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Abstract

Studies investigating the neural mechanisms of time perception often measure brain activity

while participants perform a temporal task. However, several of these studies are based

exclusively on tasks in which time is relevant, making it hard to dissociate activity related to

decisions about time from other task-related patterns. In the present study, human participants

performed a temporal or color discrimination task of visual stimuli. Participants were informed

which magnitude they would have to judge before or after presenting the two stimuli (S1 and

S2) in different blocks. Our behavioral results showed, as expected, that performance was better

when participants knew beforehand which magnitude they would judge. Electrophysiological

data (EEG) was analyzed using Linear Discriminant Contrasts (LDC) and a Representational

Similarity Analysis (RSA) approach to investigate whether and when information about time and

color was encoded. During the presentation of S1, we did not find consistent differences in EEG

activity as a function of the task. On the other hand, during S2, we found that temporal and color

information was encoded in a task-relevant manner. Taken together, our results suggest that

task goals strongly modulate decision-related information in EEG activity.
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Introduction

Perceptual timing is essential for humans and other animals to interact with their environments.

A commonly used task to study this ability is temporal discrimination, in which participants have

to judge whether a given duration is shorter or longer than a reference. Several studies have

compared temporal discrimination tasks with discrimination of other attributes, such as color

[1,2], size [3], space [4] and numerosity [5]. For example, Coull and colleagues [1], using

functional Magnetic Resonance Imaging, found a higher activation of areas such as the

pre-SMA and a network of other cortical and striatal areas when participants paid more

attention to the duration than the color of a stimulus. In another study, Kulashekhar and

colleagues [2] used a similar design combined with MEG to investigate possible neural

correlates in temporal processing. Studies involving color discrimination as a contrast task

change color dynamically to make the tasks more cognitively comparable. The rationale is that

in both conditions, participants need to keep track of the visual stimulus presented. However, by

changing color dynamically, time once again becomes relevant to the task: now, participants

need to track for how long the target was presented with each hue. This limitation makes it hard

to dissociate what aspects of neural activity are associated with temporal discrimination or with

general task-related decisions in which time is relevant.

Here, we aimed to examine human electroencephalogram (EEG) using a duration and

color discrimination task. In the color task, we used a static display so participants wouldn't use

the temporal information to estimate the color. As in the study of Coull and colleagues [1], we

controlled how much attention was allocated to different dimensions (time or color) by

informing participants whether they would make a judgment about time or color before the

stimuli (Pure Blocks) or only after the end of the trial (Mixed Blocks). Contrary to previous

experiments, we parametrically varied the difference in time and color between stimuli, allowing
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an in-depth investigation of whether information about time or color in EEG activity was

task-dependent. Thus, we aim to compare a simple interval discrimination task to a

non-temporal task, in which time is not relevant to the decision.

Different time-resolved M/EEG markers have been proposed to be correlated with

temporal judgments, such as the classical contingent negative variation (CNV) [6], the early

post-interval N1P2 component [6], and the late positive component (LPC) [7-9]. This last marker

has been studied in different explicit temporal paradigms, such as temporal bisection [7,8, 10],

temporal generalization [7, 11], and temporal discrimination [3, 9, 12 -14]. However, different

studies have used the term LPC to refer to EEG activities diverse in time, topography, and

task-related modulations. While some authors identified the LPC at prefrontal electrodes [3, 9,

11], others have placed it at centro-parietal electrodes [7, 10]. Here, we used a combination of

multivariate methods of Linear Discriminant Contrast (LDC) [15] and Representational Similarity

Analysis (RSA) [16] to evaluate dissimilarities of different activations of the time-resolved EEG

signal in the different contexts of the experiment. With this method, it is not necessary to make

a priori choices about electrodes and time points to analyze. Since the LDC is a dissimilarity

measure across sensors, small changes in different electrodes will contribute to the final

estimation, while choosing a set of electrodes for a simple event-related potential analysis

might lose critical information.

In summary, we compared distances between patterns of EEG activity and investigated

how these distances were modulated by task, by duration, or by color and whether possible

modulations depended upon the task to be performed. We found weak differences between

tasks when participants were exposed to the duration or color to be stored for further

comparison. However, during the presentation of the comparison event, there were clear

task-dependant differences in EEG activity. Decisions about durations and color evoked different
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patterns of EEG activity, at different moments and were modulated more strongly by

task-relevant information.
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Materials and Methods

Data availability

Task and analysis code and raw and pre-processed data are openly available (link to Open

Science Framework project).

