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Abstract— We consider the problem of planning the motion of
redundant robotic systems subject to geometric task constraints
in the presence of obstacles moving along known trajectories.
Building on our previous results on task-constrained motion
planning, we propose a control-based motion planner that
works directly in the task-constrained configuration space
extended with the time dimension. The generated trajectories
are collision-free and satisfy the task constraint with arbitrary
accuracy. Bounds on the achievable generalized velocities may
also be taken into account. The proposed approach is validated
through planning experiments on a 7-dof articulated robot and
an 8-dof mobile manipulator.

I. INTRODUCTION

The basic formulation of the motion planning problem

assumes that the robot workspace is populated by static

obstacles. A particularly relevant extension in real world

applications allows for the presence of obstacles that move

along trajectories whose predictability can range from fully

known to completely unknown [1].

In this work, we focus on the motion planning problem

with obstacles moving along known trajectories. This has

been shown to be a computationally difficult problem even

for a single rigid body with unbounded velocity in [2]. Early

solutions (like, e.g., [3], [4], [5]) extend combinatorial or

sampling-based methods by considering a planning space

consisting of the configuration or state space augmented

with the time dimension (respectively, configuration-time and

state-time space). Other ad-hoc methods include the velocity

obstacle technique proposed in [6], [7], [8].

All the above methods prove to be prohibitively inefficient

when dealing with articulated robotic systems, due to the

computational complexity of the problem. A viable alterna-

tive is the randomized sampling-based technique proposed

in [9], where kinematic and dynamic constraints are consid-

ered and an estimate of the rate of convergence is provided.

Between the antithetical assumptions of complete knowl-

edge and complete ignorance of the obstacle motion, one

may take an intermediate viewpoint which considers an

uncertain motion model. For example, two kinds of un-

certainties are taken into account in [10], namely on the

obstacle path and on the time history along such path. Using

this stochastic description, a probability distribution for the

obstacles motion is computed and used to plan the robot

trajectory accordingly.
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The above cited works solve the motion planning problem

from a start to a goal configuration, and do not consider

motion constraints induced by tasks, which in general restrict

the set of feasible configurations to a lower-dimensional

submanifold of the configuration space. Nevertheless, task

constraints constantly arise in robotic operation; notable

examples include manipulation, locomotion, visual tracking,

drawing, cutting, welding, opening doors, and so on. In

the current paradigm of ubiquitous robotics, these tasks

must be executed in unstructured, dynamic environments,

possibly shared with human beings. It is therefore of central

importance to lay the basis for methods that can plan the

motion of robotic systems subject to task constraints in the

presence of moving obstacles.

A complication of Task-Constrained Motion Planning

(TCMP) is that random sampling of the configuration space

is no more effective, because the probability of generating

a sample in the feasible submanifold is zero. To address

this issue, a popular approach in the literature is to generate

samples using standard randomized search algorithms such

as, e.g., PRM [11] or RRT [12], and then projecting the

samples on the submanifold with a given error tolerance.

This projection may be performed via randomized gradient

descent, tangent space sampling or retraction [13].

A conceptually different approach that is not based on

projection was proposed in [14], where we introduced a

control-based method for TCMP guaranteeing continuous

satisfaction of the task constraint and probabilistic com-

pleteness. With respect to projection-based methods, and

also to our previous TCMP planners [15], [16], the control-

based planner allows to arbitrarily improve the task accuracy

without increasing the roadmap complexity.

In all these works on TCMP, however, the obstacles are

static. In this paper, we shall consider Task Constrained

Motion Planning with Moving Obstacles, or TCMP MO. In

particular, we will assume that the obstacle trajectories are

known in advance, as a first step towards the solution of

more realistic problems with reduced predictability levels of

obstacle motion. Moreover, there exist scenarios or fields

of applications in which the trajectories of obstacles are

actually known in advance. This is true, for example, in some

industrial robotics applications, or in the animation of digital

characters.

Here, we extend the method of [14] to the TCMP MO

problem by augmenting the task-constrained planning space

with the time dimension and then growing an RRT in

the collision-free part of this space. To the best of our

knowledge, ours is the first task-constrained motion planner
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that can handle moving obstacles. Moreover, kinematic and

dynamic constraints such as velocity and torque limits can

be incorporated in the solution.

