
Received January 21, 2021, accepted February 22, 2021, date of publication March 2, 2021, date of current version March 10, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3063456

Task Duplication-Based Scheduling Algorithm
for Budget-Constrained Workflows in Cloud
Computing

FUGUANG YAO , CHANGJIU PU, AND ZONGYIN ZHANG
Information Center, Chongqing University of Education, Chongqing 400065, China

Corresponding author: Fuguang Yao (yaofuguang@cque.edu.cn)

This work was supported in part by the Scientific Research Platform of Chongqing University of Education through the Big Data Practice

Platform for Sports and Health Based on Campus Internet of Things (IOT) under Grant 2017XJPT07, in part by the Future School (Infant

Education) of the National Center for Schooling Development Program of China through the Research on the Construction of Intelligent

Kindergarten Based on IOT under Grant CSDP18FC3204, in part by the Chongqing Key Research Base of Humanities and Social Sciences

(Chongqing Research Center of Overall Development of Urban-Rural Teachers Education) through the Research on Post-Service Training

Management and Program for Primary and Secondary School Teachers in Chongqing Based on Big Data under Grant 18JDZDWT04,

in part by the Project the Key Issue of Chongqing Education Science (13th Five-Year Plan in 2018) through the Research and Practice of

Intelligent Classroom Construction Based on Internet of Things and Big Data under Grant 2018-GX-017, and in part by the Scientific

Research Program of Chongqing University of Education, Research and Design of Intelligent Wristbands Application System under

Grant KY2016TZ02.

ABSTRACT Workflow scheduling is crucial to the efficient operation of cloud platforms, and has attracted

a lot of attention. Up to now, many algorithms have been reported to schedule workflows with budget

constraints, so as to optimize workflows’ makespan on cloud resources. Nevertheless, the hourly-based

billing model in cloud computing is an ongoing challenge for workflow scheduling that easily results in

higher makespan or even infeasible solutions. Besides, due to data constraints among workflow tasks, there

must be a lot of idle slots in cloud resources. Few works adequately exploit these idle slots to duplicate tasks’

predecessors to shorten their completion time, thereby minimizing workflow’s makespan while ensuring its

budget constraint. Motivated by these, we propose a task duplication based scheduling algorithm, namely

TDSA, to optimize makespan for budget-constrained workflows in cloud platforms. In TDSA, two novel

mechanisms are devised: 1) a dynamic sub-budget allocation mechanism, it is responsible for recovering

unused budget of scheduled workflow tasks and redistributing remaining budget, which is conducive to

using more expensive/powerful cloud resources to accelerate completion time of unscheduled tasks; and

2) a duplication-based task scheduling mechanism, which strives to exploit idle slots on resources to

selectively duplicate tasks’ predecessors, such advancing these tasks’ completion time while trying to

ensuring their sub-budget constraints. At last, we carry out four groups of experiments, three groups on

randomly generated workflows and another one on actual workflows, to compare the proposed TDSA with

four baseline algorithms. Experimental results confirm that the TDSA has an overwhelming superiority

in advancing the workflows’ makespan (up to 17.4%) and improving the utilization of cloud computing

resources (up to 31.6%).

INDEX TERMS

Cloud computing, task duplication, workflow scheduling, resource provision, heuristic mechanism.

I. INTRODUCTION

As a new computing paradigm, cloud computing provides

end-users with highly scalable applications, platforms, and

hardware as services through the Internet [1]. In this

The associate editor coordinating the review of this manuscript and
approving it for publication was P.K. Gupta.

paradigm, end-users can access resources on-demand using

the ‘‘pay-as-you-go’’ mode, and just pay for their actual

resource usage, thus significantly reducing the cost and

operation expenses [2]. Relying on these advantages, cloud

computing developed rapidly in recent years, and has been

widely used for processing big data applications coming from

various fields, such as astronomy [3], [4], healthcare [5],

37262 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 9, 2021

https://orcid.org/0000-0002-7292-2990

F. Yao et al.: TDSA for Budget-Constrained Workflows in Cloud Computing

bioinformatics [6], intelligent transportation [7], and Internet

of Things [8], [9].

