
Task Distribution Based Adaptation

in Mobile Patient Monitoring Systems

Hailiang Mei



Graduation committee:

Chairman: Prof. dr. ir. Anton J. Mouthaan

Promotor: Prof. dr. ir. Hermie Hermens

Promotor: Prof. dr. ir. Boudewijn R. Haverkort

Assistant promotor: Dr. ir. Bert-Jan van Beijnum

Members:

Prof. dr. Wouter Joosen Katholieke Universiteit Leuven

Prof. dr. Johann Hurink University of Twente

Prof. dr. ir. Bart Nieuwenhuis University of Twente

Prof. dr. Miriam Vollenbroek-Hutten University of Twente

Dr. ir. Marten van Sinderen University of Twente

CTIT Ph.D.-thesis Series No. 10-173

Centre for Telematics and Information Technology

University of Twente, P.O. Box 217, NL-7500 AE Enschede

ISSN 1381-3617

ISBN 978-90-365-3026-2
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Abstract

In the past decades, telemedicine applications have been widely recognized as a key

technology to solve many problems faced by our aging society. Being part of this

technological move, Mobile Patient Monitoring Systems (MPMSs) have attracted a

great deal of attention due to its fitness on providing less intrusive and long-lasting

telemedicine services. However, similar to other applications operating in a mo-

bile environment, the performance of an MPMS is affected by context changes and

scarcity of resources, e.g., network bandwidth, battery power, and computational

power of handhelds. To address such a demand and supply mismatch problem,

we propose an adaptation mechanism for MPMSs that can adjust the assignment of

tasks across available devices at run-time. The rationale is that, at any point in time,

if one device cannot support a task for its computation or data communication de-

mands, some other devices with richer resources might be able to take over this task.

The advantage over other methods is that the user requirements are less likely to be

compromised and that distributed resources are better utilized. This thesis covers

two major research topics: the computation of a suitable task assignment and the

dynamic distribution of tasks across devices according to this new assignment at

run-time.

The first main contribution of this thesis is a set of task assignment algorithms

designed for MPMSs. We propose two graph-based polynomial-time algorithms,

which deal with the “chain-chain assignment” and the “tree-star assignment”. When

the targeted MPMS complies to such models, we recommend the use of these graph-

based algorithms since they provide an optimal solution and their computation

times are bounded. For MPMSs with a more generic topology, we propose an A*-

based task assignment algorithms that can find the optimal solutions. Furthermore,

a bounded approach is introduced for using the A*-based algorithms, which offer

near-optimal solutions, yet can finish in a bounded time. Another main contribu-
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tion is the study of a task distribution infrastructure for MPMSs. To enable system

dynamic reconfigurations and to hide the heterogeneous nature of MPMSs, a mid-

dleware level solution named MADE (Monitoring, Analysis, Decision, and Enforce-

ment) is proposed in this thesis. In particular, we model and examine the level of

service interruption caused by the dynamic reconfiguration in MPMSs. Not only

does this kind of reconfiguration cost influence the decision on whether a system re-

configuration should be executed or not, but it is also a crucial input for identifying

a “real suitable” task assignment for an MPMS to adapt.
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Chapter 1

Introduction

Mobile Patient Monitoring Systems (MPMSs) are being developed to provide high

quality healthcare services in the near future. However, the gap between the ap-

plication demands and resources still remains and may hinder this process. This

PhD thesis proposes an adaptation mechanism for MPMS based on a dynamic task

distribution approach. Through this adaptivity, an MPMS can dynamically alter its

system configuration when necessary. The ultimate goal of this adaptation mecha-

nism is to guarantee a certain quality level for delivered healthcare services despite

varying demand and resource fluctuations. This chapter is organized as follows.

Section 1.1 introduces the research background. Section 1.2 analyzes current MPMSs

and motivates our work. Section 1.3 elaborates a set of research questions and the

research approach. Section 1.4 presents the structure of this thesis.

1.1 Research Background

This section presents the research background of this thesis. First, we explain the

concepts of telemedicine and mobile healthcare. Second, we introduce one exam-

ple of medical services that can be provided by MPMSs, i.e., the epileptic seizure

detection.

1.1.1 Telemedicine and Mobile Healthcare

In the past decades, telemedicine applications have been widely recognized and ar-

gued as a key technology to address many healthcare problems faced by our society.

In [Rei96], telemedicine is defined as “the use of telecommunication technologies to

provide healthcare services across geographic, temporal, social, and cultural barri-

ers”. According to the findings in [All04], the key drivers behind the move towards

telemedicine can be summarized as follows:

• An ageing population: In Europe, by 2050, 4 in 10 people will be over 65 years

old and many of them will require extensive healthcare services [All04]. On

the other hand, the lack of human and financial resources will only become
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more prominent beyond today’s already stretched budgets. The practice of

telemedicine can help to fill this resource gap by improving the efficiency of

healthcare delivery.

• Quality of care and care delivery: Home care or “hospital at home” is the key

element for improving the quality of care for patients of all ages. This requires

that the patient’s medical condition being continuously monitored and abnor-

malities being reported to the associated healthcare professional. Telemedicine

systems provide the essential connection between patients and healthcare pro-

fessionals.

• Cost: Medical treatments are getting more expensive and the national health-

care systems in many countries become unsustainable. Therefore, it is of great

interests for governments and healthcare institutions to apply advanced In-

formation and Communication Technology (ICT) to bring down the cost of

delivering healthcare services.

• Technology: Technology, e.g., Internet and computers, has become cheaper and

easier to use. This permits the adoption of ICT based healthcare delivery (in-

cluding telemedicine) in everybody’s daily life.

Within the domain of telemedicine, the study on mobile healthcare technology

has been established as a new interdisciplinary area [IJZ04, ILP05]. In particular,

various MPMSs [JW08] are emerging along with the widespread adoption of ad-

vanced sensor and mobile technology. An MPMS acquires patient’s bio-signal infor-

mation using bio-sensors, processes these data based on medical signal processing

algorithms, distributes to a formal caregiver or a clinical decision support system,

and stores them appropriately for later use or evaluation. Main users of an MPMS

include patient, formal caregiver or other interested parties, e.g., relatives of the pa-

tient. We define the underlying computation and communication resource of MPMS

as an m-health platform. A typical example of m-health platforms consists of multiple

configurable sensors, a handheld device, a local server, a back-end server, an end-

terminal, and the communication infrastructure connecting them (Figure 1.1). On

top of the m-health platform, various telemonitoring applications can operate con-

tinuously (24 × 7 hours per week). Thus, an MPMS can be viewed as a combination

of the underlying m-health platform and several deployed telemonitoring applica-

tions. Examples of telemonitoring applications include safety-critical applications

such as trauma care, detection of life threatening ventricular arrhythmias, detec-

tion of foetal distress and premature labour [JHW+06], and detection of epileptic

seizures [THVH06]. Epileptic seizure detection is refereed through out this thesis
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Figure 1.1: An m-health platform

as the main example of telemonitoring applications, thus we will explain it in more

detail in the next section.

1.1.2 Epileptic Seizure Detection

Epilepsy is a serious chronic neurological condition characterized by recurrent un-

provoked seizures. Early detection and prediction of seizures, even for just a few

seconds, could give patients a chance to prepare and receive appropriate medical as-

sistance or advice. One existing seizure detection/prediction algorithm [THVH06]

is depicted in Figure 1.2. It operates as follows. First, the patient’s raw Electro-

Cardio Gram (ECG) signal is filtered to remove signal artifacts and environment

noise. Second, heart beats are detected in the “R-top detection” step and then Heart

Rate Increase (HRI) is calculated. A task (“HR event detection”) then detects the

specific event in heart rate changes that associates with the symptom prior to an

epileptic seizure attack. To reduce the chance of false alarms, the patient’s activity

and postural information are also measured and correlated with his heart beat infor-

mation. Epileptic seizures may happen anywhere and at any time. This requires the

detection algorithm to work 24 × 7 for providing a continuous monitoring service to

epilepsy patients. An MPMS is a well suited candidate to offer the long-lasting com-

putation and communication services. A scenario of seizure detection is illustrated

as follows [vSBM05].

Scenario, part 1: John is an epileptic patient who has been seizure-free for several years.

He wears an MPMS that monitors his health state and can give him a few seconds’ advance
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Figure 1.2: A seizure detection algorithm

warning of an upcoming seizure. When John is at home, a broadband network is available

to transfer his raw ECG and activity information to the remote monitoring center, e.g., the

back-end server in Figure 1.1. In this case, all tasks of the detection algorithm are deployed

on the back-end server and John’s raw bio-signals are stored safely. His doctor is warned if

a seizure is likely to occur. Thus John feels very safe because he knows he can get immediate

help once he has a seizure attack.

1.2 Problem Analysis

Similar to other applications operating in a mobile environment, an MPMS could be

(deeply) affected by context changes and scarcity of resources, e.g., network band-

width, battery power, and computational power of handhelds. For example, a drop

in network bandwidth due to patient’s mobility can result in transmitted bio-signal

loss or excessive delay. When performance drops below a certain level, the en-

tire MPMS may fail in responding accurately and timely to an emergency [JIT+06].

Thus, the success of an MPMS relies heavily on whether the system can provide

adequate and continuous bio-signal processing and transmission services despite

context variations.

From a technological point of view [Sat04], when a mismatch occurs between a

task resource demand and the system resource supply, there are three approaches

for implementing an adaptation mechanism to tackle it:

1. To inform the user: This is to suggest a corrective action to the user.

2. To reserve resources: This is to ask the environment to guarantee a certain level

of the availability of a resource, e.g., QoS management and reservation tech-

niques.

3. To adjust the application: This is to automatically change application task be-

havior to use less of a scarce resource, e.g., scalable video transmission over
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wireless network.

The first approach tries to avoid the mismatch by giving users a suggestion or

warning. For example, in an MPMS, we could ask a patient using a telemonitoring

application to stay near to a charging point to reduce the risk caused by draining

battery power. However, restricting user mobility in this way is far from a satisfac-

tory solution. The second approach assumes that it is possible to reserve sufficient

resources for performing a task. This is sometimes unrealistic, e.g., the drop of net-

work bandwidth could be so significant that the required data transmission rate just

cannot be met.

In this thesis, we follow the third approach, which is to adjust task behavior to

tackle the mismatch. Previously, adjusting application was often performed within

an isolated device, e.g., by a local application-specific adaptor [BFK+00]. Methods

applied in the past include data compression, discarding less important informa-

tion, and handover to a better network connection. A unique feature of MPMSs is a

distributed processing paradigm in which a set of processing tasks, e.g., the seizure

detection algorithm (Figure 1.2), is spread across a heterogeneous network. There-

fore, one possible adaptation mechanism is to explore this distributed processing

paradigm and adjust the assignment of tasks across available devices at run-time.

We refer to this mechanism as task-distribution-based adaptation mechanism. The ra-

tionale is that, at a particular point in time, if one device cannot support a task for

its computation or data communication demands, some other devices with richer

resources can take over this task. The advantage over traditional methods is that

the user requirements are less likely to be compromised and distributed resources

can be better utilized. The following scenario illustrates how an MPMS can adapt to

changing contextual factors by dynamic task distribution.

Scenario, part 2: One afternoon, John is out jogging, following his usual route through

the forest. Since there is no broadband network available in the forest, John’s bio-signals

cannot be transmitted due to insufficient network bandwidth. Therefore, some processing

tasks are reassigned from the remote server to his Personal Digital Assistant (PDA) so that

his bio-signals are processed locally. During his run, the signal processing algorithm detects

a possible imminent epileptic seizure. John is immediately warned by his Body Area Network

(BAN) and stops running. At the same time, an alarm and John’s Global Positioning System

(GPS) position are sent to the monitoring center via a narrow band connection, e.g., General

Packet Radio Service (GPRS) or Global System for Mobile communications (GSM). The

alarm triggers the monitoring service to take appropriate action. For example, depending on

the circumstances, a medical team or an informal caregiver can be dispatched to the exact

location where John is to render emergency assistance.
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1.3 Research Questions

The task-distribution-based adaptation mechanism for MPMSs works as an auto-

matic control loop that consists of the following three steps: (1) observe a mismatch

in the present system configuration of an MPMS, (2) derive a new suitable task as-

signment where tasks can be supported by the assigned resources, and (3) recon-

figure the MPMS accordingly. The need for better understanding this adaptation

mechanism leads to the following five research questions:

• RQ1: What do we require for a “suitable task assignment” in an MPMS?

For an MPMS, i.e., an m-health platform and deployed telemonitoring applications,

there are a number of possible system configurations resulting from different task

assignments. Each system configuration exhibits different performance character-

istics. In order to identify a suitable task assignment, we need to evaluate these

possible task assignments against a list of requirements. Thus, one of the first steps

in this research is to study what are the requirements of a suitable task assignment

in an MPMS.

• RQ2: What benefits can we expect from adapting an MPMS?

Before discussing the design of an adaptation mechanism, it is crucial to understand

why having this mechanism is necessary. Hence, we should present clearly how this

newly added adaptation mechanism can help to improve the usability and Quality

Of Service (QoS) of MPMSs. This further motivates our research efforts on develop-

ing the task-distribution-based adaptation mechanism.

• RQ3: How to design effective and efficient task assignment algorithms for

MPMSs?

This research question forms the focus of this thesis. The core of a task-distribution-

based adaptation mechanism is a decision-making component that can derive a

new task assignment that is more suitable under the new situation. This intelli-

gence is supported by various task assignment algorithms. By “effective”, we mean

the algorithm should produce a task assignment that suits the new situation the

most. By “efficient”, we mean, in order to compute an effective task assignment,

the algorithm should not consume too much resources, e.g., CPU time and memory

space. The efficiency requirement is crucial here because: (1) the algorithm may be

required to execute at run-time on a resource-scarce device, and (2) the computa-

tion time of this algorithm is one of the main factors that determines the agility of

task-distribution-based adaptation.
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• RQ4: How to support dynamic task distribution in MPMSs?

The majority of current MPMSs are implemented as static systems in a hard-coded

way. In order to support dynamic task distribution, it is required to enforce new

facilities and rules on current MPMSs. Thus, this thesis designs and validates new

components and protocols to enable task-distribution-based adaptation mechanisms.

• RQ5: What is the potential disruption on the telemonitoring services caused

by a dynamic task distribution and how to measure this reconfiguration cost?

Dynamic system reconfiguration often has a negative impact on the on-going ser-

vices provided by the system. This disruption is more prominent when the transfer

of task state information is required. To guarantee that the proposed task-distribution-

based adaptation mechanism does not do more harm than good, we need to under-

stand the potential service disruption caused by reconfiguration and find ways to

control the reconfiguration cost.

1.4 Thesis Structure and Credits

The rest of this thesis is structured as follows.

Chapter 2 presents the state-of-the-art in three selected fields: adaptive distributed

streaming system, task assignment algorithm, and dynamic reconfiguration. Previ-

ous research on these subjects provides fundamental concepts and knowledge, and

further motivates our work on task-distribution-based adaptation mechanism.

Chapter 3 studies the requirements and presents the high-level design of task-

distribution-based adaptation mechanism for MPMSs. The decision is made to build

the adaptation mechanism at a middleware layer. A major part of this chapter is

dedicated to the formulation of task assignment problem in MPMSs. This chapter is

based on [MBW+08, MvBBW+09].

Chapter 4 proposes and evaluates task assignment algorithms for situation with

specific topological models of the underlying system and the processing task graph.

Two methods are used in this chapter: a graph-theoretical method and a Genetic

Algorithm (GA)-based method. This chapter is based on [MW07, MPW07, PMW+07].

Chapter 5 proposes and evaluates task assignment algorithms for problem in

the most general form. A*-based task assignments are presented for two different

problem formulations. This chapter is based on [MBP+09a].

Chapter 6 presents the design of task distribution infrastructure and validates

it by means of an OSGi-based implementation. This infrastructure can support the

system reconfiguration of an MPMS by means of task distribution. This chapter is

based on [MWB+07, MBP+09b].
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Finally, chapter 7 presents the conclusion and identifies possible future work.

Table 1.1 summarizes how the chapters are organized to address the five research

questions.

Chapter RQ1 RQ2 RQ3 RQ4 RQ5

Chapter 3 × × ×

Chapter 4 ×

Chapter 5 × ×

Chapter 6 × ×

Table 1.1: A matrix denoting how the five research questions are tackled in different chapters
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Chapter 2

Literature Review

In order to perform properly in a dynamic environment, systems should adapt itself

when facing various changes in application demands and environment resources

[NSN+97, FGCB98, HBL+98, LL02]. The applied adaptation methods among others

include data compression [FGBA96], discarding less important information [WHZ01,

TcZ07], and handover to a better network [PMW+07]. While most of the research

on adaptation primarily focused on adaptation at an individual computing node

[HBL+98, LL02], some work aim at a distributed adaptation involving multiple

nodes to tackle the resource dynamics.

This chapter discusses the key technologies in three selected fields that are rele-

vant with building a dynamic task distribution support for MPMS. First, adaptive

distributed stream processing systems are discussed in the Section 2.1. Since an

MPMS can be viewed as an adaptive distributed stream processing system as well,

these earlier studied systems can present us a useful reference point when we de-

sign MPMSs. Section 2.2 reviews the research field of task assignment algorithms.

Section 2.2 reviews the research work in dynamic reconfiguration.

2.1 Adaptive Distributed Stream Processing System

In [KHH05], a number of distributed adaptation mechanisms in Mobile Ad-hoc

NETwork (MANET) are reviewed. The reported comparison focuses on four es-

sential distribution aspects in MANETs: service discovery, task allocation, remote

task communication, and task migration. Service discovery involves identifying

and locating tasks and resources available at a particular moment. Task alloca-

tion determines how the execution of a task should be activated on a set of mobile

nodes. Remote task communication covers the means for communication between

distributed tasks over a wireless communication link. Task migration means the

methods for transferring an executable task from one node to another. In this sec-

tion, we use this same comparison framework to analyze four characteristic adap-

tive distributed stream processing systems, i.e., Dacia[LP01], MediaNet [HNR03],

MobiPADS [CC03], and ACES [AJS+06].
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2.1.1 Evaluation of Four Systems

Dacia

Reported in [LP01], DACIA (Dynamic Adjustment of Component Inter-Actions)

is a framework designed to support building adaptive distributed applications in

a modular fashion. Applications implemented based on the DACIA framework

can adapt itself by dynamically loading new components, changing the way com-

ponents interact and exchange data, moving components from one node to an-

other, and replicating components across multiple nodes. It is argued that the DA-

CIA framework can support transparent run-time adaptation, i.e., users should not

notice the service disruption caused by component relocation and connection re-

establishment. The DACIA framework consists of three main entities:

• Processing and ROuting Component (PROC). PROC is the basic building

block (component) for the targeted distributed applications. It can synchro-

nize or split input data streams, and direct them alternately to multiple des-

tinations. PROCs are interconnected in multiple ways, according to certain

rules and restrictions. Since DACIA aims at streaming applications, an Remote

Procedure Call (RPC)-like invocation model is not appropriate. Thus, PROCs

communicate with each other by exchanging messages through their input

and output ports in an asynchronous message passing fashion. PROCs are

identified system-wide using a unique identifier obtained by combining the

node ID where the PROC originated and a counter maintained by the node.

When a PROC is moved to a new node, its execution state is not transferred.

However, a relocated PROC carries with it its data members, the messages

received and not handled yet, and the state of its connections. This can be

realized through, e.g., Java serialization.

• Engine. Engine is the DACIA entity at each node responsible for maintaining

the list of PROCs and their connections, migrating PROCs, establishing and

maintaining connections. The movement of a PROC is transparent to other

PROCs. It is the Engine’s responsibility to maintain the connection between

PROCs after PROC relocations: messages addressed to a relocated PROC will

be forwarded by the Engine to the PROC’s new location.

• Monitor. Monitor is the DACIA entity that monitors the application perfor-

mance, generates reconfiguration decisions, and instructs the Engines accord-

ingly. In the reported DACIA framework, the reconfiguration decision is made

by a human administrator through a command-line interface.

Based on the comparison framework, we summarize DACIA in Table 2.1.



2.1 Adaptive Distributed Stream Processing System 11

Service discovery “Monitor” can monitor the available tasks and ap-

plication performance. However, there is no sup-

port on discovering new available nodes.

Task allocation “Monitor” is specified as the entity that can inter-

pret a reconfiguration plan and “Engine” has the re-

sponsibility to execute the plan. The task allocation

decision is made manually.

Task communication The data communication between PROCs are in the

form of asynchronous message passing. Messages

addressed to a relocated PROC will be forwarded

by the Engine to the PROC’s new location.

Task migration A relocated PROC can carry its data members

through data serialization. But it is not possible to

transfer the execution states of a PROC.

Table 2.1: Analysis of DACIA

MediaNet

MediaNet [HNR03] is a distributed stream processing system designed for disaster

and combat situations, where distributed mobile sensors capture and transmit real-

time video and audio information to operators or analysis tools. In order to provide

improved QoS in those situations where resources are often limited, MediaNet is de-

signed to enable QoS adaptation for multiple users in two aspects. First, MediaNet

allows users to specify how a streaming application should adapt under overload

conditions and tries to adapt the application to maximize the user’s desire. Second,

in addition to using local adaptation, MediaNet can take a global view and adapt

the application by dividing its operations and streaming flows among distributed

network nodes. To achieve these goals, three architectural entities are defined in

MediaNet.

• Continuous Media Network (CMN). Each streaming application can be repre-

sented by a set of connected data stream processing components. The model

of this set of components is named as CMN and is a Directed Acyclic Graph

(DAG). CMN is a conceptual model and each node in CMN represents an

operation on input data streams. Some examples of these operations are data

reformatting, frame prioritizing, compression, “picture-in-picture” effects, etc.

In MediaNet, each user may provide a list of CMNs with different utility val-

ues to capture user’s desires.

• Global Scheduler. This is a global scheduling service that can receive input
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CMNs from multiple users, combine them into a single CMN, and partition

and allocate it onto various network nodes. The assignment algorithm in the

center of this global scheduling service works in two nested phases. In the

outermost phase, the algorithm examines the utility space in a binary search.

In the inner phase, the algorithm tries to find an optimal CMN assignment for

a particular utility level in an exhaustive search manner.

• Local Scheduler. After the global scheduler identifies a new CMN assignment,

it informs the decision to each local scheduler. The local scheduler at each

node further implements the streaming operations according to the received

CMN and its topological order and prescribed processing deadlines. The local

scheduler also takes the responsibilities of transferring the data streams with

other local schedulers on neighboring nodes, and monitoring and reporting

the node’s local resource usage.

Based on the comparison framework, we summarize MediaNet in Table 2.2.

Service discovery The tasks of resource and application monitoring

are performed by “Local Schedulers”. In particu-

lar, each “Local Scheduler” traces the data drop rate

at the application level, i.e., as an indicator of net-

work bandwidth changes, and periodically informs

the “Global Scheduler”. MediaNet does not support

discovering new nodes.

Task allocation Although the binary search applied during the out-

ermost phase can improve the task assignment al-

gorithm performance, the limitation is in the inner

phase where an exhaustive search is performed.

Task communication Continuous multimedia streams, e.g., audio and

video, are transferred between CMN components.

Task migration A control protocol is defined to allow old and new

configurations to run in parallel until the old config-

uration can be removed. Thus, the reconfiguration

is not performed by task migration and execution

states are also not transferred.

Table 2.2: Analysis of MediaNet
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MobiPADS

Reported in [CC03], MobiPADS (Mobile Platform for Actively Deployable Service)

is a middleware that supports context-aware mobile applications by enabling active

service deployment and reconfiguration. This design goal is very similar to the one

of our MPMSs. However, instead of a heterogeneous network, MobiPADS is de-

signed to work in a client/server environment, where the server node resides in a

wired network and the client node is a mobile device. By dynamically offloading

part of computations to the server node [GNM+03, OYL06], the system can opti-

mize the resource usage of a mobile application at the client node. Service chains

are defined as entities providing certain functionalities for applications running on

top of MobiPADS. The base unit of a service chain is named as “mobilet”, which is

explained below with a set of system components in MobiPADS:

• Mobilet: This is a re-allocable service object and a base unit that can form ser-

vice chains. Mobilets exist in pairs: a master mobilet resides at the MobiPADS

client and a slave mobilet resides at the MobiPADS server. The master mobilet

instructs the slave mobilet to share a major portion of the processing burden,

i.e., offloading the computational tasks.

• Configuration Manager: This component is responsible for negotiating the

connection between the client node and the server node. It also has a service

controller for initializing, interconnecting, and managing the mobilets.

• Service Migration Manager: This component manages the process of import-

ing and exporting mobilets between the server node and the client node. It

also cooperates with the service directory to activate, store, and keep track of

the changes made to the active mobilets.

• Service Directory: The service directory records all the known service types.

The mobilet’s are stored in a service repository, which is used for service acti-

vation and service migration.

• Event Register: The event register allows objects to register for events. Event

sources include various changes in network status, machine resources status,

and connectivity status.

• Channel Service: The channel service provides virtual channels for mobilet

pairs to communicate. Instead of opening separate TCP connections for each

message, messages are multiplexed into a single persistent TCP connection,

which then eliminates the overheads of opening new TCP connections and

avoids the slow-start effect on overall throughput.
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Two parts of MobiPADS framework were discussed intensively in [CC03]: con-

textual event model and dynamic service reconfiguration. The event model is pro-

posed to provide effective means to monitor the changes in the environment and

to inform the relevant information to all of the interested entities. This contextual

event model is referred in our work to determine the context information relevant

for MPMSs. Dynamic service reconfiguration in service chains is realized through

three steps: service deletion, service suspension, and service addition. The recon-

figuration time is both modeled mathematically and measured with experiments.

It is observed that, in MobiPADS, a relative simple reconfiguration, i.e., two times

deletions and two times additions with mobilets in the size of 5KB over a 1Mbits/s

connection, takes about 1.1 seconds when mobilet’s source code is loaded locally

and about 2 seconds when the source code is loaded remotely.

Based on the comparison framework, we summarize MobiPADS in Table 2.3.

Service discovery Service discovery is supported through the “Ser-

vice Directory” and “Event Register”. The proposed

model of context information further provides de-

tailed knowledge about the environment. Node dis-

covery is not supported.

Task allocation No task assignment algorithm is proposed. Instead,

“Configuration Manager” plans a reconfiguration

based on a set of pre-defined policies on which ser-

vice chain should be used under which situation.

Task communication All data communication between pairs of master

mobilets and slave mobilets are aggregated and

transferred through a TCP connection.

Task migration Task migration is achieved by offloading a major

portion of the processing burden from a master mo-

bilet to a slave mobilet. It is possible to share the

execution states between a mobilet pair.

Table 2.3: Analysis of MobiPADS

ACES

Presented in [AJS+06], ACES (Adaptive Control for Extreme-scale Stream process-

ing systems) targeted at the problem of extreme-scale data mining, e.g., continuous

queries over sensor data and high performance transaction processing. ACES is

a two-tiered approach for adaptive and distributed resource control. The first tier
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determines the resource assigned to Processing Elements (PEs) at each individual

node. Second tier decisions are made dynamically by the distributed nodes. At

each node, the input and output rates and the instantaneous processing rate of PEs

are adjusted dynamically with the goal of stabilizing the system in the presence of

burstiness. To support this two-tiered approach, the authors defined three architec-

tural entities.

• PE: PE is the basic building block of streaming applications. In ACES, every

PE is labeled with three variables: the average input data amount, the aver-

age output data amount, and the normalized average CPU allocation. ACES

defines a so-called “max-flow” policy to synchronize the data processing rate

when a PE’s output stream is read by multiple downstream PEs. The “max-

flow” policy is to set the output data rate of the parent PE equal to the maximal

input data rate of all downstream PEs. The rationale is to allow PEs enough

data to fully utilize their allocations despite the fact that some PEs may have

to drop certain input data frames.