The paper is organized as follows. Section II formally

defines the TCMP MO problem. Section III discusses the

structure of the planning space, while Sections IV and V

describe the TCMP MO motion planner. Section VI de-

scribes how the proposed method can be extended to take

into account limits on the achievable generalized velocities.

Planning experiments are two commercial robots are pre-

sented in Section VII. Possible future work is mentioned in

the concluding section.

II. FORMULATION OF THE TCMP MO PROBLEM

Consider a robot with configuration q and denote by C its

nq-dimensional configuration space. The robot lives in a

workspace W ⊂ IR3 which is populated by moving obsta-

cles. Denote by R(q) ⊂ W and O(t) ⊂ W , respectively, the

volume occupied by the robot at configuration q and by the

obstacles at time t.
Task coordinates y take values in an ny-dimensional task

space Y and are related to the configuration coordinates by

a nonlinear map

y = f(q). (1)

We take the following assumptions.

A1 The robot is kinematically redundant for the task y, i.e.,

nq > ny .

A2 We have full a priori information on the obstacle

motion, i.e., O(t) ⊂ W is known for all t.

Now suppose that a desired path yd(s), s ∈ [si, sf ], is

assigned for the task variables y. The Task-Constrained Mo-

tion Planning with Moving Obstacles (TCMP MO) problem

consists in searching for a configuration space trajectory of

the robot such that the geometric path underlying the trajec-

tory is consistent with the assigned path and all collisions

are avoided.

Clearly, a solution to the TCMP MO problem consists of

two components: a configuration space task path, and a time

history along this path. This leads to the following rigorous

formulation (compare with the TCMP problem in [14]).

Under assumptions A1–A2, consider a desired task path

yd(s) ∈ Y , s ∈ [si, sf ]. A solution to the TCMP MO

problem is a path q(s) ∈ C, s ∈ [si, sf ], and a continuous

time history s(t) : [0, T ] 7→ [si, sf ], such that :

1. s(0) = si and s(T ) = sf ;

2. for all t ∈ [0, T ], it is y(t) = f(q(s(t))) = yd(s(t));
3. for all t ∈ [0, T ], it is R(q(s(t))) ∩ O(t) = ∅.

Condition 1 requires the robot to start/stop at the begin-

ning/end of the task path, condition 2 guarantees that the

task constraint is always satisfied, and condition 3 entails

avoidance of the moving obstacles (self-collisions can be

easily incorporated and in fact they are included in our

implementation).

Continuity of the time history s(t) is necessary to guar-

antee that y does not ‘jump’ along the assigned task path.

In addition, continuity together with condition 1 ensures that

all values of s in [si, sf ] are generated.

An important feature of TCMP MO is that s(t) is not

required to be non-decreasing: s must start at si and end at

sf , but this increase is not required to be monotonic during

the motion. That is, at any point along the path, s may

increase (forward motion), remain constant (self-motion) or

even decrease (backward motion), if these maneuvers are

useful for avoiding moving obstacles. In other words the

assigned yd(s), s ∈ [si, sf ], will only be the ‘footprint’ of

the motion1, whereas the actual motion yd(t), t ∈ [0, T ],
will depend on the choice of s(t).

Finally, note that both the final configuration q(sf ) and

the final time T are not specified in advance and will be a

byproduct of the solution. This is a distinctive aspect of our

approach with respect to [9].

III. THE PLANNING SPACE

Due to the presence of moving obstacles, the planning space

for TCMP MO is not a simple subset of the configuration

space C. A configuration may be, in fact, admissible at a

certain time instant and not admissible at another due to

obstacle movement. Hence, we need to include time in the

picture.

In particular, define:

• the configuration-time space (henceforth CTS) as

S = C × [0,∞);

• the occupied CTS as

Socc = {(q, t) ∈ S : R(q(t)) ∩ O(t) 6= ∅};

• the free CTS as

Sfree = S \ Socc;

• the task-constrained CTS as

Stask = {(q, t) ∈ S : f(q) = yd(s), s ∈ [si, sf ]}.

The set Stask is a manifold with boundary that naturally

decomposes as a foliation:

Stask =
⋃

s∈[si,sf ]

L(s)

with the generic leaf defined as

L(s) = {(q, t) ∈ S : f(q) = yd(s)}.

