP activity has, in turn, been measured in a number of ways. 
Cumulative measures (e.g., total bits processed), corresponding to the total amount of “work” 
required to perform the task have been proposed (e.g., Barrow, 1976; p. 435), as have measure-
ments based upon minimum processing capacity requirements (e.g., Schweizer, 1996; p. 116). It 
has also been observed that IP activity is typically highly correlated with experienced IP measures 
(Bronner, 1986), implying experienced measures (definitions 1-3) should generally track simi-
larly constructed IP measures (definition 4). 

Many researchers treat the various forms of objective complexity (definitions 11-13) as being the 
underlying source of IP activity (e.g., Campbell, 1988, p. 43). Such a relationship, however, is 
best viewed as hypothetical rather than definitional. The presence of task discretion can compli-
cate the relationship considerably. A well-established task complexity research stream (e.g., 
Handsic, 2001; Payne, 1976; Payne, Bettman & Johnson, 1993) demonstrates how increasing 
sources of objective complexity (e.g., number of alternatives and attributes) can lead decision-
makers to adopt strategies that conserve processing resources. In other words, they simplify the 
task to make it more manageable. Thus, where discretion is present, increases in objective com-
plexity can, paradoxically, lead to reduced information processing. 

For the remaining six definitions (definitions 5-10), there is no obvious relationship between task 
complexity and information processing activity. For those definitions dealing with task performer 
knowledge and the characteristics of the strategies available to the performer (definitions 5-7), it 
is nearly impossible to state, in any general way, whether or not tasks requiring a lot of knowl-
edge will also require a lot of information processing when they are performed. Some probably 
will, some undoubtedly won’t. Even where relationships have been proposed, they are ambiguous 
(e.g., multiple paths may lead to more information processing or less information processing; 
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Campbell, 1988, p. 43). For those definitions based upon how well the task is understood and 
specified prior to performance (8-10), the tradeoff between preparation and deliberation (Newell, 
1991) implies that—in the absence of adequate task-specific knowledge—cognitively intensive 
general search strategies (i.e., weak methods) may have to be employed by the task performer. 
Weighed against this, low structure tasks are inherently high in discretion. As a result, strategies 
that conserve cognitive resources may be available, such as ignoring all but a few available alter-
natives. 

Question B 
Does the definition directly relate the complexity of a task to the amount of, or qualitative 
nature of, knowledge employed in performing the task? 

The relationship between task knowledge and task complexity definitions is one of the most in-
teresting questions that we identified in our review. Some researchers propose that task complex-
ity is a key determinant of the amount of knowledge required to perform a task (e.g., Wood, 
1986), and therefore expect task knowledge and task complexity to be positively correlated—
particularly for the objective characteristics definitions (definitions 11-13). Others would argue 
that lack of knowledge is the principal source of lack of task structure, meaning that task com-
plexity should drop as knowledge accumulates (definitions 8-10), implying a negative correlation 
between lack of structure and problem space classes. Drawing upon research in automatism (e.g., 
Shiffrin & Dumais, 1981) and on the development of programs (e.g., March & Simon, 1958), 
similar arguments can be made that experienced complexity (definitions 1-3) is likely to decline 
as knowledge increases. 

A particularly interesting subset of the definitions propose that task complexity can, itself, be de-
fined in terms of the amount of knowledge required to perform the task (e.g., Ackerman, 1992; 
Gill, 1996) or in terms of qualitative characteristics of the strategies available for performing the 
task (e.g., number of paths; Campbell, 1988). While these types of definitions (definitions 5-7) do 
not appear with great frequency in the administrative behavioral literature, they are central to at-
tempts to quantify the complexity of software. For example, in information theory, the complex-
ity of an object X is "the quantity of information needed for the recovery of an object X from 
scratch" (Li & Vitanyi, 1993). In task terms, a definition could be proposed that the “complexity 
of a given problem space is the smallest amount of information necessary to recreate that problem 
space”. An alternative definition could be proposed based upon computing the number of possible 
paths though a particular problem space (i.e., determining all possible sequences of inputs and the 
resulting behaviors of the problem space). Such a measure would closely correspond to the cyc-
lomatic complexity metric developed for software (McCabe, 1976) 

Definitions 5-7 all make the implicit assumption that task complexity should be roughly equiva-
lent across different task performers who are employing identical or very similar problem spaces 
(e.g., as the result of similar training). In the IS context, it also leaves open the possibility that the 
complexity of an automated system that performs a task by applying approaches comparable to 
those employed by the human performer—e.g., an expert system (Freedman, 1987)—could be 
treated as equivalent to the complexity of the task performed by a human. Such equivalence 
could, in turn, provide a practical means of estimating problem space task complexity, such as the 
theoretical minimum size of an expert system performing a task using a knowledge base that 
mimics the problem solving approach of a particular human task performer. 