Participants

Twenty-one human volunteers (age range, 21-32 years; 11 females) participated in the

experiment. All of them had a normal or corrected-to-normal vision and did not report any

psychological or neurological diagnoses. The Research Ethics Committee of the Federal

University of ABC approved the experimental protocol (CAEE: 38370314.0.0000.5594), and the

experiment was performed following the approved guidelines and regulations. Data from one

volunteer (age 24, female, not included in the twenty-one participants above) were excluded

from the analyses due to excessive noise and artifacts in the EEG signal (proportion of rejected

trials above 20% in two segment windows of analyses as explained below).

Stimuli and Procedures

The experiment consisted of a durationor color discrimination task (fig. 1). The stimuli were

presented using Psychtoolbox [17] v.3.0 package for MATLAB on a 17-inch CRT monitor with a

vertical refresh rate of 60 Hz, placed approximately in a viewing distance of 50 cm from the

participant. Responses were collected via a response box of 9 buttons (DirectIN High-Speed

Button; Empirisoft). We used the left and right buttons for responses in which participants

should respond using both hands. We presented 720 trials consisting of two visual stimuli (filled

circles) with different colors and durations. Participants were instructed to answer if the second

stimulus was shorter/longer in duration or redder/bluer than the first one. The magnitude to
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judge was determined by the block condition: (1) In Time Pure and Color Pure blocks (2 blocks

of each), participants were informed beforehand whether to judge differences in duration or

color between the two visual stimuli; (2) In Mixed blocks (the remaining four blocks),

participants would only know the magnitude (time or color) to judge during the response screen,

500ms after the offset of the second stimulus. Block order was randomized for all participants,

and the background color was gray (RGB-color 100; 100; 100).

Each trial started with the presentation of a circle (S1, one visual degree radius) at the

center of the screen with a duration randomly chosen between 750 ms to 1500 ms, and colored

in the RGB space [1-C, 0, C], in which C could range randomly from 0.2 to 0.5. The RGB space

and parameter C for manipulating color was chosen based on [18]. After a random ISI of 400 ms

to 600 ms, in which only a fixation point was present (0.25 visual degree radius), a second circle

(S2, one visual degree radius) appeared with a different duration and color. Duration and color

(controlled by parameter C) of S2 could range from 0.2 to 1.8 times the duration and color of S1

within6 possibilities in total: 0.2, 0.6, 0.8, 1.2, 1.4, 1.8. Durations and colors were independently

randomized, and thus, orthogonal. After a delay of 500 ms, a response screen was presented in

which participants were instructed to judge the duration or color of S2 relative to S1. In Pure

blocks, the response screen reminded participants which dimension to be compared, while in

Mixed blocks, the response screen informed which dimension should be compared.

EEG recordings and pre-processing

EEG was recorded continuously from 64 ActiCap Electrodes (Brain Products) at 1000 Hz by a

QuickAmp amplifier (Brain Products). All sites were referenced to FCz and grounded to AFz. The

electrodes were positioned according to the International 10-10 system. Additional bipolar

electrodes registered the electrooculogram (EOG). Data pre-processing was carried out using

FieldTrip [19] toolbox for MATLAB. We segmented the data in four different epochs, for the
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period during the presentation of S1 and S2 (S1/S2 onset analysis) and just after the offset of

each stimulus (S1/S2 offset analysis). Filters were applied to the continuous data with a

bandpass of 0.1 Hz to 30 Hz (Butterworth filter, order 3). All data were re-referenced to the

activity of electrodes TP9 and TP10, located in the earlobes and downsampled to 256Hz.

For the S1/S2 onset analysis, epochs were locked at the onset of S1/S2, and data were

segmented from -150 ms to 750 ms. For the S1/S2 offset analysis, epochs were locked at the

offset of S1/S2, and data were segmented from -150 ms to 400 ms for S1, and to 500 ms for S2.

Channels with missing data due to problems in acquisition or channels with excessive noise

were interpolated with neighbor channels using the FieldTrip channel repair function. Data from

most participants had none or up to two channels interpolated. Only two participants had 3 and

4 channels interpolated.

For eye movement artifact rejection, an independent component analysis (ICA) was

performed. Eye-related components were identified by the help of SASICA available for FieldTrip

[20] and by visual inspection of topographies and time series from each component. Eye related

components were then rejected for all segments. Baseline correction was performed using the

periods from 150 ms before S1/S2 onset and 50 ms before and 50 ms after S1/S2 offset. Trials

that exceed 200 μV for onset segments or 150 μV for offset segments were rejected. The

percentage of rejected trials for S1 onset segment was 1.85% (range between 0% - 11.81%), for

S2 onset was 1.18% (0% - 6.11%), for S1 offset was 0.75% (0%- 4.58%) and for S2 offset was

0.83% (0% - 4.58%).