On each leaf, t can assume any value in [0,∞). Figure 1

illustrates the structure of Stask: the set of configurations

satisfying the task constraint at s (the so-called self-motion

1It should be noted that the above TCMP MO formulation (assigned task
path and known obstacle trajectories) is the only interesting instance of
TCMP with moving obstacles. To plan a motion among moving obstacles
while constrained to a task trajectory one can directly use the method
of [14]. In fact, assigning a task trajectory implies that the time history
along the configuration space path is given and therefore the robot cannot
retract, stop, slow down or accelerate on the path to avoid obstacles.
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Fig. 1. The structure of Stask: each leaf L(s) is the set of configurations
satisfying the task constraint at s replicated along the time axis.

manifold associated to the task value at s) is replicated along

the time axis to form a leaf of Stask.

The existence of a solution to the TCMP MO problem

depends on the motion of the obstacles, and in particular on

the connectedness of Stask ∩ Sfree, i.e., the portion of the

free CTS that is compatible with the task path constraint.

IV. MOTION GENERATION

The basic element of our planner is a motion generation

scheme that produces subpaths contained in Stask. The idea

is to extend the motion generation scheme of [14] so as to

plan, in addition to a geometric motion q(s), also a time

history s(t). This is obviously required because collisions

with moving obstacles can only be checked in the time

domain. In particular, using the notation ( )′ = d( )/ds, we

have

q̇ = q′ṡ (2)

and therefore we will generate q′ (the tangent vector in

configuration space) and ṡ (the variation rate of parameter

s) separately.

One possibility is to choose ṡ first. In particular, our

generation of ṡ is primitive-based:

ṡ ∈ {−cmax, . . . ,−c1, 0, c1, . . . , cmax} (3)

where 0 < c1 < . . . < cmax. The resulting profile s(t)
will be continuous and piecewise-linear: choosing ṡ > 0
will produce a forward motion along the task path, ṡ = 0
will result in a self-motion (i.e., a motion that does not

change the value of the task variable), whereas ṡ < 0
will produce backward motions along the task path. In our

implementation, we always generate a triplet, i.e., a positive,

a negative and a zero ṡ.

Once ṡ is chosen, it is necessary to generate q′. For

example, consider the case of a forward motion. We let

q′ = J†(y′
d +K ey) + (I − J†J)w, (4)

where J† is the pseudoinverse2 of the task Jacobian matrix

J = ∂f/∂q, K is a positive definite gain matrix, vector

2The proposed planner discards configurations where J loses rank, so
that we always have J

† = J
T (JJ

T )−1.
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Fig. 2. Generation of forward motions in TCMP MO: different choices of
ṡ > 0 produce the same geometric motion at different speeds. The same is
true for backward motions associated to ṡ < 0 (not shown).

ey = yd − y is the task error, I − J†J is the orthogonal

projection matrix in the null space of J , and w is an arbitrary

nq-vector acting as a residual input that produces internal

motions with no effect on the task. Forward motion is then

generated by integrating eq. (4) over s.

A similar formula is used for a backward motion. In

particular, this is generated by backward integration of eq. (4)

where y′
d is replaced with −y′

d and the value of yd(s) used

to compute the task error ey is sampled from the assigned

task path by going ‘backwards’ from the current value of s.

Finally, for a self-motion, we simply set y′
d = 0 and

integrate (4) forward in an auxiliary parameter σ, with σ ∈
[0, σmax]. This will result in a self-motion of duration σmax.

V. TCMP MO PLANNER

The proposed planner builds an RRT in the admissible search

space Stask∩Sfree. For the construction of the tree we make

use of samples of the desired task path yd(s). In particular,

denote by {s1 = si, s2, . . . , sN−1, sN = sf} a predefined

sequence of N path parameter values, by yk = yd(sk) the

sample of the path corresponding to sk (note that we drop

the d subscript) and by Lk = L(sk) the associated leaf (see

Fig. 1).

Every vertex of the tree is a sample point of Stask.

More precisely, each vertex belongs to a certain leaf Lk,

k = 1, . . . , N , and consists of a configuration q such that

f(q) = yk and of a time t at which q has been reached.