• Meta Scheduler: A meta scheduler is the entity to perform the global opti-

mization such that the weighted throughput is maximized. This is achieved

by maximizing a weighted summation of all PEs’s output rate utility func-

tions, which are strictly increasing and concave. Any concave optimization

algorithm can be used for this purpose. Two constraints are taken into ac-

count. First, the combined CPU allocations of all the PEs on a node should be

less than the available CPU cycles. Second, the output rate of a PE is no less

than any input rate of its downstream PEs according to the “max-flow” policy.

• Resource Controller: The presence of burstiness, caused by relatively large

chunks of data, is very common in streaming systems. Adding buffers is

an unavoidable but sometimes expensive solution. In order to use the buffer

space wisely, a local resource controller at each node can perform some local

adjustment on the input and output rates and the instantaneous processing

rate of PEs in a distributed manner. The goal is to maintain stability of the

system, and avoid loss of processed data due to buffer overflow.

Based on the comparison framework, we summarize ACES in Table 2.4.

2.1.2 Concluding Remarks

As illustrated earlier, the current distributed adaptive systems handle the issues

like performance monitoring, task communication effectively. However, in order to

build an adaptive MPMS, there are still problems need to be addressed. First, the
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Service discovery “Resource Controller” is responsible for monitor-

ing the on-going application performance. When a

burstiness is detected, it can adjust the data trans-

mission rate in a distributed manner. Node discov-

ery is not supported.

Task allocation “Meta Scheduler” determines the PE assignment

when the applications are deployed or periodically

to support changing workload and resource avail-

ability.

Task communication The data communication between PEs are streams.

The input and output rates and the instantaneous

processing rate of PEs can be adjusted dynamically.

Task migration After PEs are initialized at each node, migration is

not supported during the application execution.

Table 2.4: Analysis of ACES

discovery of new resources, e.g., a newly joined device, is often not supported by

these adaptive systems. Thus, it is unlikely that the current adaptive systems can

fully benefit from emerged new resources. Second, although some systems, e.g.,

MediaNet and ACES, have a dedicated decision-making component to compute

the optimal system configuration, their embedded decision-making algorithms cer-

tainly have room for improvement. For example in MediaNet, an exhaustive search

is performed in the inner phase. Third, the problem of execution state transfer and

reconfiguration cost during task migration are often omitted or not sufficiently ad-

dressed. Hence, while learning the features from the current systems, we should

make sure that the lacking features to be addressed in MPMSs properly.

Centralized vs. Decentralized Approaches

As observed in the reviewed systems, an adaptation in distributed systems is carried

out by local adaptation agents at various system nodes. Although these adaptation

actions are done in a decentralized fashion, the adaptation plan can be either con-

structed at a centralized entity or composed by separate decisions that are made by

distributed entities.

The advantage of centralized approaches is clear: a centralized entity with com-

plete knowledge on the system is capable of constructing a consistent and optimal

adaptation plan. However, their drawbacks can be recognized easily too. The most

notable ones are the risk of single-point of failure and the problem of scalability.
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The decentralized approach has been used in building distributed adaptive systems,

e.g., [Smi80, BB04]. Due to the nature of decentralized approaches, these systems of-

ten do not produce global optimal plans and potentially incur significant overhead

during the negotiation process that is critical on preventing the use of inconsistent

plans [Lo88, GA90].

Our targeted MPMSs are not large-scale systems, thus the scalability is not a cru-

cial concern. Second, the risk of single point of failure can be prevented in the sys-

tem deployment, e.g., by introducing duplicated decision-making entities. Third,

the critical missions carried by MPMSs usually have a high expectation on the sys-

tem performance. Based on these, the approach selected in this thesis is a centralized

one. All four adaptive systems surveyed in this section also adopted a centralized

decision-making approach.

2.2 Task Assignment

Task assignment is an optimization problem that exists in the field of parallel com-

puting [NT93], grid computing [CDK+04, MKK+05], System-on-Chip design [HM05],

distributed database [PLS+06], and in-network processing for wireless sensor net-

works [GTE07]. Except for some special cases, finding the optimal task assignment

is a NP-hard problem [NT93]. In this section, we first try to get a better understand-

ing on this problem and then review a number of task assignment algorithms in two

categories: exact and heuristic.

2.2.1 Task Assignment vs. Task Scheduling

In various work, task assignment problem has been referred to as allocation [SWG92],

partitioning [Bok88], matching [BSBB98, Ds02] or mapping1[Bok81]. It also ap-

peared in literature on task scheduling and sometimes is regarded as a scheduling

problem [CK88, KA99]. In this thesis, we present a clear separation2 between the

problem of task assignment and the problem of task scheduling as follows.

In a distributed computing system with multiple processors3, when given an

application consisting of multiple distributable tasks, we need to take the following

two steps in order to deploy and execute the application:

1This term is sometimes used to address the combined problem of task assignment and scheduling

[EW97, BSBB98]
2A similar distinction can be found in [GTE07]
3We use the term of “processor” in this section instead of “node”. The reason is twofold. First, this is

in line with most literatures on task assignment which are originated from the field of parallel computing.

Second, the term of “node” could be easily confused with a node in a graph in this section.
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1. Assigning tasks to processors subject to certain resource limitations and con-

straints imposed by the system.

2. Determining the start time of tasks on each processor.

In the first step, we need to solve the problem of task assignment and in the sec-

ond step, it is a problem of task scheduling. In MPMSs, the member tasks process

streaming data and all start the execution once the application is activated. Thus,

scheduling is not a relevant problem in our system.

2.2.2 Models of Task Assignment

A task assignment problem can be modeled from three aspects as summarized in

[NT93]:

1. A set of networked processors and their resource characteristics - resource

model.

2. A set of tasks, their communication patterns and their demand characteristic -

task model.

3. The cost function to determine the quality of an assignment - cost model.

Resource Model

The resource model is often represented as a graph where processors are modeled as

vertices and the communication channels between processors are modeled as edges.

The detailed characteristics of this graph vary in the following dimensions:

• Heterogeneity: Some studies [YC94, IB95, LS97, Woe01] assume the resources

are homogenous, i.e., all processors and channels are identical. Other studies

are based on a more general model where processors and channels are hetero-

geneous, e.g., [Sto77, Bok88, NO91, SC90, HL92, KA98].

• Topology: Based on the observations from various systems, different topolo-

gies of processor network were studied, e.g., chain [Bok88, NO91, SC90, HL92,

YC94, IB95, Woe01, PA04], star [Bok88, IB95], tree [LS97], array [LS97], fully-

connected network [Lo88, SCS+04, UAKI06, XQ08, BR08], and arbitrary net-

work [KA98].

• Direction: So far, most work study processor networks with only symmet-

ric channels. In these networks, each channel can transfer data streams on

both directions with the same characteristic. Some work deal with asymmetric

channels and model the channel directions explicitly, e.g., in [HM05, AAH05].
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• Relaying support: Most studies assume a non-fully-connected network and do

not consider the possibility of data relaying by processors. This means that

they require two connected tasks to be assigned to either the same processor or

two adjacent processors. This property is defined as the contiguity constraint

in [Bok88]. Some work permit the existence of relaying processors in their

resource models, e.g., [Fra96, LS97].

Task Model

There are two commonly used models for representing a distributed application: the

Task Interaction Graph (TIG) and the Task Precedence Graph (TPG) [KA99]. TIG is

an undirected graph where nodes represent tasks and edges represent bi-directional

communications between two tasks. TPG is often a DAG where nodes also repre-

sent tasks and directed edges represent task precedence relationships. Based on the

observations from various systems, some specific applications can be modeled as

graphs in a special topology, e.g., a chain or a tree.

Cost Model

The following performance measures have been used to define the cost function of

task assignment:

• Abstract total cost: This is the most common measure used in task assignment

research [Sto77, LS97, KA98]. It is a combined cost of computation (caused by

task execution at processors) and communication (caused by data transmis-

sion at network channels). The goal of these task assignment algorithms is to

minimize the total cost.

• Data throughput: The overall data throughput has also been used as the ob-

jective function [ST85, Bok88, NO91, SC90, HL92, YC94, IB95, Woe01]. These

studies try to minimize the task load on the most-heavily-loaded processor

and it is sometimes refereed as minimax criterion in the literatures.

• End-to-end delay: This is the elapsed time between a specific source task re-

ceives a frame data input and a specific sink task produces the corresponding

processed result of this particular data frame. In [CNNS94], this measure is

also termed as the single data set’s response time. This measure resembles the

most important objective function in task scheduling problem, the makespan,

which is the total execution time of a schedule.

• Energy consumption: Energy consumption is a critical issue especially when

dealing with a system containing mobile nodes. Various algorithms [SCS+04,



20 2 Literature Review

AAH05, GTE07, LV07, XQ08] have been proposed to find the optimal task

assignment that minimizes the total energy consumption. In [YP05], the au-

thors argue that the focus on minimizing total energy consumption may lead

to heavy use of the most energy-effective device regardless of its remaining

energy and propose to use maximizing the system battery lifetime as the ob-

jective function.

• Reliability: Reliability is the probability that a failure will not occur on any pro-

cessor or any channel when they are used for executing an application. The

failure chance of every processor or channel depends on its accumulative ex-

ecution time, and this time is further determined by the number and the type

of tasks assigned to it. Thus, by adjusting the task assignment, the system re-

liability can be controlled. In [SWG92, Fra96], authors proposed an A*-based

algorithm to determine the optimal task assignment to maximize the reliabil-

ity.

2.2.3 Exact Approaches

In this section, several exact task assignment algorithms are reviewed. These algo-

rithms can find the optimal task assignment in polynomial-time due to some restric-

tions on the model of tasks or processors that make the problem tractable.

Two-Processor Task Assignment

Stone [Sto77] proposed a polynomial-time solution based on the Max-flow/min-cut

theorem to solve the two-processor task assignment problem: To assign an applica-

tion consisting of m interacting tasks onto two connected processors so as to mini-

mize the total communication and computation costs. While an exhaustive search

suffers a time complexity of O(2m), Stone’s solution can identify the optimal assign-

ment with a bounded time complexity of O(m3).

The model of this problem is illustrated in Figure 2.1. An application is modeled

as TIG. The edges are weighted with the communication cost. The computation cost

of executing the tasks on each processor is given in the table. The symbol of “∞”

indicates an infinite cost, which means that this task cannot be executed on the given

processor. It is assumed that the intra-processor communication cost is negligible.

Every assignment of tasks onto these two processors results in a different total cost.

For example, when task “B” is assigned to processor “N1” and all the other tasks are

assigned to processor “N2”, its total assignment cost is the sum of (1) the execution

cost at “N1”, i.e., 2, (2) the execution cost at “N2”, i.e., 10 + 4 + 3 + 2 + 4, and (3) the

communication cost between “N1” and “N2”, i.e., 6 + 8 + 12 + 3.
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Figure 2.1: Stone’s method for two-processor task assignment

The proposed solution by Stone is summarized as follows:

1. In the task graph, add two nodes “N1” (source) and “N2” (sink) that represent

two processors. Then connect these two newly added nodes with every task

node. The weight of the edge connecting to “N1” is the cost of executing the

corresponding task on “N2”, and the weight of the edge to “N2” is the cost

of executing the corresponding task on “N1”. (Such a reversed weighting is

intentional.)

2. The modified task graph exemplifies a commodity flow network. Each cut

between the source and the sink of this graph partitions the nodes into two

subsets, with “N1” and “N2” in different sets. The weight of each cut equals



22 2 Literature Review

the sum of the weights of all cutting-through edges. Due to the intentionally

assigned weights, this sum equals to the total cost of the corresponding task

assignment.

3. Now the problem of finding the optimal task assignment is transformed into

finding the cut with minimum weight (min-cut). Several graph theoretic al-

gorithms are available to solve this problem in polynomial time. A standard

“push-relabel algorithm with FIFO node selection rule” [CLRS01] can find the

“min-cut” in time O(|V |3) and a latest design [SW97] can provide a simpler

solution in time O(|V ||E| + |V |2 log |V |) . For example, as shown in Figure2.1,

the optimal assignment is to assign task “F” to “N2” and the rest to “N1”.

In the same paper, Stone tried to extend this two-processor algorithm for solv-

ing the problem on n-processor (n ≥ 3). It appears natural that the task assignment

problem on n-processor can be reduced to a number of two-processor problems, i.e.,

adding n distinguished (processor) nodes representing n processors into the task

graph and finding the min cutset corresponding to the optimal assignment. How-

ever, the result was negative. The main difficulty identified by Stone is that “it is

easy to show that a task node associated with a particular distinguished (processor)

node in a minimum n-processor cutset fails to be associated with that (processor)

node by a two-processor cut”. Although the extension towards solving n-processor

problem failed, Stone’s two-processor algorithm laid important foundation for the

later heuristic approaches [Lo88, KLZ97].

Bokhari extended Stone’s method on finding the optimal task assignment in

two-processor network with the consideration of task relocation cost [Bok79]. In

this model, each task may have different characteristic in different execution stages.

Therefore, it is plausible to relocate the task at the end of each running stage if the

gain from relocating tasks can outweigh the relocation cost.

Chain-Chain Task Assignment

In typical streaming systems, a fixed sequence of tasks is executed onto a continuous

series of data frames. For a better performance on the data throughput, it is common

to set these tasks as pipelined operations on a chain of processors. Thus, this group

of problems can be modeled as the assignment of a task-chain onto a processor-

chain as shown in Figure 2.2. The tasks and processors are heterogeneous and the

computation time of executing one data frame by every task on each processor are

known. The channels between processors are heterogeneous and the communica-

tion time of transferring one data frame exchanged between two connected tasks on

these channels are known. In order to determine the optimal task assignment with
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a minimal bottleneck processing time (thus the highest data throughput), Bokhari

proposed a polynomial time algorithm [Bok88] with the following two assignment

constraints:

• Any two adjacent tasks have to be placed on the same processor or two adja-

cent processors (the contiguity constraint).

• Every processor has to be assigned with at least one task (the full-use con-

straint).

This chain-chain task assignment algorithm works as follows:

1. Building the assignment graph: It is a layered graph that contains all informa-

tion about possible sub-assignment of tasks, and its associated computation

and communication time. As illustrated in Figure 2.2, each layer corresponds

to a processor and the label on each node corresponds with a possible task-

chain to be assigned. Given an m-task chain and an n-processor chain (m > n),

the number of nodes per layer is of the order of O(m2) and the number of

nodes in the graph is of the order of O(m2n). Each node has at most m edges

connected to it, thus the number of edges is of the order of O(m3n). Any path

connecting node “S” to node “T” corresponds to an assignment of tasks to pro-

cessors. For example, the thick path correspond to the example assignment .

It is possible to reduce the size of an assignment graph by deleting the node

which reflects an invalid assignment, e.g., against local memory limit, and the

edges incident on it.

2. Labelling the edge with the associated computation and communication time:

In layer k, each edge pointing downwards from node “< i, j >” is first weighted

with the time required for processor k to process tasks i through j on one data

frame. (Intra-processor communication time is negligible.) Then, to the weight

on the edge from “< i, j >” in layer k to “< j + 1, l >” in layer k + 1, a com-

munication time between task j and j + 1 over the link between processor k

and k+1 is added. The value of this communication time thus represents both

the data frame size transmitted between task j and j + 1 and the speed of link

between processor k and k + 1.

3. Finding the minimal bottlenecked path: A variant of Dijkstra’s shortest path

algorithm can be used to find the optimal bottleneck path in O(m4n2) time.

Based on the special layered feature of the assignment graph, a faster proce-

dure based on dynamic programming is also proposed. This improved proce-

dure visits each edge in the assignment graph exactly once, thus it has a time

complexity of O(m3n).
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Figure 2.2: Chain-chain

Three improved algorithms were further reported on this chain-chain assign-

ment problem with the same model on task, resource and cost and the same conti-

guity constraint. In [NO91], the authors modified the assignment graph proposed

by Bokhari by adding (n − 2) extra layers to reduce the number of edges (and thus

the algorithm’s time complexity) from O(m3n) to O(m2n). Independently, a dy-

namic programming based procedure is proposed in [HL92] to find the optimal

assignment with the same time complexity of O(m2n). This procedure works by

recursively computing the bottleneck processing time fik when the first i tasks are

optimally assigned to the first k processors. In [SC90], the authors proposed a new

method to construct the task assignment graph with the number of edges of the

order of O(m2n) but relax the full-use constraint.

When the model is further constrained to homogeneous processors and chan-

nels, even faster algorithms can be found. In [IB95], a “probe” function is proposed

to check the possibility of assigning a task-chain to a processor chain while keep-
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ing the bottleneck processing time below a given value. Then using a binary search

on a set of testing values, the authors can identify the optimal task assignment.

The overall time complexity of this “probe” based approach is O(mn log m). Based

on dynamic programming, an O(mn log m) algorithm is reported in [YC94] and an

O(mn) algorithm is reported in [Woe01]. Based on a model that further abstracts the

problem as partitioning a sequence of m real numbers into n intervals optimally, a

O(m(m − n)) algorithm is reported in [OM95].

Tree-Star Task Assignment

In [Bok88], the problem of assigning a tree-structured task graph onto a single-host,

multiple-satellite processor network is studied. This is a model motivated by many

industrial process monitoring systems where information from multiple sensors are

continuously collected by small satellite processors and transmitted to a large cen-

tral host for processing. The resource model is represented as a star (Figure 2.3)

where all the satellite processors and the channels connecting satellite processors to

the host processor are homogeneous. The task model is represented as a tree where

the data flows from leaf tasks to the root task. The goal of this task assignment

problem is similar to the chain-chain problem: to find the task assignment that has

the highest data throughput, thus to minimize the largest execution time among all

satellites and host. An example of this tree-star task assignment is shown in Fig-

ure 2.3.

Furthermore, the following four assignment constraints are enforced:

• The root task is always assigned to the host processor.

• Once a task is assigned to a satellite, all its children tasks are also assigned to

the same satellite.

• If two tasks are assigned to a satellite, their lowest common ancestor is also

assigned to the same satellite.

• There are as many satellites as there are leaf tasks and we may choose not to

use them if the optimal assignment indicates so.

To address this specific problem, Bokhari introduced a method of constructing

an assignment graph based on the task tree. This generated assignment graph can

represent all the eligible tree-star task assignments. Every edge of the assignment

graph is further labeled with two weights that contain the information about the po-

tential work load on both the host and satellite processors. A path search algorithm

(SB algorithm) with a time complexity of O(m2 log m) is proposed for searching the
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Figure 2.3: A tree-structured program partitioned over a host-satellite system

optimal path based on these two weights. This optimal path indicates the optimal

task assignment of tree-star problem.

A*-based Task Assignment Algorithms

In case of smaller problem size, it is computationally feasible to find the optimal

task assignment by A*-based exact algorithms. Shen and Tsai [ST85] are the first

researchers to apply A*-algorithm in the task assignment problem in distributed

systems. In their paper, a task assignment is defined as a weak homomorphism

between a task graph and process graph, i.e., two adjacent tasks are required to

be assigned to either the same processor or two adjacent processors. The objective

of their algorithm is to minimize the largest total computation and communication

costs at a processor. In [RCD91], authors proposed an ordering method to create

a better task search order that can reduce the number of A* search tree nodes and

thus increase the algorithm speed and reduce the memory requirement. In [KA98],

authors proposed two techniques to further enhance the A*-algorithm performance.

The first technique is to generate a random task assignment and use the correspond-

ing cost as a pruning criterion to reduce the size of search tree. The second technique



2.2 Task Assignment 27

is to divide the search tree into parts and speed up the algorithm by parallel process-

ing. While all these existing work on A*-algorithm use an abstract communication

and computation cost as the performance measure, we are interested in multiple

performance measures that are more relevant to the user and network context in

MPMS.

2.2.4 Heuristic Approaches

A more general form of task assignment problems deals with a n-processor network

(n > 2). The topological model of this processor network is a fully-connected graph

with symmetric channels. This group of task assignment problems has been identi-

fied as NP-hard [NT93]. In this section, we review several heuristic approaches on

this general form.

Lo’s “Grab-Lump-Greedy” Algorithm

Lo [Lo88] introduced a heuristic algorithm of assigning a task graph (containing m

tasks and e edges) to a n-processor (n ≥ 3) network. The assignment cost is mod-

eled as the total execution and communication cost. The task model is TIG and it is

assumed that the tasks’ execution costs and communication costs are known. The

resource model is heterogeneous processors, homogenous and symmetric channels,

fully-connected processors resulted by a systemwide message-passing mechanism,

and no relaying processor. This heuristic algorithm consists of three phases: (1)

Grab, (2) Lump, and (3) Greedy. The complexity of these three phases are O(m2ne log m),

O(m2e log m), and O(e)/O(m2n) respectively. The “Grab” phase follows a “divide

and conquer” approach and works as follows:

1. In each round, we select one particular processor and combine all the other

processors as a “super processor”. Now, this is transformed to a 2-processor

task assignment problem (Figure 2.1) and a “min-cut” algorithm can be ap-

plied to find an optimal assignment. This routine is repeated to every pro-

cessor and this is to let each processor grab its favorite tasks. In [Lo88], it is

proved that no two processors will grab the same task.

2. When all the processors are visited, a round of “Grab” is finished. Then, the

task graph is reconfigured by removing all the tasks assigned in this round

and updating the remaining tasks’ execution cost.

3. The “Grab” phase continues until no further assignment of tasks occurs in a

round.
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After the “Grab” phase, if there is no task left, the current assignment is the

optimal n-processor assignment. Otherwise, the “Lump” phase is called to check

whether it is worthwhile to assign all remaining tasks to a single processor. If the

“Lump” phase still can not assign all the tasks, the “Greedy” phase is invoked. In

the “Greedy” phase, the remaining tasks which have high communication cost in

between are merged into clusters and these task clusters are assigned to the cheapest

processor.

Lo further introduced the concept of “interference cost”, which reflects the penalty

of assigning too many tasks to the same processor and archives an even load among

processors.

“Max Edge” Algorithm

In [KLZ97], a heuristic algorithm, i.e., “Max Edge”, with a time complexity of O(m(m+

n)2) is proposed. This algorithm works in the same problem model but is reported

to outperform Lo’s “Grab-Lump-Greedy” algorithm. This algorithm works as fol-

lows:

1. Transform the given TIG (G) and n available processors into a graph termed

as G′: A special node for each processor is added into G and is connected

with every task nodes with an edge and the edge weight c
′

ik is defined a c
′

ik =
∑n

p=1 eip − eik

n − 1
, where eip is the computation cost of task i at processor p. c

′

ik

can be viewed as the average computation cost of assigning task i to processors

except for k. In G′, the weights of the edges (c
′

ij) connecting two task i and j

nodes remain the same as G.

2. Iteratively remove the edge with largest weight c
′

ij in G′(V ′, E′).

• If i and j are tasks, then group them as a new task k and set c
′

kl =

max{c
′

il, c
′

jl},∀l ∈ V ′.

• If i is task and j is processor, allocate i to j, delete edges (i, p),∀p ∈ P .

And set c
′

lj = max{c
′

li, c
′

lj},∀l ∈ T .

This step is repeated until all tasks are allocated.

The complexity of this “Max Edge” algorithm is O(m(m + n)2): the repeat loop is

executed at most O(m + n) times and the edge weight updates in each loop require

O(m(m + n)).
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“Multilevel” Algorithm

In [UAKI06], a set of “Multilevel Clustering” heuristic algorithms are proposed.

This algorithm works in the same problem model as Lo’s “Grab-Lump-Greedy” al-

gorithm and Kopidakis’s “Max Edge” algorithm. The multilevel approach has been

used successfully in graph and hypergraph partitioning problems [HL95, KK95,

KK96]. There are three phases in the multilevel approach: clustering, initial solution,

and refinement. In graph and hypergraph partitioning problems, the processors are

assumed to be homogeneous. Therefore, the multilevel techniques developed for

the graph partitioning problems can not be applied directly to task assignment prob-

lems. To tackle the task assignment problem, the proposed “Multilevel Clustering”

heuristic algorithms work as follows:

1. Clustering phase. In this phase, the given TIG G = G0 = (T0, E0) is trans-

formed into a sequence of smaller TIGs G1 = (T1, E1), ..., Gk = (Tk, Ek),

where |T0| > |T1| > ... > |Tk|. This is to cluster disjoint subsets of tasks of

Gl at level l into supertasks such that each supertask in Gl forms a single task

of Gl+1 at level l + 1. The execution times of each task of Gl + 1 is the sum

of execution times of its member tasks in Gl. The edge set of each supertask

is set to the weighted union of the edge sets of its member tasks, where the

internal edges are deleted. Four different clustering algorithms are proposed

in [UAKI06]. Among them the “Matching-based clustering” offers the best

performance and it works as follows: For each edge (i, j) in Gl, a clustering

profit for tasks i and j is calculated. Then, the edges with nonnegative cluster-

ing profits are visited in the descending order of clustering profits. If both of

the incident tasks are not clustered with other tasks yet, then these two tasks

are merged into a cluster. At the end, unmatched tasks remain as singleton

clusters for the next level.

2. Initial solution. At the coarsest level, a simple initial assignment algorithm is

used to assign every task or supertask to it’s favorite processor according to

some assignment criteria.

3. Refinement (Uncoarsening phase). At each level l, assignment Al found on the

task set Tl is refined to an assignment Al−1 on the task set Tl−1: The member

tasks of each supertask in Gl−1 are assigned to the processor to which their

clustered supertask is assigned in Gl. In the decomposed Tl−1, a maximum

reassignment gain, the gain of assigning task i to other processors instead of

the already determined one, for each task i ∈ Tl−1 are calculated. By calcu-

lating, updating and sorting these reassignment gains for each task for several

rounds. The task assignment Al−1 on the task set Tl−1 at level l can be refined.
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Alsalih Algorithm

In [AAH05], the resource model is represented as two matrixes: (1) CommT con-

tains estimated communication delay among processors, where CommT (i, j) is the

amount of time required for one unit of data to travel from pi to pj . (2) CommE gives

estimated communication energy consumption among processors, where CommE(i, j)

is the amount of energy consumed by one unit of data to travel from pi to pj . This

includes the energy consumed by source device, destination device and overhearing

devices.

Although it is not mentioned explicitly in [AAH05], this proposed matrix repre-

sentation of processor network can model the directions in processor networks and

support the existence of relaying devices. However, it has the following limitations:

• The proposed matrix representation can model the reachability between de-

vices, i.e., it is actually a “transitive closure” matrix of the processor network.

However, there are potentially multiple directed paths connecting two de-

vices. The current matrix representation can not model and distinguish these

paths.

• In [AAH05], “total consumed energy” is used as the objective function. The

represented energy consumption information, i.e., CommE, only contains the

total energy consumed by one unit of data to travel from pi to pj . But it can

not model the energy consumption on each device that is involved in the data

transmission between pi to pj . The lacking of this energy consumption infor-

mation on each device makes it is impossible to estimate the system battery

lifetime.

• A heuristic list scheduling algorithm is applied for task assignment: in every

step during the task assignment phase, a new task is examined and assigned

only to a processor that can satisfy the reachability constraint. However, due

to its greedy approach, this algorithm can not guarantee to produce an optimal

assignment.

2.2.5 Concluding Remarks

Earlier work [NT93] has shown that finding the optimal task assignment is an NP-

hard problem except for several special cases. Our problem in MPMS belongs to

the same category and we expect that only restricted forms of the general problem

can be solved in polynomial time. Furthermore, the task assignment problems dealt

within MPMSs to be more complicated given the following facts:
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• The underlying heterogeneous m-health platform has to be considered as a

general graph with asymmetric links while most existing models consider a

fully connected network with homogenous symmetric connections [MCC04,

AJS+06, UAKI06]. Hence, one additional requirement of task assignment al-

gorithms in MPMSs is that the direction of data flow in task graph should be

aligned with the direction in the m-health platform.