Behavioral Analysis

Behavioral analysis was based on the proportions of each type of response (longer/shorter or

redder/bluer) as a function of the duration or proportional color of the second stimulus (S2)

relative to the first stimulus (S1). We estimated psychometric functions for each participant in
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different conditions: Time Pure, Color Pure, and for the mixed blocks, we separated the data in

trials in which participants were asked about duration (Time Mixed) and color (Color Mixed).

Each of the four experimental conditions comprised 180 trials.

We fitted cumulative normal psychometric functions for each participant and condition,

defined by four parameters: threshold, slope, lapse-rate, and guess-rate [21]. Guess rates and

lapse rates were restricted to a maximum of 0.05. Each function's four parameters were fitted

using maximum likelihood estimation as implemented in the Palamedes Toolbox [22]. To

evaluate participants' performance, we estimated the Point of Subjective Equality (PSE) and the

JND (Just Noticeable Difference). The JND is defined as the difference from 25% to 75%

estimates of the psychometric curve, divided by two. This measurement represents how much

different one stimulus has to be relative to another so that participants can notice. In contrast,

the PSE represents the magnitude difference by which the second stimulus is equally likely to be

judged as longer/shorter or redder/bluer than that of a first stimulus. We compared the JND and

PSE from the Pure Blocks to their counterparts in the Mixed Blocks using a paired t-test. Effect

sizes were estimated using Cohen's d as implemented in JASP [23].

Multivariate Pattern Analysis

To compare the pattern of EEG activity across different conditions, we used Linear Discriminant

Contrasts (LDC) [15]. We used this method to estimate distances in the time-resolved EEG

signals from different tasks and conditions for each participant. All EEG electrodes were used in

this analysis, except for the reference ones (TP9 and TP10). The LDC is a cross-validated

Mahalanobis distance and allows the interpretation of ratios between distances, as its null

distance is zero [15]. The LDC is calculated as:
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(1)𝐿𝐷𝐶(𝐸𝐸𝐺𝑗,𝑖, 𝐸𝐸𝐺𝑘,𝑖) = (𝐸𝐸𝐺𝑗,𝑖 −  𝐸𝐸𝐺𝑘,𝑖)𝐴 × 𝑝𝑆 × (𝐸𝐸𝐺𝑗,𝑖 −  𝐸𝐸𝐺𝑘,𝑖)𝐵𝑇

where EEGj,i and EEGk,i are row vectors of the means for each channel of the EEG activity in

condition k and j, respectively, for each time point ith. A and B separate data in different subsets,

representing different folds; pS is the pseudo inverse covariance matrix between EEGj,i residuals

and EEGk,i residuals from subset A. We used a shrinkage estimator to calculate the

pseudo-inverse covariance matrix pS [24-25]. Residuals were calculated by subtracting the

activity of each trial, time point, and electrode from the mean activity for that electrode at that

time point. The distance estimates are then averaged across all possible cross-validation folds.

Before estimating the LDC, data were smoothed within a 39 ms window. We used

two-fold cross-validation to compare the electrophysiological activity during different

experimental conditions. Folds were based using the blocked experimental design. For example,

to compare EEG signals from pure conditions, we used each condition's first block as one fold

and the remaining block as the other fold. The analysis was conducted at each time point (3.9

ms apart after downsampling). To evaluate the estimated distances and correct for multiple

comparisons across time, we used a mass-univariate approach. We used a permutation test

over the tmax statistic, with strong control of the familywise error rate, as suggested by Groppe

and colleagues [26]. All tests were one-sided t-tests compared with zero, and p-values were

estimated using 10000 permutations. Significance values were based on an alpha level of 5%

and we only considered significant windows ranging more than 20 ms.

To investigate how different aspects of time or color information influenced

electrophysiological activity, we used a Representational Similarity Analysis approach. LDCs

were calculated pairwise and used to create representational dissimilarity matrices (RDMs) for

different intervals or color information by condition for each time point independently. We built
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theoretical matrices that represented the distances for time or color information for different

comparisons separately. The resulting pairwise distances of the data and theoretical distances'

matrices were then entered into a simple linear regression analysis, separately by condition and

segments of the experiment (S1 or S2, onset or offset) for each time point. The data-derived

distances were dependent variables, and the theoretical distances matrices the independent

variables. The estimated coefficients were compared to zero using a similar mass univariate

approach as described above.