In many fields, running big data applications often has

the following challenging characteristics. An application

involves a series of interdependent stages, and each stage

contains a large number of independent tasks, where there

exist data interactions among tasks belonging to different

stages [10], [11]. For instance, an image processing appli-

cation can be divided into many dependent stages, such

as preprocess, segment, and object classification [12], [13].

Each stage contains a large number of tasks, and the input data

of these tasks is the output data of the tasks in the previous

stage [13]. These applications are termed as workflows

in distributed community [14], and one workflow can be

formulated as a Directed Acyclic Graph (DAG), where nodes

stand for its tasks and edges indicate the data dependencies

among tasks [15].

Workflow scheduling is of importance to achieve high

performance for heterogeneous cloud platforms [16], and

it includes two inseparable segments, i.e., resource pro-

visioning and task scheduling [17]. The former refers to

the decision of resource enrolling, including type, quantity,

and usage time [18]. The latter is to map all tasks to the

enrolled resources and sort tasks on each resource. It has

been deeply recognized that workflow scheduling is essential

for efficient operation of cloud computing platforms, such as

shortening makespan of workflows, ensuring users’ budget

constraints, and improving resource utilization. Generally,

scheduling workflows in cloud is NP-complete [2], [19].

A workflow contains hundreds or even more tasks, and the

feasible solution space on elastic cloud platforms increases

exponentially with the number of tasks, so searching the

optimal schedule is often prohibitively expensive. Therefore,

designing heuristic algorithms with low-complexities has

become an attractive choice to generate quick and efficient

schedules within reasonable time [11], [20].

Budget constraint has become one of the major concerns

for implementing workflows on cloud computing [17], [21],

[22]. In recent years, a series of works on scheduling

budget-constrained workflows in clouds have been pub-

lished [16], [20], [23]–[28]. For instance, Arabnejad et al.

designed a deadline-budget constrained workflow scheduling

algorithm with low time-complexity to search feasible

schedules accomplishing both constraints of deadline and

budget [29]. Faragardi et al. developed a greedy resource

provisioning mechanism to extend the classical Hetero-

geneous Earliest-Finish-Time (HEFT) algorithm [30] to

minimize workflows’ makespan while ensuring their budget

constraints [14]. Sun et al. considered both the budget

and deadline constraints of workflows, and defined a new

sub-deadline for each task to improve the HEFT method

for workflow scheduling [31]. Rizvi et al. designed a fair

scheduling algorithm for shortening workflows’ makespan

while ensuring their budget constraints [32]. Zuo et al.

developed a time- and cost-first mechanism to improved

the ant colony optimization based scheduling approach for

optimizing task finish time and cost when considering their

deadline and cost constraints [33]. Zhou et al. defined a

balance factor for workflow tasks based on their optimistic

spare deadlines and budgets, and designed a resource selec-

tion approach for workflow tasks to improve the possibility of

ensuring workflows’ deadline and budget requirements [34].

Nevertheless, these existing works ignore the time slots

in resources left by data dependencies among workflow

tasks, and do not exploit the advantages of task duplication

to enhance tasks’ start and finish time. Besides, due to

the heterogeneous and diverse workflow structure, how to

distribute the overall budget of a workflow to all its tasks is

an ongoing challenge.

Until now, some task duplication/replication-based

scheduling approaches have been proposed for scheduling

workflows in cloud computing [25], [35]–[37]. For instance,

Casas et al. designed a file reuse-replication scheduling

approach to divide a workflow into many sub-workflows

and employ file replication mechanisms to reduce the

number of files transferred among tasks, such making a

trade-off between makespan time and cost [38]. To ensure

reliability constraints or improve the fault-tolerant capacity,

task replication mechanisms were designed for scheduling

workflows in cloud computing [39]–[41]. But, these two

works did not consider the budget constraint of workflows,

and the task replication mechanisms tend to replicate most

tasks multiple times, regardless of whether existing slots are

available, which increases resource usage significantly and

makes it easier to cost more than workflows’ budget. Besides,

to relieve the waste of time slots in resources, Chen et al.

designed a task duplication based scheduling approach to

alleviate the time overheads of data encryption for a single

workflow having security or deadline requirements but

without any budget constraints [2], [10].