Question C 
Does the definition allow task complexity to be influenced by factors external to the task? 
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As already noted, a strong correlation between the experienced complexity (definitions 1-3) and 
IP complexity (definition 4) measures is predicted in the literature. Unlike most of the other com-
plexity classes, however, experienced complexity measures may also be influenced by stimuli 
external to the task, such as task context. Cognitive, motivational and social qualities can all lead 
to changes in the perception of complexity, even when the underlying information processing 
requirements are unchanged (Bronner, 1986). In other words, we may experience a task as being 
more complex when we are simultaneously subjected to external stresses that are not part of the 
task itself. Thus, external demands can hypothetically distort the normal relationship between 
perceived and actual IP, causing a given level of IP activity to be perceived in different ways.  

External factors can also influence complexity based on lack of structure definitions (8-10). The 
interaction of external demands and meta-knowledge regarding the demands of different task per-
formance strategies may lead to the adoption of strategies that change the degree of task structure. 
For example, to conserve cognitive resources when external demands are high, a manager might 
choose to purchase the first acceptable alternative presented by a vendor when making an unfa-
miliar decision, rather than engaging in general problem solving activities (e.g., extensive re-
search)—thereby transforming a low-structure situation to a high-structure situation. Alterna-
tively, when external task demands are low (or if the performer's need for cognitive stimulation is 
high) the performer might choose to try a new approach to performing a familiar task, thereby 
transforming the routine to the non-routine. As a secondary effect, such changes could also have a 
dramatic impact on experienced and actual complexity, to be addressed more fully in the discus-
sions of Question E. 

For the remaining classes of complexity (i.e., problem space complexity and objective complex-
ity), factors external to the task are irrelevant to the constructs. 

Question D 
Does the definition treat task complexity as a construct that can be meaningfully deter-
mined for a single instance of a specific task?  

Another very useful question for distinguishing between the task complexity definitions deals 
with whether or not a definition is applicable to a single instance of a task, or can only be deter-
mined meaningfully for a collection of task instances. The distinction between overall task com-
plexity and individual task case complexity has been made, for example, in examining complex-
ity changes brought about by the adoption of expert systems (Gill, 1996). 

For most of the definitions proposed in the literature, it is reasonable to assign separate complex-
ity levels to individual task instances. For example, the process of diagnosing and treating a pa-
tient with the common cold could be characterized as being less complex than diagnosing a treat-
ing a patient with pneumonia (e.g., there are more tests to run and a wider range of possible 
treatments). Similarly, it could be argued that the task of diagnosing a common cold is roughly 
the same complexity when performed by either doctors or nurse-practitioners, since they are both 
likely to ask the same questions and prescribe the same treatment (i.e., “take two aspirin, go to 
bed, and call me in the morning”). 

The problem space characteristics definitions (definitions 5-7) present an entirely different situa-
tion with respect to the task instance vs. collection issue. To continue the above illustration, the 
problem space task complexity of the diagnosis task for the above-mentioned doctor and nurse 
practitioner are likely to be quite different. When we go to a doctor, we do so believing that the 
task performer has the knowledge necessary to diagnose and treat a much broader range of condi-
tions than we would if we went to a nurse. We do not go to a doctor because we know we have 
the common cold, we go to a doctor (in preference to a nurse) because we are afraid we might 
have something more serious. Thus, characterizing a task as “diagnosing the common cold” is 
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usually not meaningful from a problem space perspective—except, perhaps, in a triage situation 
where the sole assignment given to the task performer is to divide patients up into “common 
cold” and “not common cold” groups. The actual task is “medical diagnosis”, and the problem 
space complexity of that task (e.g., size of the problem space, number of paths) derives from the 
number and variety of possible cases that the task performer’s problem space is expected to ad-
dress—not from the activities that occur or knowledge applied during the performance of a single 
task instance. The task of playing chess is another example. We would expect the problem space 
complexity of the chess-playing task to be a function of some expected level of performance (e.g., 
the set of opponents the player could be expected to beat some threshold percentage of the time), 
not of the ability to play a “legal” game of chess. 