• The possibility of relaying data stream by devices in an MPMS further compli-

cates the representation of a task assignment. In existing work, relaying data

stream has not been a main concern since fully connected networks are often

considered. In [Fra96, LS97], authors considered the possibility of relaying

data streams by devices. However, the performance estimation of a task as-

signment does not include the extra resource consumption caused by relayed

data streams at a relaying device.

• The majority of the existing algorithms are proposed based on a rather ab-

stract cost model, e.g., the total computation cost and communication cost

[Lo88, NT93, UAKI06]. However, when dealing with a real application in

an MPMS, we are interested in a measure that reflects more realistically the

system performance. In other words, we should look at measures at a much

detailed level, e.g., measures related with energy consumption, delays, etc.

2.3 Dynamic Reconfiguration

Dynamic reconfiguration is a technique to improve service availability since it can

update a running system without taking it off-line [Weg03]. This technique has

been applied to deal with changing user requirements [GN06] and underlying re-

sources [AJS+06] in distributed streaming systems. In [ZL07], the existing dynamic

reconfiguration mechanisms are divided into two main categories, stateful (general

purpose) mechanisms and stateless (particular scenario) mechanisms.

Stateful mechanisms can preserve the system correctness without the knowledge

of detailed application information. As defined earlier [Gou99, Weg03], a system

after a reconfiguration is said to be correct if:

1. The system satisfies its structural integrity requirements,

2. The entities in the system are in mutually consistent states, and

3. the application state invariants hold.



32 2 Literature Review

The latter two conditions require the dynamic reconfiguration mechanism to wait or

drive the system into a consistent/safe state and then transfer states between com-

ponents. Blocking the relevant components or communication paths are commonly

used for this purpose. Unavoidably, these operations will have their impact on the

system and its provided services.

On the other hand, Stateless mechanisms are designed for some particular ap-

plication scenarios and can be viewed as optimized versions of stateful mechanisms

[HNR03, ZL07]. The reconfiguration algorithm [Mit00] designed for the pipe-and-

filter architectural style is a good representative example. The main assumption in

those systems is that components are stateless. Therefore, the state transfer is not

required and the impact on service performance can be minimized.

In this section, we review four stateful mechanisms and two stateless mecha-

nisms. One of the stateful mechanisms is regarded as the fundamental work in this

field [KM85] and thus is reviewed separately first.

2.3.1 Fundamentals

Prior to the seminal work of Kramer and Magee [KM85, KM90] on dynamic recon-

figuration, the underlying support mechanisms for change (software component

creation, binding, and deletion) in distributed systems are readily available, but lit-

tle studies are carried out on how such dynamic changes should be specified, man-

aged, and controlled. To tackle this challenge, Kramer and Magee present a model of

dynamic change management (Figure 2.4) which separates the concerns over spec-

ifying system structural changes from the concerns over building application com-

ponents that can support these changes. This separation of concerns permits the

formulation of general rules for defining change specifications without the need to

consider application state, and the specification of application component behaviors

without prior knowledge of the actual structural changes.

Kramer and Magee defined a set of objectives (requirements) of a dynamic recon-

figuration management system. The principles embodied by these objectives have

influenced a number of subsequent work, e.g., [Mit00, Weg03].

• Changes should be specified in terms of system structure. In software system that

is constructed in a modular way, e.g., a component-based system, it is both

possible and pragmatic to support the change at a module/component level.

Attempting to perform changes at an even lower programming level is im-

practical due to the level of detail involved, whereas the change at the more

loosely-coupled component level can be easily understood and controlled.

• Change specifications should be declarative. It is the configuration management
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Figure 2.4: The fundamental model of dynamic change management

system, not the user, who should determine the specific ordering of actual

change operations applied to the system, i.e., how the change will be carried

out.

• Change specifications should be independent of the algorithms, protocols and states of

the application. In order to provide generic configuration management, there

must be no dependencies between the application and the configuration man-

agement system.

• Changes should leave the system in a consistent state. A consistent state is infor-

mally defined as one from which the application may continue normal pro-

cessing, rather than progressing towards an error state. The application may

of course pass through inconsistent states during the progress of a configura-

tion change.

• Changes should minimize the disruption to the application system. Many systems

cannot be shut down or disrupted for extended periods, so changes should be

executed promptly and only interfere with those parts of the system actually

affected by the change.

2.3.2 Stateful Mechanisms

Goudarzi

In [Gou99], Goudarzi identified several problems existed in Kramer and Magee’s

approach:

• It places a heavy burden on the application programmer who must write all

nodes of the system such that they respond correctly to the command to drive
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to a passive state. Kramer and Magees approach thus requires substantial

effort from the application developer to make the system reconfigurable, and

it also requires expertise from the application developer.

• Since all entities capable of initiating a transaction directly or indirectly with

an affected entity have to be passive to reach the safe state, even small re-

configurations involving a few nodes result in substantial disruptions to the

system.

• The re-establishment of application invariants is done through routines em-

bedded in nodes.

To address the above problems, new approaches driving the system to consis-

tency preserving state are studied in [Gou99]. An important assumption for these

new approaches is that a component can initiate a transaction unilaterally or as a

result of receiving a request. Components do not serve more than one transaction

at a time. This is to say that they will not initiate a new transaction or serve any

other requests until the transaction they are currently engaged in terminates. Thus,

it is possible to drive a component to a quiescent state by blocking its execution

when no transactions are being served. Nevertheless, the class of distributed sys-

tems to which this alternative can be applied is much more limited than in the case

of Kramer and Magee, since components in this approach cannot treat more than

one transaction simultaneously.

The simplest way to drive a system into a safe state for reconfiguration is to en-

force the blocked state on all the components in the system: A coordinator node

sends a “block” message to all the components in the system. As components block

they send an “acknowledge” message back to the coordinator. Once all the com-

ponents in the system have sent the acknowledge message we can be sure that all

the components in the system are blocked. The strategy of the algorithm is to pre-

vent new transactions from starting, and also to allow already started transactions

to terminate. The drawback of the basic algorithm is obvious: all components in

the system are blocked. An improved approach is further proposed by Goudarzi to

enforce the blocking only on components that are directly affected by the reconfig-

uration.

Warren

Warren and his co-authors proposed a dynamic reconfiguration model and reconfig-

uration algorithms in [WS96, War00]. The algorithm works as follows. Firstly, any

component that has a communication path directed to the component to be changed

is blocked, causing any requests issued to be queued. The component to be changed
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Figure 2.5: component reconfiguration studied by Warren

is blocked using an abort block, which prevents this component from initiating new

requests of other components. All that remains is to wait for interactions that were

already in progress to complete. Once this happens, the component can be safely

replaced. Once the change is made, the blocks on the connected components are

released and the queued requests are sent to the changed component. For example,

let’s consider a system configuration shown in Figure 2.5, where the three compo-

nents communicate asynchronously. To replace component “C”, component “A”

and component “B” would both be blocked with a queueing block and component

“C” would be blocked with an abort block. After waiting for component “C” to fin-

ish processing ongoing requests that may have been received from component “A”

and component “B”, component “C” can be replaced. component “A” and compo-

nent “B” would then be unblocked and the system would continue functioning with

the new component in place.

Wegdam

The development on component-based software engineering, e.g., CORBA [AVSN01],

enterprise JavaBean [RAC+02], have enabled efficient implementation of dynamic

reconfiguration systems. In [Weg03], a dynamic reconfiguration mechanism is pro-

posed for component-based middleware. This mechanism considers reconfigurable

software components that can be manipulated through a set of reconfiguration op-

erations, i.e., creation, replacement, migration and removal. Wegdam presented

the mechanism according to the three reconfiguration correctness requirements ex-

plained earlier.

• Structural integrity

To preserve interface compatibility after a reconfiguration, a new version of a com-

ponent must satisfy the original interfaces. Based on Liskov’s substitution principle

[Lis87], in order to satisfy the original interfaces, the new interfaces have to imple-
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ment the original interfaces, or implement interfaces that are subtypes of the original

interfaces.

• Mutually consistent states

Wegdam proposed a mechanism to drive the system to the safe state that uses in-

formation obtained from the middleware platform at run-time and freezes system

interactions on-demand. This mechanism consists of three stages:

1. Drive the system to the safe state by deferring invocations that would prevent

the system from reaching the safe state.

2. Detect that the safe state has been reached.

3. Apply reconfiguration.

The emphasis of this mechanism is on the first stage, i.e., reaching the safe state.

Wegdam defines the term affected component to denote a reconfigurable component

that is replaced, migrated or removed as a consequence of reconfiguration. The sys-

tem is said to be in the reconfiguration safe state when every affected component is

not currently involved in invocations and will not be involved in invocations until

after reconfiguration. Depending on the way of handling invocations, components

are divided into active and reactive components. Reactive components only initi-

ate requests that are causally related to incoming requests. Active components can

initiate requests that do not depend on incoming requests, e.g., they may initiate

requests as a result of the elapsing of a time-out. In order to reach the safe state, the

main tricks of Wegdam’s mechanism are (1) to isolate all the affected components

by selectively queueing up requests addressing to them and (2) to force all active

affected components exhibit reactive behavior.

• Application state invariants

Each reconfigurable component must provide operations to inspect and modify its

state. It is the responsibility of component developers to decide on which kind of

state information should be exposed by these state-access operations. In general, a

component should provide operations to inspect and modify its control and data

state. These operations are only invoked in the safe state.

2.3.3 Stateless Mechanisms

Mitchell

Mitchell [Mit00] describes an algorithm for dynamic replacing some components in

a data processing chain (pipe and filter architectural style). This algorithm essen-

tially functions by running partial chains in parallel and switching between these
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chains at appropriate time to maintain a consistent flow of data emerging from the

last component in the chain. For example in a chain of components “A”, “B”, “C”

connecting in sequence, to replace “B” in the chain with “N”, the first step would be

to create the replacement component “N”. “A” would then be disconnected from

“B” and then connected to “N” so that it can begin processing the output of “A”.

Then, once “C” exhausts the output from “B”, it’s input is switched to the output of

“N”, resulting in the new chain shown. However, this algorithm has one important

applicability constraint which is that the system it reconfigures must conform to the

pipe and filter architectural style. Additionally, it requires that components in the

system be stateless, as it carries out reconfiguration actions with no concern for state

transfer and that components communicate asynchronously. Whilst the case where

components are stateless is a rare one, this algorithm serves as an example of an

optimization for a particular domain or application type.

Zhao and Li

In [ZL07], the dynamic reconfiguration is studied based on a stateless RDF (Re-

configurable Data Flow) model, which is an extension to the conceptual Data Flow

model [JHM04]. The fundamental elements of the RDF model are process, data-store,

and data-path. A process is a software component that takes data through its in-

put ports and produces data through its output ports. A data-store is a random-

accessible data container which can buffer the transmitted data flow. A data-path is

a connector between a process and a data-store through which data can flow. The

elementary reconfiguration operations of the RDF model include addition and re-

moval of processes, data-stores or data-paths. In a restricted segment formed by

affected elements, the first process is the entrance process, the last one is the exit pro-

cess, and between them are in-between processes. A coordinator entity plays a central

role in the dynamic reconfiguration: it receives the specification of new configura-

tion from the administrator, calculates the role of every process, and coordinates the

reconfiguration steps. The proposed dynamic reconfiguration involves five rounds

of propagating the control messages through the restricted segment to set up a new

route, remove the old route and redirect the data flows.

2.3.4 Concluding Remarks

In the dynamic reconfiguration of MPMS, the execution states are often required to

be preserved in the target configuration since they might contain important medical

information derived from earlier received inputs. Thus, we focus on the reconfigu-

ration supporting states transfer, i.e., stateful reconfiguration in this thesis. In other

words, we aim at a stateful mechanism for dynamic task distribution.
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Chapter 3

Support Dynamic Task Distribution

This chapter presents the design overview of our proposed adaptation mechanism

for MPMSs based on a dynamic task distribution approach. Section 3.1 studies sev-

eral concepts in system performance and summarizes a set of requirements of this

adaptation mechanism. Section 3.2 proposes a new middleware to support dynamic

task distribution in an MPMS. Section 3.3 formulates the problem of task assignment

in an MPMS.

3.1 Needs for Adaptation

In this section, we discuss the cause of adaptation and the requirements of suitable

task assignments in an MPMS. In particular, the first research question (RQ1) raised

in Section 1.3 will be answered.

3.1.1 Instant Mismatch vs. Potential Mismatch

A mismatch between task demands and resource supplies is the initial cause for

system adaptation [Sat04]. We distinguish between two kinds of mismatch: instant

mismatch and potential mismatch. An instant mismatch occurs when any required

task, currently, cannot be supported by its associated system resource. All software

programs require some features to be present on a computer system before it can be

used by the computer. For example, in the DMTF standards1, this requirement is

termed as to “pass the checks”. These features include both software and hardware

resources. The examples of software resources are the operating system, certain

library files, etc. The examples of hardware resources are CPU, Memory, special

peripheral devices, present communication channels, etc. An instant mismatch is

often caused by an unexpected change in those resources, e.g. a user roamed from

an area with a Wireless Local Area Network (WLAN) coverage to a GPRS only area.

A potential mismatch is identified when any required task, in a foreseeable future,

cannot be supported by its associated system resource. For example, removal of one

1http://www.dmtf.org/standards/cim/cim schema v214
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library file in the future will disable the operation of some dependent programs,

or a particular hardware part will shut down in a few minutes due to the quick

draining of battery power. For the purpose of “looking into the future”, some input

or prediction about user’s future behavior [WvHK06, GHB08] is often required in

order to identify a potential mismatch.

3.1.2 Performance Assurance and Optimization

From the perspective of the end user of an MPMS, e.g., the doctor (Figure 1.1), the

following performance measures are influential to the success of the m-health mis-

sion. This listing does not mean to cover all important performance characteristics

of an MPMS. For example, data security and privacy are also critical factors but not

the main concern in this thesis.

1. “End-to-end delay ”: defined as the elapsed time between an MPMS receiving

an unit of patient’s bio-signal information and sending the corresponding pro-

cessed result of this particular data unit to the decision point. This parameter

indicates how quickly the bio-signal and processed result can be delivered by

the MPMS. The faster the processed result is delivered, the higher the chance

that the patient’s emergency situation can be dealt with in time, e.g. in the

time critical epilepsy detection application (Section 1.1.2).

2. “System battery lifetime ”: defined as the minimum battery lifetime of all the

battery powered devices in the system. An MPMS consists of multiple battery

powered devices. If the remaining battery energy of a device is lower than a

threshold level, it cannot perform bio-signal processing operations any more

and the entire MPMS will fail. This parameter indicates the maximum operat-

ing time of the MPMS.

3. “Availability level ”: consider here to be the steady state availability as defined

in [MFT00], that is the application mean uptime divided by the sum of the

mean uptime and mean downtime. We assume that failures may potentially

occur during either data processing or communication.

Besides the required match between each individual task and its hosting system

resource, a user may also have his own specific performance requirements over dif-

ferent measures when the system is treated as a whole. Some of these are (possibly

joint) assurance requirements, e.g. “the end-to-end delay should be smaller than 2

seconds” or “the availability level should be higher than 97%”. Some are optimiza-

tion requirements with a single objective, e.g. “the system battery lifetime should be

maximized”. Some are the combinations of previous two, e.g. “the system battery
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lifetime should be maximized while its end-to-end delay should be smaller than 3

seconds”

3.1.3 Suitable Task Assignments

The core of the studied adaptation mechanism is a decision-making component.

This component can derive a new task assignment that is more suitable under the

new situation. Based on the above discussions, we summarize the requirements

of suitable task assignments into four levels ranging from elementary to advanced.

They are:

• Level 1: The task assignment should not cause any instant mismatch, i.e., an

MPMS configured according to this task assignment should be able to operate

in the present situation.

• Level 2: Including the level 1 requirement, the task assignment should not

cause any potential mismatch, i.e., an MPMS configured according to this task

assignment should be able to operate in the present situation and can still op-

erate in a foreseeable future. To have a completely correct prediction about

future situation is never possible, hence, the requirement on operating in a

foreseeable future should be interpreted as doing so with a sufficiently high

possibility.

• Level 3: Including the level 2 requirement, the task assignment should result

in an MPMS that satisfies all performance assurance requirements.

• Level 4: Including the level 3 requirement, the task assignment should result

in an MPMS that satisfies the performance optimization requirement.

We admit that it is not always possible for an MPMS to find a suitable task as-

signment given its particular context and the user defined requirements. Under this

circumstance, other system adaptation means have to be applied, e.g., to inform the

user about the mismatch situation.

3.2 MADE - A Middleware Level Solution

In an m-health platform, there exists multiple devices with different hardware archi-

tecture and software operating system. Hence, the studied adaptation mechanism

should work in such heterogeneous environment. A middleware level solution is

introduced in this section. Middleware refers to a distributed platform of interfaces

and services that reside “between” the application and the operating system and
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aim to facilitate the development, deployment and management of distributed ap-

plications [Cou00]. The main function of middleware is to hide the heterogeneity

of distributed systems, e.g. communication networks, different programming lan-

guages and operating systems, and provide a standard set of interfaces and services

which distributed applications can assume present.

3.2.1 MADE Overview

The main goal of the studied adaptation mechanism is to adapt the configuration

of an MPMS. Thus, as illustrated in the scenario in Section 1.1.2, an MPMS can re-

spond to context changes by properly redistributing the bio-signal processing tasks

at runtime. To achieve this, we propose a middleware providing four main function-

alities: Monitoring, Analysis, Decision and Enforcement (MADE) shown in Figure 3.1.

The monitoring phase includes registration of the telemonitoring application, de-

vice discovery, resource monitoring, and context discovery/registration. The analy-

sis phase takes the information about an MPMS as input and runs a task assignment

algorithm to provide suitable task assignments (candidate assignments) that can sat-

isfy user’s requirements. The task assignment algorithm can be executed based on

a predetermined schedule or triggered by a “significant” context change, e.g. a user

moves out of an area of WLAN coverage into a GPRS only area. The decision phase

compares the candidate assignments with the current system configuration to de-

termine the actual cost of reconfiguration. If the reconfiguration cost can be covered

by the enhanced performance of the new configuration, a new target assignment

plan will be identified and executed. The Enforcement phase controls the MPMS to

adjust its configuration according to the new target assignment.

3.2.2 Architectural Components

The system architecture of the Monitoring, Analysis, Decision, Enforcement (MADE)

middleware is depicted in Figure 3.2. In this architecture, we identify two kinds of

software components, i.e., a Coordinator and a set of Facilitators. These software

components form an overlay network on top of the m-health platform. Each device

that is part of the m-health platform should deploy locally a “Facilitator” which in

turn represents its hosting device in MADE: it monitors and reports its local con-

text information (about the hosting device) to the Coordinator and receives control

commands from the Coordinator to dynamically reconfigure its hosted tasks. The

core of Coordinator is a task assignment algorithm that computes the suitable task

assignments. This computation is performed based on the required telemonitor-

ing application and the current context information about the m-health platform,
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Figure 3.1: MADE - a middleware layer that support task distribution based adaptation

e.g. available devices and their connectivity, each device’s CPU load and remain-

ing battery energy, etc. After a target task assignment is identified, the Coordinator

translates the difference between the current system configuration and the new tar-

get task assignment into a reconfiguration plan. Then the Coordinator controls the

hosting Facilitators to deploy the target task assignment by means of task distribu-

tion.

3.2.3 Behavior

After presenting the high-level system architecture, we explain here how MADE

should support dynamic task distribution. We do so by illustrating its runtime be-

havior as depicted in Figure 3.3. The initial step of MADE is “context monitoring”.

In this step, MADE monitors resource usage and context changes in the m-health

platform and can be informed about a significant performance variation occurred in

the telemonitoring application. Once a mismatch (between application demand and

resource supply) is detected, MADE moves to a new step where it can compute a set

of new candidate assignments. These new candidate assignments should satisfy the

“level 3” requirement defined in Section 3.1. In the next step, MADE identifies the

new target assignment from this set of candidate assignments. This decision is made

by taking into consideration of both the performance enhancement and the cost of
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Figure 3.2: The system architecture of MADE middleware

reconfiguration. We will elaborate more on these “Analysis” and “Decision” behav-

iors in Section 3.3.3, in Chapter 4 and Chapter 5. The discussion on reconfiguration

cost takes place in Chapter 6.

It is possible that in some situation the new target assignment just does not exist,

i.e., there is no single task assignment can satisfy all the requirements. If this hap-

pens, we can conclude that the MPMS can not be adapted by redistributing tasks to

survive the new situation. In this case, MADE should move to a step where users

can be informed and other adaptation mechanisms can be called if there are any.

If a new target assignment is successfully determined, MADE will move to the

steps of “Calculate a reconfiguration plan” and “Reconfigure the MPMS” subse-

quently. We will elaborate more on these “Enforcement” behaviors in Chapter 6.

Upon completing a successful reconfiguration, MADE moves back to the initial

“context monitoring” step and waits until next mismatch is observed. If the recon-

figuration fails due to some unexpected errors, e.g., an involved device suddenly

becomes unavailable, the on-going reconfiguration has to be terminated and the

system has to be rollback to the last working configuration. If the rollback is done

without compromising the system consistency, MADE should move back to the ini-

tial “context monitoring” step and may start calculating new task assignments again

with new context information. If the rollback fails, the MPMS may suffer a potential

system consistency and jeopardize the supported telemonitoring application. Thus,

we should alert users with this situation and let it be handled properly.
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Yes
No

Figure 3.3: The behavior overview of MADE middleware
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3.3 Decision-Making Core of MADE

The core of the MADE middleware layer is the “analysis” phase where a task as-

signment algorithm is required to compute the optimal task assignment given the

application/system context information. In this section, we discuss this task assign-

ment problem in more detail and present the mathematical model of the problem.

3.3.1 Definitions

We model a telemonitoring application as a partial order of bio-signal streaming

tasks. We distinguish two types of streaming tasks: stream processing tasks and

stream transmission tasks. Processing tasks typically perform some operation on

the bio-signal stream such as filtering, transcoding, or other m-health relevant data

processing operations. Each processing task consumes one or more data streams

and produces one or more data streams. Transmission tasks are the glue between

processing tasks and have two functions: firstly they allow us to easily characterize

properties of the data stream (for instance the data rate of the stream); and secondly,

as we will see later, transmission tasks can be mapped onto a communication path

(such a path may be a stream pipe within a device, or it may be a networked path

between different devices) and hence support the modeling of relaying devices.

A telemonitoring application consisting of distributed tasks can be defined as a

tuple of (P, T, At, LP , LT ), where P is a set of stream processing tasks {p1, p2, ...}, T

is a set of transmission tasks {t1, t2, ...}, At is a set of precedence relations between

tasks, such that At ⊆ P × T ∪ T × P , LP is a set of labels over each processing task,

LT is a set of labels over each transmission task. LP and LT indicate the resource

demand of processing tasks and transmission tasks respectively, a detailed overview

is presented in Table 3.1. The structure {P, T, At} is a DAG termed as a task DAG.

An example of a task DAG is presented in Figure 3.4.

Similarly, an m-health platform is defined as a tuple of (D, C,Ar, LD, LC), where

D is a set of device resources {d1, d2, ...}, C is a set of (communication) channel re-

sources {c1, c2, ...}, Ar is a set of precedence relations between resources, such that

Ar ⊆ D × C ∪ C × D, LD is a set of labels over each device resource, LC is a set

of labels over each channel resource. LD and LC model the resource supply of de-

vices and channels respectively, further details are given in Table 3.1. The structure

{D, C,Ar} is a DAG termed as a resource DAG, an example of such a graph is shown

in Figure 3.4.

We assume that device resources in an m-health platform can relay bio-signal

data streams, therefore a transmission task may be assigned to a directed communi-

cation path. A communication path is a directed path in the resource DAG starting
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at di and ending at dj . In general, there exist multiple paths connecting di to dj .

When i = j, it is a special communication path within device di and can be denoted

the same as the device. We define CP as the set of all communication paths in a

resource DAG.

Figure 3.4: Model of task assignment in an MPMS. Due to the fixed association of sensory

tasks with sensors, “p1” has to be assigned to “d1” and “p5” has to be assigned to “d5”.

Both task DAG and resource DAG are bipartite graphs in which each type of

vertex forms a disjoint set, i.e., there is no connection between two vertices of the

same type. In a task DAG, each transmission task has exactly one predecessor pro-

cessing task and one successor processing task, while a processing task may have

multiple predecessor transmission tasks and multiple successor transmission tasks.

A similar property holds for a resource DAG. Regarding the semantics of the task

DAG, we have one important assumption: whenever a processing task has multi-

ple predecessor transmission tasks, the processing task can only function when the

bio-signals from all these predecessor transmission tasks are received and synchro-

nized. In effect, we only allow bio-signal forking and joining with AND semantics

(as known from workflow theory).
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Notation Belongs to Meaning

nP
pi

LP the number of operations per time unit at process-

ing task pi

rrpi
LP the required resource of processing task pi, e.g. min-

imum required CPU, minimum required memory,

etc

deP
pi,dj

LP the processing delay of processing task pi to process

one data unit at device dj

avpi,dj
LP the availability of running processing task pi at de-

vice dj

nT
ti

LT the number of transmitted data units per time unit

of transmission task ti
deT

ti,dj
LT the transmission delay of transmission task ti to

transfer one data unit at device dj

deT
ti,cj

LT the transmission delay of transmission task ti to

transfer one data unit at channel cj

avti,cj
LT the availability of performing transmission task ti at

channel cj

avti,dj
LT the availability of performing transmission task ti at

device dj

eTO
di

LD the total available battery energy at device di
2

eHK
di

LD the energy consumption rate of the “housekeeping”

activities at device di, e.g. display, network interface

cards, etc

eop
di

LD the energy consumption of one operation at device

di

rsdi
LD the available resource supply at device di , e.g. CPU

type, available memory, etc

bwci
LC the available bandwidth at channel ci

loci
LC the current load information (influenced by other

users in the same channel) at channel ci

eS
ci

LC the energy consumption of sending one data unit

through channel ci

eR
ci

LC the energy consumption of receiving one data unit

through channel ci

Table 3.1: Notation for labeling
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Notation Meaning

P a set of processing tasks

T a set of transmission tasks

D a set of device resources

C a set of (communication) channel resources

TP a set of task paths {tpi} in the task DAG

CP a set of communication paths {cpi} in the resource

DAG

At a set of precedence relations between tasks

Ar a set of precedence relations between resources

Ωde the measure of end-to-end delay

Ωav the measure of availability

Ωli the measure of battery lifetime

maxΩde the maximal allowed system end-to-end delay

minΩav the minimal required system availability

minΩli the minimal required system battery lifetime

Nrc the number of required candidate task assignments

deT
ti,cpj

the transmission delay of transmission task ti to

transfer one data unit through communication path

cpj

eP
di

the energy consumption rate of data processing at

device di

eS
di

the energy consumption rate of sending data stream

at device di

eR
di

the energy consumption rate of receiving data

stream at device di

Table 3.2: List of Symbols (exclude labeling symbols)

Based on the two graph models, a task assignment (Φ) is a mapping of tasks

onto resources such that: each processing task is mapped to one device and each

transmission task is mapped to one communication path:

Φ : P
⋃

T→D
⋃

CP (3.1)

where CP = {x1, x2, ..., xn} is a sequence, x1 ∈ D, xn ∈ D, and ∀1 ≤ i < n :<

xi, xi+1 >∈ Ar.
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3.3.2 Performance Estimation for A Given Task Assignment

In this section, we present the computational model to estimate system performance,

i.e., end-to-end delay, system battery lifetime and availability, given a particular as-

signment.