Results

Behavioral Results

The behavioral results (figure 1) showed that sensitivity, measured by the JND (Just Noticeable

Difference), improved when participants knew beforehand which magnitude they would judge

(Mean ± Standard error of the Mean, JNDTimePure = 0.207 ± 0.021, JNDTimeMixed = 0.259 ± 0.019,

t(20) = −3.293, p = 0.004, d = 0.719; JNDColorPure = 0.099 ± 0.015; JNDColorMixed = 0.162 ± 0.020, t(20)

= −3.309, p = 0.004, d = 0.722). There was no difference in bias, measured by the Point of

Subjective Equality between mixed and pure blocks (PSETimePure = 0.961 ± 0.024, PSETimeMixed =

1.012 ± 0.030, t(20) = −2.070, p = 0.052, d = 0.452; PSEColorPure = 1.018 ± 0.022, PSEColorMixed = 1.016

± 0.018, t(20) = 0.096, p = 0.924, d = 0.021). We assessed the goodness of fit using Tjur’s

Coefficient of Determination [27] (mean DTimePure: 0.59, range 0.23 to 0.86; mean DColorPure: 0.80,

range 0.39 to 0.98; mean DTimeMixed: 0.50, range 0.29 to 0.72; mean DColorMixed: 0.68, range 0.24 to

0.82). Our behavioral analyses showed that participants prioritized task-relevant information

when they could anticipate the task to be performed.
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Electrophysiological Results

Exposure phase: No consistent differences in EEG activity by task-goals during S1

Task-related activity: In a first analysis, we focused on how activity evoked by S1 was modulated

by the task to be executed. We aimed to investigate whether paying attention to the duration or

the color of the stimuli leads to different stimulus encoding reflected in the EEG signal. Linear

Discriminant Contrasts (LDC) were calculated comparing: i) pure conditions (Time Pure vs.

Color Pure), ii) pure versus mixed conditions (Time Pure vs. Time Mixed and Color Pure vs. Color

Mixed); and iii) between mixed conditions. The LDC was estimated from 150 ms before to

750ms after S1 onset (given that the shortest possible duration of S1 was 750 ms, this means

that all not rejected trials were used). For S1 offset, we evaluated the EEG signal from 150 ms

before S1 offset up to 400 ms (given that the shortest interval between S1 and S2 was 400 ms).

The mean distances between tasks during the exposure phase (S1) are shown in fig. 2A,

and the spatial-temporal distribution of Event-Related Potentials (ERPs) for each task and period

are shown in fig. 2B. Although there were short periods in which LDC exceeded the critical

t-value (3.5) in Color Pure vs. Color Mixed conditions, distances between tasks were in general

small and not significant. A similar pattern was observed for S1 offset, in which there were

stronger distances between pure tasks, although not significant. Additional figures of

topographies by tasks during S1 onset and at S1 offset can be found in the supplementary

material at OSF (link to OSF).

Time and color-related activity: In a second analysis, we investigated if the duration or

color of S1 modulated EEG activity. We aimed to test whether stimuli of different colors or

durations evoked different patterns of EEG activity and whether this difference was more robust

when that specific dimension was task-relevant. Color information was evaluated in the

time-resolved S1 onset signal up to 750 ms. Given that information on how much time has
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passed since S1 onset was only available at S1 offset, we evaluated time information only at S1

offset. For each participant, S1 duration (from 750 ms to 1500 ms) or its color (indexed by the C

parameter) were binned into six bins separately (around 30 trials for each time or color bins, for

each experimental condition). The mean duration or mean C for each bin was used to calculate

pairwise distances and build theoretical matrices. Pairwise LDC was calculated for each

comparison. As explained in the methods section, these resulting pairwise LDC and the

theoretical distances' matrices were then entered into a linear regression analysis. In general,

there were no consistent modulations of the EEG signal by color. For duration, we found one

small period in which coefficients were larger than zero in Time Pure blocks (critical t = 3.5029;

from 342.2 ms to 365.6 ms). The results can be seen in the Supplementary Figures at OSF (link

to OSF).

Decisional phase: Consistent differences between tasks during S2

Task-related activity: In the next step, we focused on activity evoked by S2, the comparison

stimulus. We performed the same LDC analysis to compare tasks during the second stimuli (S2

onset segments). To have a good number of trials of each condition and to have a considerable

amount of time points during S2, this analysis was performed on data from trials in which the

second stimulus lasted at least 750 ms.