A good example of the practical ramifications of the task instance vs. collection issue was discov-
ered during the construction of early medical expert systems. The MYCIN system was able to 
diagnose blood infections at a level exceeding that of most specialists (Jackson, 1986). The Achil-
les heel of the system was that it could only achieve such a high success rate for task instances 
that were, in fact, blood infections. It failed miserably on any case that had similar indications but 
was not, in fact, caused by a blood infection (a problem sometimes referred to as "knowledge fra-
gility" (Waterman, 1986)). Unfortunately, in a practical clinical setting, it is usually impossible to 
separate applicable and non-applicable cases in the early stages of diagnosis. Thus, a problem 
space based purely on a very narrowly defined set of cases often proves to be of limited practical 
value. 

Question E 
Does the definition allow the level of complexity to vary based on the approach chosen by 
the task performer in completing the task? 

In the event task discretion is present, the impact of the performer’s strategy choices on task 
complexity can be quite different across definitions. As an illustration, suppose that it was Friday 
afternoon and that the owner of a small business needed to choose between two detailed (and su-
perficially similar) vendor proposals for installing a new computer network in his or her com-
pany—a decision that needed to be made at once. Suppose, as well, that the owner had a tee time 
at the country club in an hour. Under such circumstances, the owner might come up with two al-
ternate strategies for choosing between the proposals: comparing the proposals line by line 
(thereby missing the golf game) or flipping a coin. Would the owner’s decision to flip a coin be 
treated as reduction in the complexity of the task?  

For the psychological experience and information processing definitions (definitions 1-3 and 4, 
respectively), the answer would clearly be yes—the decision reduced the cognitive demands of 
the task. We have already presented arguments that such a choice also changes the degree of task 
structure (definitions 8-10), as a coin flip is highly structured whereas the task of evaluating pro-
posals for a new network is likely to be non-routine (for most managers). For the remaining defi-
nitions, however, the performer’s decision to flip a coin would not impact task complexity. The 
choice of a particular strategy does not impact the nature of a particular problem space (defini-
tions 5-7). Similarly, the decision to flip a coin does not, in any way, change the task characteris-
tics that are the source of objective complexity (definitions 11-13). 

Summary 
The matrix of questions and definitions is presented in Table 3. As made apparent by the pattern 
of responses to the questions posed, the five proposed classes, at a minimum, appear to be neces-
sary for organizing the existing definitions. The pattern of responses also suggests that attempts to 
define more than five classes could lead to discriminability problems. 
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Table 3: Summary of Definitions versus Key Questions 

 # Definition of construct A. IP Activ-
itya 

B. Nature or 
Quantity of 
Task 
Knowledgea 

C. Influenced 
by External 
Task Con-
textb 

D. Applicable 
to Individual 
Taskb  

E. Affected 
by Choice of 
Strategyb 

1 Degree of difficulty Correlated 
(+) 

Correlated 
(-) 

Yesc Yes Yes 

2 Sum of JCI or JDS 
factors  

Correlated 
(+) 

Correlated 
(-) 

Yesc Yes Yes 

I. 
Ex

pe
rie

nc
ed

 
by

 P
er

fo
rm

er
 

3 Degree of stimula-
tion provided by 
task 

Correlated 
(+) 

Correlated 
(-) 

Yesc Yes Yes 

II.
 In

fo
rm

at
io

n 
P

ro
ce

ss
in

g 
R

e-
qu

ire
m

en
ts

 

4 Amount of work 
required to com-
plete the task or 
information load 
associated with 
performing the task 
(using a specified 
strategy). 