End-to-End Delay

In a task DAG, we define task path as a directed path connecting two tasks. The en-

tire set of task paths is denoted as TP . Every task path, tpi, is an ordered sequence of

processing tasks and transmission tasks, and the mth task can be denoted as tpi(m).

Upon different task assignment Φ, tpi exhibits a different end-to-end delay, i.e., the

summation of processing delay and transmission delay along the path:

Ωde(tpi) =
∑

tpi(m)∈P

deP
tpi(m),Φ(tpi(m)) +

∑

tpi(m)∈T

deT
tpi(m),Φ(tpi(m)) (3.2)

where deP
pi,dj

is defined as the processing delay for processing task pi to process

one unit of biosignal data at device dj , deT
ti,cpj

is defined as the transmission delay

of transmission task ti to transfer one unit of biosignal data over a communication

path cpj . deT
ti,cpj

can be computed by adding up the transmission delay occurred at

device dj (deT
ti,dj

), and at channel cj (deT
ti,cj

). The values of deP
pi,dj

, deT
ti,dj

and deT
ti,cj

can be estimated from the profiling information, e.g. nP
pi

, nT
ti

, bwci
and loci

based on

the knowledge from real measurements, e.g. in [XRC+02].

The end-to-end delay of a given assignment Φ, Ωde(Φ), is then defined as the

maximum of all task paths’ end-to-end delays:

Ωde(Φ) = max({Ωde(tpi)|tpi ∈ TP}) (3.3)

Battery Lifetime

Based on the power consumption model of a mobile device [RZ07], we estimate the

battery life time for a specific device di, Ωli(di), as:

Ωli(di) =
eTO
di

eHK
di

+ eP
di

+ eR
di

+ eS
di

(3.4)

Where eTO
di

is the total available battery energy at device di, eHK
di

is energy consump-

tion rate of device’s “housekeeping” activities, e.g. display and network interface
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cards; eP
di

is the energy consumption rate by local data processing; eR
di

is the energy

consumption rate for receiving data stream; eS
di

is the energy consumption rate for

sending data stream. Given a particular task assignment Φ, the latter three parame-

ters can be calculated as:

eP
di

= eop
di

∑

{pj |Φ(pj)=di}

nP
pj

(3.5)

eS
di

=
∑

(di,cj)∈Ar

(eS
cj

∑

cj∈Φ(tk)

nT
tk

) (3.6)

eR
di

=
∑

(cj ,di)∈Ar

(eR
cj

∑

cj∈Φ(tk)

nT
tk

) (3.7)

Once the battery lifetime of all devices are estimated, the minimum of all device’s

battery lifetime determines the overall system lifetime for a given assignment:

Ωli(Φ) = min({Ωli(di)|di ∈ D}) (3.8)

Availability

Since we assume only AND semantics in task DAG, the availability of the applica-

tion depends on all the included tasks: The application performs successfully only

when all tasks perform successfully. Therefore, the application availability level for

a given assignment Φ, Ωav(Φ), can be computed as:

Ωav(Φ) =
∏

pi∈P

avpi,Φ(pi) ·
∏

ti∈T,α∈Φ(ti)

avti,α (3.9)

3.3.3 Problem Formulation

We formulate the task assignment problem in MPMS as follows:

• Given: (1) a telemonitoring application (P, T, At, LP , LT ); (2) an m-health

platform (D, C,Ar, LD, LC); (3) Three performance evaluation function Ωli,

Ωde and Ωav for task assignments.

• Goal: To find a number of candidate assignments {Φcan
m |m = 1, 2, Nrc} among

all possible task assignments such that the value of Ω(Φcan
m ) are optimized.

One special case is that when Nrc = 1. Thus, the goal is to find the optimal

task assignment Φopt.

• Subject to: four assignment constraints namely type constraint, local constraint,

assurance constraint and reachability constraint.
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The type constraint specifies that each processing task must be mapped to one

and only one device resource and each transmission task must be mapped to one

and only one communication path, hence:

∀pi ∈ P : Φ(pi) ∈ D, ∀ti ∈ T : Φ(ti) ∈ CP (3.10)

The local constraint comprises two parts:

1. For every processing task pi in P , its assigned device must be able to provide

the task’s required resources. In MPMSs, this is often the case when a sensing

task has to be associated with a device with a supporting sensor, e.g. the fixed

associations illustrated in Figure 3.4. That is, assuming we have a Boolean

function satisfy(rr, rs) to evaluate whether a required resource, rr, can be

satisfied by a resource supply, rs. Thus:

∀pi ∈ P : satisfy(rrpi
, rsΦ(pi)) = true (3.11)

2. For each channel resource, the total assigned transmission tasks must not ex-

ceed its offered bandwidth:

∀ci ∈ C :
∑

ci∈Φ(ti)

nT
ti

< bwci
(3.12)

For an MPMS, we denote the minimum required availability as minΩav, the min-

imum required system battery lifetime as minΩli, and the maximum allowed system

end-to-end delay as maxΩde. Thus the assurance constraint for selecting candidate

task assignments is defined as:

Ωde(Φcan
m ) < maxΩde,Ωav(Φcan

m ) > minΩav, Ωli(Φcan
m ) > minΩli (3.13)

The reachability constraint specifies that for each processing task pi assigned to de-

vice resource Φ(pi), its predecessor transmission task must be assigned to a commu-

nication path ending at Φ(pi), and its successor transmission task must be assigned

to communication path starting at Φ(pi).

3.3.4 Towards A General Solution

For some MPMSs, the task assignment problem can be modeled with reduced com-

plexity. In particular, we studied the general “DAG-DAG” task assignment problem

with three specializations: (1) “DAG-tree” where the telemonitoring application is

a DAG and the m-health platform has a tree structure; (2) “chain-chain” where

both the monitoring application and the m-health platform exhibit as a chain; (3)
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Figure 3.5: Taxonomy of task assignment problems

“tree-star” where the telemonitoring application has a tree structure and m-health

platform has a star structure. Subtype-supertype relations exist among these four

types as shown in Figure 3.5, e.g. “DAG-DAG” is a supertype of “DAG-tree”. The

solutions available for the supertype problem can be also applied to the subtype

problem. However, due to the specialization of the subtype problem, there may

exist more efficient algorithms to compute solutions for the subtype problem. In

Chapter 4, two of these specializations are studied: “chain-chain” and “tree-star”.

For readers who are interested in the problem of “DAG-tree”, we refer them to

[MvBBW+09]. The general form of the problem, i.e., “DAG-DAG”, is discussed

in Chapter 5.
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Chapter 4

Task Assignment Algorithms in Special
Topologies

The general model of task assignment problem in an MPMS has been formulated

in the previous chapter. Additional flexibility is achieved in task assignments by

allowing transmission tasks to be assigned to a communication path, hence, relaying

devices can be supported by our model. In its general form, task assignment is a

well known NP-hard problem. However, as some earlier work have proven (c.f.

Section 2.2.3), in case the task model and resource model obey certain topology and

the cost model satisfies certain property, dynamic programming methods can be

applied and polynomial-time algorithms may exist to solve these specific problems.

In this chapter, we study two specific forms of task assignment problems, namely

“chain-chain assignment” and “tree-star assignment”. Both forms have been stud-

ied earlier by various researchers (c.f. Section 2.2.3). Our study differs from those

earlier work in the following three aspects:

1. Our resource model permits the existence of relaying devices.

2. Our cost model is different, i.e., minimizing the end-to-end delay is used as

the objective function.

3. A number of assignment constraints are relaxed or modified to reflect the spe-

cific features of MPMSs.

4.1 Chain-Chain Assignment - Exact Algorithm

When both the telemonitoring application and the m-health platform form a chain

as illustrated in Figure 4.1 and the goal of the task assignment is to find an opti-

mal assignment with minimal end-to-end delay, polynomial-time task assignment

algorithm exists. For example, given the task assignment shown in Figure 4.1, the

end-to-end delay can be computed as follows based on the labeling defined in Ta-
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ble 3.1:

Ωde = deP
p1,d1

+ deP
p2,d1

+ deP
p3,d3

+ deP
p4,d3

+ deP
p5,d3

+ deP
p6,d4

+deT
t1,d1

+ deT
t2,c1

+ deT
t2,d2

+ deT
t2,c2

+deT
t3,d3

+ deT
t4,d3

+ deT
t5,c3

(4.1)

Figure 4.1: An example of assigning a directed task chain containing 6 tasks onto a directed

resource chain containing 4 devices

4.1.1 Formulation

In a chain-chain assignment, once two adjacent processing tasks are assigned to de-

vice resources, there is only one communication path connecting these two devices

to which the transmission task in between can be assigned. This permits a sim-

pler formulation of the chain-chain assignment problem by neglecting transmission

tasks and channels that is presented as follows:

• Given: (1) a directed task chain containing m processing tasks ({pi}) increas-

ingly indexed by i ∈ {1, 2, . . . ,m}; (2) a directed device chain containing n

devices ({dj}) increasingly indexed by j ∈ {1, 2, . . . , n}; (3) An end-to-end

delay evaluation function Ωde for task assignments.

• Goal: To find the optimal task assignment Φopt among all possible task assign-

ment functions {Φ1, Φ2, ...} such that:

∀i ∈ {1, 2, ...} : Ωde(Φopt) ≤ Ωde(Φi) (4.2)

• Subject to: the following reachability constraint and local constraint.

The reachability constraint is that for every pair of task pi and task pi′ : if i < i′, then

Φ(i)≤Φ(i′). This constraint therefore reflects the alignment of directions of the two

chains.
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The local constraint is that for every task pi, its hosting device Φ(i) should satisfy

the task pi’s system requirement and user preference.

4.1.2 Solution

Given a task chain (of m processing tasks) to a device chain (of n devices) assign-

ment problem, an efficient polynomial-time assignment algorithm is illustrated in

this section. We first build a layered assignment graph consisting mn + 2 vertices

(Figure 4.2). In this graph, each row (excluding vertices “< S >” and “< T >”)

corresponds to a processing task and each column corresponds to a device. The

label “< pi, dj >” on each vertex corresponds to a possible (i.e., satisfying the

local constraint) assignment of processing task pi to device dj . A vertex labeled

< pi, dj > is connected by directed edges to all vertices < pi+1, dj >, < pi+1, dj+1 >

. . . < pi+1, dn > in the layer below. Directed edges connect from a source vertex

“< S >” to all vertices in the first layer and connect from all vertices in the last layer

to the sink vertex “< T >”. Therefore, any directed path connecting vertex “< S >”

to “< T >” corresponds to an assignment of processing tasks to devices fulfilling

the reachability constraint. For example, the thick path in Figure 4.2 represents the

assignment shown in Figure 4.1).

Each edge of this layered assignment graph is then labeled with a weight rep-

resenting the sum of processing delays and transmission delays such that: (1) the

edges connecting vertex “< S >” to all vertices in the first layer have a weight

0; (2) For layer i (except for the last layer), each edge connecting from the vertex

“< pi, dj >” to the vertex “< pi+1, d + k >” is labeled with a weight equal to the

sum of processing delay (the delay for pi to process one data unit at device resource

dj , i.e deP
pi,dj

) and the transmission delay (the delay caused the transmission over

the channels connecting di and dk); (3) Each edge connecting the vertices in the last

layer, “< pm, dj >”,to the vertex “< T >” is labeled with a weight that equals the

processing delay of deP
pm,dj

. As an illustration, the weights associated with the thick

edges are shown in Figure 4.2.

In the last step, by applying a shortest-path search algorithm (e.g., Dijkstra’s al-

gorithm), we can identify a shortest path connecting “< S >” and “< T >” in this

weighted graph that corresponds to the optimal assignment. The space complex-

ity (defined as the number of vertices in the assignment graph) of this method is

O(mn). Thus the time complexity of shortest-path search step is O(m2n2) if the Di-

jkstra algorithm with the simplest implementation is used. If a labeling method as

proposed by Bokhari [Bok88] is used for search, the time complexity can be reduced

to O(mn).

It is easy to convert our method to tackle the assignment problem with the con-
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Figure 4.2: A chain of 6 processing tasks to a chain of 4 devices assignment graph

tiguity constraint, i.e., the original problem studied by Bokhari [Bok88]. We only

need to remove all the edges which are “cutting a vertical edge”, i.e., the possible

assignment of two adjacent processing tasks onto two non-adjacent devices and all

the edges connecting vertices “< S >” and “< T >” except for the ones connect-

ing “< p1, d1 >” and “< pm, dn >”. This simplified assignment graph is shown in

Figure 4.3. Following the same weighting and search steps as the ones in the as-

signment problem without contiguity constraint, the optimal assignment with the

contiguity constraint can be obtained by searching the shortest path in this new as-

signment graph. This new assignment graph has some sort of relation with some

earlier proposed assignment graphs [SC90, HL92, Yeh05]: the vertex matrix in our

solution is the transpose of the vertex matrix proposed earlier that represents the

search space of task assignments with the contiguity constraint.

4.1.3 Performance Analysis

We implemented this proposed chain-chain assignment algorithm in Java to get

more in-depth understanding. This is, to the best our knowledge, the first experi-

mental study based on series of theoretical studies on chain-chain assignment prob-
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Figure 4.3: A chain of 6 processing tasks to a chain of 4 devices assignment graph with the

contiguity constraint

lem reviewed earlier (c.f. Section 2.2.3). We recorded the CPU time of two compu-

tation steps in this method: the weighted assignment graph construction and the

shortest-path search. For the “search” step, we use an open source library 1. This

library implements the Dijkstra shortest-path algorithm with the support of a real

priority queue that keeps the order at all time. Thus the time complexity of the

search is O(|E| log |V |), where |E| is the number of edges and |V | is the number of

vertices. The program is tested on a Windows XP machine with Intel Pentium 2.4G

CPU and 1.5G RAM. Different pairs of m and n, e.g., (20,10), (40,10), . . . , (100,20), are

tested and the number of assignment graph nodes ranges from 200 to 2000. Both the

assignment with the contiguity constraint and the assignment without it are tested

(Figure 4.4).

One observation we made is that the “construction” step is more time consuming

than the actual “search” step in most cases, which suggests that the evaluation on

this kind of graph-based method should be based on the time complexity of the en-

tire method instead of the “search” step only [Bok88, SC90, NO91]. Furthermore, we

also implemented a program based on the optimal assignment approach proposed

1http://rollerjm.free.fr/pro/graphs.html
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time (milliseconds)
Figure 4.4: The CPU time of searching for the optimal chain-chain assignment

by Bokhari [Bok88] and tested against our method with the contiguity constraint.

Again, the CPU time of graph construction and shortest-path search are measured

separately. Several pairs of m and n are tested and the results are shown in Ta-

ble 4.1. Due to the reduced time and space complexity, our method outperforms the

original Bokhari’s method. For an assignment problem of m processing tasks and

n devices, our method requires an assignment graph with mn + 2 vertices compare

to a Bokhari’s graph with O(m2n) vertices2. For example, for a “60-task-30-device”

assignment problem, an assignment graph with 14952 vertices will be constructed

if Bokhari’s method is used. Because we use the adjacent matrix to represent the

graph, which implies heavy memory requirement, the program runs out of memory

before the completion. In our new method, the assignment graph has 1802 vertices

and an optimal assignment can be found.

4.2 Chain-Chain Assignment - Genetic Algorithm (GA)

Although the proposed algorithm in the previous section is more efficient compared

to earlier work, it still suffer a major drawback on memory consumption. This

graph-based algorithm requires an assignment graph to be constructed first which

2To be more precise, it is (m − n + 2) ∗ (m − n + 1) ∗ (n − 2)/2 + (m − n + 1) ∗ 2 + 2
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Setting CPU time of Bokhari’s method CPU time of the new method

m n Const Search Total Const Search Total

20 10 94 63 157 16 47 63

30 10 392 172 564 31 47 78

40 10 985 673 1658 32 46 78

30 20 250 94 344 63 78 141

40 20 1017 563 1570 94 78 172

50 20 3996 2690 6686 141 94 235

40 30 360 156 516 172 94 266

50 30 2112 939 3051 235 109 344

60 30 Out of

memory

Out of

mem-

ory

Out of

mem-

ory

282 110 392

Table 4.1: CPU time (in millisecond) comparison between Bokhari’s original method and our

proposed method on chain-chain assignment with the contiguity constraint

becomes a bottleneck of the solution (Table 4.1). This motivates us to investigate

further on this problem and seek for a solution that is more friendly on memory

consumption. In this section, we propose a GA based solution that indeed provides

such an advantage. Genetic algorithms have been applied earlier on the task assign-

ment problem [WSRM97, CFR99]. However these GA solutions proposed earlier

can not be applied to our task assignment problem in their original form because

the different underlying resource model. The resource model in [WSRM97, CFR99]

is a fully connected network with symmetric links while we consider a chain-like

structure in this section. Furthermore, as compared to [WSRM97, CFR99], our ap-

proach benefits from the simpler chromosome encoding (c.f. Section 4.2.2) and less

processing intensive crossover and mutation operations.

4.2.1 General Design

GA is a proven heuristic technique based on the “survival of the fittest” paradigm

to find the sub-optimal solution in the large search spaces. The first thing to do for

applying GA is to encode possible solutions as a set of strings (chromosomes). Each

chromosome represents one solution to the problem. There exist several encoding

techniques such as binary encoding, number encoding, character encoding and tree

encoding. A set of chromosomes is referred to as a population.

The second step is the generation of an initial population. Usually, the chromo-
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somes which constitute an initial population are generated purely randomly. How-

ever, to take care of the reachability constraint, we introduce certain ordering in the

generation of the initial population. For the second step, the initial population repre-

sents the current generation. The number of chromosomes constituting the current

generation is known as the population size. The population size affects the quality

of the sub-optimal solution obtained.

The third step is to evaluate the fitness of every chromosome in the current gen-

eration. A specific objective function representing the utility of the chromosome

determines the fitness of the chromosome. In our case, the objective function evalu-

ates the end-to-end delay and a smaller delay represents higher fitness.

The fourth step is applying the selection operator to form the next generation.

The selection operator allows the GA to take biased decisions favoring the chromo-

somes having higher fitness value over the chromosomes having the lower fitness

value. As a consequence, each chromosome is removed or selected (one or multiple

times) based on its fitness value. There exist several selection techniques. We choose

the roulette wheel selection technique for our experimentation. In this technique,

the probability of the selection of a chromosome in the next is directly proportional

to its fitness value. The population size of the next generation typically remains

the same as the initial generation. After selecting the next generation, the current

generation is replaced by the initial generation.

Selection is followed by applying the crossover operator over the current gen-

eration. With some probability (referred to as crossover probability), some pairs

of chromosomes (referred to as parent chromosomes) are selected from the current

population and some of their corresponding components are exchanged at the ran-

domly chosen crossover point(s) to form two new chromosomes (referred to as chil-

dren chromosomes). There are also various types of the crossover involving single

point crossover and multi-point crossover. We choose the single point crossover

in this thesis. The crossover operator eventually leads to combining the best sub-

sequence of one chromosome with that of the other chromosome to evolve better

new chromosomes.

After applying the crossover operator, each element of the chromosome in the

population is applied a mutation operator with some probability (referred to as mu-

tation probability). The mutation operator transforms a chromosome into another

chromosome and this may eventually lead to a better chromosome which could not

be obtained just by applying the crossover operator.

Later, the sequence of steps (referred to as one iteration) involving selection,

crossover and mutation operators is repeated until a certain stopping criterion is

met. A stopping criterion may involve various forms such as running the GA for

a certain number of iterations, or when no improvement in the maximum fitness is
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Figure 4.5: A possible chromosome representing the placement of tasks to the devices where

m = 6 and n = 4

obtained after a predefined number of iterations. We adopt the later criterion in our

experiments.

These steps of a typical GA are shown in Algorithm 1.

Algorithm 1 The steps in a typical GA

1: initial population generation

2: evaluation

3: while stopping criteria not met do

4: selection

5: crossover

6: mutation

7: evaluation

8: end while

4.2.2 Solution

Our approaches for the initial population generation, crossover and mutation op-

erators are inspired by the knowledge-augmented genetic algorithm presented in

[CFR99] where certain knowledge of the problem is taken into account to generate

the initial population and perform crossover and mutation operations.

Encoding of A Solution

We encode a chromosome (chi) as a sequence of numbers. The length of the chromo-

some is the same as the total number of processing tasks, i.e., m. The first number

of the chromosome represents the index of the device on which the first task will

execute; the second number represents the index of the device on which the second

task will execute and so on. The jth number in a chromosome chi is denoted as

chi(j). Thus, every chromosome represents a different assignment. An example of

the chromosome corresponding to the assignment illustrated in Figure 4.1 is given

in Figure 4.5.
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Initial Population Generation

The search space consists of all the task to device mappings following the reachabil-

ity constraint and closed by the chromosome assigning each task to the first device

and the chromosome assigning each task to the last (nth) device. In order to satisfy

the reachability constraint, we introduced certain ordering in the initial population

using three approaches described as the following to possibly include the members

covering a large area of the search space.

1. In the first approach, we assign the first task to a random device with an index

of j < n. The subsequent tasks are assigned the device whose index is equal to

or greater than the device’s index associated with the previous task. However,

this approach leads to the generation of the chromosomes where most of the

tasks are assigned to device n.

2. The second approach chooses a task b < m randomly and assigns a random

device r < n to it. The tasks indexed by i < b (i > b) are assigned to the device

whose index is equal to or less (greater) than the index of the device assigned

to the next (previous) task. This approach generates initial populations with

more variety than the first approach. However, this approach leads to the

generation of the chromosomes where most of the tasks are assigned device

indexed by 1, n or a combination of them in a chromosome.

3. The third approach of the initial population generation is more controlled than

the second approach. The initial step of choosing a random task and assigning

a random device to it remains the same. However, the tasks indexed by i < b

(i > b) are assigned to the device whose index is equal to or just one less

(greater) than the index of the device assigned to the next (previous) task. This

approach generates the members of the initial population spreading most of

the search space.

Objective Function and Assigning Fitness

Calculating the end-to-end delay (Ωde) of a task assignment encoded by the chro-

mosome (chi) is the function as described earlier (Equation 3.3). The fitness fi of a

chromosome chi is calculated as follows:

fi = max(Ωde(ch1), Ω
de(ch2), . . . ,Ω

de(chpop.size))

−Ωde(chi) + 1 (4.3)

This ensures that the fitness of a chromosome is inversely related to its end-to-

end delay and positive.
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Figure 4.6: Effect of crossover operator

Crossover Operator

Let ch1 and ch2 be the two chromosomes selected for a crossover. To ensure that the

crossover operator results in chromosomes satisfying the reachability constraints,

we consider the following three conditions in the given order at the randomly cho-

sen crossover point p:

1. ch1(p) = ch2(p): This case results in the normal crossover where ch1 and ch2’s

parts after the crossover point are exchanged.

2. ch1(p) < ch2(p): In this case, ch1’s part after the crossover point is replaced

with the ch2’s part after the crossover point. There is no change in ch2.

3. ch1(p) > ch2(p): In this case, ch2’s part after the crossover point is replaced

with the ch1’s part after the crossover point. There is no change in ch1.

Figure 4.6 shows the results of the crossover for the three conditions explained

above. The probability of crossover in our experiments is 0.8.

Mutation Operator

In a chromosome chi, let u be the index of the element chosen for the mutation. To

ensure the reachability constraint, the mutation operator changes chi(u) to a value

which is in the range of [chi(u − 1),..., chi(u + 1)] inclusive of both the values.
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Figure 4.7: Effect of mutation operator

Figure 4.7 shows the result of the mutation. The value of 1 could have mutated

in the range [1, ..., 4]. The probability of mutation in our experiments is 0.01.

4.2.3 Performance Analysis

We conducted a set of experiments to understand better the performance of GA

algorithms. In particular, we executed the GA algorithms along with the exact al-

gorithm proposed in Section 4.1 for a combination of various number of tasks and

devices. We executed three variants of GA algorithm based on the three initial pop-

ulation generation strategies described in the Section 4.2.2. We refer to these algo-

rithms as GA-1, GA-2 and GA-3. For each GA algorithm, we experimented with

two population sizes of 0.5mn and mn respectively. The results reported for GA

algorithm are averaged over 10 runs each. For example, Table 4.2 shows the com-

parison results obtained for the GA-3 algorithm with the population size 0.5mn.

Other results are excluded from the table for brevity.

CPU Time

In Figure 4.8 and Figure 4.9, we compare the required execution time of GA-1, GA-

2 and GA-3 algorithms for the population size 0.5mn and mn respectively. Both

results are also compared against the the exact algorithm proposed in Section 4.1.

As it can be observed from the Figure 4.8, for the population size 0.5mn, as the

number mn increases, the GA algorithms require less time than the exact algorithm.

However, as Figure 4.9 shows, for the population size mn, GA-3 requires higher

execution time than the exact algorithm.

GA Solution Quality

As the exact algorithm provides an optimal solution to the assignment problem and

GA provides sub-optimal solution, Figure 4.10 and Figure 4.11 compare the aver-

age difference in the end-to-end processing delay (a sub-optimal solution) obtained

using GA-1, GA-2 and GA-3 algorithms to the optimal solution for different GA

population size. These two graphs show that GA-3 algorithm outperforms GA-1

and GA-2 algorithms by a substantial margin. The average percentage difference
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Setting CPU time (milliseconds) End-to-end delay

m n pop.size Exact Avg.

GA-3

Exact Avg.

GA-3

Best

GA-3

20 10 100 47 13 1167 1346 1241

30 10 150 32 36 1743 1885 1773

40 10 200 31 39 2195 2572 2425

30 20 300 110 94 2029 2161 2090

40 20 400 156 230 2457 2750 2627

50 20 500 157 303.1 3157 3349.1 3255

40 30 600 391 335.9 2845 3244.9 3100

50 30 750 500 528.1 3357 3720.1 3650

60 30 900 875 665.6 3732 4379.7 4105

60 40 1200 1344 1310.9 3825 4351.6 4072

70 40 1400 2015 1779.8 4418 4939.4 4800

70 50 1750 3109 1079.7 4792 6069.6 5555

80 50 2000 4125 3689.1 5257 6081.9 5719

80 60 2400 7125 5201.4 5463 6573.5 6454

90 60 2700 7937 5782.8 6147 7148.3 6923

90 70 3150 10985 8988.8 6111 6871.7 6643

100 70 3500 13296 13034.1 6400 7271.4 6991

100 80 4000 23437 13245.2 7261 8331.7 8098

Table 4.2: Some of the results comparing the performance of GA with the exact approach

in the sub-optimal solution obtained using GA-3 algorithm is around 10% to the

optimal solution.

4.3 Tree-Star Assignment

As motivated by Bokhari [Bok88], many distributed application settings can be

modeled as a mapping of a task tree onto a star network (c.f. Section 2.2.3). In

MPMSs, we expect this tree-star model to be popular as well. However, it is not

possible to apply those existing algorithms onto our problem directly due to many

assumptions and constraints associated with it. In this section, we present a new

tree-star assignment algorithm and our work differs from Bokhari’s original ap-

proach and those follow-up studies in the following two aspects:

1. The following three constraints are relaxed in our algorithm by a coloring
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Figure 4.8: Time required to obtain the (sub) optimal solutions. For the GA algorithms, the

population size is 0.5mn

scheme:

• There are as many satellite devices as there are leaf vertices in the task

tree and it is possible not to use them if the optimal assignment dictates

so, i.e., partitioning on the task tree is done first and then the leaf tasks are

located on the satellite devices based on the result. This is main reason

why the existing algorithm can not be applied to our problem.

• All the satellite devices are homogeneous.

• If two tasks are assigned to a satellite device, their lowest common ances-

tor is also assigned to the same satellite device.

2. Bokhari proposed the Sum-Bottleneck (SB) algorithm to find a partition that

minimizes the bottleneck processing time while our goal is to find a partition

that minimizes the end-to-end delay. We propose the Summation of S weight

and B weight (SSB) algorithm to tackle this different objective.