Due to the data constraints between tasks, even with effi-

cient workflow scheduling algorithms, there will inevitably

be a lot of time slots on heterogeneous cloud resources.

It is important to note that if a task runs on the same

resource as its precursor, the task can use this precursor’s

output data directly, without data transfer. Thus, duplicating

the precursors of a task to existing time slots on the same

resource can avoid the data transfer delay to advance this

task’s start and finish time without additional resource usage.

So it motivates us to explore how to duplicate the precursors

when scheduling a task, so as to advance its start/finish time

and improve resource utilization.

Besides, users typically specify the budget for the entire

workflow, not for individual tasks. However, workflow

scheduling needs to be done task by task. So when scheduling

a task, how much budget can be used to improve its start

and completion time without causing all the tasks to cost

more than the budget is also a challenge. So it motivates us

to explore how to reasonably allocate a sub-budget for each

task.

Keep the aforementioned twomotivations inmind, to mini-

mize makespan for workflows under budget limits, we design

VOLUME 9, 2021 37263

F. Yao et al.: TDSA for Budget-Constrained Workflows in Cloud Computing

a task duplication based workflow scheduling algorithm with

the following two new contributions.

(1) We design a budget allocation mechanism to dynam-

ically distribute sub-budgets for all the un-scheduled work-

flow tasks. This mechanism is able to not only avoid single

task costing too much to ensure workflow’s overall budget

constraint, but also recover unused sub-budget of scheduled

tasks to use more expensive/powerful cloud resources to

accelerate completion of unscheduled tasks.

(2) A duplication-based task scheduling mechanism is

designed to asymptotically duplicate a task’s precursors to

the existing time slots on the same resource, such advancing

its completion time while trying to ensuring its sub-budget

constraint. The effectiveness of the proposed algorithm is

verified by comparing it with the four baseline algorithms on

the context of various scenarios.

The rest of this article is organized as follows. Section II

describes the optimization problem of scheduling workflows

in cloud computing. Then, the proposed scheduling algorithm

is detailed in Section III, followed by the experimental

verification of the algorithm in Section IV. Next, Section IV

concludes this article and presents two points worthy of

further research.

II. PROBLEM DESCRIPTION

In this section, we introduce the models for elastic heteroge-

neous cloud resources, workflow, and optimization problems.

A. CLOUD PLATFORM

Similar to [14], [42], [43], this article also pays close attention

to the Infrastructure-as-a-Service (IaaS) mode. In this mode,

various types of resources are provided, and each type of

resource share the same configurations, such as price, CPU,

memory size, bandwidth, etc. Suppose that the cloud platform

provides m types of resources, the set U = {1, 2, · · · ,m}

represents all resource types, in which u ∈ U indicates the

u-th type. For a resource type, its price is expressed as Pr(u).

In cloud computing, the cost of using resources is calculated

on an hourly-based cost model. For instance, the price of the

first resource type is $0.35 per hour. If one resource with the

first type is used for 61 minutes, the cost is $0.70.

Thanks to the elasticity of cloud resources, the number

of each type of resources can be increased and decreased

according to the actual workload. Then, we employ the

symbol ruk to indicate the k-th resource, whose type is u.

B. WORKFLOW

Workflow is an application composed of a set of

data-dependent tasks, and can be indicated as a directed

acyclic graph DAG = {T ,E,B}, in which T and E

respectively denote the set of tasks and edges among tasks,

and B denotes the overall budget. Furthermore, T can be

detailed as T = {t1, t2, · · · , tn}, where n refers to the number

of tasks. For a task ti ∈ T , the set of its direct precursors and

successors are denoted by P(ti) and S(ti), respectively.

For an edge ei,j ∈ E , it means that there exists data

dependence from task ti to task tj, that is to say, onlywhen task

ti has completed and its output data has reached the resource

of running task tj, task tj can start running. Then, the weight

w(ei,j) of the edge ei,j represents the amount of data being

transferred from ti and tj.

C. OPTIMIZATION MODEL

Since different types of resources have different processing

power, one task often exhibits different execution time on

different types of resources. The symbol ei,k is used to

represent the execution time of task ti on resource r
u
k .