For S2 onset, there was a consistent difference in the EEG signal between pure tasks

(green line in fig. 3A left, window tested = -150 ms to 750 ms; critical t = 3.3922, significant

distances from 185.9 ms to 748.4 ms). We also found differences for Time Pure and Time

Mixed (purple line in fig. 3A left, critical t = 3.3722, from 455.5 ms to 486.7 ms, from 557.0 ms to

646.9 ms) and Color Pure to Color Mixed (pink line in fig. 3A left, critical t = 3.3942, from 232.8

ms to 271.9 ms, from 299.2 ms to 502.3 ms, from 510.2 ms to 557.0 ms, and from 572.7 ms to

748.4 ms). The spatial-temporal ERPs illustrate these differences measured by LDC from these
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conditions (fig. 3B, left). As expected, no significant distance was found between mixed tasks.

In all significant comparisons, the difference was strongly driven by a centro-parietal p300 like

response present in trials in which participants have to decide on the color of S2 (mixed blocks

and pure color blocks). Additional figures of topographies by tasks during S2 onset and at S2

offset can be found in the supplementary material at OSF (link to OSF).

The same analysis was conducted for S2 offset, from 150 ms before the offset of the

stimulus to 500 ms after. Trials in which the second stimuli lasted less than 300 ms were

excluded from this analysis to reduce sensory ERPs' contamination. Again, there was a

significant distance between pure tasks (green line in fig. 3A right, window tested = -150 ms to

500 ms; critical t = 3.3770, from 174.2 to 217.2 ms, from 252.3 to 307.0 ms and from 338.3 ms

to 498.4 ms). There was also a significant distance between mixed and pure conditions (Color

Mixed and Color Pure, pink line in figure 3A right, window tested = -150 ms to 500 ms; critical t =

3.3964, from 264.1 ms to 310.9 ms, and from 357.8 ms to 490.6 ms). Differences across

conditions were strongly driven by EEG activity present in trials where participants have to

decide on the duration of S2 (mixed blocks and pure time blocks). However, contrary to the p300

like activity, these differences seem to be more concentrated in frontal-central sensors.

Task-relevant features modulate post-interval EEG activity

Decision-related activity: We examined the modulation of EEG activity as a function of the

stimulus magnitude of S2 relative to S1. An RSA approach was used to compare activity evoked

by stimuli representing different proportions in time (proportional time) or color (proportional

color) from S2 to S1, condition-wise. For time information, this analysis was performed on EEG

activity of S2 offset (from 150 ms before the offset of the stimulus to 500 ms after) since full

temporal information would be available only when the interval had elapsed. For color, this

analysis was done for S2 onset up to 750 ms (for trials longer than this duration at S2), and we
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used the relative proportional color from S2 to S1. We calculated pairwise LDCs of the EEG

signal for five possible time proportions of S2 relative to S1 (0.6, 0.8, 1.2, 1.4, 1.8), excluding the

0.2 proportion (see next) at S2 offset. Importantly, the 0.2 time proportion (in duration) was not

included, given that this condition had only very short durations (maximum of 300 ms) to avoid

false positives due to remaining evoked potentials from the onset and offset of the short

duration visual stimulus. We also calculated pairwise LDCs of the EEG signal at S2 onset for all

six possible color proportions (0.2, 0.6, 0.8, 1.2, 1.4, 1.8) for trials longer than 750 ms, thus we

analysed the results up to this time point. These proportions were used to calculate pairwise

distances and build two theoretical matrices, one relative to distances in time and one relative to

distances in color (fig. 4A). As before, these matrices were entered into simple linear regression

analyses, separately by condition, and coefficient estimates were evaluated.

As can be seen in fig. 4A (left column), we did not find a significant relation between

color information and EEG activity at S2 onset (further exploratory ERPs figures are available on

OSF).

However, for proportional time, we observed increasing coefficient estimates for

time-relevant conditions (fig. 4A, right column). The RSA showed an increasing dissimilarity for

proportional time information in the Time Pure condition (window tested = -150 ms to 500 ms;

critical t = 3.3840, significant time windows from 201.6 to 252.3 ms, and from 310.9 ms to 482.8

ms), and in the Time Mixed (window tested = -150 ms to 500 ms; critical t = 3.4491, from 213.3

ms to 264.1 ms,  and from 361.7 ms to 393.0 ms).

The modulation of EEG activity by proportional time information can be seen in fig. 4B.

Based on the RSA analysis and the spatial-temporal evoked activity of S2 offset (fig. 3B, right

column), we explored further ERPs at two different windows: from 200 ms to 300 ms and from

300 ms to 500 ms. For each of these periods, a linear regression between time proportions (0.6,

0.8, 1.2, 1.4, and 1.8) and EEG activity was performed for each participant and condition in each
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electrode and time point. As shown in these topographies (fig. 4B), these two intervals seem to

illustrate two stages of the post-interval processing. A first parietal-occipital pattern (electrodes:

P8, P6, P4, P3, P5, P7, PO8, PO4, POz, PO3, PO7, O1, Oz, O2) that has a positive correlation with

time across all conditions. A second frontal-central pattern of activity (electrodes: F1, Fz, F2,

FC1, FC2, C2, Cz, C1, CP1, CPz, CP2) shows a negative correlation between time and evoked

activity: the shorter the second stimuli is from the comparison, the higher the amplitude of this

late stage of this ERP.