4.3.1 Formulation

We formulate the problem of optimal assignment of a task tree onto a star-like device

network as:
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Figure 4.9: Time required to obtain the (sub) optimal solutions. For the GA algorithms, the

population size is mn

• Given: (1) an m-health platform modeled as a star network consisting of a host

device and several satellite devices; (2) a telemonitoring application modeled

as a processing task tree where each leaf task is a special sensing task. (3) A

performance evaluation function Omegade for task assignments.

• Goal: to find an optimal assignment of tasks to the host and satellite devices

such that it results in a minimum end-to-end processing and communication

delay, i.e., to minimize the summation of maximum processing delay spent

at the satellite devices (including the transmission delay to transmit the pro-

cessed result from the satellite to the host) and the processing delay required

at the host device.

• Subject to: The root task is fix associated with the host device and each leaf

task is fix associated with one satellite device.

4.3.2 Doubly Weighted Graph (DWG)

In this section, we study a DWG and introduce a measure of paths in the DWG,

the SSB weight. An algorithm is proposed to search for the optimal path that has

minimum SSB weight.
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Avg. % difference in the GA solutio
n 

Figure 4.10: The average difference in percentage for the sub-optimal solution obtained using

GA as compared to the optimal solution. For the GA algorithm, the population size is 0.5mn

DWG and SSB weight

A DWG (Doubly Weighted Graph) G = (V, E) has two ordered non-negative weights

associated with each edge e of E, for example: a sum weight σ(e) and a bottleneck

weight β(e). We define further an S weight and a B weight of a path p that connects

two distinguished vertices in G as S(p) and B(p) respectively, which are defined as:

S(p) =
∑

ei∈p

[σ(ei)] (4.4)

B(p) = max
ei∈p

[β(ei)] (4.5)

Now we introduce the measure of the SSB weight of a path p as SSB(P ) where

SSB(p) = S(p) + B(p). The optimal SSB path in a DWG is defined as the path with

a minimum SSB weight. This SSB weight is therefore a different measure compared

to the SB weight studied by Bokhari, where the SB weight of a path p is defined as

max(S(p), B(p)).
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Avg. % difference in the GA soultio
n

Figure 4.11: The average difference in percentage for the sub-optimal solution obtained using

GA as compared to the optimal solution. For the GA algorithm, the population size is mn

Algorithm for finding the optimal SSB path

Inspired by the earlier discussions on DWG [Chr75], we present the SSB algorithm

for finding the optimal SSB path connecting two distinguished vertices, i.e., “S” and

“T”, in a DWG. This algorithm works by recording the candidate optimal SSB paths

and progressively eliminating edges from the graph when they cannot be a part

of the optimal SSB path, until the graph becomes disconnected or further search-

ing will definitely not yield any better path. The pseudo code of this algorithm is

presented in Algorithm 2.

We briefly explain how the SSB algorithm works in the following:

1. Prior to the start, two state variables are initiated: the candidate optimal SSB

path is set as null and its SSB weight is set as +∞.

2. In each iteration, the algorithm first searches for a path p in G with the min-

imum S weight. A shortest path searching algorithm can be applied for this

purpose. If the SSB weight of p is smaller than the SSB weight of the currently

recorded optimal SSB path, the recorded optimal SSB path and its weight will

be updated with the new path p. At the end of each iteration, G is updated

by removing all the edges whose bottleneck weight is equal to or greater than
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Algorithm 2 SSB algrithm

1: G is a DWG with two distinguished vertices: “S” and “T”

2: optimal SSB path ⇐ null

3: optimal SSB weight ⇐ +∞

4: while G is connected ∧optimal SSB weight > S(p) do

5: find a path p, the shortest S weight path in G connecting “S” to “T”

6: if SSB(p) < optimal SSB weight then

7: optimal SSB weight ⇐ SSB(p)

8: optimal SSB path ⇐ p

9: end if

10: update G by removing all the edges whose bottleneck weight ≥ B(p)

11: end while

12: return optimal SSB path

B(p). The reason that we can safely remove these edges is that because all of

them except for those that belong to the currently recorded optimal SSB path

are for sure not part of the optimal SSB path in the DWG. Therefore, at the

end of this iteration, either the reduced G contains the optimal SSB path of

the original DWG or the current recorded optimal SSB path is the real optimal

one.

3. The iterations continue until either the new G becomes disconnected or the S

weight of p is greater than the SSB weight of the currently recorded optimal

SSB path, i.e., all the remaining paths’ SSB weights are greater than the one of

the currently recorded optimal SSB path. Thus, the currently recorded optimal

SSB path is the optimal SSB path in the original DWG.

Let |V | denote the number of vertices and |E| denote the number of edges in the

considered in the DWG. Each iteration in the SSB algorithm applies a shortest path

searching with the complexity of O(|V |2) if the Dijkstra algorithm is used. In the

worst case, |E| times of iteration are required, i.e., eliminating one edge per itera-

tion. Thus, the total time complexity of this algorithm is O(|V |2|E|). An example

of finding an optimal SSB path by applying the proposed algorithm is illustrated

in Figure 4.12. Given this simple DWG, three iterations are executed to identify an

optimal SSB path (“< 5, 10 > − < 5, 10 >”) with the SSB weight of 20.
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Figure 4.12: An example of searching for the optimal SSB path, where the thick path indicates

the newly found S weight shortest path and the cross indicates the paths to be eliminated

4.3.3 Solution

In this section, we present the step by step solution of finding the optimal assign-

ment in a tree-star assignment problem as illustrated in Figure 4.13.

Coloring and Labeling The Task Tree

First, we paint each satellite device in the given device star network with a distin-

guishable color, e.g., “red” for satellite “R”, “yellow” for satellite “Y”, “blue” for

satellite “B” and “green” for satellite “G”. Then, in the given task tree, every leaf

sensing task inherits the color from its associated satellite device and each edge is

painted by “propagating” the color from the leaf tasks towards the root task (Fig-
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Figure 4.13: Coloring the edges in a task tree

ure 4.13). The exceptions to this coloring are the edges of “p1 − p2” and “p1 − p3”

since the propagated colors conflict. This phenomenon implies that p1, p2 and p3

have to be deployed on the host device, since they need to process the information

obtained from multiple satellites.

The next step is to doubly label the task tree with a sum weight (σ) and a bot-

tleneck weight (β) on each edge. The detailed procedure is the same as the original

routine proposed by Bokhari (c.f. Section 2.2.3).

Building The Colored Assignment Graph

Similar to Bokhari’s approach, in the task tree, all the sensing tasks are merged into a

single dummy task vertex “△”. The vertices which will constitute to the assignment

graph (squares in Figure 4.14) are inserted in each face of the task tree and on the left

and right-hand sides of the tree. An directed assignment graph of this modified tree

is now drawn by adding an edge between every pair of vertices that belong to faces

that have a common colored tree edge. The edge of this assignment graph inherits
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Figure 4.14: (a) illustrates the procedure of building the colored assignment graph; (b)

presents the assignment graph by eliminating the original tree

the color and the double weights of the tree edge it crosses. This procedure and the

resulting colored assignment graph are shown in Figure 4.14.
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Finding The Optimal SSB Path

Now, we have built a colored doubly weighted assignment graph (Figure 4.14 (b)).

Each path connecting the vertices “S” and “T” in this graph corresponds to an as-

signment of the task tree on the star network. The end-to-end delay of this partition

equals to the colored path’s SSB weight, i.e., the summation of the colored path’s S

weight and B weight. The colored path’s S weight is defined in the same way as the

non-colored DWG, i.e., S(p) =
∑

ei∈p[σ(ei)]. The colored path’s B weight is defined

as the maximum among the summations of the bottleneck weights per color:

B(p) = max
ei∈p

[σredβ(ei), σyellowβ(ei), σblueβ(ei), . . .] (4.6)

In order to identify the optimal assignment, it is required to search for the col-

ored path with minimal SSB weight. The previously proposed SSB algorithm can be

adapted to serve for this purpose. When the B weight of the shortest-path (deter-

mined by paths’ S weight) is contributed by the subsequent edges having the same

color, that part of the assignment graph should be expanded before any edges are

eliminated. This ensures that during the edge removal step, only the edges which

do not contribute to the optimal SSB path anymore are removed. For example, as

shown in Figure 4.15, if the B weight of the shortest path (the topmost path) is a sum

of the bottleneck weights of the two blue edges (labeled “b1” and “b2”), the entire

blue part of the graph should be expanded into a number of edges, each of which

represents a possible path between vertex “C” and “E”. Therefore, in this specific

case, due to the graph expansion, the running time of the adapted SSB algorithm

is in the order of O(|V |2|E′|), where |E′| is the number of edges in the expanded

graph.

4.4 Concluding Remarks

This chapter proposes and evaluates task assignment algorithms for situation with

specific topological models of the underlying system and the processing task graph.

First, we present an efficient task assignment algorithm when both the telemoni-

toring application and the m-health platform form a chain and the goal of the task

assignment is to find an optimal assignment with minimal end-to-end delay. Com-

pared to earlier work, this new method relaxes a so-called contiguity constraint,

which is a necessity in the earlier case but unnecessarily constraining MPMSs. Fur-

thermore, we observed from our experiments that the assignment graph “construc-

tion” step is more time consuming than the actual “search” step in most of cases,
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Figure 4.15: Expanding part of the colored assignment graph

which suggests that the evaluation on this kind of graph-based method should be

based on the time complexity of the entire method instead of the “search” step only

[Bok88, SC90, NO91]. Although the graph-based exact algorithm is more efficient

compared to earlier work, it still has a major drawback on memory consumption.

Hence, we also propose a GA based solution that has much smaller and bounded

requirements on memory space while providing satisfactory results. At last, we

study another variant of the task assignment problem in tree-star model. Again,

our method relaxes several constraints existed in earlier work and tackles the new

objective on minimizing end-to-end delay. However, due to the complication and

limit time, we did not implement the proposed tree-star algorithm and thus no per-

formance experiment is reported. As a workaround, people who are interested in

the tree-star problem can use A*-based algorithms introduced in Chapter 5.
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Chapter 5

A*-Based Task Assignment Algorithms

In this chapter, we focus on the task assignment problem in its general form (DAG-

DAG) as formulated earlier (c.f. Section 3.3.3). In many MPMSs, only a limited

number of tasks and resources are involved. For example, the epilepsy detection

scenario presented in Section 1.1.2 deals with 10 processing tasks and less than 10

devices. Thus, it is computationally feasible to find the optimal task assignment by

exact algorithms. The well-known A*-algorithm is used as the foundation of our

solution. This decision is motivated by the fact that the A*-algorithm guarantees

a better performance, e.g., generating a smaller search tree, than any other search

algorithms with the same admissible heuristic [DP85].

This chapter is structured as follows. Section 5.1 explains the basic concepts

of A*-algorithm and the general design of A*-based task assignment algorithms.

Based on the general problem formulation, we categorize three problem types that

are different in their objective functions: maximizing system battery lifetime, mini-

mizing end-to-end delay, and maximizing application availability. In Section 5.2, we

present the specific designs with regard to the problem of maximizing system bat-

tery lifetime and the performance evaluation of the proposed algorithm. Section 5.3

concentrates on the problem of minimizing end-to-end delay. The third type was

studied extensively earlier by Franken [Fra96], thus we omit it in this thesis and

refer interested readers to the earlier work.

5.1 Design of A*-Based Task Assignment Algorithms

This section explains the basic concepts of the A*-algorithm and the general design

of A*-based task assignment algorithms.
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5.1.1 The A*-Algorithm

The A*-algorithm is a “best-first”1 graph search algorithm that finds the least-cost

path from a given initial node to one goal node (out of one or more possible goals)

[RN02]. Through constructing and traversing a search tree that represents the so-

lution space of a particular problem, the A*-algorithm finds the optimal solution

with the lowest cost. In this search tree, the root node represents a null solution,

an intermediate node represents a partial solution and a leaf (goal) node represents

a complete solution. A high-level graphical view of the A* search tree is depicted

in Figure 5.1. Each node, n, has an associated cost function f(n) that is a sum of

two functions g(n) and h(n): g(n) is the actual cost of this partial solution and h(n)

is a lower-bound estimation of the additional cost from n to the leaf node. The

A*-algorithm maintains a sorted list (OPEN ) containing all nodes that are either

discovered leaf nodes or intermediate nodes that can still be expanded. The algo-

rithm proceeds by always removing the node in the OPEN list with a minimal f(n)

and expanding the search tree from this node. The iterations terminate when the

retrieved node from the OPEN list is a leaf node and this leaf node represents the

optimal solution. The A*-algorithm a very efficient search approach since it can

avoid traversing the entire search tree, i.e., some branches are not constructed at

all. This is because we know that, based on the calculation of f(n), none of those

branches will lead to an optimal solution. The pseudo-code of the A*-search algo-

rithm is illustrated in Algorithm 3.

Figure 5.1: The illustration of an A* search tree.

The A*-algorithm defines a best-first search approach without detailing the search

tree construction and the functions g(n) and h(n). Thus, if we want to apply the A*-

algorithm to solve a specific problem, these two parts need to be addressed based

1A “best-first” search algorithm is an algorithm that traverses a graph by expanding the most promis-

ing node determined based on a specified rule.
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Algorithm 3 High level pseudo-code of A* algorithm

1: initialize a sorted list OPEN

2: add a root node with f(root) := 0 into OPEN

3: while true do

4: remove node n with lowest f(n) from OPEN

5: if n is a goal node then

6: return n as the optimal solution

7: end if

8: expand from n to a set of child nodes {cni}

9: for all nodes in cni do

10: calculate g(cni), h(cni)

11: f(cni) := g(cni) + h(cni)

12: add cni with f(cni) into OPEN

13: end for

14: end while

on the specific problem. In the next section, we will first explain how to construct

the search tree for the task assignment problem in MPMSs. The formulation of func-

tions g(n) and h(n) will be discussed later when the two problem types are studied

(c.f. Section 5.2.2 and Section 5.3.2).

5.1.2 Search Tree Construction

This section presents the search tree design for solving the task assignment prob-

lem in MPMSs. First, we explain what each node in the search tree represents and

how to encode task assignments into the search tree. Second, we introduce the con-

cept of task search order and its impact on the algorithm performance. Third, we

propose two sets of specific designs, namely node expansion rules and data depen-

dence check, to ensure the traversed search tree to be both effective and efficient.

By “effective”, we mean the search tree should not miss a task assignment that of-

fers satisfactory performance. By “efficient”, we mean the search should avoid the

unnecessary parts of the search tree as much as possible.

Node Representation in Search Tree

To solve the task assignment problem as formulated earlier (c.f. Section 3.3.3), we

first need to consider how to construct a search tree that represents all candidate task

assignments. In general, we follow an approach similar to some earlier work on A*-

based task assignment algorithms [RCD91, Fra96, KA98, HM05]. In our search tree,
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the root node represents an empty-assignment, every intermediate node represents

a partial-assignment and every leaf node represents a full-assignment. When an

intermediate node (or root node) is expanded to its child nodes, a new task is as-

signed to a proper resource. For example, in the search tree presented in Figure 5.2,

each node is labeled with the new assignment of a task to a resource: (1) the node

of “p1 → d1” represents the partial-assignment of the processing task “p1” to the

device “d1”; (2) the node of “t1→d1, c3, d3” represents the partial-assignment of the

transmission task “t1” to the communication path “d1, c3, d3”.

Task Search Order

Task search order is an important concept in task assignment problem and deter-

mining the task search order is an essential step in constructing a search tree. As

discussed in earlier research [RCD91], different orders potentially have large impact

on the search tree size, hence, on the algorithm performance. If we can order tasks

such that, at shallow tree levels, less number of nodes are expanded and the cost

difference between the expanded nodes are larger, then a smaller search tree will

be generated by the A*-algorithm. We examine the possibility by designing several

strategies to order the tasks and testing their performance in the experiment sec-

tions. To support constructing a search tree such that the reachability constraint can

be efficiently guaranteed, we define two general rules to order tasks based on the

directions in a task DAG:

1. a task can only be assigned, i.e., to expand the search tree by assigning it to

all possible devices or communication paths, when at least one of its direct

predecessor tasks has been assigned already.

2. if a transmission task is assigned, then its direct successor (processing) task

must be assigned immediately if it is not assigned yet.

Given these general rules, a number of search orders are possible for a task DAG.

For example, a depth-first task search order for the problem illustrated in Figure 3.4

(or its reproduction Figure 5.3) is: {p1, t1, p2, t2, p3, t3, p8, t4, p4, t5, p5, t6, p6, t7, p7,

t8}. An example of breath-first task search order for the same problem is: {p1, p5,

t1, p2, t6, p6, t2, p3, t4, p4, t7, p7, t3, p8, t5, t8}. The search tree generated from the

depth-first task search order is presented in Figure 5.2.
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Figure 5.2: Search tree (partial view) for the problem shown in Figure 3.4 (or Figure 5.3) with

a depth-first task search order. For clarity, each node is only labeled with the assignment of

latest assigned task.
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Node Expansion Rules

Following a defined task search order, when a new task is assigned, the corre-

sponding node in the search tree should be expanded to represent the new partial-

assignments. Due to the reachability constraint, type constraint and local constraint,

there are a limited number of resources to which this new task can be assigned. To

ensure the node expansion is performed properly, we propose a set of node expan-

sion rules in the following. In our explanation, we refer to a newly to-be-assigned

task as i and use some nodes presented in Figure 5.2 as examples.

1. When i is a processing task, there are two possibilities:

• If i is a source processing task, then it is assigned to all possible devices

subject to its local constraint, e.g., “p1 → d1”.

• If i is not a source processing task, then one of the direct predecessor

(transmission) tasks of i must be assigned already to a communication

path, denoted as cpα. This is because of the first general rule we enforced

on ordering tasks. In this case, the search tree must be expanded by as-

signing i to the ending device of cpα, e.g., “p3 → d2”.

2. When i is a transmission task, we also distinguish between two cases. The

direct predecessor (processing) task of i must have been assigned to a device

already due to the first “general rule” for ordering tasks and we denote this

device as dα.

• When i’s direct successor (processing) task has not been assigned yet,

there will be some freedom to assign i: we find all directed communi-

cation paths starting with dα and assign i to each of these paths, e.g.,

“t3→d2” and “t3 → d2, c2, d5”. Note that we treat a single device as a

special communication path (c.f. Section 3.3.1).

• If i’s direct successor (processing) task has already been assigned to a

device vertex (dβ), i has to be assigned to a directed communication path

connecting device dα with device dβ , e.g., “t8 → d4, c5, d5”. If it is not

possible to find such a path, then the current partial-assignment is not

valid and this branch of the search tree has to be pruned.

Data Dependency Check

Due to the reachability constraint modeled in this thesis, a number of assignments

will become invalid eventually. In order to perform an effective and yet efficient

search for candidate assignments, it is ideal to only generate the branches that lead
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to at least one valid full-assignment. However, this requires a complicated and im-

practical design since the algorithm should, upon assigning every new task, “fore-

see” the unassigned tasks and their assignment constraints. Instead of striving for

such a “perfect” search tree, we propose a method of data dependency check to

avoid traversing some of the branches that will not lead to any valid full-assignments

due to the violation of reachability constraint.

In order to explain the data dependency check, we take the problem presented

earlier in Figure 3.4 as an example. In this problem, due to the fixed association

of sensory tasks with sensors, “p1” has to be assigned to “d1”, and “p5” has to be

assigned to “d5”. The data dependency check is performed as follows. First, we

examine the sensory data reachability in the task DAG and label each task with its

dependency on sensory data (obtained by a source processing task) as shown in

Figure 5.3. For example, “t1” and “p2” are labeled with “p1” to indicate that they

are dependent on the input data from the source processing task “p1”. Second, in

the resource DAG, each resource can be labeled with its reachability of a particular

sensory data. Then, by comparing the data dependency in a task DAG and the

data reachability in a resource DAG, we can determine whether a particular partial-

assignment is valid or not. For example, from Figure 5.3, it is clear that “p8” can

only be assigned to “d5”: since “p8” requires sensory data from “p1” and “p5” and

only “d5” satisfies this data reachability requirement.

The benefit of this data dependency check could be very substantial. For exam-

ple, as illustrated in Figure 5.2, a violation can be identified at the node “p8→d2”

if we apply the data dependency check and this branch can be safely pruned here.

Otherwise, the node “p8→d2” has to be extended further and an entire branch iden-

tical to the one highlighted in the grey area has to be constructed. Only at the final

step when “t8” is assigned, all the branches extended from the node “p8→d2” can be

identified as invalid since no directed communication path can be found connecting

from the hosting device of “p7” to “d2”.

Again, we must admit that although this data dependency check can identify

some invalid assignments in an earlier stage, it still can not produce a “perfect”

search tree. For example, in Figure 5.2, when the node “t3→d2” is traversed, we

could already identify this branch as non-valid if we could “foresee” the assign-

ment constraint of unassigned task, i.e., “p8”. Nevertheless, by enabling the data

dependency check, A*-based task assignment can compute candidate assignments

more efficiently compared to the version without this check.



86 5 A*-Based Task Assignment Algorithms

Figure 5.3: The labeling of data dependency for the problem shown in Figure 3.4. Each task

is labeled with its dependence over a particular sensory task. For example, “t3” depends

on “p1” and “p8” depends on “p1, p5”. Each resource is labeled with its reachability of a

particular sensory task. For example, “c2” can be reached by “p1” and “d5” can be reached

by “p1, p5”

5.2 Maximize System Battery Lifetime

This section proposes an A*-based task assignment algorithm with the objective of

maximizing the system battery lifetime. We also evaluate this algorithm’s perfor-

mance based on a Java implementation.

5.2.1 Formulation

Due to the mission-critical nature of many telemonitoring applications, such as in

the epilepsy detection application, there is often a strict requirement on end-to-end

delay. Furthermore, it is always desirable to increase the system battery lifetime

since this means that the patient can have a greater freedom. Thus, in this sec-

tion, we treat the system battery lifetime as the objective function and the maximum

allowed end-to-end delay and the minimum allowed system availability as hard

restriction. Very similar to the general formulation of task assignment problem in
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MPMS, the task assignment problem on maximizing system battery lifetime is for-

mulated as follows:

• Given: (1) a telemonitoring application (P, T, At, LP , LT ); (2) an m-health

platform (D, C,Ar, LD, LC); (3) Three performance evaluation function Ωli,

Ωde and Ωav for task assignments that represent battery lifetime, end-to-end

delay, and availability.

• Goal: To find a number of candidate assignments {Φcan
m |m = 1, 2, Nrc} among

all possible task assignments for which the values of Ωli(Φcan
m ) are maximized.

• Subject to: four assignment constraints namely type constraint, local constraint,

assurance constraint, and reachability constraint.

The assurance constraint defined here is slightly different with the previous gen-

eral definition (c.f. Section 3.3.3) by removing the minimum required system battery

lifetime. The other three assignment constraints are the same as in the general def-

inition. The high-level routine of the A*-based task assignment algorithm with the

objective of maximizing the system battery lifetime is illustrated in Algorithm 4.

5.2.2 Function f(n)

The system battery lifetime is the minimum among all devices’ battery lifetime, i.e.,

the battery lifetime of the “bottleneck” device. The value of this cost function de-

creases monotonically or remains the same when the search tree is expanding. This

is because more energy will be consumed by the newly assigned task. Based on the

definitions in Section 3.3.1, we explain how to estimate the cost function f(n) as the

upper bound system lifetime with the consideration of unassigned tasks. Here, we

do not follow the usual practice of A* search approach to define function g(n) and

h(n) separately. The reason lies in using system battery lifetime as the cost function,

which is not an additive function: If we model g(n) and h(n) to represent the system

battery lifetime contributed by the assigned tasks and unassigned tasks separately,

their simple summation does not represent the estimation of total system battery

lifetime.

We define, for every device di in a partial-assignment, a set Kdi
containing all

the assigned processing and transmission tasks at di, a set Rdi
containing all the

unassigned transmission tasks that are pointing to a processing task in Kdi
and a set

Sdi
containing all the unassigned transmission tasks that are leaving from a process-

ing task in Kdi
. The energy consumption rate at di resulting from Kdi

is denoted as

k(di). The minimal energy consumption rate at di caused by the tasks in set Rdi
and

Sdi
once they are fully assigned is denoted as u(di). The calculations of k(di) and
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Algorithm 4 Pseudo code of A*-based task assignment algorithm for maximizing the system

battery lifetime

1: input the number of required candidate assignments as Nrc

2: input the minimal required availability minΩav and the maximal allowed end-

to-end delay maxΩde

3: determine a search order for the tasks: order

4: initialize a sorted list OPEN to contain the already visited partial-assignments

5: initialize a sorted list candidates to contain the already found candidate assign-

ments

6: create a partial-assignment root, f(root) := 0, root.toBeAssignedTask :=

order.first /* For a partial-assignment n, n.toBeAssignedTask contains the

next to be assigned task according to order*/

7: add root into OPEN

8: while true do

9: if OPEN is empty then

10: return candidates /* Found candidate assignments are less than the re-

quired number Nrc*/

11: end if

12: remove a partial-assignment n with highest f(n) from OPEN /* Currently,

the most promising partial-assignment */

13: if n is a full-assignment then

14: add n into candidates /* Found a new candidate */

15: if candidates.size() = Nrc then

16: return candidates /* A list of Nrc found candidate assignments */

17: end if

18: end if

19: expand from n to a set of child partial-assignments {cni} by assigning

n.toBeAssignedTask

20: index := order.getIndex(n.toBeAssignedTask) /* Record the index of

n.toBeAssignedTask */

21: for all partial-assignments in {cni} do

22: if no data dependency violation at cni then

23: if Ωde(cni)≤maxΩde ∧ Ωav(cni)≥minΩav then

24: /* cni is a valid partial-assignment, we should record it in OPEN */

25: calculate f(cni)

26: cni.toBeAssignedTask := order.get(index + 1) /* Record the next to

be assigned task */

27: add cni into OPEN

28: end if

29: end if

30: end for

31: end while
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u(di) are shown in Equation 5.1 and Equation 5.2 respectively. For an overview of

symbol definitions, we refer the readers to Table 3.1 and Table 3.2.

k(di) = eHK
di

+eop
di

·
∑

pj∈Kdi

nP
pj

+
∑

{cj |(cj ,di∈Ar)}

(eR
cj

·
∑

{tk|cj∈Φ(tk),tk∈Kdi
}

nT
tk

)

+
∑

{cj |(di,cj∈Ar)}

(eS
cj

·
∑

{tk|cj∈Φ(tk),tk∈Kdi
}

nT
tk

) (5.1)

The energy consumption rate at di resulting from the assigned tasks is the summa-

tion of four terms.

• The 1st term is the energy consumption rate of the “housekeeping” activities

at device di, e.g., display, network interface cards, etc.

• The 2nd term is the energy consumption rate caused by all assigned processing

tasks, where eop
di

is the energy consumption of one operation at device di and

nP
pj

is the number of operations per time unit of processing task pi.

• The 3rd term is the energy consumption rate caused by all assigned transmis-

sion tasks on di’s receiving end, where eR
cj

denotes the energy consumption of

receiving one data unit through channel ci, nT
tk

denotes the number of trans-

mitted data units per time unit of transmission task ti, {cj |(cj , di) ∈ Ar} is the

set of channels that are pointing to device di, and {tk|cj ∈ Φ(tk), tk ∈ Kdi
} is

the set of transmission tasks that are located at the channel cj .