To describe the heterogeneity of connection links among

cloud resources, we employ a matrixM with size |R|× |R| to

model the bandwidth between all pairs of resources, where |R|

denotes the number of enrolled resources. The element mi,j
indicates the bandwidth between resources ri and rj. Suppose

two tasks ti and tj run on distinct resources and the amount

of data between them is w(ei,j), the data transfer time dti,j
between them can be calculated as:

dti,j = △+
w(ei,j)

mr(ti),r(tj)
, (1)

where △ refers to the transmission startup time, r(ti) denotes

the index of resource running task ti.

When tasks ti and tj run on the same resources, the data

transfer time is assumed to be negligible. Thus, when r(ti) =

r(tj), dti,j = 0 [44].

Due to the data dependencies amongworkflow tasks, a task

ti can start running after all its direct precursors have been

completed and output data of these precursors have been

received. Then, it leads to the following constraint:

sti,r(ti) ≥ max
tp∈P(ti)

{ctp,r(tp) + dtp,i}, (2)

where sti,r(ti) and ctp,r(tp) respectively denotes the start and

completion time of tasks on corresponding resources.

To ensure the budget constraint for running workflow,

it comes the following constraint:

|R|∑

k=1

Pr(ruk) · wpk ≤ B, (3)

where R represents the set of resources enrolled to execute

the workflow, and wpk denotes the enrollment period of the

k-th resource.

On the basis of the data dependencies and budget con-

straints in (2) and (3), this attempts to minimize workflows’

makespan. For a workflow, its makespan refers to the

maximum completion time of all tasks. Then, we get the

optimization objective as follows:

Min max
ti∈T
{cti,r(ti)}. (4)

III. ALGORITHM DESIGN

How to minimize workflows’ makespan while ensuring their

budget constraints is an ongoing challenge. In this section,

37264 VOLUME 9, 2021

F. Yao et al.: TDSA for Budget-Constrained Workflows in Cloud Computing

a task duplication based workflow scheduling algorithm,

namely TDSA, is designed, as illustrated in Algorithm 1.

The TDSA strives to fully exploit existing time slots

and dynamically re-allocate unused budget to advance the

start/completion time of workflow tasks, so as to optimize the

makespan of workflows while satisfying their budgets.

Algorithm 1 Overall Process of TDSA

Input: A workflow G = (T ,E,B); a set of available

resource types U ;

Output: A schedule for the workflow;

1 R← ∅;

2 Ts← ∅;

3 Tu← T ;

4 Tr ← Select the tasks without any precursors;

5 remB← B;

6 usedC ← 0;

7 Trigger DistrSubBudget() to distribute subbudgets for all

the tasks in Tu;

8 while Tu is not empty do

9 Tn← ∅;

10 for ti ∈ Tr do

11 [R,mC]← Schedule ti by TaskSchedule();

12 usedC ← usedC + mC ;

13 for ts ∈ Suc(ti) do

14 if All the predecessors of ts have been

scheduled then

15 Tn← Tn
⋃
{ts};

16 Ts← Ts
⋃
Tr ;

17 Tu← Tu \ Tr ;

18 Tr ← Tn;

19 remB← B− usedC ;

20 Trigger DistrSubBudget() to distribute subbudgets

for all the tasks in Tu;

As shown in Algorithm 1, the inputs of TDSA are a

workflow and the set of resource types. After optimization,

its output is the schedule for this workflow, mainly including

a set of resources used for executing this workflow; mapping

between workflow tasks and resources; and task sequencing

on each resource.

Before starting, the set of enrolled resources is first

initialized as an empty set (line 1). To distinguish the status

of tasks during the scheduling process, symbols Ts and

Tu are respectively used to represent the set of scheduled

and unscheduled tasks (lines 2-3). The Tr represents the

set of tasks being ready for scheduling, and all the tasks

having not predecessor are selected to initialize it (line 4).

After initializing the remaining budget remB and used

cost usedC so far, the function DistrSubBudget() will be

triggered to allocate sub-budget for each unscheduled tasks.

Then, the TDSA goes into the optimization loop, constantly

updating the sub-budgets for unscheduled tasks (line 11) and

mapping tasks to resources (line 20).

