
Task-Constrained Motion Planning for Underactuated Robots

Massimo Cefalo, Giuseppe Oriolo

Abstract— This paper addresses the motion planning problem
in the presence of obstacles for underactuated robots that
are assigned a geometric task. It is assumed that the robot
is subject to kinematic (joint limits, joint velocity bounds)
as well as dynamic (torque bounds) constraints. Building on
our previous work on task-constrained motion planning, we
describe a randomized planner that works directly at the torque
level and generates solutions by separating geometric motions
from time history. The effectiveness of the proposed approach
is shown by planning collision-free swing-up maneuvers for a
Pendubot system.

I. INTRODUCTION

Underactuated robots are systems that have more degrees

of freedom than actuators. Underactuation arises in many

situations: nonprehensile manipulation [1], acrobatic robots

[2], legged locomotion [3], surgical robotics [4], free-floating

robots [5] and manipulators with passive joints [6]. Other

notable examples of underactuated robots are humanoids,

underwater vehicles, helicopters, aircrafts and satellites. Un-

deractuation can also emerge in unexpected situations, e.g.,

in case of actuator failures [7]. Finally, it may be related to

the adoption of a specific control strategy without necessarily

corresponding to a physical characteristic of the system.

In general, underactuation introduces non-integrable con-

straints either at the kinematic or dynamic level. For this

reason, and because the number of configuration coordinates

is larger than the available number of inputs, planning for

an underactuated system is a challenging problem, even

neglecting the possible presence of obstacles, tasks or other

constraints (such as kinematic or dynamic constraints). In-

deed, a general planning method for these systems is not

available and most of the solutions proposed in the literature

address the problem with reference to specific underactuated

robots, whose characteristics are exploited. A notable excep-

tion are planning approaches based on differential flatness

or on dynamic feedback linearizability, which are essentially

equivalent properties (see [8] and the references therein for a

discussion). These methods are applicable to the whole class

of underactuated systems that admit a flat (or linearizing)

output, which however does not include all possible robots of

interest. For example, the archetypal Acrobot and Pendubot

systems do not admit a flat output.

Work on the subject includes [9], that presents a sampling-

based motion planner based on the subdivision method for

underactuated systems with significant drift term. In [10],

The authors are with the Dipartimento di Ingegneria Informatica, Au-
tomatica e Gestionale, Sapienza Università di Roma, Via Ariosto 25,
00185 Rome, Italy. E-mail: {cefalo,oriolo}@diag.uniroma1.it. This work
is supported by the EU FP7 ICT-287513 SAPHARI project.

a point-to-point motion planning algorithm is proposed for

underactuated space robots using high-order polynomials.

In [11] an algorithm based on the endogenous configuration

space is used to solve the task prioritized motion planning

problem. Finally, an approach is proposed in [12] to reduce

the complexity of the planning problem for underactuated

systems based on an extension of partial feedback lineariza-

tion control into a task-space framework.

However, the above methods are typically unable to plan

motions in the simultaneous presence of workspace obstacles

and task constraints; on the other hand, the latter arise

in many practical applications. For instance, manipulators

used in industrial processes are frequently required to follow

specific end-effector paths or trajectories for welding, draw-

ing, cutting or assembling. Another particularly interesting

example is the case of manipulation tasks executed by

underactuated UAVs (e.g., quadrotor).

This paper considers the motion planning problem in the

presence of obstacles for general (i.e., non-flat) underactu-

ated robots that are assigned a certain task. We assume that

the robot is subject to kinematic (joint limits, joint velocity

bounds) as well as dynamic (torque bounds) constraints. Tak-

ing inspiration from our previous work on task-constrained

motion planning for fully actuated systems [13], [14], [15],

we propose a randomized planner that works directly at

the level of torques and generates solutions by separating

geometric motions from the time history. The effectiveness of

the proposed approach will be shown by planning collision-

free swing-up maneuvers for a Pendubot system.

The paper is organized as follows. In Section II we formu-

late the considered planning problem. Section III discusses

the geometric structure of the search space. In Section IV we

describe some basic relationships between the underactuated

robot dynamics and the task dynamics. The proposed algo-

rithm is described in Section V, and validated in Section VI

through planning experiments. Possible future developments

are hinted at in the concluding section.