• The 4th term is the energy consumption rate caused by all assigned transmis-

sion tasks on di’s sending end, where eS
cj

denotes the energy consumption of

sending one data unit through channel ci, n
T
tk

denotes the number of transmit-

ted data units per time unit of transmission task ti, {cj |(di, cj) ∈ Ar} is the set

of channels that are leaving from device di, and {tk|cj ∈ Φ(tk), tk ∈ Kdi
} is the

set of transmission tasks that are located at the channel cj .

u(di) =
∑

tk∈Rdi

min(nT
tk

· min{eR
cj
|(cj , di) ∈ Ar}, n

P
tk.parent · e

op
di

)

+
∑

tk∈Sdi

min(nT
tk

· min{eS
cj
|(di, cj) ∈ Ar}, n

P
tk.child · eop

di
) (5.2)
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In Equation 5.2, the 1st term examines every unassigned transmission task tk in Rdi

by (1) assigning it to a channel pointing to di that has the least required receiving

energy consumption, i.e., min{eR
cj
|(cj , di) ∈ Ar} or (2) assigning it together with its

direct predecessor processing task (tk.parent) to di. The minimum energy consump-

tion rate of these two possibilities is the lower bound of the energy consumption rate

on di caused by tk. Therefore, the 1st term in Equation 5.2 gives the lower bound of

the energy consumption rate on di caused by the entire set Rdi
. Similarly, the 2nd

term in Equation 5.2 gives the lower bound of the energy consumption rate on di

caused by the entire set Sdi
.

In every partial-assignment n, for a device di that has been assigned tasks al-

ready, u(di) gives the lower bound estimation of the energy consumption rate caused

by the unassigned tasks and k(di) is the actual energy consumption rate caused by

the already assigned tasks. The cost function f(n) is thus calculated as follows:

f(n) =
eTO
d∗

k(d∗) + u(d∗)
(5.3)

where d∗ is the “bottleneck” device and it is defined as the device whose battery

lifetime is minimal among all devices based on the current partial-assignment n.

Hence, the value of f(n) is the upper bound estimation of system lifetime of any

full-assignment extended from n.

5.2.3 Experiments

To evaluate the effectiveness and efficiency of our proposed algorithm, we imple-

mented a test environment in Java. It contains three modules. The first module

is a task and resource DAG generator. It reads in the sizes of task and resource

DAGs and the range of profiling information and generates a random problem, i.e.,

the topologies and labeling parameters of task and resource DAGs. The number of

source vertices in the DAGs can be controlled and the number of sink vertices is a

constant one. This decision is made based on the fact that most of telemonitoring

applications have a single sink task, e.g., the epilepsy detection application in Fig-

ure 1.2. Thus, each problem class can be represented as (|P |, |T |, |D|, |C|, |SP |, |SD|),

where six parameters denote the number of processing tasks, transmission tasks,

devices, channels, source processing tasks and source devices respectively. Fixed

associations (capturing the local constraints) are set between source (sink) process-

ing tasks to a randomly selected source (sink) device. The second module is a search

order generator. It examines the task DAG generated by the first module and sorts

the tasks according to a particular strategy, e.g., depth-first. The third module im-

plements the proposed A*-based algorithm and reports a number of candidate task
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assignments with their estimated performance, i.e., end-to-end delay, system bat-

tery lifetime and availability.

In this section, we report a set of experimental results from this test. All tests are

performed on a PC running Windows XP with Intel Core(TM)2 CPU 2.4GHz and

2G RAM. For each user-defined problem class ((|P |, |T |, |D|, |C|, |SP |, |SD|)) with

randomly generated topology and profiling information, the results are averaged

over 50 runs. All the measured algorithm completion time are in milliseconds.

Effectiveness

In order to understand how effective it is to reconfigure an MPMS based on an op-

timal task assignment, we tested our algorithm based on a context-aware reconfig-

uration scenario. In this scenario, we generate a random MPMS and configure it

optimally for the system battery lifetime. After a simulated context change, the sys-

tem performance is likely to degrade. Then we examine the benefit of adapting the

system towards a new optimal configuration compared to a static approach that is

no reconfiguration at all. The involved steps are as follows:

1. We randomly create a problem class (we tested (8,10,5,6,3,2) and (10,12,8,10,3,2))

and identify an optimal task assignment “α” with a maximum system battery

lifetime Ωli
current(α). This represents an optimally configured MPMS.

2. We randomly select a channel resource “ci” and multiple its energy consump-

tion of sending one data unit (eS
ci

) and receiving one data unit (eR
ci

) with a

predefined factor (named as context change ratio that is larger than 1). This

is to simulate a change of power consumption rate for data transmission, e.g.,

increased power consumption for sending one bit of data due to an increase

in distance or a handover from WLAN to GPRS.

3. Using this new context information, the system battery lifetime is calculated

for “α” again. This new value is denoted as Ωli
new(α) and stands for the system

battery lifetime after the context change if we do not change the system config-

uration. It can be proven easily that Ωli
new(α)≤Ωli

current(α). The equality holds

true when the system battery life time is not determined by the device that

“ci” is pointing to or leaving from. Thus, the relative system battery lifetime

decrease is:
Ωli

current(α)−Ωli
new(α)

Ωli
current(α)

, e.g., the 3rd column in Table 5.1.

4. Using the proposed algorithm, we calculate an optimal task assignment “β”

that has a maximal system battery lifetime (Ωli
new(β)) based on the new context

information. Thus, the relative system battery lifetime decrease when the sys-

tem configuration is dynamic, i.e., the system can be reconfigured according
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Class Context Lifetime Lifetime Improved

(|P |, |T |, |D|,) change decrease (decrease)

(|C|, |SP |, |SD|) ratio (static) (dynamic) lifetime

(8,10,5,6,3,2) 2 10.8% 4.5% 9.4%

(8,10,5,6,3,2) 5 23.9% 12.9% 30.8%

(8,10,5,6,3,2) 10 40.2% 19.3% 92.5%

(8,10,5,6,3,2) 20 53.5% 18.4% 246.5%

(10,12,8,10,3,2) 2 7.6% 2.5% 7.1%

(10,12,8,10,3,2) 5 32.3% 14.5% 53.5%

(10,12,8,10,3,2) 10 43.0% 17.6% 109.2%

(10,12,8,10,3,2) 20 39.6% 7.5% 217.6%

Table 5.1: The potential improvement on system battery lifetime resulted by dynamic system

reconfiguration according to optimal task assignment

to a new optimal task assignment, can be calculated as:
Ωli

current(α)−Ωli
new(β)

Ωli
current(α)

, e.g.,

the 4th column in Table 5.1.

5. We now can evaluate the effectiveness of our proposed algorithm by examin-

ing the improved system battery lifetime. Compared to a static approach, the

improved battery lifetime of a dynamic approach is defined as:
Ωli

new(β)−Ωli
new(α)

Ωli
new(α)

,

e.g., the 5th column in Table 5.1.

The experimental results are summarized in Table 5.1. For each problem class, we

run the simulation with four different values of context change ratio, i.e., 2, 5, 10

and 20. These four values are realistic and reflecting the real world mobile devices.

For example, the experiments performed on several commercially available PDAs

in [RZ07] show that, for transferring the same amount data, the energy required by a

GPRS connection is 10-30 times of the amount required by a WLAN connection. Our

experiment clearly shows a significant improvement on system battery lifetime if

the system can be reconfigured according to an optimal task assignment, sometimes

more than tripling the system battery lifetime. We can also observe that the more

significant the context change, the better improvement can be expected.

Impact of Task Ordering Strategy

Given one particular task DAG, a number of task search orders are eligible based on

the general rules for ordering the tasks. For example, the two traditional strategies

are depth-first and breadth-first as illustrated by examples in Section 5.1.2. Based on
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some initial tests, we observed that the breadth-first strategy results in much worse

average performance for all problem classes. Therefore, we omit further discussion

about breadth-first search order in this thesis and do not recommend to use it in

practice. Addition to the traditional approaches, we design three alternative task

ordering strategies: heavy-first, depth/heavy-first and smallhop-first, and examine

their impact on the search performance in this section.

• “Heavy-first”: obeying the general rules, heavy-first sorts the tasks in the de-

creasing order based on their weighted number of operations (nP
pi

) and num-

ber of transmitted data units (nT
ti

). Thus, a task with “heavier” demand on

processing or transmission will be assigned first. This is similar to the strat-

egy applied in [RCD91, KA98], which ranks the tasks according to the total

computation and communication cost.

• “Depth/Heavy-first”: basically sorts tasks in a depth-first strategy and if sev-

eral tasks are equal in their depth level, e.g., among source processing tasks or

among direct successor transmission tasks leaving from the same processing

task, the “heavier” task will be assigned first.

• “Smallhop-first”: smallhop-first sorts tasks again in a depth-first strategy from

source tasks to sink tasks. If several tasks are equal in their depth level, we fur-

ther compare their distance, i.e., number of intermediate tasks, to the nearest

sink processing task: the task with a smaller distance will be assigned first.

Two sets of experiments are carried out in order to examine the impact of differ-

ent task search orders on the algorithm performance for various classes. In exper-

iment “A”, we tested the four identified ordering strategies on 9 problem classes.

Classes are different from each other in terms of the number of processing tasks,

transmission tasks, devices and channels (|P |, |T |, |D|, |C|). They are: “0” (8, 10, 5,

6, 3, 2); “1” (9, 11, 5, 6, 3, 2); “2” (10, 12, 5, 6, 3, 2); “3” (8, 10, 6, 8, 3, 2); “4” (9, 11, 6,

8, 3, 2); “5” (10, 12, 6, 8, 3, 2); “6” (8, 10, 7, 9, 3, 2); “7” (9, 11, 7, 9, 3, 2); “8” (10, 12, 7,

9, 3, 2). For every class, the algorithm ran 50 times and the average search tree sizes

resulting from these four orders are reported in Figure 5.4.
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number of assignment tree nodes
Figure 5.4: Comparison of four ordering strategies by examining the generated search tree

size in different settings (experiment “A”)

In experiment “B”, we tested these four ordering strategies on 8 problem classes.

Classes are different from each other in terms of the number of source processing

tasks and source devices (|SP |, |SD|). They are: “0” (10, 12, 8, 10, 2, 2); “1” (10, 12,

8, 10, 3, 2); “2” (10, 12, 8, 10, 3, 3); “3” (10, 12, 8, 10, 4, 3); “4” (10, 12, 8, 10, 4, 4); “5”

(10, 12, 8, 10, 5, 4); “6” (10, 12, 8, 10, 5, 5); “7” (10, 12, 8, 10, 6, 5). For every class,

the algorithm ran 50 times and the average search tree sizes resulted by these four

orders are reported in Figure 5.5.

number of assignment tree nodes
Figure 5.5: Comparison of four ordering strategies by examining the generated search tree

size in different settings (experiment “B”)
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From both experiments, we observe that deliberately designed task search orders

do not guarantee a better performance compared to a simple search order like depth-

first. The reason lies in the complicated cost function and search tree construction.

When a simpler cost function is used and no sophisticated assignment constraints

are applied, e.g., as in the earlier research [RCD91, KA98], a search order that assigns

tasks with a larger contribution on f(n) first can lead to a better algorithm perfor-

mance and it is relatively easy to identify such a search order. However, in our case,

the joint influence of assignment constraint and the cost function formulation results

no particular search order that can offer a significant better performance. Thus, we

opt to use an easy and effective ordering strategy, i.e., depth-first, in the rest of this

chapter.

Impact of Number of Candidate Assignments

Table 5.2 shows how the algorithm performs in computing a set of candidate as-

signments ({Φcan
m |m = 1, 2, Nrc}) with different required numbers (Nrc). The testing

value of Nrc ranges from 1 to 5. The problem class is (8,10,6,8,4,3) and the results are

averaged over 50 runs. From the experimental results, we made the following two

observations:

1. Although the mean size of search tree and the mean completion time are not

large for this problem class, their values are spread over a relatively large

range. There are a few explanations. First, due to the randomly generated

topology and the presence of the reachability constraint, some task and re-

source DAGs only have a limited number of possible assignments while some

of them have many more possibilities. Second, due to the randomly generated

profiling information, it is possible that some problem instances have very few

possible task assignments fulfilling both the local constraint and the assurance

constraint. Thus, this difference in the size of search space can vary a lot dur-

ing the 50 runs.

2. Between searching for one best assignment (the optimal one) and searching

for five candidate assignments, the difference regarding search tree size and

algorithm completion time is not so significant. Thus, this is a very promising

algorithm for computing a set of candidate assignments, as was our intention

in the design of the MADE middleware (c.f. Section 3.2).

Bounded A*

Although the A*-based algorithm proves to be very effective (better than other ad-

missible algorithms with the same heuristics) in finding candidate assignments, it
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Nrc ♯Nodes std Time (ms) std

1 3090.05 7147.64 167.65 643.07

2 3190.75 7143.19 168.00 533.18

3 3298.05 7133.26 168.10 526.03

4 3339.50 7140.35 165.75 517.24

5 3412.05 7136.94 179.80 529.77

Table 5.2: Experiments on different number of required candidate assignments on the prob-

lem class of (8,10,6,8,4,3)

still suffers from worst-case exponential complexity, i.e., the worst-case time and

space complexity is at least O(|D||P |) where |P | is the number of processing tasks

and |D| is the number of devices. For the A*-based algorithms to provide a reason-

able solution in bounded time, it has been suggested to set an artificial size limit to

the OPEN list [Rus92]: when the number of recorded partial-assignments exceeds

this allowed maximum number, some still expandable partial-assignments whose

upper bound battery lifetime are lower will be discarded by the algorithm, i.e., re-

moved from the OPEN list. This bounded A*-algorithm is more “greedy” because it

only traverses a number of branches with potentially higher battery lifetime. Four

different size limits of OPEN list, i.e., |P |·|D|, 0.8·|P |·|D|, 0.5·|P |·|D| and 0.2·|P |·|D|,

are tested against running a normal (unbounded) A*-algorithm. For each test, we

examine a so-called quality of assignment (QoA) measure:

QoA =
mean(Ωli(candidate assignments found by bounded A*))

mean(Ωli(candidate assignments found by normal A*))
(5.4)

We tested the bounded A*-algorithm in three problem classes and the results are

reported in Table 5.3, Table 5.4 and Table 5.5. The number of required candidate as-

signments (Nrc) is always set at 5. The 1st column in the table presents the size limit

of OPEN list. The 2nd column presents the average number of nodes in the gener-

ated search tree. The 3rd column presents the standard deviation of search tree size.

The 4th column depicts the search completion time and the 5th column indicates

its standard deviation. The 6th column presents the number of found candidate as-

signments. All results are averaged over 50 runs with random graph structure and

profiling information.

It is observed that even with a very tight bound, e.g., 0.2 · |P | · |D|, the candidate

assignments found by bounded A* are still satisfactory since they are on average

worse than the optimal candidate assignments only within a 10% range. However,

one additional drawback of the bounded A*-algorithm is that it does not always

produce a sufficient number of candidate assignments. For example, 4.65 for the
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case of “0.2 · |P | · |D|” in Table 5.3 and 4,85 for the case of “|P | · |D|” in Table 5.4. The

reason lies in its “greedy” nature, since some branches with valid full-assignments

are removed from the (bounded) OPEN list and the left branches may not lead to a

sufficient number of valid full-assignments.

Max size of OPEN ♯Nodes std Time (ms) std ♯Found QoA

unbounded 3497.05 7910.72 235.35 726.98 5.00 1

|P | · |D| 777.75 754.79 16.25 12.93 5.00 98%

0.8 · |P | · |D| 721.25 688.74 16.45 12.85 5.00 97%

0.5 · |P | · |D| 570.30 563.98 12.60 16.61 5.00 95%

0.2 · |P | · |D| 283.00 195.40 7.00 7.95 4.65 93%

Table 5.3: Experiments on bounded A* on the problem class of (8,10,6,8,4,3)

Max size of OPEN ♯Nodes std Time (ms) std ♯Found QoA

unbounded 1265.55 2124.13 40.65 74.42 5.00 1

|P | · |D| 471.30 311.22 16.40 20.03 4.85 97%

0.8 · |P | · |D| 433.70 275.74 11.60 6.89 4.80 97%

0.5 · |P | · |D| 338.65 190.16 7.80 8.01 4.85 96%

0.2 · |P | · |D| 226.65 109.42 5.60 7.83 5.00 90%

Table 5.4: Experiments on bounded A* on the problem class of (7,9,6,8,3,2)

Max size of OPEN ♯Nodes std Time (ms) std ♯Found QoA

unbounded 757.90 631.51 25.05 24.60 5.00 1

|P | · |D| 484.10 287.63 15.65 16.78 5.00 99%

0.8 · |P | · |D| 458.00 266.22 9.35 7.84 5.00 98%

0.5 · |P | · |D| 357.95 236.36 8.60 9.53 5.00 96%

0.2 · |P | · |D| 183.60 63.87 4.60 7.21 4.95 89%

Table 5.5: Experiments on bounded A* on the problem class of (7,9,5,7,3,2)
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5.3 Minimize End-to-End Delay

This section proposes a different variant of A*-based task assignment algorithm.

This algorithm takes the end-to-end delay as the objective function and considers

the other two measures in the assurance constraint. Similar to the previous section,

we present the algorithm design first and finish with performance evaluations.

5.3.1 Formulation

We formulate the task assignment problem of minimizing end-to-end delay as fol-

lows:

• Given: (1) a telemonitoring application (P, T, At, LP , LT ); (2) an m-health

platform (D, C, Ar, LD, LC); (3) Three performance evaluation function Ωde,

Ωli and Ωav for task assignments that represent battery lifetime, end-to-end

delay, and availability.

• Goal: To find a number of candidate task assignments {Φcan
m |m = 1, 2, ..., Nrc}

among all possible task assignments for which the values of Ωde(Φcan
m ) are min-

imized.

• Subject to: four assignment constraints namely type constraint, local constraint,

assurance constraint and reachability constraint.

The assurance constraint defined here is slightly different with the previous general

definition (c.f. Section 3.3.3) by removing the maximum allowed end-to-end delay.

The other three assignment constraints are the same as in the general definition. The

high-level routine of the A*-based task assignment algorithm with the objective of

minimizing the system end-to-end delay is illustrated in Algorithm 5.

5.3.2 Function f(n)

The end-to-end delay of a given assignment is defined as the maximum of all task

paths’ end-to-end delays (c.f. Section 3.3.3). The value of this cost function increases

monotonically or remains the same when the search tree is expanding. To bene-

fit from the design idea of A*-algorithm, we introduce the function f(n) in this

particular problem as the lower-bound estimation of end-to-end delay of all full-

assignments extended from a partial-assignment n. The search should always ex-

pand the search tree from a partial-assignment with the lowest f(n).

f(n) = max{g(y) + h(y)|y ∈ Y } (5.5)
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Algorithm 5 Pseudo code of A*-based task assignment algorithm for minimizing the end-

to-end delay (The grey highlighted parts are different with the earlier Algorithm 4 )

1: input the number of required candidate assignments as Nrc

2: input the minimal required availability minΩav and the minimal required

system battery lifetime minΩli

3: determine a search order for the tasks: order

4: initialize a sorted list OPEN to contain the already visited partial-assignments

5: initialize a sorted list candidates to contain the already found candidate assign-

ments

6: create a partial-assignment root, f(root) := 0, root.toBeAssignedTask :=

order.first /* For a partial-assignment n, n.toBeAssignedTask contains the

next to be assigned task according to order*/

7: add root into OPEN

8: while true do

9: if OPEN is empty then

10: return candidates /* Found candidate assignments are less than the re-

quired number Nrc*/

11: end if

12: remove a partial-assignment n with lowest f(n) from OPEN

/* Currently, the most promising partial-assignment */

13: if n is a full-assignment then

14: add n into candidates /* Found a new candidate */

15: if candidates.size() = Nrc then

16: return candidates /* A list of Nrc found candidate assignments */

17: end if

18: end if

19: expand from n to a set of child partial-assignments {cni} by assigning

n.toBeAssignedTask

20: index := order.getIndex(n.toBeAssignedTask) /* Record the index of

n.toBeAssignedTask */

21: for all partial-assignments in {cni} do

22: if no data dependency violation at cni then

23: if Ωli(cni)≥minΩli ∧ Ωav(cni)≥minΩav then

24: /* cni is a valid partial-assignment, we should record it in OPEN */

25: calculate f(cni)

26: cni.toBeAssignedTask := order.get(index + 1) /* Record the next to

be assigned task */

27: add cni into OPEN

28: end if

29: end if

30: end for

31: end while
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where Y is the set of tasks that (1) are assigned already in a partial-assignment n

and (2) still have unassigned direct successor tasks, g(y) is the maximum end-to-

end delays between a source processing task and the task y, h(y) is the lower-bound

estimation of the additional delay caused by all unassigned successor tasks of the

task y.

To facilitate a more efficient calculation of g(y), we use a table (named as

ExactDelayOfTask) to store the maximum end-to-end delays between a source

processing task and each assigned task. Thus, when assigning a new task, we can

calculate the maximum end-to-end delay of this task based on the stored delay in-

formation of its direct predecessor tasks. In this way, each time when a new task

is assigned, we avoid calculating the end-to-end delay for the entire task path con-

necting a source processing task and this newly assigned task.

To guarantee h(y) is a lower-bound estimation on end-to-end delay for all full-

assignments, h(y) is defined as the following:

h(y) = max{

|tpy

j
|

∑

m=1

( min
tp

y

j
(m)∈P

(deP
tp

y

j
(m),∗)

+ min
tp

y

j
(m)∈T

(deT
tp

y

j
(m),∗))|tp

y
j ∈ TP y, j = 1, 2, ...|TP y|} (5.6)

where TP y is the set of task paths {tpy
j} in the task DAG that connect a direct suc-

cessor task of y with a sink (processing) task, “*” denotes any device or channel

resource, and m is the index of task in a task path. For each tpy
j , we calculate its

minimal end-to-end delay. The maximum value among them determines the value

of h(y).

We propose a labeling procedure to calculate h(y) for each task y in a task DAG.

This is a pre-processing procedure that is executed before the search. The labeling

starts from sink tasks and propagates reversely along the directions in a task DAG.

All the sink tasks are labeled with “0” initially.

• For a processing task y, we calculate its h(y) as follows:

h(y) = max
(y,x)∈At

{

h(x) + min{deT
x,∗}

}

(5.7)

where x denotes a direct successor transmission task of y, “*” denotes any

device or channel resource.

• For a transmission task y, we calculate its h(y) as follows:

h(y) = h(x) + min{deP
x,∗} (5.8)

where x denotes the direct successor processing task of y, “*” denotes any

device resource.
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This labeling procedure visits every task exactly once. For each task, we examine its

processing or transmission delay at most once per device or channel resource. Thus,

the time complexity of this labeling procedure is O ((|P | + |T |)(|D| + |C|)).

5.3.3 Semi-Topological Task Search Order

A possible depth-first task search order for the task DAG shown in Figure 5.6 is: {p1,

t1, p2, t2, p3, t3, p4, t4, p7, t5, p5, t6, p5, t7, p6, t8}. Consider for a moment how we

calculate g(n), in particular the use of ExactDelayOfTask, we see a potential inef-

ficiency caused by backtracking. Following this order, when “p4” is assigned, the

maximum delay occurred at “p4” is calculated only based on the task path connect-

ing “p1” and “p4” via “t3” and this result is used further to calculate for the successor

tasks of “p4”, e.g., “t4”. However, it is possible that the maximum end-to-end delay

between a source processing task and “p4” is determined by the task path via “t6”. If

this happens, some additional and complicated updates have to be performed upon

the existing entries in the ExactDelayOfTask table at the partial-assignment node

of assigning “t4”.

A solution to avoid backtracking is to design an ordering strategy by taking into

consideration how the ExactDelayOfTask table is used. We name this ordering

strategy as “semi-topological”. It is very similar to a topological sort of DAG. The

only difference is that we have to obey the general rules for ordering tasks (c.f. Sec-

tion 5.1.2): if a transmission task (α) is visited, then its direct successor (processing)

task (β) should be visited immediately. This is even the case when not all direct

predecessor (transmission) tasks of β are visited, i.e., a violation to topological sorts.

For example, a task order generated following this “semi-topological” approach is

illustrated in Figure 5.6. Based on this new “semi-topological” search order, task

“t4” will not be assigned until all its predecessor tasks have been assigned already.

Figure 5.6: A “semi-topological” task order for an example task DAG. Different from a topo-

logical sort, p4 comes before t6 and p7 comes before t8
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5.3.4 Experiments

To evaluate the effectiveness and efficiency of this new variant of A*-algorithm, we

performed a set of experiments in a Java implementation. The experiment setting is

the same as explained in Section 5.2.3.

Effectiveness on Minimizing End-to-End Delay

We first conducted an effectiveness test to understand better what is the added-

value on end-to-end delay by enforcing an optimal task assignment in MPMS. Six

different problem classes were tested and the simulation results are presented in Ta-

ble 5.6. In the test of each problem class, we ran the A*-based algorithm to compute

the optimal task assignment with a minimal delay (Ωde
opt). As a comparison, we also

computed the average end-to-end delay (Ωde
ave) of all possible task assignments. The

relative improvement on end-to-end delay by enforcing an optimal task assignment

is defined as
Ωde

ave−Ωde
opt

Ωde
ave

. The results show that the possible improvement we can

expect for an optimal task assignment is a bit more than 20%.

Class Delay std Delay std Improvement

(optimal) (optimal) (average) (average)

(7,9,6,8,3,2) 336.86 66.45 484.32 51.98 30%

(7,9,6,8,4,3) 302.88 49.08 379.99 47.14 20%

(8,10,6,8,3,2) 368.74 53.48 503.44 57.55 26%

(8,10,6,8,4,3) 313.02 46.03 399.05 51.57 21%

(9,11,6,8,3,2) 398.52 60.45 531.16 62.40 25%

(9,11,6,8,4,3) 367.12 58.37 449.56 51.55 18%

Table 5.6: The difference on end-to-end delay between optimal assignment and random as-

signments

Impact of Number of Candidate Assignments

We tested the algorithm performance on computing candidate task assignments

({Φcan
m |m = 1, 2, ...Nrc}) in different required number (Nrc). The testing value of

Nrc ranges from 1 to 5. In each test, we measured the number of assignment nodes

visited by the A*-based algorithm and the algorithm completion time. The simu-

lation results for two problem classes are reported in Table 5.7 and Table 5.8. Our

observation here is similar to the one made in the previous experiment on A*-based

algorithm for maximizing system battery lifetime:
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• The number of visited assignment nodes (search tree size) and the completion

time are spread over a large range.

• Between searching for one best assignment (the optimal one) and searching for

five candidate assignments, the difference regarding tree size and completion

time is not so significant. Thus, this is a suitable algorithm for computing a

small set of candidate task assignments.

Nrc ♯Nodes (mean) ♯Nodes (std) Time (mean) Time (std)

1 941.88 1080.15 28.36 38.12

2 971.50 1072.61 29.74 33.88

3 987.84 1075.64 31.52 35.41

4 1013.20 1100.14 30.60 37.58

5 1031.68 1108.20 31.32 37.34

Table 5.7: Experiments on different Nrc on the problem class of (8,10,6,8,4,3)

Nrc ♯Nodes (mean) ♯Nodes (std) Time (mean) Time (std)

1 8560.20 12103.29 563.08 1202.34

2 8579.86 12095.07 536.62 1174.70

3 8714.60 12113.06 540.00 1176.44

4 8791.56 12115.11 552.48 1178.90

5 9183.00 12199.72 575.26 1183.28

Table 5.8: Experiments on different Nrc on the problem class of (9,11,6,8,3,2)

Bounded A*

Here, we set size limit to OPEN list and tested the bounded A*-algorithm. Four

different size limits of OPEN list, i.e., |P | ∗ |D|, 0.8 ∗ |P | ∗ |D|, 0.5 ∗ |P | ∗ |D| and

0.2 ∗ |P | ∗ |D|, are tested against running an unbounded A*-algorithm. For each

different size limit, we examined the quality of assignment (QoA) that is defined as:

QoA =
mean{Ωde(Φcan

m found by bounded A*)}

mean{Ωde(Φcan
m found by unbounded A*)}

(5.9)

Thus, a value of QoA closer to ”1” indicates that the found candidate assign-

ment’s end-to-end delay are closer to the optimal candidate assignments. We exper-

imented this bounded A*-algorithm in three problem classes. The results averaged
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over 50 runs are reported in Table 5.9, Table 5.10 and Table 5.11. It is observed that

with a reasonable tight bound, e.g., 0.8·|P |·|D|, the candidate assignments found by

bounded A* are still satisfactory since they are on average worse than the optimal

candidate assignments only within a 5% range.