The optimization loop will repeat the following four steps

until all tasks have been scheduled. (1) An empty set Tn
is initialized to record tasks that become ready during this

iteration (line 9). When a task has no precursors or all of its

precursors have been mapped to resources, it is called a ready

task in this article. (2) The ready tasks in Tr are scheduled by

function TaskSchedule(), detailed in Algorithm 3, in an one

by one way (lines 10-12). Once a task is scheduled, the set

of enrolled resources and the marginal cost of completing

the task will be returned (line 11). Besides, some successor

tasks of the scheduled task may become ready, and they

will be selected to update the set Tn (lines 13-15). (3) After

all the tasks in Tr are scheduled, the scheduled task set,

unscheduled task set, the ready task set, and the remaining

budget will be updated (lines 16-19). (4) The sub-budgets

for all the unscheduled tasks will be re-allocated by function

DistrSubBudget(), as detailed in Algorithm 3.

FIGURE 1. A workflow instance.

To improve the readability of Algorithm 3, a workflow

instance is given in Figure 1 to illustrate some key concepts

and operations. Since task t1 has not precursor, it is a ready

task before scheduling. When the operation in line 5 is

performed, the set Tr is updated to Tr = {t1}. After task

t1 is scheduled, its two successor tasks t2 and t3 become

ready. Then, by performing the operations from line 13 to

15, the set Tn will record these two ready tasks as Tn =

{t2, t3}. Next, by performing the operations from line 16 to

18, the set of scheduled tasks Ts will be updated as Ts = {t1},

the set of un-scheduled tasks Tu will be updated as Tu =

{t2, t3, t4, t5, t6}, and the set of ready tasks Tr is updated as

Tr = {t2, t3}.

Due to complexity in workflow topology and great

difference in both the size of data transferred among tasks

and the runtime of tasks, it is difficult or even impossible to

reasonably allocate the budget to all tasks at one time before

scheduling. Motivated by this, the proposed TDSA will

trigger the functionDistrSubBudget(), shown in Algorithm 2,

to fairly reallocate budget for all unscheduled tasks after

scheduling each batch of ready tasks. In this way, it is helpful

to timely correct the fluctuation of budget usage. When

allocating a sub-budget for a task, this function takes into

account both the runtime of this task and the amount of data

to receive.

For the function DistrSubBudget() in Algorithm 2, its

inputs are the set of unscheduled tasks and the remaining

budget so far, and the output is the updated sub-budgets for

VOLUME 9, 2021 37265

F. Yao et al.: TDSA for Budget-Constrained Workflows in Cloud Computing

Algorithm 2 DistrSubBudget()

Input: The set of unscheduled tasks Tu; remaining

budget remB;

Output: Subbudgets of unscheduled tasks;

1 W ← 0;

2 for ti ∈ Tu do

3 w(ti)←
∑

tp∈Pred(ti)
w(ep,i)/m+ ei;

4 W ← W + w(ti);

5 for ti ∈ Tu do

6 b(ti)←
w(ti)
W
× remB;

all the unscheduled tasks. The symbolW is initialized as zero

to record the total weight of all the unscheduled tasks (line 1).

For a task, its weight is defined as the sum of data receiving

time and running time (line 3). After calculating the weights

of all unscheduled tasks, the remaining budget is distributed

fairly according to the weight ratio of these tasks (lines 5-6).

Since there is no data transmission among different tasks

on the same resources, and the data constraints among

tasks cause a large number of time slots on resources, then

duplicating the precursors of a task to the same resource is

conducive to simultaneously improving its start/completion

time and monetary cost. Based on this, we design a task

scheduling mechanism based on task duplication in the

function TaskSchedule(). As shown in Algorithm 3, its inputs

are: the task ti waiting to be scheduled and its sub-budget,

the available resources, and resource types. Then, the outputs

of this function are: the set of updated resources, and the

marginal cost of executing the task ti.

At first, four parameters are initialized (lines 1-2), in which

r∗ is used to record the selected resource, minFT and

minC respectively represent the minimum completion time

and cost, and Dup represents the duplication plan of the

precursors of task ti. Then, this function tries to choose

a resource that can complete task ti under its sub-budget

constraint with the minimum completion time (lines 8-11).

If no such a resource is feasible, the one that takes the

minimum marginal monetary cost is chosen (Line 12-14).