II. PROBLEM FORMULATION

Consider an underactuated robot, i.e., a mechanical system

in which the number of generalized coordinates exceeds

that of available control inputs. Its dynamic model can be

expressed1 in the Lagrangian form as

B(q)q̈ + n(q, q̇) =

(
τa

0

)
, (1)

1It is always possible to put the model in this form, in which the available
generalized forces directly act on a subset of the configuration vector, by a
proper definition of generalized coordinates and/or an input transformation.

2015 IEEE International Conference on Robotics and Automation (ICRA)
Washington State Convention Center
Seattle, Washington, May 26-30, 2015

978-1-4799-6922-7/15/$31.00 ©2015 IEEE 2965

where q ∈ C is the configuration n-vector, B(q) is the n×n
inertia matrix, n(q, q̇) is the n-vector of Coriolis, centrifugal

and potential forces, and τa are the p < n generalized forces,

simply referred to as torques in the following.

We assume that the robot is subject to:

• joint range limits qm ≤ q ≤ qM ;

• maximum bounds |q̇| ≤ q̇M on generalized velocities;

• maximum bounds |τa| ≤ τaM on torques.

Any trajectory in C that can be followed by the robot (in

spite of its underactuation) and at the same time satisfies all

the above constraints will be called feasible.

The robot moves in a 3D workspace containing obstacles.

To keep the notation light, we assume that the obstacles are

fixed, but the proposed planner works unchanged in the case

of obstacles that move along known trajectories, as in [15].

Denote by R(q) and O, respectively, the workspace volume

occupied by the robot at q and by the obstacles.

The robot must perform a task described by an m-

dimensional vector y, with an associated task space Y . The

task coordinates are related to the configuration coordinates

via a kinematic map y = f(q), whose differential version is

ẏ = J(q)q̇,

with J = ∂f/∂q the m × n task Jacobian. For obvious

reasons, which will be formally discussed in the following,

we will assume that m ≤ p; i.e., the dimension of the task

is not larger than the number of control inputs.

Suppose that a desired path yd(s) ∈ Y is assigned for

the task coordinates, with s ∈ [si, sf] a path parameter. The

considered problem consists in planning a trajectory in C that

is feasible, collision-free, and realizes the desired task path.

We shall obtain such a trajectory as the composition of two

parts, i.e., a path q(s) ∈ C, s ∈ [si, sf], and a continuous

time history s(t) : [0, T] 7→ [si, sf], such that :

1. y(t) = f(q(s(t))) = yd(s(t)), ∀t ∈ [0, T]
% task is always on the assigned path

2. s(0) = si and s(T) = sf
% the whole task path is realized

3. q(0) = qi, q̇(0) = q̇(T) = 0

% assigned initial configuration is matched

% initial and final velocities are zero

4. qm ≤ q(t) ≤ qM , |q̇(t)| ≤ q̇M and |τa(t)| ≤ τaM ,

∀t ∈ [0, T]
% joint limits, velocity and torque bounds are satisfied

5. R(q(s(t))) ∩ O = ∅, ∀t ∈ [0, T]
% collisions with obstacles are avoided

While the initial configuration qi is given, the final config-

uration q(sf) = q(T) and the duration T of the plan will be

generated by the planner. If q(T) is an unforced equilibrium,

setting q̇(0) and q̇(T) to zero produces a rest-to-rest motion.

Note that the time history s(t) is not required to be

monotonic: i.e., s may increase or decrease over time, cor-

responding respectively to a forward or a backward motion

along the task path. The planner may exploit such possibility

to achieve certain tasks in spite of its limited dynamic

capabilities (underactuation, velocity and torque bounds).

t

sk

sk+1

L(s)
k L()sk+1

task path

t

2(q, q, t)1 (q, q, t)

Fig. 1. Stask is a foliation: each leaf L(s) is the set of points (q, q̇, t) ∈ S
such that q and q̇ are consistent with the task path constraint for a certain
value of s, while t may assume any value.

III. SEARCH SPACE

Define the state space of the robot as X = C×Tq C, where

Tq C denotes the tangent space of C at q. In itself, X does not

adequately reflect the limitations of the considered system.

In fact, due to the underactuation, the joint limits, and the

velocity bounds, a state (q, q̇) may or not be reachable by the

robot; and even when it is reachable, it may be reachable at

a certain time instant and not at another due to the existence

of torque bounds. To account for this, we first augment states

with time, and define

• the state-time space as S = X × [0,∞);
• the occupied state-time space as Socc = {(q, q̇, t) ∈ S :

R(q(t)) ∩ O 6= ∅};

• the free state-time space as Sfree = S \ Socc.