Yes No No Yes Yes 

5 Amount of knowl-
edge 

No Yes No No No 

6 Size of problem 
space 

No Yes No No No 

III
. P

ro
bl

em
 

S
pa

ce
 

7 Number of paths Correlated 
(+/-) 

Yes No No No 

8 Non-routineness or 
novelty of task 

No Correlated 
(-) 

Yes Yes Yes 

9 Degree of task 
structure 

No Correlated 
(-) 

Yes Yes Yes 

IV
. L

ac
k 

of
 

S
tru

ct
ur

e 

10 Degree of uncer-
tainty 

No Correlated 
(-) 

Yes Yes Yes 

11 Complexity of un-
derlying system 

Correlated 
(+/-) 

Correlated 
(+) 

No Yes No 

12 Function of alterna-
tives and attributes 

Correlated 
(+/-) 

Correlated 
(+) 

No Yes No 

V
. O

bj
ec

tiv
e 

C
ha

ra
ct

er
is

-
tic

s 

13 Function of task 
characteristics 

Correlated 
(+/-) 

Correlated 
(+) 

No Yes No 

aYes: The definition assumes that task complexity is defined in terms of the associated characteristic. No: The definition does not 
assume that task complexity is defined in terms of the associated characteristic—nor is there likely to be any strong correlation. 
Correlated: Although task complexity is not defined in terms of the associated characteristic, the expectation is that a strong corre-
lation between the characteristic and task complexity will be observed. Such correlation may be + (i.e., factor is expected is ex-
pected to vary directly with task complexity), - (i.e., factor is expected to vary inversely with task complexity) or +/- (i.e., a relation-
ship between the factor and task complexity is likely to exist, but is not necessarily predicted to be monotonic. For example, rising 
complexity may lead to increased information processing that may, ultimately, trigger the performer’s use of simplifying strate-
gies—resulting in reduced information processing). 
bYes: the associated characteristic is applicable to the definition. No: the associated characteristic is not directly applicable to the 
definition. 
c A secondary effect may result from the result of changing strategy (consistent with Question E). 

Discussion 
In this section, we consider how the comprehensive task complexity classes might be applied to 
the three areas of specific interest to IS that were previously identified, i.e., systems development, 
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task transformation and task sharing. In these discussions, potential areas for future research are 
also identified. 

Task Complexity and Systems Development 
Task complexity's relevance to systems development can be illustrated in the context of a simpli-
fied systems development life cycle (SDLC), such as that presented in Figure 3. As illustrated by 
the box above the SDLC stages, most existing applications of task complexity in the systems life-
cycle occur once design is finalized. From a conceptual standpoint, this makes sense. By estab-
lishing a system design—and freezing further design changes, as is recommended in a strict 
SDLC setting—we dramatically reduce the discretion associated with the remainder of the devel-
opment task. We would therefore expect measurements of objective complexity to be useful pre-
dictors of other complexity classes, such as information processing (e.g., work required to de-
velop the system). 

UseImplementationConstructionDesignTask

Use of specifications for
costing, planning & 

management

Use of specifications for
costing, planning & 

management

Complexity of task and
relationship to design 

issues 

Complexity of task and
relationship to design 
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transformation of

user tasks 

Task complexity and
transformation of

user tasks 

Task complexity and
human-computer task

sharing

Task complexity and
human-computer task

sharing

Task complexity and
iterative/adaptive design

processes 

Task complexity and
iterative/adaptive design

processes 

 
Figure 3: Task Complexity Issues and the SDLC 

Figure 3 also identifies examples of important IS topics for which task complexity is used far less 
extensively. Two of these topics—the task transformation that occurs during IS implementation 
and the complexity of tasks shared between user and IT—are discussed at greater length later in 
this section. For now, we focus on the issues most relevant to the early stages (design and con-
struction). 

Pre-design Task Complexity 
At the very outset of a development project, our "given" is typically the task (or collection of 
tasks) that we intend to perform using IT, the driving force for informing systems (Cohen, 1999). 
At this point in the project, the large amount of discretion present implies that objective complex-
ity—by itself—is unlikely to be very useful. From an economic standpoint, however, any insights 
into the project provided by an understanding of task complexity would be extremely valuable. 
The design stage of the SDLC often consumes a substantial fraction of a development budget. It 
can therefore be very costly to wait until design is complete before discovering that the objective 
complexity of the task-design combination we have finalized implies excessive costs or unaccept-
able development time. 

There is some evidence that understanding the comprehensive complexity of a task may prove 
useful in the early stages of the SDLC. For example, we have already noted that measures from 
the problem space complexity class (e.g., size) and lack of structure class (e.g., lack of task struc-
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ture, lack of experience with relevant technologies) have been found to be major contributors to 
IT project risk (Cash, et al., 1988). There have also been attempts to examine how the problem 
space characteristics of the task map to tool choice, particularly in the domain of expert systems 
(e.g., Luconi, et al. 1986; Prerau, 1985). Given the economic value of pre-design insights into a 
project, we believe that further research in these areas is warranted. 