When searching an available resource for task ti, function

TaskSchedule() asymptotically selects the precursor with the

latest arrival time of output data (lines 15-19), and then

duplicates the selected precursor to a feasible time slot of

the same resource as the task ti (lines 20-23). The above

task duplication operation will be iterated until the selected

precursor has been mapped to this resource (line 27) or no

time slot on the resource is feasible for task ti (line 25).

After checking all the available resources, function

TaskSchedule() attempts to add a new resource to enhance

task completion time within the sub-budget (lines 31-33),

or complete this task spending as little as possible

(lines 34-35). The parameter u∗ is used to record the selected

resource type.

Algorithm 3 TaskSchedule()

Input: A workflow task, denoted as ti; sub-budget b(ti);

the set of available resources R; a set of

available resource types U ;

Output: The set of available resources R; marginal cost

mC of executing ti;

1 r∗←NULL; minFT ←+∞;

2 minC ←+∞; Dup← ∅;

3 for rk ∈ R do

4 tempDup← ∅;

5 while TRUE do

6 cti,k ← Get finish time of ti on rk ;

7 marC ← Get margical cost of ti on rk ;

8 if marC < b(ti) then

9 if cti,k < minFT then

10 minFT ← cti,k ;

11 r∗← rk ; Dup← tempDup;

12 else if marC < minC then

13 minC ← marC ;

14 r∗← rk ; Dup← tempDup;

15 bp(ti)← NULL; latAT ← 0;

16 for tp ∈ Pred(ti) do

17 tempAT ← ctp,r(p) + dtr(p),k ;

18 if tempAT > latAT then

19 bp(ti)← tp; latAT ← tempAT ;

20 if bp(ti) 6= NULL
∧
bp(ti) is not on rk then

21 slot ← Find a feasible time slot for bp(ti) on

rk ;

22 if slot is not empty then

23 tempDup← tempDup
⋃
{(bp(ti), slot)};

24 else

25 BREAK;

26 else

27 BREAK;

28 u∗← NULL;

29 for u ∈ U do

30 [cti,k ,marC]← Get finish time and margical cost of

ti on a new resource with type u;

31 if marC < b(ti) then

32 if cti,k < minFT then

33 minFT ← cti,k ; u∗← u;

34 else if marC < minC then

35 minC ← marC ; u∗← u;

36 if u∗ 6= NULL then

37 r
u∗
|R|+1← Rent a new resource with type u∗;

38 R← R
⋃
{r
u∗
|R|+1};

39 Allocate task ti to resource r
u∗
|R|+1;

40 else

41 Append ti to the task queue on resource r∗;

42 Duplicate ti’s predecessors according to Dup;

37266 VOLUME 9, 2021

F. Yao et al.: TDSA for Budget-Constrained Workflows in Cloud Computing

If adding a new resource is a better choice, i.e., u∗ 6= NULL

(line 36), a resource with the selected type will be enrolled,

and task ti will be mapped to this new resource (line 39).

Otherwise, the task will be mapped to the selected resource

(line 41), and its precursors will be duplicated according to

the duplication plan Dup (line 42).

To show the advantages of task duplication basedworkflow

scheduling mechanism, the workflow in Figure 1 is taken

as an example to compare the makespan and cost of

executing this workflow with and without task duplication.

For simplicity, assume that there is only one type of resource,

denoted as 1, and its price is $0.5/h. The main parameters

of workflow, including task runtime and data transfer time

among tasks, are shown in Tables 1 and 2. The symbol −

in Table 2 denotes that there is no data transfer between the

corresponding two tasks. The numerical value represents the

data transfer time from a task to its successor (abbreviated to

Succ.) when they are not on the same resource. For instance,

the value 0.3 in the third column of the second row indicates

the data transfer time from task t1 to task t2. The schedules

for the workflow without and with task duplication are given

in Figure 2 (a) and (b), respectively.

TABLE 1. Runtime (h) of tasks on the most powerful resource.

TABLE 2. Data transfer time (h) between tasks.

FIGURE 2. Gantt charts for workflow scheduling results.

Suppose tasks t1, t2, and t4 have been scheduled to resource

r12 , while tasks t3 and t6 have been scheduled to resource r11 .