To investigate further these two ERPs, we calculated the mean amplitude of the early

activity at parietal-occipital electrodes and the late activity at frontal-central electrodes and

estimated Spearman correlation coefficients separately per participant and task (fig. 5). At the

group level, Spearman's coefficients were Fisher transformed (replacing values of 1 and -1 to

0.95 and -0.95 before the transformation) and submitted to repeated-measures ANOVA. For the

early parietal-occipital activity there were no significant differences of Spearman's

coefficients(ρ) across conditions (repeated measures ANOVA: F(3,20) = 1.011 p = 0.394, η² =

0.048).

For the late frontal-central activity, we found significant differences across conditions

(F(3,20) = 30.116 p < 0.001, η² = = 0.601). Post-hoc comparisons (corrected using

Holm–Bonferroni method) showed that the late frontal-central activity related to proportional

time from the Time Pure condition is statistically different from the Color Pure (t(20) = -8.988, p

< 0.001, d = -1.961) and the Time Mixed condition (t(20) = -2.818, p = 0.02, d = -0.615), but not

from Color Mixed (t(20) = -1.964, p = 0.108, d = -0.429). Also, this late post interval activity

related to time in the Color Pure condition is different from the two mixed conditions (Time

Mixed: t(20) = 6.170, p < 0.001, d = 1.346; Color Mixed: t(20) = 7.023, p < 0.001, d = 1.533), but is

not different across mixed conditions (t(20) = 0.854, pholm = 0.397, d= 0.186).
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In general, these results suggest that the modulation of this frontal-central activity was

strongly modulated by whether time was relevant or not to the current task.

The relation between post-interval activity, time and behavior is task-dependent

To evaluate whether there is a relation between the post-interval activity and the response given

by participants, we performed a binomial regression in which the binary answer (shorter or

longer) was used as the response variable and the proportional time (5 values: 0.6, 0.8, 1.2, 1.4

and 1.8) and EEG activity residuals were explanatory variables. We performed this regression for

all conditions for the two different sets of electrodes and the two different windows after S2

offset (the same windows and electrodes explored at EEG activity topographies in figure 4B).

We calculated EEG activity residuals by subtracting the mean EEG amplitude for that specific

proportion of S2 and condition in each electrode and time point. The residuals of EEG activity

were used to minimize the correlation between proportional time and EEG activity. This allowed

us to investigate whether trial-by-trial EEG fluctuations covaried with behavior.

As expected, proportional time was a significant predictor of behavior for all

time-relevant conditions (Time Pure condition: first windows: t(20) = 11.63, p < .0001 , d = 2.54

and second windows: t(20) = 11.49, p < .0001 , d = 2.51; Time Mixed condition: first windows:

t(20) = 12.64, p < .0001 , d = 2.76 and second windows: t(20) = 12.56, p < .0001 , d = 2.74), but

not for color relevant conditions (Color Pure condition: first windows: t(20) = -0.46, p = 0.65, d =

-0.10; and second windows: t(20) = -0.48, p = 0.63, d = -0.11; Color Mixed condition: first

windows: t(20) = 0.88, p = 0.39, d = 0.19 and second windows: t(20) = 0.86, p = 0.40, d = 0.19).

Critically, the early EEG post-interval activity modulated behavior only in the Time Mixed

Condition (t(20) = 2.53, p = 0.02, d = 0.55), but not on other conditions (Color Mixed (t(20) = 1.55,

p = 0.14, d = 0.34, Time Pure (t(20) = 1.18, p = 0.25, d = 0.26, Color Pure (t(20) = 0.41, p = 0.69, d

= 0.09). On the other hand, late EEG post-interval activity was associated with temporal

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2020.08.18.256438doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256438
http://creativecommons.org/licenses/by-nc-nd/4.0/


judgements for both Time Pure (t(20) = -2.97, p = 0.01, d = -0.65) and Time Mixed (t(20) = -2.34,

p = 0.03, d = -0.51) but not for Color Mixed (t(20) = -1.67, p = 0.11, d = -0.36) nor Color Pure

(t(20) = 0.46, p = 0.65, d = 0.10).
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Discussion

In the present study, we investigated the neural correlates of temporal discrimination. To

dissociate duration-related EEG from other task-related decisions, we used multivariate

analyses to compare activity across two tasks: one in which participants had to compare the

color of two stimuli and one they had to compare their durations. Across different blocks,

participants did or did not have prior knowledge about what feature would have to be compared.