Task Complexity and Agile Programming 
The ongoing evolution in programming practices being experienced by the MIS area also sug-
gests that we should not become over-reliant on the type of objective complexity measures that a 
full SDLC design specification offers, such as a complete set of function point descriptions. Agile 
programming methods often lead to the development of systems through a series of iterations that 
do not involve the creation of a full specification (Highsmith & Cockburn, 2001). Instead, they 
rely on the nearly continuous creation of a series of working systems, with changes to the "plan" 
being welcomed instead of being frozen out. In such a project environment, it seems likely that 
objective complexity class measures will be of limited use by themselves. Instead, we will in-
creasingly need to focus on understanding interactions between objective complexity measures 
and other complexity classes (e.g., lack of structure, problem space) to gain useful insights into 
the development process. As the scope of the tasks we intend to perform using IT grows, we ex-
pect the value of such insights to grow correspondingly.  

Task Complexity and Task Transformation 
A task complexity construct that cannot accommodate changing tasks will be of severely limited 
value in a dynamic task environment. In such an environment, insights into novel and evolving 
tasks are likely to be far more useful than the ability to measure the complexity of static, routine 
tasks. Accepting the widely acknowledged potential of IT to transform work as a given, it follows 
that task complexity's ability to address transformation issues such as learning and changing task 
performers will significantly impact its potential value the IS community.  

The five complexity classes can be expected to exhibit very different behaviors in a dynamic task 
environment. These behaviors are of interest for two reasons. First, they provide insights into how 
task complexity can be applied and interpreted. Second, the expected interaction between task 
complexity classes can serve as a basis of hypotheses suitable for future research. In this section, 
we consider how task complexity is impacted by changes within the task performer (e.g., learn-
ing, practice) and to the task performer (e.g., enabling new individuals to perform a task).  

Task complexity and learning 
In theoretical terms, learning can be treated as changes to the task performer's problem space. 
Such changes occur in a number of ways (Rumelhart & Norman, 1981), ranging from incremental 
improvements in performance (e.g., accretion) to complete transformation of knowledge (e.g., 
restructuring). 

To understand how the classes of complexity vary as the problem space changes, we need to view 
these changes in the context of a theoretical model of knowledge acquisition. A fairly common 
theme—among the many models that exist—treats knowledge acquisition as a series of three 
loosely defined stages (Ackerman, 1992): 

• Cognitive: Very little immediate knowledge is present, therefore the bulk of task per-
formance relies on search. Because such search will often involve techniques that access 
knowledge outside of the task domain (e.g., reasoning by analogy), the potential size of 
the problem space is: a) likely to be very large as it is effectively unbounded by the de-
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mands of the task, and b) likely to differ dramatically across performers. Because search 
is very processing intensive, information processing will also tend to be high. 

• Associative: With growing expertise, task-specific knowledge is substituted for search 
and less information is therefore required (Camerer & Johnson, 1991). As a consequence, 
the problem space becomes bounded and actually shrinks, meaning that problem space 
complexity declines. Similarly, IP requirements tend to shrink as efficiency improves. 

• Autonomous: As the expert grows more advanced, additional knowledge about the task 
continues to be learned, leading to a gradual increase in size for the problem space and 
the associated problem space class of complexity. The knowledge versus search tradeoff 
implies that while problem space complexity continues to grow, other classes of com-
plexity (e.g., IP complexity, experienced complexity) are likely to level off, or decline. 

 

Cognitive Associative Autonomous

Level of expertise in performing task

Objective Complexity

Problem Space Size

Level of 
Complexity

Experienced Complexity& Lack of Structure

IP Complexity

 
Figure 4: Typical Acquisition of Expertise Model 

Progressing through these stages of knowledge acquisition, we would therefore expect to see the 
following changes in the task complexity classes, illustrated in Figure 4: 

• Psychological experience (definitions 1-3) and information processing (definition 4) 
measures should decline monotonically, as our efficiency in performing the task in-
creases. 