Max size ♯Nodes ♯Nodes Time Time ♯Found QoA

of OPEN (mean) (std) (mean) (std)

unbounded 2440.85 1196.85 77.55 44.20 5.00 1

|P | · |D| 1102.70 309.08 24.15 17.98 5.00 1.04

0.8 · |P | · |D| 966.20 279.18 21.05 7.50 5.00 1.04

0.5 · |P | · |D| 564.90 175.61 14.10 4.84 5.00 1.07

0.2 · |P | · |D| 270.45 52.13 3.15 6.47 4.95 1.17

Table 5.9: Experiments on bounded A* on the problem class of (8,10,6,8,3,2)

Max size ♯Nodes ♯Nodes Time Time ♯Found QoA

of OPEN (mean) (std) (mean) (std)

unbounded 1085.85 1374.57 35.77 57.73 5.00 1.00

|P | · |D| 674.96 555.54 16.70 16.45 5.00 1.03

0.8 · |P | · |D| 599.96 413.62 14.00 9.85 5.00 1.03

0.5 · |P | · |D| 452.55 312.24 10.04 8.95 5.00 1.04

0.2 · |P | · |D| 223.91 127.66 7.34 7.92 4.72 1.08

Table 5.10: Experiments on bounded A* on the problem class of (8,10,6,8,4,3)

Max size ♯Nodes ♯Nodes Time Time ♯Found QoA

of OPEN (mean) (std) (mean) (std)

unbounded 3577.80 3709.58 157.80 236.93 5.00 1.00

|P | · |D| 1675.15 906.77 31.95 19.24 5.00 1.02

0.8 · |P | · |D| 1527.60 802.96 28.25 10.90 5.00 1.03

0.5 · |P | · |D| 975.05 519.21 18.65 11.96 5.00 1.04

0.2 · |P | · |D| 395.85 162.44 9.45 7.92 5.00 1.10

Table 5.11: Experiments on bounded A* on the problem class of (9,11,6,8,4,3)
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Advantage of A* over Pure Greedy Algorithms

Since the task assignment problem in general form is an NP-hard problem, differ-

ent heuristic algorithms have been proposed [AAH05, ZWS+08]. These algorithms

compute one sub-optimal task assignment by greedily assigning a task to a de-

vice with a minimal assignment cost. We implemented an algorithm called “Pure

Greedy” based on this heuristic approach and tested its performance against our

A*-based algorithm. We conducted the experiments of finding one sub-optimal task

assignment in two problem classes as shown in Table 5.12 and Table 5.13. We ex-

amined two measures. The first is a “success ratio” that is the probability of finding

one (sub-)optimal assignment successfully. The second is “quality of the best assign-

ment” (QoB) that is defined as:

QoB =
Ωde(sub-optimal assignment found)

Ωde(optimal assignment)
(5.10)

From the experiment results, we see that although it is very fast, the “Pure

Greedy” algorithm provides much worse results in both classes. In about 40 out

of 50 runs, it can not find a possible task assignment. The reason is that this heuris-

tic algorithm is very shortsighted and does not work well in our formulated task

assignment problem. Our specific assignment constraints are the main cause of the

unsuccessful use of the “Pure Greedy” algorithm: It often runs into an invalid as-

signment that either violates a local constraint, e.g., exceeds the available bandwidth

on a particular channel, or violates a reachability constraint, e.g., two connected

tasks are not assigned to two connected resources.

Max size ♯Nodes ♯Nodes Time Time Success QoB

of OPEN (mean) (std) (mean) (std) ratio

unbounded 7192.15 13816.39 559.45 1614.08 100% 1

|P | ∗ |D| 1122.25 837.13 23.35 23.60 100% 1.02

0.8 ∗ |P | ∗ |D| 966.65 652.91 20.25 11.39 100% 1.02

0.5 ∗ |P | ∗ |D| 712.45 433.29 14.75 9.48 100% 1.02

0.2 ∗ |P | ∗ |D| 381.65 192.07 4.70 7.37 100% 1.05

Pure Greedy 9.60 4.81 3.95 7.02 16% 1.14

Table 5.12: Comparison the bounded A* with pure greedy algorithm on the problem class of

(10,12,6,8,4,3)
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Max size ♯Nodes ♯Nodes Time Time Success QoB

of OPEN (mean) (std) (mean) (std) ratio

unbounded 3151.60 3347.59 120.30 168.25 100% 1

|P | ∗ |D| 1127.90 801.76 25.05 17.90 100% 1.02

0.8 ∗ |P | ∗ |D| 912.05 540.47 17.85 11.55 100% 1.02

0.5 ∗ |P | ∗ |D| 602.10 370.99 12.60 9.62 100% 1.03

0.2 ∗ |P | ∗ |D| 324.60 196.67 8.65 8.03 100% 1.07

Pure Greedy 10.65 4.03 3.80 8.42 22% 1.17

Table 5.13: Comparison the bounded A* with pure greedy algorithm on the problem class of

(9,11,6,8,4,3)

5.4 Concluding Remarks

This chapter presents A*-based task assignment algorithms for MPMSs. Although

the general form of the problem, i.e., DAG-DAG, is NP-hard, we expect the A*-

algorithm to be a suitable solution when the problem size is small. For example,

the epilepsy detection scenario presented in Section 1.1.2 deals with 10 processing

tasks and less than 10 devices. Our choice is further motivated by the fact that the

A*-algorithm is admissible and guarantees a better performance, e.g., generating a

smaller search tree, than any other admissible search algorithms [DP85].

In Section 5.1, we described several general design aspects of the A*-based al-

gorithms that are independent of the objective function. First, we illustrated what

each node in the search tree represents and how to encode task assignments into the

search tree. Second, we explained the concept of task search order and its impact

on the algorithm performance. Third, we proposed two particular designs, namely

node expansion rules and data dependence check, to ensure the traversed search

tree to be both effective and efficient.

After presenting the shared design aspects, we studied two variants of A*-based

task assignment algorithms in Section 5.2 and Section 5.3 with different objective

function. The performance of both algorithms are evaluated based on Java imple-

mentations. The experiments proved that the A*-based task assignment algorithm

is a suitable candidate for the task assignment problem in MPMSs when the num-

ber of involved tasks and devices are limited. In case we have to deal with a larger

problem, the bounded version of the A*-based algorithm is shown to be an effective

(in terms of the quality of the solution) and efficient (in terms of the computational

resource required) alternative solution.
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Chapter 6

Task Distribution Infrastructure

The proposed MADE middleware provides four functionalities: Monitoring, Analy-

sis, Decision and Enforcement. In Chapter 3, the high-level design of this middleware

layer has been presented. Chapter 4 and Chapter 5 are dedicated to task assignment

algorithms that provide the intelligence of the Analysis functionality. This chapter

is, in fact, a more in-depth study on the Monitoring, Decision and Enforcement func-

tionalities of the MADE middleware. This chapter presents a task distribution in-

frastructure that supports the dynamic reconfiguration and a computational model

to evaluate the reconfiguration cost. In this thesis, the reconfiguration cost is defined

in terms of reconfiguration time.

This chapter is structured as follows. Section 6.1 presents the architecture and

behavior of the task distribution infrastructure. Section 6.2 defines the concept of

affected tasks which form the targeted area of a system reconfiguration. Section 6.3

introduces a 7-step scheme to construct reconfiguration plans. Section 6.4 presents

a computational model to quantitatively evaluate reconfiguration costs. Section 6.5

presents a proof-of-concept implementation of the proposed task distribution in-

frastructure and reports its performance.

6.1 Architecture and Behavior

To support dynamic task distribution, we propose an infrastructure that supports

task distribution based system reconfigurations as depicted in Figure 6.1. It consists

of a set of Bio-Signal Processing Units (BSPUs), a set of Facilitators, and a Coordi-

nator. A “Facilitator” is deployed on each device in an MPMS and represents its

hosting device in MADE. A Coordinator is a central component that computes opti-

mal task assignments and controls the Facilitators to deploy a target task assignment

by means of task distribution. BSPU is the unit of distributable tasks. This infras-

tructure is partially inspired by Service Oriented Architecture (SOA), where a BSPU

can be viewed as a service implementing bio-signal processing tasks, Facilitators act

like service providers and the Coordinator acts like a service registry. As shown in

Figure 6.1, when a new device joins the MPMS or its context information changes,
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its hosted Facilitator informs the Coordinator about its presence and current context

information (Interaction 1). Once a decision to reconfigure the MPMS is made by the

Coordinator, it controls each Facilitator to reconfigure its hosting device (Interaction

2). After the reconfiguration is finished successfully, the new telemonitoring appli-

cation will be formed by a set of distributed BSPUs (Interaction 3). In the following

part of this section, we explain each architectural component in more detail. We use(1) (1) (1)(1)(2)                (2) (2) (2)
Figure 6.1: The system architecture of task distribution infrastructure.

OSGi technology1 as the implementation framework for the task distribution infras-

tructure and Java as the programming language. These two technology choices are

motivated for the following reasons:

1. They are both designed for cross-platform systems which are the case for many

MPMSs.

2. They are both well supported by standardization bodies and the industry.

3. They are both very suitable for resource-constrained devices: Java Platform,

Micro Edition (formerly J2ME) has been integrated on many mobile and em-

bedded devices. The OSGi specification originates from the consumer elec-

tronic industry with the aim of providing a light-weight device management

solution.
1http://www.osgi.org
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Figure 6.2: A seizure detection algorithm (a copy of Figure 1.2)

4. Existing OSGi implementations often offer basic remote management func-

tionalities which greatly reduce our development effort in the task distribution

infrastructure.

6.1.1 BSPU - A Unit of Composition

To realize the distributed execution of telemonitoring applications and to enable

task distribution, we introduce a software component named as BSPU which plays

the role of a unit of system composition. A BSPU receives continuous bio-signal

streams via its input buffer from its predecessor BSPUs, manipulates the streams,

and transfers the processed output streams to the successor BSPUs if any. The tasks

shown in Figure 6.2 can all be implemented as BSPUs: for example, a BSPU can

implement the task of “R-top detection” which takes the filtered ECG signal as input

and outputs all detected “R peak” in the ECG signal.

Besides the data plane functionality, a BSPU also provides a set of control meth-

ods so that an external entity can manage its lifecycle. Thus, the task distribution

and dynamic reconfiguration can be achieved. With the choice of the OSGi technol-

ogy, the BSPU lifecycle model is designed by extending the OSGi bundle lifecycle

(Figure 6.3). Similar to an OSGi bundle, a BSPU can be installed, uninstalled, started,

stopped and updated. When a BSPU is installed, its code is loaded into the OSGi

framework on a target device. The framework then further checks this BSPU’s soft-

ware dependencies and tries to install and start its required service packages. After

these resolvements, a BSPU can be uninstalled, updated or started. An “uninstall”

call removes a BSPU from the framework. An “update” call installs a new version of

the BSPU into the OSGi framework. A “start” call activates the bio-signal processing

task implemented by this BSPU. When a BSPU is stopped, its provided services will

be eliminated, but its installed code still resides in the OSGi framework.

In the dynamic reconfiguration of an MPMS, the execution states are often re-

quired to be preserved in the target configuration since they might contain impor-

tant medical information derived from earlier received inputs. Thus, the proposed
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Figure 6.3: Lifecycle of a BSPU which is extended based the component lifecycle in OSGi

framework

task distribution infrastructure should support execution states transfer, i.e., state-

ful reconfiguration. For this purpose, we introduce two new states and two new

transitions that can be used to temporarily freeze a set of BSPUs and allow a state-

ful reconfiguration. A “block” call enforces a transition to the “Blocking” state. In

this state the BSPU will no longer take and process incoming data streams from its

input buffer but just finishes the ongoing processes. After it finishes all the ongoing

processes, this BSPU will move to the “Blocked” state where it no longer sends any

data streams to its successor BSPUs. The last message sent from a BSPU to its succes-

sor BSPUs before it moves into the “Blocked” state contains a “Blocked” flag. This

flag propagates through all its successor BSPUs to inform them about the applied

“block” action. After a BSPU receives a “Blocked” flag, it enters a special “Active”

state, named as “Quiescent”. In the “Quiescent” state, a BSPU does not actively

perform bio-signal processing tasks anymore since there is no sufficient new input

signal. This is because that, as we stated earlier in our assumption (Section 3.3.1),

a task can only function when the bio-signals from all its predecessor tasks are re-

ceived and synchronized. A “resume” call unblocks a “Blocked” BSPU and enables

it to fetch the received data in its input buffer and process incoming data streams

again. When a BSPU is in the state “Active” or “Blocked”, it is possible to inspect or

configure the execution state information.

We distinguish two types of BSPU: processing and relaying. Each processing
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BSPU implements a processing task, e.g., “p2” in Figure 3.4. In this thesis, we use

the same notation of “pi” to represent a processing task or a processing BSPU. When it

occurs, the exact meaning should be clear from the surrounding text. Relaying BSPUs

do not contain any data manipulation functions and are implemented to support

transmission tasks. We denote the relaying BSPU of a transmission task “ti” as “ti∗”.

For example, in the task assignment “α” as defined in Table 6.1, “t2” is assigned to

“d1, c1, d2, c2, d5”. Hence, one “t2∗” should be deployed onto device “d2” to support

the execution of “t2”.

6.1.2 Facilitator

Facilitator is the representative of its hosting device in the task distribution infras-

tructure: it declares the presence of a device, reports the local device context in-

formation to the Coordinator, receives control commands from the Coordinator to

dynamically configure its locally hosted BSPUs. To enable the Coordinator to have

control over Facilitators, each Facilitator provides a Facilitator Control interface as

shown in Figure 6.1. This interface provides the following methods (Figure 6.4):

• getAllBSPU: to retrieve a list of all hosted BSPUs at this Facilitator.

• installBSPU: to install a new BSPU at the Facilitator based on the given source.

• uninstallBSPU: to delete the implementation of a BSPU and release its occupied

resource, e.g., memory space.

• updateBSPU: to update the implementation of an inactive BSPU. It can be

viewed as a composition of “uninstallBSPU” and “installBSPU”.

• startBSPU: to start the bio-signal processing task implemented by the selected

BSPU.

• stopBSPU: to stop the bio-signal processing task implemented by the selected

BSPU.

• configureBSPU: to configure the execution parameters of a BSPU.

• inspectBSPU: to retrieve a list of all configurable execution parameters of a

BSPU

• blockBSPU: to stop a BSPU from fetching and processing new incoming data

streams from its input buffer and just let it finish the ongoing processes.

• resumeBSPU: to enable a BSPU to start fetching and processing new incoming

data streams from its input buffer.
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• isBSPU: to start a composite action consisting of “installBSPU” and “startB-

SPU”.

• iscBSPU: to start a composite action consisting of “installBSPU”, “startBSPU”,

and “configureBSPU”.

• suBSPU: to start a composite action consisting of “stopBSPU” and “uninstallB-

SPU”.

The first six methods in the above list are similar to what the OSGi framework sup-

ports already. The rest are defined and implemented to offer the additional func-

tionalities required by the task distribution infrastructure.

Figure 6.4: The interface of Facilitator Control. “bspuID” is a unique identifier. “source” is

either the source installation file of a BSPU or a pointer to the installation file. “parameters” is

a list of < variable, value > pairs which represent configurable execution state information

of a BSPU

.

6.1.3 Coordinator

Coordinator is the architectural component that hosts task assignment algorithms.

Besides providing the necessary intelligence of identifying the optimal system con-

figuration, the Coordinator also supports system reconfigurations by means of man-

aging available Facilitators and coordinating the system reconfiguration actions. As

depicted in Figure 6.5, a Coordinator consists of the following six modules:
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1. “Facilitator registration/update”: This module maintains a “Coordinator Reg-

istration” interface that can be invoked by external entities to inform the Co-

ordinator about new Facilitators and context changes. This interface will be

detailed in the later part of this section.

2. “Facilitators registry”: This is a registry to store the information about avail-

able Facilitators and their context information, e.g., hosted BSPUs and net-

work connectivity.

3. “Required telemonitoring application”: This is the module providing the in-

formation about required telemonitoring applications, i.e., the labeled “task

DAG”.

4. “Task assignment algorithm”: This module holds the task assignment algo-

rithms proposed in the earlier chapters.

5. “Reconfiguration plan generator”: This module takes a computed target task

assignment as the input, identifies the affected tasks and computes a reconfig-

uration plan. We explain affected tasks in Section 6.2 and how to generate a

reconfiguration plan in Section 6.3.

6. “Control commands dispatcher”: This module coordinates the appropriate Fa-

cilitators (through their Facilitator Control interfaces) to reconfigure an MPMS

according to a reconfiguration plan.

After depicting the structural view of Coordinator in Figure 6.5, we explain the

behavior of Coordinator by presenting its state diagram as shown in Figure 6.6.

The Coordinator operates in four distinguished states, i.e., “Monitoring”, “Decision-

making”, “Updating (facilitators registry)”, and “Dispatching (commands)”. These

four states are closely related with the four main functionalities of the MADE mid-

dleware: Monitoring, Analysis, Decision and Enforcement.

1. In the “Monitoring” state, the Coordinator monitors the context changes in an

MPMS by receiving reports from external entities, e.g., Facilitators.

2. In the “Decision-making” state, the Coordinator performs the analysis and

decision functionality.

3. In the “Updating” state, the Coordinator performs maintenance on the “Fa-

cilitators registry”, which is a bookkeeping activity to support the four main

functionalities.

4. In the “Dispatching” state, the Coordinator performs the enforcement func-

tionality to dynamically reconfigure an MPMS.
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Figure 6.5: The internal architecture of Coordinator

The provided Coordinator Registration interface of a Coordinator (Figure 6.7)

consists of the following methods:

• registerFacilitator: This method is used to register a new Facilitator at the Coor-

dinator. This happens when a device joins the MPMS and becomes ready for

performing bio-signal processing tasks.

• updateFacilitator: This method updates the context information of a registered

Facilitator at the Coordinator. The updated context information, i.e., “fCon-

text”, can be a network connection change, CPU load change, the fact that the

remaining battery energy reduces to a certain threshold value, etc. The study

on detailed representation format of “fContext”, so called modeling of context,

is not the focus of this thesis. However, there exist many works on this topic

and interested readers are referred to [CC03, Cos07].

• unregisterFacilitator: This method is used to inform the Coordinator that a reg-

istered Facilitator is going offline, i.e., its hosting device is leaving the MPMS.
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Figure 6.6: The state diagram of Coordinator

To deal with the potential risk that the connection between a registered Facil-

itator and the Coordinator unexpectedly becomes unavailable, a proper time-

out mechanism is included. Using this time-out mechanism, the Coordinator

can discover an unreachable Facilitator and remove it from the Facilitator reg-

istry.

• bspuBlocked: This method is used to inform the Coordinator that a BSPU is

successfully blocked.

• bspuQuiescent: This method is used to inform the Coordinator that a BSPU is

now quiescent, i.e., a special “active” state.

Figure 6.7: The interface of Coordinator Registration. “fURL” is the connection address of

a Facilitator. “fContext” describes the current context information of a Facilitator’s hosting

device. “fID” is a Coordinator-wide unique identifier for a Facilitator
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6.2 Affected Tasks

Besides calculating the optimal task assignments, the other main responsibility of

the Coordinator is to automatically generate a reconfiguration plan given a current

task assignment (“α”) representing the current MPMS system configuration, and a

target task assignment (“β”) representing the identified new system configuration.

An example of these two different task assignments for the system modeled in Fig-

ure 6.8 are illustrated in Table 6.1.

Figure 6.8: Copy of Figure 3.4

An original task assignment and a target task assignment are different if at least

one task’s location is changed, e.g., addition, relocation or removal. In the example

illustrated in Table 6.1, the locations of task “p2”, “t1”, “t2” and “t4” are changed.

Additions or removals occur when new tasks are introduced or existing tasks are

removed. In a set of connected tasks, a location change of one task will require

adjustments to other tasks that connect to this task. For example, as shown in Fig-

ure 6.8, if the location of task “t2” or task “t4” is changed, some adjustment should

be performed at “p2” in order to guarantee that the output of “p2” is correctly con-

nected to “t2” or “t4”. Thus, to generate a reconfiguration plan, we should not only

consider the tasks whose locations are explicitly changed, but also those tasks that
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α(original) β(target)

p1 d1 d1

p2 d1 d5

p3 d5 d5

p4 d5 d5

p5 d4 d4

p6 d4 d4

p7 d4 d4

p8 d5 d5

t1 d1 d1, c1, d2, c2, d5

t2 d1, c1, d2, c2, d5 d5

t3 d5 d5

t4 d1, c1, d2, c2, d5 d5

t5 d5 d5

t6 d4 d4

t7 d4 d4

t8 d4, c5, d5 d4, c5, d5

Table 6.1: Two different task assignments “α” and “β” for the system shown in Figure 3.4.

The affected tasks are highlighted.

are affected implicitly. In the reconfiguration from “α” to “β” (Table 6.1), not only

“p2”, “t1”, “t2” and “t4” should be taken care of, but also the adjustment to “p1”

should be included in the reconfiguration plan. We name all these tasks subject to

reconfiguration as affected tasks:

• A transmission task is affected if it is added, relocated or removed.

• A processing task is affected if (1) it is added, relocated or removed, or (2) any

of its direct successor transmission tasks is affected.

Thus we can identify, for any reconfiguration, the set of affected tasks unambigu-

ously as shown in Table 6.1. In the task distribution infrastructure, a reconfiguration

plan only needs to address those processing BSPUs that implement affected process-

ing tasks and those relaying BSPUs that implement affected transmission tasks. We

refer to these processing BSPUs and relaying BSPUs as affected BSPUs.
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Figure 6.9: The seven-step reconfiguration plan applied to support the reconfiguration from

”α” to ”β”

6.3 Reconfiguration Plan

In order to maintain state consistency during a dynamic reconfiguration, a three-

stage reconfiguration approach has to be followed [AVSN01]: (1) drive system to

a safe state in which to-be-reconfigured components are self-contained and stable

and none of them is involved in any interaction; (2) detect if a safe state has been

reached; and (3) apply reconfigurations. Following this general approach, we define

a sequential seven-step scheme to create dynamic reconfiguration plan. Note that

the reconfiguration should be treated as atomic transactions: in case one action fails

during the execution, the actions taken so far must be rolled back as to retain the

original configuration. These seven steps are explained as follows with the example

of reconfiguring from “α” to “β” as depicted in Figure 6.9:
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1. Preparing: Before interrupting the on-going telemonitoring application, the

Coordinator installs and starts every relocated and newly added BSPU at the

targeted new location, e.g., “install&start p2” and ‘install&start t1∗” in Fig-

ure 6.9. Thus, in case any action fails in this step, there is no penalty on the

on-going telemonitoring application.

2. Blocking: In this step, the on-going telemonitoring application is interrupted.

the Coordinator identifies and blocks all the so-called source affected BSPUs in

the original configuration, e.g., “block p1”. A source affected BSPU is an affected

BSPU none of whose predecessor BSPUs are affected.

3. Waiting: after a source affected BSPU enters the ”Blocked” state, it sends a

notification via its hosting Facilitator to the Coordinator, e.g., “p1 is blocked”.

After a BSPU receives a “Blocked” flag from its predecessor BSPU and finishes

all possible processing of the remaining data stream in its input buffer, it en-

ters the “Quiescent” state. This BSPU notifies the Coordinator via its hosting

Facilitator about this situation, e.g., “p2 is quiescent”. After all the notifications

from affected BSPUs are received by the Coordinator, the system enters a safe

state for the next step.

4. Fetching: The Coordinator inspects the current execution state information

from relocated BSPUs in the original configuration, e.g., “inspect p2”. Now,

the Coordinator has the execution state information of relocated BSPUs.

5. Setting: The Coordinator sets the execution state of every relocated BSPU at

the targeted new location, e.g., “configure p2”. The Coordinator sets the BSPU

whose configuration parameters are required to update in order to maintain

the connection correctly, e.g., “configure p1”.

6. Resuming: The Coordinator resumes all source affected BSPUs, e.g., “resume

p1”. After this step, the MPMS resumes to work normally in the target config-

uration.

7. Removing: The Coordinator removes all the outdated BSPUs (including relay-

ing BSPUs) left from the original configuration, e.g., “stop&uninstall p2” and

“stop&uninstall t2∗ and t4∗”.

Overall, the execution of the reconfiguration plan can be viewed as a combination of

a set of control communications (including both request and reply) between Coordi-

nator and Facilitators and a set of control actions on BSPUs applied by their hosting

Facilitators.
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6.4 Reconfiguration Cost

In this section, we present a computational model to evaluate the reconfiguration

cost in terms of reconfiguration time, which is the elapsed time between the mo-

ment that Coordinator initiates a new reconfiguration and the moment that the re-

configuration finishes and the system starts running under a new configuration. The

purpose of this model is twofold. (1) The stateful reconfiguration could cause a po-

tential disruption at the telemonitoring application. It is crucial to estimate the scale

of this disruption before executing the reconfiguration plan. (2) When a reconfigu-

ration decision is required given a certain context change, there could exist multiple

new task assignments that offer similar performance compared to the optimal one

under the new situation (c.f. Section 3.3.3). To choose the best, we need to balance

the tradeoff between the performance gain of these new task assignments and their

reconfiguration complexity.

We can see that the time duration of a reconfiguration plan execution is closely

related to the difference between the original task assignment and the target task

assignment: the larger the difference, the more BSPUs are affected, and thus the

more time spent on reconfiguration communications and actions. We define the

following cost functions to model the time duration of each control communication

and control action observed at the Coordinator:

• cx(Facilitator) denotes the time duration of a control communication between

the Coordinator and a particular Facilitator. Due to the communication hetero-

geneity, this time duration is a function of the set of communication channels

between the Coordinator and Facilitators. From the Coordinator point of view,

we label “communication channel between Coordinator and Facilitator” sim-

ply as “Facilitator”. In our model, we denote Facilitators according to its loca-

tion. For example, the Facilitator located at device “d5” is denoted as “F@d5”.

• ca(Facilitator,BSPU,Action) denotes the time duration of a control action.

Due to the device heterogeneity and different complexity level of actions, this

time duration is a function of the set of Facilitators (each representing its host-

ing device), the set of BSPUs, and a set of actions, where

Action = {block, resume, install, uninstall, start, stop, inspect, configure, wait}

The Coordinator’s knowledge about these two cost functions can be learnt over time

through monitoring system operation. Initially, the Coordinator simply associates a

set of heuristic values as the function results. From time to time, the Coordinator can

update these values based on the measurements of real communications or actions

and thus to tune the cost functions to provide more accurate estimates. In Table 6.2,
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Step Cost

preparing
cx(F@d5) + ca(F@d5, p2, install) + ca(F@d5, p2, start)

+cx(F@d2) + ca(F@d2, t1∗, install) + ca(F@d2, t1∗, start)

blocking cx(F@d1) + ca(F@d1, p1, block)

waiting
cx(F@d1) + ca(F@d1, p1, wait) + cx(F@d1) + ca(F@d1, p2, wait)

+cx(F@d2) + ca(F@d2, t2∗, wait) + cx(F@d2) + ca(F@d2, t4∗, wait)

fetching cx(F@d1) + ca(F@d1, p2, inspect)

setting cx(F@d5) + ca(F@d5, p2, configure) + cx(F@d1)

+ca(F@d1, p1, configure)

resuming cx(F@d1) + ca(F@d1, p1, resume)

removing

cx(F@d1) + ca(F@d1, p2, stop) + ca(F@d1, p2, uninstall)

+cx(F@d2) + ca(F@d2, t2∗, stop) + ca(F@d2, t2∗, uninstall)

+cx(F@d2) + ca(F@d2, t4∗, stop) + ca(F@d2, t4∗, uninstall)

Table 6.2: Stepwise reconfiguration costs from from ”α” to ”β”

we present the reconfiguration cost of each individual step of the reconfiguration

plan based on the proposed cost functions and the reconfiguration example shown

in Figure 6.9. In the proposed reconfiguration plan, only from step 2 (blocking) to

step 6 (resuming), the telemonitoring application potentially suffers from a service

disruption. Thus, the total reconfiguration cost of a particular reconfiguration in our

case is the combination of the costs of these 5 steps.