As expected, our behavioral results showed a better performance in conditions that participants

knew the feature to be compared.

Our task consisted of the encoding of duration/color information of a first stimulus and

a decision about these features in a second stimulus. Using an MVPA approach, we were able to

investigate patterns of EEG activity, without needing to select moments and groups of sensors a

priori, and compared whether and how EEG activity differed due to task-goals in these two

phases. In general, we observed that: (1) During the encoding phase, EEG activity did not differ

strongly across tasks; (2) During the decision phase, there were substantial differences in EEG

activity across tasks and how task-relevant features modulated this activity.

Our task design allowed a temporal separation of when information about each feature

was accessible to participants during the decision phase. While color information was available

at the onset of S2, information about time was fully present only at its offset. This separation

was reflected in the EEG signal, in which making decisions about color or time evoked activity at

the onset and offset of S2, respectively. When making color decisions, there was a clear p300 at

S2 onset, in agreement with proposals of this potential reflecting decision-making processes

[28-29]. Although the p300 was not strongly modulated by how different S2 was relative to S1,

this could be due to the color task being slightly easier for participants. On the other hand,

decisions about durations evoked a more robust pattern of activity in fronto-central sensors,
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only at the offset of S2. Critically, this offset activity modulation by duration was most reliable

when the temporal information was task-relevant, and weaker when it was irrelevant or only

possibly relevant.

Our findings are in partial agreement with a by Kulashekhar et al. study [2] that did not

find differences in the time-locked signal during the encoding period in MEG recordings.

However, contrary to our findings, the authors did not find differences in the time-locked signal

during the decision period. There were substantial differences between our tasks that might

explain the contrast between these findings. In their work, the color task consisted of a varying

hue that changed during the whole trial from a bluish to a reddish-purple. This was done as an

attempt to make the color and the temporal task more comparable, given that participants

would have to integrate information across the whole trial to make their color decision in a way

similar to the temporal task [1-2]. However, even with this control, it was possible that

participants could still accumulate enough color information during S2, although in different

moments across different trials [2], as suggested by the difference in reaction times between

tasks. Another crucial difference is that temporal information could be used in the color

discrimination task for participants to estimate the mean color. When evaluating the

predominant color, participants can calculate for how long each hue was presented. On our

task, color discrimination task is not time-dependent, and thus the moment in which task-related

information was made complete was clearer: at S2 onset for color and at S2 offset for time.

This allowed a more direct comparison and showed that decisions about time and color evoked

different activity patterns.

An increasing number of studies have suggested that EEG markers at the end of the

interval are correlated with temporal processing, such as the early post-interval N1P2

component [6] and the late positive component of timing [7-9]. In agreement with these findings,

we found a modulation of post intervals signals by time in EEG activity that resembled a
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parieto-occipital p200 and a later fronto-central similar to the LPC. However, only the LPC

seemed to be more strongly correlated with time and behavior.

Our results corroborate with previous findings that the LPC might be related to decisional

stages on other temporal tasks, such as temporal bisection [7,8, 10], temporal generalization [7,

11] and temporal discrimination [9,3, 12-14]. However, it is important to stress that different

studies have used the term LPC to refer to EEG activities diverse in time, topography, and

task-related modulations. While some authors have measured the LPC to the response [7, 8, 10],

others have measured it relative to the offset of the interval [3, 9, 12-14]. Additionally, different

authors have identified the LPC at prefrontal electrodes [3, 9, 11], and centro-parietal electrodes

[7, 10].

In our results, the LPC had a fronto-central distribution and was inversely correlated with

how much shorter the comparison interval was relative to the reference, in agreement with

previous studies [7, 10]. This inverse relationship between time and LPC amplitude seemed to

hold only for intervals shorter than the reference, while intervals longer than the reference had a

similar amplitude. This pattern is consistent with the proposal that a decision only needs to be

made at the offset of the interval when the duration is shorter than the reference [30].

Recent proposals have approximated temporal processing with drift-diffusion models of

decision-making [31-33]. When adapted to a temporal discrimination task like ours, these

models posit that at the offset of the interval to be judged, evidence accumulates towards one

of two thresholds. Our findings are consistent with this proposal, with the pattern of

accumulation reflected mainly on the LPC. Importantly, although the LPC had a temporal

distribution similar to other activities commonly associated with a decision, such as the p300

and the centro-parietal positivity (CPP) [28, 29], its scalp topography was more fronto-central

than the p300/CPP. Critically, as mentioned above, the LPC in our findings had a higher
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amplitude for intervals that are shorter than the reference, consistent with the proposal that this

decision process should take place only for shorter than reference intervals [31-33].