Then, we call S̄free (reachable free state-time space) the

subset of Sfree that is actually reachable. Trajectories in S̄free

are by definition feasible and collision-free.

The existence of a task path constraint further reduces the

region of S where to look for a solution. Define the task-

constrained state-time space as the set of points of S where

the state (q, q̇) is consistent with the assigned task path:

Stask = {(q, q̇, t) ∈ S : f(q) = yd(s),J(q)q̇ = y′
d(s)ṡ,

for some s ∈ [si, sf], ṡ ∈ (−∞,∞)},

having used the notation ()′ = d()/ds. Note that t is

immaterial in Stask: for any point in Stask, there exist an

infinity of other points with the same state and different time

instant t ∈ [0,∞). From a geometric viewpoint, Stask is a

manifold with boundary which foliates:

Stask = ∪s∈[si,sf]L(s)

with each leaf L(s) associated to a value of s ∈ [si, sf]:

L(s) = {(q, q̇, t) ∈ S : f(q) = yd(s),J(q)q̇ = y′
d(s)ṡ

for some ṡ ∈ (−∞,∞)}.

Figure 1 illustrates the structure of Stask.

The existence of a solution to the considered planning

problem depends on the interplay between the assigned task

and the various constraints acting on the robot, and in partic-

ular on the connectedness of the search space S̄free ∩ Stask.

2966

IV. GEOMETRIC TASK DYNAMICS

The objective of this section is to derive some basic

relationships that will be used in the motion generation part

of the proposed planner. In particular, we wish to characterize

the geometric task accelerations that can be produced as a

result of the available torque input τ a.

First, in view of the separation between geometric motion

and time history, generalized velocities and accelerations

along a certain solution may be expressed respectively as

q̇(t) = ṡ(t)q′(s) (2)

and

q̈(t) = s̈(t)q′(s) + ṡ2(t)q′′(s), (3)

where q′ = dq/ds and q′′ = dq′/ds are respectively the

geometric generalized velocities and accelerations.

Substituting (2) and (3) in (1), we can write the dynamic

equations of the robot in a form that separates the geometric

motion from the time history:

B(q)(s̈(t)q′(s) + ṡ2(t)q′′(s)) + n(q, ṡ(t)q′(s)) =

(
τ a

0

)
,

compactly rewritten as

B̃(q, ṡ)q′′ +ϕ(q, q′, ṡ, s̈) =

(
τ a

0

)
, (4)

where

B̃(q, ṡ) = ṡ2B(q)

and

ϕ(q, q′, ṡ, s̈) = s̈B(q)q′ + n(q, ṡ(t)q′(s)).

If ṡ 6= 0 2, matrix B̃ is invertible and from (4) we can obtain:

q′′ = B̃
−1

(q, ṡ)

((
τ a

0

)
−ϕ(q, q′, ṡ, s̈)

)
. (5)

This formula encodes the robot underactuation, i.e., it rep-

resents all geometric generalized accelerations that can be

produced at a given state by virtue of the available input τ a.

Consider now the second-order kinematic map that ex-

presses the geometric acceleration of the task variables:

y′′ = J(q)q′′ + J ′(q, q′)q′. (6)

Substituting (5) in (6) we obtain

y′′ = A(q, ṡ)

((
τ a

0

)
−ϕ(q, q′, ṡ, s̈)

)
+ J ′(q, q′)q′, (7)

where

A(q, ṡ) = J(q)B̃
−1

(q, ṡ).

Since the robot is underactuated it is p < n, and we can

partition the m × n matrix A as (Aa Au), where Aa is

an m× p submatrix. Therefore we can write

y′′ = Aa(q, ṡ)τ a−A(q, ṡ)ϕ(q, q′, ṡ, s̈)+J ′(q, q′)q′. (8)

Equation (8) is the task-level counterpart of (5), in that

it represents all geometric task accelerations that can be

produced at a given state by virtue of τ a.

2This condition is not necessary for the planner; see footnote 4.