6.5 Experiment Results

We implemented the task distribution infrastructure based on the OSGi technology.

A 3rd party OSGi added-on service, called R-OSGi2, is used in our implementa-

tion to provide the remote connection support between distributed OSGi frame-

works based on the Service Location Protocol (SLP). There are several existing

open source OSGi framework implementations. We selected “Equinox”3 which is

the first certified implementation by the OSGi consortium and it is also the corner-

stone of the “Eclipse” development tool. BSPUs, Facilitator, and Coordinator are

all implemented as OSGi bundles (services). Two different device configurations,

i.e., Facilitator device and Coordinator device, are illustrated in Figure 6.10. Both

device configurations require the presence of a bundle named “FacilitatorContro-

2http://r-osgi.sourceforge.net/
3http://www.eclipse.org/equinox/
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lAPI”. This bundle declares the Facilitator Control interface (c.f. Figure 6.4) so that

the Coordinator service can bind and invocate a Facilitator service on a remote OSGi

framework. At the Facilitator device, both the invocations to the Coordinator Regis-

tration Interface (c.f. Figure 6.7) and the time-out mechanism are supported by the

“EventService” bundle:

• When a Facilitator wants to register, update or unregister itself, it will send an

event message carrying the relevant information, e.g., the address and context

information.

• When a BSPU wants to inform the Coordinator that it entered a “Blocked” or

“Quiescent” state, it will send a ‘Blocked” or “Quiescent” event message.

• Periodically, a Facilitator also sends out a keep-alive event message to inform

the Coordinator that it is still available. This is used to assist the Coordinator

correctly maintaining a list of available Facilitators in an MPMS.

Figure 6.10: Coordinator device connecting Facilitator device through R-OSGi service inter-

face

To validate the sequential seven-step dynamic reconfiguration scheme, in partic-

ular to evaluate the reconfiguration cost, we measured the dynamic reconfiguration

(Figure 6.9) from task assignment “α” to “β”. Our experimental setting consists one

laptop and three PCs where three PCs are located in the same LAN and the laptop

is connected through Wireless LAN (802.11g).

1. The Coordinator device is a laptop with an Intel Duo Core 2.5GHz CPU, 4GB

memory, and running Windows Vista.
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Step Mean time (ms) std time (ms)

preparing 57.41 19.55

blocking 9.23 12.44

waiting 233.86 78.82

inspecting 31.86 14.75

setting 64.64 13.10

resuming 54.50 18.59

removing 25.68 14.12

Table 6.3: Measured time duration of each reconfiguration step in the experiment of recon-

figuring from the assignment “α” to the assignment “β” as shown in Figure 6.9

2. The Facilitator device “d1” is a PC with an Intel Duo Core 2.66GHz CPU, 1GB

memory and running Windows XP 2002 SP2.

3. The Facilitator device “d2” is a PC with an Intel Duo Core 2.4GHz CPU, 2GB

memory and running Windows XP 2002 SP2.

4. The Facilitator device “d5” is a PC with an Intel Duo Core 2.4GHz CPU, 1GB

memory and running Windows XP 2002 SP2.

We ran this dynamic reconfiguration experiment 20 times and report the average

time duration and its standard deviation for each reconfiguration step in Table 6.3.

We observed the main bottleneck for dynamic reconfiguration is on the “waiting”

step. Even for the powerful computers, broadband connection, and the relatively

simple reconfiguration plan we used in the experiment, the average time duration

for the “waiting” step is still 234 milliseconds. The average total service disruption

caused by the steps from “blocking” till “resuming” is 394 milliseconds. We can ex-

pect the level of service disruption for a real MPMS to be even higher, e.g., close to

the level of disruption observed in the MoiPADS system (c.f. Section 2.1.1). With-

out the detailed analysis on telemonitoring application and its requirement, it is not

easy to make the conclusion whether this kind of service disruption will affect the

provided healthcare service or not. Using appropriate recording and buffering tech-

nologies, we could guarantee that the transmitted and processed bio-signal will not

be lost. However, a certain level delay caused by the reconfiguration’s service dis-

ruption is, very likely, not avoidable. Hence, depending on the specific data delivery

requirement, some MPMSs may just tolerate the excessive delay while other MPMSs

may require a warning to be given in order to let the user take proper actions.
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6.6 Concluding Remarks

This chapter details the design of the MADE middleware and presents a prototype

implementation based on the OSGi technology. There are three kinds of architec-

tural components in MADE, i.e., Coordinator, Facilitator and BSPU. In an MPMS, a

Coordinator and a set of Facilitators form an overlay network on top of the m-health

platform and work together in a cooperative fashion to achieve task distribution

based adaptation. To support the distributed execution of telemonitoring applica-

tions, we introduced BSPU that plays the role of a unit of system composition. A

BSPU receives continuous bio-signal streams via its input buffer from its predeces-

sor BSPUs, manipulates the streams, and transfers the processed output streams to

the successor BSPUs if any. The architectural and behavioral design of these three

components are presented in Section 6.1.

Another main contribution of this chapter is that we defined a scheme to con-

struct reconfiguration plans for MPMSs. First, in order to identify the difference

between the current task assignment and a target task assignment, Section 6.2 de-

fines the concept of affected task and explains how affected tasks can be identified.

Determining the affected tasks is the essential step for making the reconfiguration

plan since they form the targeted area of a system reconfiguration. Section 6.3 intro-

duces a 7-step scheme to construct reconfiguration plans. This scheme first drives

the MPMS to a safe state in which affected BSPUs are self-contained and none of

them is involved in any interaction. Only after a safe state is detected (all affected

BSPUs are either in a “Blocked” state or a “Quiescent” state), the reconfiguration

towards a target task assignment can start.

As discussed earlier on dynamic reconfiguration (Section 2.3), a stateful mech-

anism that supports execution state transfer will, unavoidably, have certain impact

on the system and its provided services. Section 6.4 presents a concept of reconfig-

uration cost (in terms of reconfiguration time) to deal with this service disruption

problem. Section 6.5 presents the experiment results obtained from our prototype

implementation. We observed a hundred-millisecond level service disruption in our

experimental setting and expect the disruption to be larger in a real-world MPMS.

There are different approaches to tackle this unavoidable service disruption, e.g.,

buffering transmitted data or alerting the users. Furthermore, since the main bot-

tleneck in the dynamic reconfiguration is on the “waiting” step, developers could

pay more attention on improving the specific designs related to this step when deal-

ing with a concrete system. Depending on the specific telemonitoring applications

and their medical requirements, these design choices may vary and they are not the

focus of this thesis.
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Chapter 7

Conclusion

This chapter presents the conclusion of this thesis. Section 7.1 presents general con-

siderations and Section 7.2 explains our findings with respect to the proposed re-

search questions in Chapter 1. Section 7.3 summarizes the most important research

contributions of this thesis. Section 7.4 discusses several topics that are of interest

for future research.

7.1 General Considerations

We recognize that, similar to other applications operating in a mobile environment,

the performance of MPMS could be (deeply) affected by context changes and scarcity

of resources, e.g., network bandwidth, battery power, and computational power of

handhelds. When a mismatch between the application’s demand and the platform’s

resource supply exceeds a certain threshold, an entire MPMS may fail in responding

accurately and timely to an emergency. Thus, the success of an MPMS relies heavily

on whether the system can provide adequate and continuous bio-signal processing

and transmission services despite context changes. Finding a suitable solution to ad-

dress the demand and supply mismatch problem in MPMSs was the key motivation

for this PhD research project.

We proposed an adaptation mechanism to adjust the assignment of tasks across

available devices at run-time. This design was referred to in this thesis as task-

distribution-based adaptation mechanism. The rationale is that, at a particular point

in time, if one device cannot support a task for its computation or data communi-

cation demands, some other devices with richer resources might take over. The

advantage over traditional methods is that the user requirements are less likely to

be compromised and distributed resources can be better utilized. Following this ap-

proach, this thesis covers two major research topics: (1) computation of a suitable

task assignment, and (2) dynamic distribution of tasks across devices according to

this new assignment at run-time.
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7.2 Research Questions Revisited

In Section 1.3, we presented a list of research questions that are of importance for

this PhD thesis and these questions have been addressed in various chapters. In this

section, we collect and summarize our answers.

RQ1: What do we require for “a suitable task assignment” in an MPMS?

Given an MPMS, i.e., an m-health platform and deployed telemonitoring applica-

tions, there are a number of possibilities to configure the system based on different

task assignments. For a particular application and its users, “a suitable task as-

signment” implies different system requirements reflecting users’ specific needs. In

Section 3.1, we proposed requirements at four levels ranging from elementary to

advanced. They are:

• Level 1: A suitable task assignment should be able to operate in the present

situation.

• Level 2: Including the level 1 requirement, a suitable task assignment should

be able to operate in a foreseeable future with a sufficiently high probability.

• Level 3: Including the level 2 requirement, a suitable task assignment should

satisfy all performance assurance requirements.

• Level 4: Including the level 3 requirement, a suitable task assignment should

satisfy the performance optimization requirement on a particular measure.

We leave the final choice to the developers of an MPMS to decide which level of

task assignment they like to associate with their designs. In this thesis, we provided

task assignment solutions with the highest requirement, i.e., level 4. Furthermore,

as we study the reconfiguration cost, it becomes clear that even the optimal task

assignment computed based on the new context information might not be the real

suitable one by taking into consideration the reconfiguration costs. To tackle this

problem, we formulated the task assignment problem as to obtain several candidate

task assignments instead of only searching for the optimal assignment. In this the-

sis, we admit that it is not always possible to find a suitable task assignment given

the particular context and requirements. When a suitable task assignment does not

exist, other means have to be used to ensure that users are aware of the requirement

violations.
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RQ2: What benefits can we expect from adapting an MPMS?

Closely coupled with the four-level requirements of suitable task assignments, we

summarize the expected benefits of task-distribution-based adaptation mechanism

in the following:

• If an adaptation is performed in the event of an instant mismatch, e.g., re-

quired data throughput exceeds the available bandwidth at a certain channel,

a new task assignment should be identified to eliminate this mismatch. Thus,

the first performance gain is that the system under the new configuration can

still operate while the old configuration will fail immediately.

• Although the technique of forecasting a potential mismatch is not the focus of

this thesis, recent work has shown the possibility of highly accurate user be-

havior prediction. For example, in [ECQ09], the authors presented a Bayesian

network based method that can predict a person’s movement with over 90%

accuracy. Hence, we argue that identifying a potential mismatch with a high

confidence level is becoming a possibility. An adaptation to avoid it will help

the system to deliver its promised service in the direct foreseeable future.

• Due to a context change, it may happen that the current task assignment no

longer can meet the performance assurance requirement. Thus, adapting the

system configuration towards one of the task assignments that can satisfy

these constraints will help an MPMS to fulfill the performance assurance re-

quirement.

• As we demonstrated in Chapter 5, performance improvements can be ex-

pected if we allow dynamic reconfiguration according to an optimal task as-

signment. For example, for the battery lifetime, a dynamic approach can in-

crease the system battery lifetime more than 200% compared to the static set-

ting.

RQ3: How to design effective yet efficient task assignment algorithms for MPMSs?

Similar to earlier studies [NT93, KA98], the task assignment problem in MPMSs is

NP-hard. However, in case the task model and resource model have a certain topol-

ogy and the cost model satisfies certain properties, dynamic programming meth-

ods can be applied and polynomial-time algorithms exist. In this thesis, we pro-

posed two graph-based polynomial-time algorithms, which deal with the “chain-

chain assignment” and the “tree-star assignment” respectively. When the targeted

MPMS complies with such specific cases, we recommend the use of these graph-

based polynomial-time algorithms since they provide an optimal solution, yet the
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computation time is bounded. Although the proposed algorithm for “chain-chain

assignment” is efficient with regard to the computation time, it still suffers a ma-

jor drawback on memory consumption. We proposed a GA-based solution that is

more friendly on memory usage as an alternative. For the more general “DAG-DAG

assignment”, we proposed the A*-based task assignment algorithms in Chapter 5.

RQ4: How to support dynamic task distribution in MPMSs?

In dynamic reconfiguration of an MPMS, the execution states are often required to

be preserved in the target configuration since they might contain important medical

information derived from earlier received inputs. Thus, the proposed task distribu-

tion infrastructure should support execution states transfer, i.e., stateful reconfigu-

ration. To achieve this, the following designs and implementations are presented in

this thesis:

• The OSGi technology is selected as the implementation framework. A soft-

ware component, named BSPU, is proposed for implementing the distributable

tasks. In the proposed lifecycle of a BSPU, we introduced two new states and

two new transitions compared to the standard OSGi bundle lifecycle. These

newly added controls can be used to temporarily freeze a set of BSPUs, force

them into a consistent state, and allow a stateful reconfiguration.

• Following a standard approach to maintain state consistency during a dy-

namic reconfiguration, we proposed a sequential seven-step scheme to create

dynamic reconfiguration plan.

RQ5: What is the potential disruption caused by dynamic task distribution and

how to measure this reconfiguration cost?

Dynamic system reconfiguration, especially when the transfer of execution state is

required, often has a negative impact on the on-going services provided by the sys-

tem. It is important to understand the potential service disruption caused by re-

configuration and to estimate reconfiguration cost. This thesis presents a model

to evaluate the reconfiguration cost in terms of reconfiguration time, which is the

elapsed time between the moment a new target task assignment is found and a re-

configuration is triggered and the moment that the reconfiguration finishes and the

system starts running under a new configuration. We treated every reconfiguration

plan as a set of control communications and control actions. Thus, the entire recon-

figuration cost can be viewed as the sum of the cost of each individual control action

and control communication. In Section 6.4, we have considered two cost functions
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to capture this information and the knowledge about these two cost functions can

be learnt over time through monitoring system operation.

7.3 Research Contributions

The main contributions of this thesis are:

• A graph-based system model and a set of task assignment algorithms using a

variety of techniques; and

• A middleware layer solution to support task distribution, which includes in-

terface and protocol design, a scheme to construct reconfiguration plans, and

a model for estimating reconfiguration cost.

These contributions are discussed in the sequel.

7.3.1 Task Assignment Algorithms

This section summarizes the research work on task assignment algorithms in this

thesis.

Graph Based Model

Similar to earlier research on the task assignment problem, we use a graph-based

modeling approach in this thesis (Section 3.3.3). An m-health platform is modeled

as a resource DAG, in which we distinguish two types of resources: device vertices

and channel vertices. We model a telemonitoring application as a task DAG and we

distinguish two types of streaming tasks: (1) stream processing tasks that typically

perform some operation on the bio-signal stream, and (2) stream transmission tasks

that are the glue between processing tasks. The benefit of modeling transmission

tasks explicitly are two-fold. First, it allows us to easily characterize properties of

the data stream. Second, transmission tasks can be mapped onto a directed com-

munication path in the resource DAG, hence permitting the existence of relaying

devices.

Chain-Chain

Section 4.1 presents an efficient task assignment algorithm when both the telemon-

itoring application and the m-health platform form a chain. Compared to earlier
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work, this new method relaxes a so-called contiguity constraint, which is a neces-

sity in the earlier case but unnecessarily constraining MPMSs. Furthermore, we ob-

served from our experiments that the assignment graph “construction” step is more

time consuming than the actual “search” step in most of cases, which suggests that

the evaluation on this kind of graph-based method should be based on the time com-

plexity of the entire method instead of the “search” step only [Bok88, SC90, NO91].

Although this graph-based exact algorithm is more efficient compared to earlier

work, it still has a major drawback on memory consumption: it requires an assign-

ment graph to be constructed first, which is a bottleneck of the solution (Table 4.1).

In Section 4.2, we also investigated GA based solutions. Although, GA-based algo-

rithms can not guarantee an optimal solution, they have much smaller and bounded

requirements on memory space while providing satisfactory results.

Tree-Star

As motivated by Bokhari [Bok88], many distributed application settings can be

modeled as a mapping of a task tree onto a star network (Section 2.2.3). In MPMS,

this tree-star model is popular as well [MPW07]. However, it is not possible to di-

rectly apply the existing algorithms to our problem due to the assumptions and

constraints associated with them. Section 4.3 presents a new tree-star assignment

algorithm. Our work differs from Bokhari’s original approach and some follow-up

studies in the following aspects:

1. The following three constraints (defined earlier by Bokhari) are relaxed in our

algorithm by a coloring scheme:

• There are as many satellite devices as there are leaf vertices in the task

tree and it is possible not to use them if the optimal assignment dictates

so.

• All the satellite devices are homogeneous.

• If two tasks are assigned to a satellite device, their lowest common ances-

tor is also assigned to the same satellite device.

2. Bokhari proposed the SB algorithm to find a partition that minimizes the bot-

tleneck processing time while our goal is to find a partition that minimizes the

end-to-end processing delay.

DAG-DAG

In Chapter 5, we proposed A*-based task assignment algorithms. The algorithm

performance is evaluated based on Java implementations. In our experiments, we
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observed a significant performance improvement if the system can be dynamically

reconfigured according to an optimal task assignment. For example, the system

battery lifetime resulted from a dynamic approach, sometimes, is more than tripled

compared to a static approach. Furthermore, there is a clear relation between the

improved performance and the context change, i.e., the more the context changes,

the better improvement can be expected. When dealing with a larger problem, the

bounded version of the A*-based algorithm is shown to be an effective (in terms

of the quality of the solution) and efficient (in terms of the required computational

resource) alternative solution.

7.3.2 Task Distribution Infrastructure

To support dynamic task distribution and to hide the heterogeneous nature of MPMSs,

a middleware level solution is proposed.

MADE

As presented in Section 3.2, the task distribution middleware (MADE) provides four

main functionalities: Monitoring, Analysis, Decision, and Enforcement. The Monitor-

ing functionality is responsible for the telemonitoring application registration, de-

vice discovery, resource monitoring, and context discovery/registration. The Anal-

ysis functionality takes the observed knowledge about telemonitoring application

and m-health platform as input and runs a task assignment algorithm to determine

the assignment with optimal system performance. The Decision functionality com-

pares the computed optimal assignment with the current system configuration to

determine the actual cost of reconfiguration. If the reconfiguration cost can be cov-

ered by the enhanced performance of the new configuration, the new assignment

plan will be executed. The Enforcement functionality controls the MPMS to adjust

its configuration according to the new assignment. Please note that the high-level

design of MADE is for experimental purposes, i.e., to validate the reconfiguration

approach and the task assignment algorithms, and thus is not fully optimized.

Reconfiguration Plan

An original task assignment and a target task assignment are different if at least one

task location is changed (c.f. Table 6.1). In this thesis, we argue that we should not

only consider the tasks whose locations are explicitly changed, but also those tasks

that are affected implicitly: configuration updates of these implicitly affected tasks

should also be included in a reconfiguration plan. Inspired by earlier discussions on

dynamic reconfiguration (c.f. Section 2.3), a sequential seven-step scheme to create
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reconfiguration plan is proposed in Section 6.3. This scheme can be categorized as a

stateful mechanism since it supports preserving the system correctness without the

knowledge of detailed application information. We validated this design by means

of an OSGi-based prototype implementation. The execution results proved that our

proposed task distribution infrastructure and reconfiguration plan are indeed cor-

rect and effective. Although a certain level delay is unavoidable in telemonitoring

services, we argue that, by using appropriate recording and buffering technologies,

the transmitted and processed bio-signal will not be lost. Hence, depending on the

specific data delivery requirement, it is possible to design and build MPMSs that

can tolerate this excessive delay.

Reconfiguration Cost

Every reconfiguration plan can be viewed as a combination of a set of control com-

munications (including both request and reply) between Coordinator and Facilita-

tors and a set of control actions on BSPUs applied by their hosting Facilitators. In

this thesis, we defined two cost functions to model the time duration of each control

communication and control action observed at the Coordinator. The values of these

two cost functions can be learnt over time through monitoring system operation.

Hence, it is feasible now for the Coordinator to make the decision on what is the

best task assignment by taking into consideration both the estimated performance

improvement and the associated reconfiguration cost.

7.4 Future Research

This section lists several issues for future research.

Task Profiling in Telemonitoring

In this thesis, we presented graph-based models for telemonitoring applications and

m-health platforms. We did not discuss on how to obtain the values of these labels

and we admit that it is not so trivial to do so, especially in a mobile and heteroge-

neous environment like MPMS. It is not easy to derive a task’s profiling information

without precise knowledge of its targeted device. The diversity of processor design,

Instruction Set Architecture (ISA), and compilation tools complicate this problem

further [AS96, HP03]. This difficulty has not been emphasized sufficiently in earlier

research on task assignment and we see a considerable effort should be made here.

Earlier work on analytical benchmarking and task profiling [MS98] present possible

approaches. For example, following a task profiling approach, we could conduct a
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trial-based project. In this project, each task in MPMS is tested against every possi-

ble type of device and network channel. Then the operation history is recorded and

the derived knowledge of its resource demand is put into the task’s profile.

Extension on Chain-Chain Task Assignment Algorithms

Our general problem formulation shows that the goal of task assignment algorithms

is to find a set of candidate assignments that provide the best performance. This re-

quirement is reflected by the proposed A*-based algorithms in Chapter 5. For the

problems with simpler topology, e.g., “chain-chain assignment”, the studied algo-

rithms do not provide multiple candidate assignments and only address the per-

formance measure of end-to-end delay. Thus, there are two possible directions to

extend chain-chain task assignment algorithm.

The first extension is to provide multiple candidate assignments. Based on the

currently proposed chain-chain assignment algorithm on minimizing end-to-end

delay (Section 4.1), a straightforward solution is to apply a “K-shortest path algo-

rithm” [Epp98]. Instead of finding the shortest path in the constructed task assign-

ment graph that represents the optimal assignment, we could search for k-shortest

paths (k > 1) representing k candidate assignments that provide best performances

among all possible task assignments.

The second extension is to study algorithms addressing other performance mea-

sures, e.g., system battery lifetime. Actually, we did propose a simple algorithm on

chain-chain assignment problem with the objective of maximizing system battery

lifetime in a separate paper [JMB+07]. However, the model in that paper is very

limited in the sense that the contiguity constraint can not be relaxed. We have not

yet found a polynomial-time exact algorithm that relaxes this contiguity constraint.

It seems that due to the proposed method of estimating system battery lifetime (Sec-

tion 3.3.2), the dynamic programming approach is not applicable anymore. Thus, it

is unlikely that a polynomial-time exact algorithm will ever be found. On the other

hand, GA-based approaches can be applied easily to design an algorithm address-

ing other performance measures. But its effectiveness and efficiency are yet to be

proven.

New Heuristic Functions in The A*-based Algorithms

We do not claim that the function h(n) defined in Chapter 5 is the exact lower-bound

of the additional cost. In fact, any estimation that can be proven to be smaller than

the exact lower-bound can work. The extreme example here is to define h(n) as

“0”. Then, this A*-algorithm with “h(n) = 0” becomes a pure best-first algorithm.

Since we did not strive for the exact lower-bound function, we acknowledge the



134 7 Conclusion

possibility of finding new heuristic functions that are closer to the real lower-bound.

In such cases, a performance improvement of the proposed A*-based algorithms

may be achieved.

Another possible extension is to apply a so-called “bidirectional search” mech-

anism [RN02]. To put it in a simple way, “bidirectional search” runs two simulta-

neous searches. The first one moves forward from the initial state, e.g., assigning

a source task. The second one moves backward from the goal state, e.g., assigning

a sink task. The entire search stops when the two separate search procedures meet

in the middle. In theory, despite the increased design complexity, this bidirectional

approach could reduce the search time.

Incorporate Reconfiguration Cost Into Task Assignment Algorithms

As we proposed in this thesis, task assignment algorithms and reconfiguration cost

are treated separately. If a system reconfiguration is required, we first use a se-

lected task assignment algorithm to obtain a set of candidate assignments. Then

we construct the reconfiguration plan based on the 7-step scheme for each candi-

date task assignment. Using the proposed computational model we could estimate

the reconfiguration cost of every plan. Last, by comparing each plan’s cost with its

performance gain, we can determine which task assignment should be the target

assignment and start executing its associated reconfiguration plan.

If we could integrate these two functional aspects together into a new design,

i.e., a new task assignment algorithm that can incorporate the comparison with re-

configuration cost, we can expect a significant improvement. Take the A*-based

algorithm as an example, every path from the root node to a leaf node in the search

tree corresponds to a task assignment. If the algorithm could somehow “remember”

the path representing the current task assignment before constructing and travers-

ing the search tree, it should be possible for the algorithm to compare the difference

between each new found task assignment with the current task assignment while

the search is being performed. Thus, with just one step of executing a task assign-

ment algorithm, potentially we could obtain the real suitable task assignment by

taking into consideration reconfiguration cost.

Refine The Task Distribution Infrastructure

In Chapter 6, we presented the task distribution infrastructure of the MADE middle-

ware that supports the dynamic reconfiguration and a sequential seven-step scheme

to create a reconfiguration plan. We noted that the high-level design of this task

distribution infrastructure was for experimental purposes and has not been fully
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optimized. A future direction is therefore to seek for a refined design and more op-

timized coordination processes. By doing so, we could reduce the overhead cost of

running the MADE middleware in an MPMS and leave stringent resources in an

MPMS to its main functions. In particular, additional future efforts can be made to

optimize the control communications and control actions performed in the “wait-

ing” step.

Distributed MPMSs With A Large Patient Group

In this thesis, we studied the task-distribution-based adaptation mechanism based

on a single patient scenario. It is unavoidably that, when a large patient group

starts using telemonitoring services, we will have to support distributed MPMSs

[PvBMH09]. This is much more complicated problem since some m-health platform

devices, e.g., back-end server, will be shared by multiple patients and the applied

adaptation mechanism should take this into account. A possible direction based on

the current Coordinator/Facilitator design is to introduce a higher-level Coordina-

tor that can control the distributed individual patient specific Coordinator. Such a

higher-level Coordinator can have a global view of the entire distributed MPMSs

and assist each MPMS to adapt in a coherent and consist manner.
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Abbreviations

BAN Body Area Network

BSPU Bio-Signal Processing Unit

CMN Continuous Media Network

DAG Directed Acyclic Graph

DWG Doubly Weighted Graph

ECG Electro-Cardio Gram

GA Genetic Algorithm

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile communications

HRI Heart Rate Increase

ICT Information and Communication Technology

ISA Instruction Set Architecture

MADE Monitoring, Analysis, Decision, Enforcement

MANET Mobile Ad-hoc NETwork

MPMS Mobile Patient Monitoring System

PDA Personal Digital Assistant

PE Processing Element

PROC Processing and ROuting Component

QoS Quality Of Service

RPC Remote Procedure Call

SB Sum-Bottleneck
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SLP Service Location Protocol

SOA Service Oriented Architecture

SSB Summation of S weight and B weight

TIG Task Interaction Graph

TPG Task Precedence Graph

WLAN Wireless Local Area Network
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