In conclusion, our results suggest that task goals strongly modulate temporal

information encoding in EEG activity. Future studies, using similar approaches, should

investigate whether and how different temporal tasks modulate this activity pattern and whether

it is present only in decisions about time, or in other forms of decisions that evolve

monotonically in time.
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Figures

Fig.1. Experimental design and behavioral results. (A) Temporal/color discrimination task. The figure
represents the time course of one trial. Before each block, a written cue would indicate if it was a ‘Time’
for Time Pure blocks, ‘Color’ for Color Pure blocks, or ‘Time/Color’ for Mixed blocks. (B) Curves show
the psychometric functions for each condition, depicting the proportion of responding ‘longer’ for Time
Pure and Time Mixed conditions (left) and responding ‘bluer’ for Color Pure and Color Mixed conditions
(right). (C) Just Noticeable Difference (JND) by condition. Faint-colored filled circles represent
individuals’ JND by condition. Lines connect JNDs for different conditions for each individual.
Sharp-colored filled circles represent the mean JNDs, and bars represent the standard error of the
mean.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2020.08.18.256438doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256438
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2. Exposure effects. (A) LDC distances between conditions for S1 onset (left) and S1 offset (right). The
green curve indicates the mean distance between pure tasks (distance between Time Pure and Color Pure).
The orange curve indicates the mean distance between mixed tasks (Time Mixed and Color Mixed). The purple
curve indicates the mean distance between Time Pure condition and Time Mixed. The pink curve indicates the
mean distance between Time Pure condition and Time Mixed. Shaded areas indicate Standard Error of the
Mean. Straight lines indicate significant windows for distances from the permutation test. (B) Spatial-temporal
ERPs for each condition from S1 onset (right) and S1 offset (left). Graphs show the mean electrical potential
between participants from a topographical organization of electrodes (anterior to posterior) in time. All
electrodes were used for plotting, except for the reference ones (TP9 and TP10).
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Fig. 3. Decisional effects. (A) LDC distances between conditions for S2 onset (left) and S2 offset (right).
Different colors indicate different comparisons. Shaded areas indicate Standard Error of the Mean. Straight lines
indicate significant windows for distances from the permutation test. (B) Spatial-temporal ERPs for each
condition from S2 onset (right) and S2 offset (left). Graphs show the mean electrical potential between
participants from a topographical organization of electrodes (anterior to posterior) in time. All electrodes were
used for plotting, except for the reference ones (TP9 and TP10).
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Fig. 4. Proportional Time and Color Information at S2 offset. (A) Coefficient estimates from RSA for relative
proportional time information at S2 offset (left) and relative proportional color information at S2 onset (right).
Matrices depict theoretical models used for RSA for time and color relative from S2 to S1. Curves show mean
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coefficient values; shaded areas indicate Standard Error of the Mean. Straight Lines below indicate significant
windows for RSA's coefficient estimates for each condition from the permutation test, represented by different
colors. (B) Event-Related Potentials for different time proportions and conditions. Topographies of coefficients (β)
values from the mass univariate regression analysis are shown for different windows. The first column represents
ERPs from the selected parietal-occipital electrodes (marked as white, P8, P6, P4, P3, P5, P7, PO8, PO4, POz, PO3,
PO7, O1, Oz, O2) in the 200ms to 300ms window (gray area). The second column represents ERPs from the
selected frontal-central electrodes (marked as white, F1, Fz, F2, FC1, FC2, C2, Cz, C1, CP1, CPz, CP2) in the 300ms
to 500ms window (gray area).
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Fig. 5. Correlation between proportional time and (A) early post-interval activity at the parietal-occipital
electrodes, and (B) late post-interval activity at frontal-central electrodes. (A) Left: Mean amplitude at
parietal-occipital electrodes (P8, P6, P4, P3, P5, P7, PO8, PO4, POz, PO3, PO7, O1, Oz, O2) in the 200ms to 300ms
window, by proportional time and task. Right: Spearman’s coefficients (ρ). (B) Right: Mean amplitude at
frontal-central electrodes (F1, Fz, F2, FC1, FC2, C2, Cz, C1, CP1, CPz, CP2) in the 300ms to 500ms window, by
proportional time and task. Right: Spearman’s coefficients (ρ). Faint-colored circles depict individual values, while
sharp-colored circles represent the mean between subjects. Bars represent the standard error of the mean.
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