V. PROPOSED PLANNER

The proposed planner expands a tree in S̄free ∩ Stask. A

predefined sequence {s1 = si, . . . , sk, . . . , sN = sf} of

values of s is used to extract N samples of the assigned

task path, denoted by yk = yd(sk), k = 1, . . . , N . These

samples will be used to bias the search. Let Lk = L(sk) be

the leaf associated to yk (see Figure 1).

Each vertex of the tree is a triplet (q, q̇, t) representing a

robot state and the time at which it was attained. An edge is a

feasible subtrajectory joining two vertices that lie on adjacent

leaves, and is produced by a specialized motion generation

scheme. The tree is rooted at (qi, q̇i, 0), i.e., at the initial

state and time. At any iteration of the planner, the root will

be the only vertex on the first leaf L1, whereas any other

leaf Lk, k > 1, may contain several vertexes.

A. Motion Generation

At the heart of our proposed planner is a motion generation

scheme that can be invoked from a generic vertex of the tree

located on a certain leaf, producing a subtrajectory that is

contained in S̄free ∩ Stask and lands on either the next or

the previous leaf. A new vertex is generated at the landing

state and time, provided that the subtrajectory is collision-

free. Due to the presence of underactuation and torque

constraints, the motion generation scheme must operate at the

torque level. To this end, we shall use the basic relationships

established in the previous section.

Consider a generic vertex V = (qV , q̇V , tV) on the leaf

Lk. All vertexes on Lk share the same value of s = sk,

whereas the value of ṡ = ṡV is different for each V , as

a byproduct of the subtrajectory that generated that vertex.

Equation (8) indicates that, once the value of s̈ has been

chosen, the value of the torque τa can be derived from the

desired geometric task acceleration.

In particular, we choose s̈ at V as

s̈ = s̈V , (9)

with s̈V a constant value chosen within a predefined range

[−cmax, cmax]. This means that, from tV on, the dependence

of s on t will be quadratic. A simple reasoning shows that,

depending on the value of ṡV and of the chosen s̈V , one can

obtain four kinds of motions of s over t, and correspondingly

of y(s) over yd(s): (1) a monotonic forward motion from

sk to sk+1 (2) a motion which moves initially backward

from sk but then reverses its direction before sk−1 and

proceeds forward to reach sk+1 (3) a monotonic backward

motion from sk to sk−1 (4) a motion which moves initially

forward from sk but then reverses its direction before sk+1

and proceeds backwards to reach sk−1.

In any case, once s̈ has been chosen, we can compute the

torque vector τ a for realizing a certain y′′
d by inverting (8):

τ a=A†
a(y

′′
d+Kpey+Kde

′
y−J ′q′+Aϕ)+(I−A†

aAa)τV

(10)

where A†
a is the pseudoinverse of Aa, Kp and Kd are

positive definite matrices, ey = yd − y is the task error, e′y
its geometric derivative, and τV is an p-dimensional residual

2967

torque vector which can be arbitrarily specified without

affecting the task (in fact, I − A†
aAa is the orthogonal

projection matrix in the null space of Aa). In the above

formula, all dependencies (including that of ϕ on s̈) have

been dropped for compactness. One may easily verify that

the above choice of τ a yields exponentially stable tracking

of the desired task path.

By assumption3 m ≤ p, thus it is A†
a = AT

a (AaA
T
a)

−1

provided that Aa is full row rank. A necessary condition for

the latter condition to hold is that J is nonsingular4. Note

that the nonsingularity of J only guarantees that A is full

row rank, while its submatrix Aa may not be such. When

this happens, the desired task geometric acceleration is not

realizable at the current state due to underactuation. Note

also that in the limit case m = p, we obtain A†
a = A−1

a and

I −A†
aAa = 0 (no actual redundancy).

Motion is then generated by integrating eqs. (1) and (10)

from vertex V . In doing so, velocity and torque bounds are

continuously verified, together with absence of collisions.

If either of these is violated, or if Aa loses rank, motion

generation is prematurely terminated. Otherwise, integration

stops when the subtrajectory lands on an adjacent leaf to Lk,

be it Lk+1 or Lk−1.

It should be noted that the choice of s̈ in the last integration

interval [sN−1, sN] is not arbitrary: in fact, to guarantee that

the robot velocity is zero at the final point of the task, we

must impose that ṡ(tN) = 0. An easy computation shows

that this is obtained by letting

s̈N = −
ṡ2N−1

2(sN − sN−1)
. (11)

As an alternative to choosing a s̈ which is constant

throughout the integration interval as in (9), and then having

to check the torque bounds, one may use a piecewise-

constant s̈, with the value of each piece chosen in such a

way that the torque bound is guaranteed to be satisfied.