• Problem space complexity measures (definitions 5-7) first decline dramatically—as gen-
eral knowledge is supplanted by task-specific knowledge and more compact problem 
spaces can be formed. A subsequent gradual decline in problem space size may then oc-
cur as knowledge representation becomes more efficient, through schema tuning (Rumel-
hart and Norman, 1981). Finally, the problem space size begins to rise gradually through 
accretion. Interestingly enough, the pattern of tuning followed by accretion is also re-
ported in the development of expert systems (e.g., Bachant & McDermott,1984). 
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• Task structure (definitions 8-10) would continually increase, implying a decline in lack of 
structure complexity (mirroring that of experienced complexity). 

• Objective characteristics measures (definitions 11-13) should remain unchanged through-
out the learning process for a given task. 

The hypothesized unchanging nature of objective complexity as knowledge is acquired has im-
portant implications for its appropriate use. For simple, static task situations—the type most 
commonly investigated in the behavioral literature—we have already noted that the presence of 
objective complexity is hypothesized to be a predictor of other forms of complexity, such as in-
formation processing (Campbell, 1988) or amount of task knowledge (Wood, 1986). In dynamic 
task settings, such as those common in IT environments, objective complexity measures are 
unlikely to be useful for this purpose. On the other hand, objective complexity may prove to be 
very useful for measuring system capabilities or predicting strategy changes. For example, during 
the development of R1 (later named XCON) there was a long-term accretion of rules that corre-
sponded to an increase in the number of system types that R1 could be applied to (e.g., Bachant & 
McDermott,1984). In other words, increasing problem space size was accompanied by increased 
objective complexity capacity. With respect to task-performer experienced complexity, increasing 
objective complexity can act as a trigger for changes in task performance strategy that reduce 
cognitive demands (e.g., Payne, 1976; Payne, Bettman & Johnson, 1993).  

Before leaving the subject of learning and task complexity altogether, it is useful to add a com-
ment on the effects of practice on task complexity. As noted earlier, research into the acquisition 
of expertise (e.g., Shiffrin & Dumais, 1981) has shown that repeated performance of a task leads 
to automatism, whereby the task’s demands on the task performer’s cognitive resources will de-
cline significantly. As a consequence, even where task performance strategy is controlled, we 
would expect psychological experience measures of task complexity (i.e., definitions 1-3) to de-
cline with practice. Assuming, however, that all aspects of task performance are kept constant 
(e.g., task performance activities are prescribed or the performer problem space does not change), 
it would be expected that task complexity would not change according to the remaining measures. 
For example, once a concert performer learns a piano piece well enough to play it from memory, 
there would be no reason to assume that the complexity of the task of playing the piece declines 
with further practice—except from the perspective of the performer, who finds that it can be 
played with less and less conscious attention. Unlike other forms of learning, such practice effects 
can occur even when the overall structure of the problem space is unchanged. 

Task complexity and alternative performers 
There are relatively few “real world” tasks where the entire domain of interest is limited to how 
the task is performed by a particular individual performer. When IT is introduced, the situation 
often becomes even more convoluted—as such technologies can enable task performance by new 
individuals (e.g., Gill, 1996). As a consequence, the question of how task complexity is affected 
by the presence of alternative or multiple performers is highly relevant to IS researchers and prac-
titioners. Conceptually, there are a number of differences that can be present across performers, 
including: 

• Problem Space: Different task performers may employ substantially different problem 
spaces. 

• Practice: Even where performers employ essentially equivalent problem spaces, practice 
effects (already discussed) can lead to widely differing cognitive demands 
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• Discretion: Where task discretion is present, even with roughly similar experience levels, 
choices of individual strategies employed may vary based upon factors not intrinsic to the 
task, such as accumulated meta-knowledge. 

As a result of these differences, task complexity can vary considerably across performers under 
many of the definitions. 

The widest variation in complexity across performers is likely to be for the psychological experi-
ence and lack of structure classes (definitions 1-3 and 8-10). For this class, differences in task 
complexity can be the result of practice, problem space and discretion variations. For the informa-
tion processing class (definition 4), the practice effect drops out. For the problem space (defini-
tions 5-7) class, only variations in the problem space lead to differences in defined complexity. 
Finally, for the objective characteristics class (definitions 11-13), we would expect no differences 
in task complexity across performers. 

Task complexity and external tools 
In today’s information age, a rapidly growing percentage of tasks are, or could be, augmented by 
the use of IT tools. In such an environment, the relationship between tools and task complexity 
(in its various forms) needs to be understood. As was the case for alternative performers, the 
complexity classes differ widely in response to the introduction of tools. 