Since the tasks t1, t2, and t4 are on the same resource, there

is no data transmission between them, and the completion

time of task t4 is 0.4 hour. Besides, since task t3 needs to

wait for the output data of task t2 to pass from resource r12
to resource r11 , the start time of task t3 is delayed to 0.2 hour.

Then, the completion time of task t6 is 0.7 hour.

If task t5 is directly scheduled to resource r12 , waiting for

output data of task t3 will delay its start time to 0.9 hours.

Then, themakespan of the workflow is 1.1 hours. The number

of time periods for renting resources is 3, and the cost is 3×

0.5 = $1.5.

When the precursor t3 of task t5 is duplicated to resource

r12 , task t5 can directly use the output data of backup task t3 to

avoid the delay caused by data transmission. Then, the start

time of task t5 is enhanced to 0.6 hours. The makespan of the

workflow is 0.8 hours. Besides, the number of time periods

for renting resources is 2, and the cost is 2× 0.5 = $1.0.

Compared with the scheduling results in Figure 2 (a) and

figure (b), we can see the advantages of task duplication in

reducing makespan and cost of workflows.

IV. EXPERIMENTAL STUDIES

In this section, extensive comparative experiments are

conducted to testify the effectiveness of our proposal,

i.e., TDSA. The compared algorithms include TDSA-N-DB,

GRP-HEFT [14], FBCWS [32], and EFT-MER [44].

The TDSA-N-DB is a variant of the proposed TDSA.

Differing from TDSA, the TDSA-N-DB does not employ

the dynamic sub-budget allocation mechanism, and just

fairly allocates sub-budgets for all the workflow tasks

before scheduling. By comparing TDSA with TDSA-N-DB,

the effects of the proposed dynamic sub-budget allocation

mechanism on the overall performance will be highlighted.

The GRP-HEFT and FBCWS are two recent works on

budget-constrainedworkflow scheduling in cloud computing,

and we choose them as representatives of state-of-the-art

algorithms. The EFT-MER is a popular workflow scheduling

algorithm for optimizing the makespan.

Due to various workflows that will be employed to

compare the above five algorithms, it is irrational to compare

workflows’ makespans. Another option is to normalize

workflows’ makespan before comparison. For a workflow, its

normalized makespan is defined as follows:

NM (DAG) =

max
ti∈T
{cti,r(ti)}

∑
ti∈CPT

bei
, (5)

where CPT refers to the set of tasks in the critical path of the

workflow when ignoring the data transfer time among tasks,

bei denotes the minimal execution time of task ti.

Resource utilization refers to the ratio of the time resources

spend performing workflow tasks to the total time resources

are used. It is also one of the key indicators to measure the

performance of workflow scheduling algorithms for cloud

platforms, and we also employ it to compare the performance

of the five scheduling algorithms.

VOLUME 9, 2021 37267

F. Yao et al.: TDSA for Budget-Constrained Workflows in Cloud Computing

A. EXPERIMENT DESIGN

Referring to works [2], [45], the synthetic workflows are

randomly produced according to the following attributes:

1) the number of workflow tasks; 2) tasks’ execution time,

denoted as RunTimeBase in second; 3) ratio of transmission

to computing time CCR; 4) parallelism factor; 5) task’s out-

degree.

In addition, the parameter BudgetBase is used to control

workflows’ budgets, which can be computed as follows.

B = BudgetBase× minCost(DAG), (6)

where minCost(DAG) denotes the cost of executing all the

workflow tasks on the cheapest resources.

The resource types in cloud computing are set based on

Amazon EC2 instances, six resource types are employed,

as given in Table 3.

TABLE 3. Main parameters for different resource types.

For each experimental setup, the six workflow scheduling

algorithms are repeated 51 times independently, and the

average values, upper and lower bounds are plotted.

B. PERFORMANCE VS. BUDGET

To assess the effects of workflow budget on algorithms’

performance, in this subsection, we adjust the budget control

parameter BudgetBase from 1.1 to 3.0, and compare the

performance of the proposed TDSA with the other four

algorithms in terms of normalized makespan and resource

utilization. The comparison results are plotted in Fig. 3.