In particular, let w = y′′
d + Kpey + Kde

′
y − J ′q′ and

P = I −A†
aAa for compactness. If

|s̈| ≤ min
i∈[1,...,p]

τaM,i − |A†
aw +A†

aAn+ PτV |i
|A†

aABq′|i
(12)

where | · |i indicates the modulus of the i-th component of a

vector, it can be easily verified from (10) that |τ a| ≤ τ a,M .

B. Tree Expansion

The planning tree is expanded using an RRT-like mecha-

nism. At each iteration, a random task sample yrand = yk,

with k ∈ {1, . . . , N}, is extracted from the predefined

sequence, and an inverse solution qrand = f−1(yrand) is

computed. A random task-consistent generalized velocity

q̇rand ∈ [−q̇M , q̇M] is chosen and attached to qrand. Finally,

a time instant trand is sampled from [0, tmax], with tmax the

3In the case m > p, matrix Aa would be a ‘tall’ matrix, and therefore
equation (8) would admit no solution in general.

4Using eq. (7), it may be easily shown that A
†
a = ṡ2Ã

†

a
, where Ã

†

a

does not depend on ṡ; therefore, condition ṡ 6= 0 is not necessary for Aa

to be full row rank.

largest time instant associated to a vertex in the current tree.

By construction, (qrand, q̇rand, trand) is a sample of Stask.

At this point, the tree is searched for the closest vertex to

(qrand, q̇rand, trand), according to a suitably defined metric5.

Denote this vertex by (qnear, q̇near, tnear), and say it is

located on a generic leaf Lk.

Then, the tree is expanded from V = (qnear, q̇near, tnear)
using the previous motion generation scheme, in which the

residual torque vector τV is chosen randomly. As explained

before, as soon as one of the two adjacent leaves Lk+1 or

Lk−1 is reached by a feasible, collision-free subtrajectory, a

new vertex is placed at the landing point. As a byproduct

of the integration procedure, we obtain the time instant

associated to the new vertex. Whenever a subtrajectory is

discarded due to constraint violation, a new tree expansion

takes place.

An alternative to a pure random choice of τV is to evaluate

the effect of a finite number of candidate choices (e.g., a

predefined set of primitives, or of randomly chosen values)

and to select the one that produces the final vertex closest to

(qrand, q̇rand, trand).
A final remark is in order concerning the discrete sequence

{s1, . . . , sN} used by the algorithm. While its introduction

simplifies the description, it is by no means necessary.

Indeed, one may extract random values of s from the

whole continuous interval [si, sf] to generate the task sample

yrand. The length of the task path portion covered along the

subtrajectory generated from qnear can be then decided using

some other criteria (e.g., fixed, or randomly generated itself).

VI. PLANNING EXPERIMENTS

In this section, we report results of planning experiments

for the Pendubot system, a planar manipulator with two

rotational joints that moves in the vertical plane and is

equipped with a single motor at the first joint. In particular,

we have used the dynamic parameters of the prototype

available in our lab and shown in Fig. 2: the first link has

length 0.148 m and mass 0.19 Kg, while the second link has

length 0.181 m and mass 0.07 Kg. Thanks to the mechanical

design, the joints can rotate indefinitely; also, the velocity

bounds (related for the first link to the maximum rotational

speed of the motor and for the second link to the resolution

of the encoder) are very high (around 250 rad/s for both)

and in practice irrelevant for the planner with respect to the

torque limits.

Although the Pendubot is a relatively simple underactuated

system, it is known to be particularly challenging from

the viewpoint of planning because it is not linearizable

via feedback (equivalently, it admits no flat outputs). As a

consequence, motions for this robot are typically generated

as byproduct of feedback controllers, that however disregard

the presence of obstacles, velocity and torque bounds.

We implemented the proposed planner for the Pendubot

as a C++ library for Kite, a software development kit

5In particular, a weighted sum is used to characterize distances in the
state-time space S.

2968

Fig. 2. The Pendubot available in our laboratory and used in our planning
experiments.

for motion planning currently marketed by Siemens. The

hardware platform was a 64-bit Intel Core i5-2320 CPU

running at 3 GHz.