The first issue that must be addressed relating to the use of tools is whether or not a tool is re-
quired. The requirement that a tool be employed represents a change in the nature of the task it-
self. Thus, we would anticipate that changing a task so that use of a tool is required would lead to 
changes in all the complexity classes. 

Where the use of a tool (e.g., a software application) is discretionary, the expected impact on the 
task complexity classes is much less straightforward. For objective complexity (definitions 11-
13), there should be no impact because use of the tool is not specified by the task. As a conse-
quence (similar to what was seen in the case of learning) objective complexity is likely to be of 
limited use in predicting other complexity measures, such as IP, when tools are available but not 
required. Also similar to the learning situation, however, objective complexity may prove to be 
valuable in other contexts—such as estimating the "capacity" of the tool-performer combination 
or identifying threshold levels for tool use. 

For psychological experience (definitions 1-3) and information processing (definition 4) com-
plexity, at the other extreme, we can reasonably suppose that the most common result of volun-
tary use of an external tool use would be a decline in complexity measures experienced by the 
human task performer (particularly once the period of learning the tool has passed). It must be 
emphasized, however, that this expectation applies only to a given task case. Where a task per-
former must perform a stream of task cases, the technology-performer pairing can impact the mix 
of task cases performed. An example of such a task-mix change can be found in the case of the 
Authorizer's Assistant expert system, used to authorize American Express card charges (Gill, 
1996). The system reduced the IP requirements associated with any given authorization (e.g., by 
accessing appropriate databases on different computers and presenting them in a single organized 
summary to the human authorizer, along with an accept/deny recommendation). However, the 
system also intercepted most routine approvals and handled them automatically, without user in-
volvement. As a consequence, the task cases that actually reached the human authorizer were, on 
average, more challenging than the cases that they had previously approved manually.  

For problem space (definitions 5-7) and lack of structure (definitions 8-10) complexity, the intro-
duction of a tool can impact task complexity in either direction. On the one hand, the need to 
learn to use the tool could actually increase the size of the required problem space and could, at 
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least temporarily, reduce task structure. The introduction of word processing technology, for ex-
ample, probably increased the amount of knowledge required to be an effective typist. On the 
other hand, where a tool contains embedded expertise (e.g., an expert system), the availability of 
the tool could reduce the amount of knowledge required to perform a task, and make the task 
more structured. The introduction of search engines, as another example, dramatically reduced 
the amount of knowledge required to conduct an effective search of the Internet. In the adoption 
of expert systems, both increasing and decreasing knowledge requirements resulting from system 
adoption have been observed (Gill, 1996). 

Conclusions 
The underlying premise of the present paper is that an understanding of task complexity could 
offer major benefits within the informing sciences. Unlike some earlier papers on the subject of 
task complexity, however, we take no position regarding the “correct” definition of the construct. 
Far too many definitions have been proposed and used to allow us to define it by fiat. Instead, we 
have directed our attention to establishing five distinct ways that the construct can be consistently 
and rigorously defined, based on its usage in the literature: 1) as a psychological experience, 2) as 
a source of information processing potential, 3) as a characteristic of a problem space, 4) as 
measure of task structure and 5) as a function of task characteristics. We believe this analysis 
provides a useful point of departure for both researchers interested in applying the constructs and 
for practitioners seeking to interpret the findings of such research.  

We have also drawn a number of conclusions regarding the use the construct within the IS area, 
including: 

• Many IS situations are not well served by limiting task complexity to the "objective com-
plexity" construct that is most commonly applied in the behavioral sciences. 

• The potential relevance of different complexity classes may change during the stages of 
systems development, and may also be strongly impacted by the development approach 
taken. 

• Understanding the behavior of the complexity classes in the presence of learning and 
human-computer task sharing is of particular interest to IS, since all three elements of the 
informing sciences framework (Cohen, 1999) come into play: the informing environment, 
the delivery system and the task-completion system. Considering the interrelationships 
between the five complexity classes can enhance such understanding, and lead to many 
useful research questions. 

We believe the comprehensive complexity framework we have presented can serve as a useful 
tool for interpreting past research into task complexity. More importantly, we believe it to be a 
useful guide for future research that investigates or applies the construct. Such research is likely 
to be crucial as the scope of the tasks we automate increases, and the way we develop them be-
comes increasingly adaptive in nature. 
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