The tree edges are collision-free subtrajectories obtained by

applying the motion generation scheme (3–4) starting from

vertexes. Construction of the tree proceeds as follows.

At each iteration, a configuration qrand is first gen-

erated by picking a random value from the sequence

{s1, s2, . . . , sN−1, sN} and an inverse kinematic solution for

the corresponding task sample. A time instant trand is then

attached to qrand by random choice in [0, tmax], where tmax

denotes the largest time associated to a vertex of the tree so

far. By construction, (qrand, trand) is a sample of Stask.

The tree is then searched to find the vertex (qnear, tnear)
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that is closest3 to (qrand, trand). Call sk and Lk the parameter

value and leaf, respectively, corresponding to qnear; also,

rename qnear as qk,j and tnear as tl. Note that index j is

used to distinguish the different configurations at which the

tree may have reached the same Lk.

At this point, the tree is extended from (qk,j , tl). First, a

triplet of values of ṡ is chosen from (3) and the correspond-

ing time histories s(t) are reconstructed within the current

subinterval, stopping (1) for ṡ > 0, when we have reached

sk+1; (2) for ṡ < 0, when we have reached sk−1; (3) for

ṡ = 0, after σmax seconds. As a byproduct, we obtain the

time instants associated to the new vertexes. Then, a fixed

number of different constant values are randomly generated

for the residual vector w, with the constraint that the norms

of the two terms in the rhs of eq. (4) are in a certain

proportion. For each value of w, three subpaths are generated

by applying the motion generation scheme from Lk to Lk+1

(forward motion), from Lk to Lk−1 (backward motion) or on

Lk (self-motion). During the integration, the corresponding

subtrajectories q(s(t)) are checked for collision with the

moving obstacles. For each category of motion (forward,

backward and self-), only the collision-free subtrajectory

terminating closest to qrand is retained.

Figure 2 illustrates how the TCMP MO planner works in

the case of a forward motion. Once a vertex (qk,j , tl) on Lk

has been selected for extension, different choices of ṡ > 0
in (3) for the same tangent vector q′ would produce paths

terminating in the same configuration on Lk+1 at different

time instants.

VI. INCORPORATING VELOCITY LIMITS

A practically important extension of the TCMP MO problem

is obtained by including in its formulation constraints of

the form |q̇i| ≤ q̇i,M , i = 1, . . . , nq . These generalized

velocity bounds, invariably present in actual robotic systems,

are obviously relevant because they limit the robot ability of

speeding up along the path.

The straightforward approach to take velocity bounds into

account would be to check during the integration whether

q̇ = q′ṡ is admissible, discarding the current subtrajectory

otherwise. This validation procedure may however be ineffi-

cient and lead to a large number of rejected motions.

A more efficient approach is to directly generate trajec-

tories which are guaranteed to be feasible. To this end, one

may simply revert the motion generation sequence: generate

the geometric path first, delaying any collision check, and

then choose a value for ṡ so as to comply with the velocity

constraints. For simplicity, consider a version of the planner

in which self-motions are not generated. The tree expansion

procedure from (qk,j , tl) becomes the following (compare

with the previous section):

1) randomly choose a certain number of values for the

residual input w;

2) for each value of w, generate a forward motion and a

backward motion;

3A weighted metric that accounts for distances in the configuration-time
space is used here.

3) for each category, retain only the subpath terminating

closest to qrand;

4) for each subpath:

a) compute

cmax = min
i=1,...,nq

q̇i,M
q′i,max

,

where q′i,max=maxs∈I |q′i(s)| and I = [sk, sk+1]
for a forward motion, I = [sk, sk−1] for a

backward motion.

b) choose ṡ (positive for a forward motion, negative

for a backward motion) as in eq. (3) using the

above cmax;

c) check the resulting subtrajectory for collisions.

This expansion mechanism produces subtrajectories that are

always compliant with the velocity constraints. The side

effect is that collision check, which can only be performed

once a time history has been chosen, must now be delayed

to the end of the procedure.

The above procedure may be easily extended to allow

the generation of admissible self-motions by appropriately

choosing the σmax parameter.