In both planning experiments, we address the classical

swing-up problem, which requires to bring the robot from the

stable down-down equilibrium to the unstable up-up equilib-

rium, starting and ending at zero velocity. Interestingly, such

a state-to-state planning problem admits a description in the

form of a lower-dimensional task. In particular, denoting by y
the vertical coordinate of the robot tip, and placing the origin

y = 0 at the height of the axis of rotation of the first joint,

the desired task path can be specified by a function of s that

goes from −ℓ to ℓ, where ℓ is the sum of the lengths of the

two links. In particular, we have used y(s) = ℓ(2s3−1), for

s ∈ [0, 1], and extracted a sequence of N = 11 equispaced

samples from this path (including the endpoints). We have

set Kp = Kd = 10 in the motion generation scheme, and

performed numerical integration using Euler method with

step size 0.002 s.

Note that in this planning problem we have p = m = 1,

i.e., a single actuator and a one-dimensional task. Therefore,

there is no redundancy in the torque generation using (10).

In the first planning experiment (Fig. 3) we have consid-

ered the actual torque limit of our prototype, i.e. τM = 1.58
Nm. An obstacle has been placed very close to the up-up

configuration, so that the robot can only execute the swing-

up maneuver in the clockwise direction, and in addition the

motion of the first link must be carefully planned so as

to avoid the obstacle. For this planning scenario we have

adopted the generation of s̈ based on eq. (9)), checking then

the admissibility of the obtained torque. The planner was able

to compute the solution shown in Fig. 3 in about 15 seconds

(average over 10 repeated experiments). The swing-up is

achieved in 0.62 seconds. Figure 4 confirms that the torque

required to perform the planned motion always complies with

the actuator bound, whereas Fig. 5 shows the time history

generated by the planner as a consequence of the chosen s̈.

Note how the final value of ṡ is zero, confirming that the

Fig. 3. Planning experiment 1: some snapshots from a solution.

0.1 0.2 0.3 0.4 0.5 0.6

−2

−1. 5

−1

−0. 5

0

0.5

1

1.5

joint 1
bounds

time

to
rq

u
e

(N
m

)

0

Fig. 4. Planning experiment 1: Required torque along the solution.

0.1 0.2 0.3 0.4 0.5 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

time

0.1 0.2 0.3 0.4 0.5 0.6

−50

−40

−30

−20

−10

0

10

20

30

40

s

time

0 0

Fig. 5. Planning experiment 1: Time history s(t) and s̈(t). Black dots
are in correspondence of the time instants at which the robot configuration
reaches a leaf associated to one of the N samples of the assigned task.

robot will stop at the up-up equilibrium.

In the second planning experiment we have considered

a more powerful joint actuator whose torque bound is at

τM = 7.9 Nm. Also, the obstacle has been moved to the right

to give the planner more freedom in generating movements.

Finally, we have applied the alternative strategy (12) for

choosing s̈ in such a way that the torque bound is certainly

satisfied. The average time needed to compute a solution for

this scenario is roughly the same of the previous scenario.

One such solution is shown in Fig. 6, and achieves swing-up

in 0.44 seconds — a shorter time thanks to the increased

actuator capability. Note also how the first link can now

safely perform a wider swing than in Fig. 6. As before,

Figure 7 confirms that the required torque is always within

the new bound, whereas Fig. 5 shows the time history

2969

Fig. 6. Planning experiment 2: some snapshots from a solution.

0.1 0. 2 0. 3 0. 4

−8

−6

−4

−2

0

2

4

6

8

time

to
rq

u
e

(N
m

)

joint 1
bounds

0

Fig. 7. Planning experiment 2: Required torque along the solution.

0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

time

−500

−400

−300

−200

−100

0

100

200

300

400

500

s

time

0 0.1 0.2 0.3 0.4

Fig. 8. Planning experiment 2: Time history s(t) and s̈(t). Black dots
are in correspondence of the time instants at which the robot configuration
reaches a leaf associated to one of the N samples of the assigned task.

generated by the planner as a consequence of the chosen

s̈. Again, the value of ṡ at the end of the motion is zero, so

that the robot stops at the up-up equilibrium.

The video attachment to the paper contains clips of the

generated swing-up motions. Performance details are col-

lected in Table I.

VII. CONCLUSIONS

We have presented a randomized motion planning al-

gorithm for underactuated robots in the presence of task

path constraints, kinematic constraints and torque bounds.

To account for the underactuation and the torque bounds,

the proposed planner must necessarily work at the level of

torques. The core of the planner is a motion generation

scheme inspired by our previous works on task-constrained

TABLE I

exp exec time vertexes coll checks duration

1 15.8 s 428 36816 0.62 s
2 10.2 s 268 14102 0.44 s

motion planning. The effectiveness of the proposed planner

has been shown by planning swing-up motions for the

Pendubot system.

The Pendubot case study suggests that the proposed tech-

nique can be used to transfer underactuated robots between

equilibrium points by an appropriate definition of the task

variables. We will analyze this issue in more detail to identify

other relevant examples. Moreover, we will address the

problem of modifying the planner so as to allowing transfers

between forced equilibria.

Finally, we intend to apply the proposed planner to higher-

dimensional underactuated systems. For example, we will

consider manipulation tasks executed by an underactuated

UAV (e.g., a quadrotor) equipped with an effector arm.

REFERENCES

[1] K. Lynch and M. Mason, “Dynamic nonprehensile manipulation: Con-
trollability, planning, and experiments,” Int. J. of Robotics Research,
vol. 18, pp. 64–92, 1999.

[2] J. Nakanishi, T. Fukuda, and D. Koditschek, “A brachiating robot
controller,” IEEE Trans. on Robotics and Automation, vol. 16, pp.
109–123, 2000.

[3] M. Spong, “Bipedal locomotion, robot gymnastics, and and robot air
hockey: A rapprochement,” in In: TiTech COE/Super MechanoSystems

Workshop 99, 1999, pp. 34–41.
[4] J. Funda, R. Taylor, B. Eldridge, S. Gomory, and K. Gruben, “Con-

strained cartesian motion control for teleoperated surgical robots,”
IEEE Trans. on Robotics and Automation, vol. 12, pp. 453–465, Jun
1996.

[5] N. Faiz and S. Agrawal, “Optimal planning of an under-actuated planar
body using higher-order method,” in 1998 IEEE Int. Conf. on Robotics

and Automation, vol. 1, May 1998, pp. 736–741.
[6] G. Oriolo and Y. Nakamura, “Control of mechanical systems with

second-order nonholonomic constraints: underactuated manipulators,”
in Decision and Control, 1991, Proceedings of the 30th IEEE Confer-

ence on, Dec 1991, pp. 2398–2403.
[7] H. Arai and S. Tachi, “Position control of manipulator with passive

joints using dynamic coupling,” IEEE Trans. on Robotics and Automa-

tion, vol. 7, no. 4, pp. 528–534, Aug 1991.
[8] A. De Luca and G. Oriolo, “Trajectory planning and control for planar

robots with passive last joint,” Int. J. of Robotics Research, vol. 21,
pp. 575–590, 2002.

[9] A. Ladd and L. Kavraki, “Motion planning in the presence of drift, un-
deractuation and discrete system changes,” in 2005 Robotics: Science

and Systems, Cambridge, USA, 2005.
[10] I. Tortopidis and E. Papadopoulos, “On point-to-point motion plan-

ning for underactuated space manipulator systems,” Robotics and

Autonomous Systems, vol. 55, pp. 122–131, 2007.
[11] A. Ratajczak, J. Karpinska, and K. Tchon, “Task-priority motion

planning of underactuated systems: an endogenous configuration space
approach,” Robotica, vol. 28, pp. 885–892, 2010.

[12] A. Shkolnik and R. Tedrake, “High-dimensional underactuated motion
planning via task space control,” in 2008 IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems, Nice, France, 2008, pp. 3762–3768.
[13] G. Oriolo and M. Vendittelli, “A control-based approach to task-

constrained motion planning,” in 2009 IEEE/RSJ Int. Conf. on In-

telligent Robots and Systems, St. Louis, MO, 2009, pp. 297–302.
[14] M. Cefalo, G. Oriolo, and M. Vendittelli, “Task-constrained motion

planning with moving obstacles,” in 2013 IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems, Tokyo, Japan, 2013, pp. 5758–5763.
[15] M. Cefalo and G. Oriolo, “Dynamically feasible task-constrained

motion planning with moving obstacles,” in 2014 IEEE Int. Conf. on

Robotics and Automation, Hong Kong, China, 2014, pp. 2045–2050.

2970