VII. PLANNING EXPERIMENTS

We implemented the proposed TCMP MO planner in Kite

(a cross-platform software for motion planning produced by

Kineo CAM) on a 64-bit Intel Core i5-2320 CPU running at

3 GHz. We report planning results for two KUKA robots: an

LWR-IV 7-DOF articulated robot and a youBot mobile ma-

nipulator. Animations of the generated motions are contained

in the video clip accompanying this paper.

Figure 3 shows the first planning scenario. An LWR-IV

manipulator mounted on a table must move its tip along a

sinusoidal path contained in a vertical plane, while avoiding

collisions with the table, with itself and with five moving

obstacles. These are balls moving back and forth along line

segments; the time history of each ball along its path is a

sinusoid of different frequency. The degree of redundancy

is 3 (the task is 3-dimensional and the wrist roll is frozen

because it does not contribute to positioning the tip). Joint

velocity limits taken from the actual robot specifications are

enforced by the previous technique.

In the second scenario, shown in Fig. 4, a youBot must

move its tip along an ellipse lying on a plane slightly tilted

w.r.t. the horizontal plane, while avoiding collisions with

itself and with five balls that roll back and forth on the floor.

Since the mobile base of the youBot is omnidirectional, and

the wrist roll of the 5-DOF arm is again frozen, the degree

of redundancy for this case is 3+ 4− 3 = 4. Velocity limits

are enforced also in this case.

We used the same planner settings in both scenarios.

In particular, we extract N = 11 equispaced samples4

from each desired task path (including the endpoints, which

correspond to s = 0 and s = 1), while motion is generated

letting cmax = 0.15 in (3) and K = 100 ·I in (4), where the

4See [14] for a discussion on the choice of N .
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Fig. 3. First planning scenario.

Fig. 4. Second planning scenario.

null space term is constrained to be in norm at most 200% of

the range space term. Integration is performed numerically

using Euler’s method with step size ∆s = 0.002.

The solution for the first scenario summarized in Fig. 5

took about 70 s to compute. Other details about the solution

are given in Table I. Note in particular the duration of

the motion, which is a byproduct of the solution, and the

negligible error along the whole task path.

A solution for the second scenario5 is depicted in Fig. 6.

As shown by Table I, a significantly longer computation

was needed due to the higher dimension of the configuration

space. The mean task error is again minimal.

Figure 7 shows the time histories along the assigned path

for the two solutions. Due to the primitive-based choice (3)

of ṡ, a piecewise-linear continuous profile is always obtained.

Each black dot in the plot relates a value of s to the

time instant t at which the corresponding leaf has been

reached; segments between dots are associated to elementary

subpaths. Incidentally, both solutions contain a back-and-

5One may notice that, although the assigned task path is closed, the
generated motion in configuration space is not cyclic. If the task is to be
repeated, cyclicity may be enforced by extending the planning approach
of [17] to the case of moving obstacles.

TABLE I

exp exec time vertexes coll checks duration mean task error

LWR-IV 70 s 82 43249 16.24 s 0.41 mm

youBot 360 s 2022 905230 20 s 0.15 mm

forth motion: the first from the leaf corresponding to s = 0.8,

and the second from the leaf corresponding to s = 0.5. Also,

self-motions do not appear in either solution.

VIII. CONCLUSION

For redundant robotic systems subject to geometric task

constraints, we have presented a motion planning method

that can handle obstacles moving along a priori known

trajectories. Our planner guarantees continuous satisfaction

of the task constraints and may also accommodate bounds on

the achievable generalized velocities. Planning experiments

on two commercial robots (an articulated arm and a mobile

manipulator) have been presented to show the performance

of the proposed method.

One direction for future work will be considering the

dynamics capabilities of the robot, e.g., torque limits. In

the presence of moving obstacles, time scaling on a planned

trajectory so as to stay within the torque limits is not a viable

option, because the scaled motion will not be collision-free

in general. The only possible solution is to incorporate the

robot dynamics into the planner.

Other extensions of the present approach will be aimed

at relaxing the assumption of known obstacle trajectories. In

particular, our ultimate goal is to devise an on-line version

of the present planner based on sensor predictions of the

obstacle motion.
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Fig. 7. Planning experiment on the LWR-IV: Time histories along the
planned paths. LWR-IV experiment (left) and youBot experiment (right).
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