It can be seen from Figure 3 (a) that with the increase of

parameter BudgetBase, the normalized makespan of the five

algorithms, i.e., TDSA, TDSA-N-DB, GRP-HEFT, FBCWS,

and EFT-MER, shows a downward trend on the whole.

This is because the larger the parameter BudgetBase is,

the workflows will have higher budgets. Then, scheduling

algorithms can select more powerful resources to perform

workflow tasks. In addition, the proposed algorithm TDSA

and its variant TDSA-N-DB generate schedules with much

lower makespan than that of the other three existing workflow

scheduling algorithms. This can be attributed to the fact that

task duplication mechanism in TDSA and TDSA-N-DB can

effectively advanceworkflow tasks’ completion time and thus

shorten the makespan of the entire workflow. The difference

between TDSA and TDSA-N-DB is that TDSA-N-DB does

not use the dynamic sub-budget allocation mechanism. It can

be seen from Figure 3 (a) that TDSA performs better

FIGURE 3. Effects of BudgetBase.

than TDSA-N-DB in terms of normalized makespan. These

comparison results demonstrate that the proposed dynamic

sub-budget allocation mechanism in this article is beneficial

to shorten workflows’ makespan.

As shown in Figure 3 (b), resource utilization increases

with the increase of parameter BudgetBase. For example,

when increasing parameter BudgetBase from 1.1 to 3.0,

the resource utilization of the algorithm TDSA increases

from 0.81 to 0.86. This is because with higher budgets

for workflows, the choice space of each workflow task in

the heterogeneous cloud environment becomes larger, which

is conducive to improving resource utilization. Besides,

the resource utilization of the three compared algorithms,

GRP-HEFT, FBCWS, and EFT-MER, increases faster than

TDSA, TDSA-N-DB. The main reason is that when the

budget is low, the resource utilization of these three

algorithms is very low, and their improvement space is

large.

C. PERFORMANCE VS. DATA TRANSFER TIME

To examine the effects of data transfer time on the perfor-

mance of the five algorithms, the parameter CCR is increased

from 0.1 to 2.0 with the step size of 0.1 in this subsection.

The normalized makespan and resource utilization of the five

37268 VOLUME 9, 2021

F. Yao et al.: TDSA for Budget-Constrained Workflows in Cloud Computing

FIGURE 4. Effects of CCR.

algorithms, i.e., TDSA, TDSA-N-DB, GRP-HEFT, FBCWS,

and EFT-MER, are provided in Fig. 4.

As shown in Figure 4 (a), workflows’ normalized

makespan increases with the increase of parameter CCR.

This can be explained as the larger the parameter CCR is,

the larger the amount of data among workflow tasks is, and

the longer the data transfer time is, resulting in the longer

workflows’ makespan. Similar to Figure 3 (a), the normalized

makespan generated by the algorithm proposed in this article

is much better than that of the other three existing scheduling

algorithms, and with the increase of parameter CCR, the gap

becomes larger.

From Figure 4 (b), we can observe that resource utilization

of all the five scheduling algorithms shows a downward

trend. This is because, with the increase of data size among

workflow tasks, the time slot between tasks will be expanded.

Then, among the five scheduling algorithms, the proposed

TDSA achieves the best performance overall.

D. PERFORMANCE VS. TASK RUNTIME

Task runtime is also one of the important parameters for

workflows. In this section, the parameter RunTimeBase is

increased from 150 to 1100 seconds to compare the five

algorithms’ performance in terms of normalized makespan

and resource utilization.

FIGURE 5. Effects of RunTimeBase.

TABLE 4. The main parameters of actual workflows.

Although with the increase of RunTimeBase, the resource

requirements of both a single workflow task and whole

workflow increase, due to the scalability of cloud computing

resources, the normalized makespan of the five algorithms

basically remains unchanged, as shown in Figure 5 (a). In this

group of comparison results, the proposed algorithm and

its variant are still far superior to the other three compared

algorithms.

As illustrated in Figure 5 (b), the resource utilization

of the five algorithms basically remains stable with the

increase of parameter RunTimeBase. Although the runtime

VOLUME 9, 2021 37269

F. Yao et al.: TDSA for Budget-Constrained Workflows in Cloud Computing

FIGURE 6. Examples of actual workflows.

TABLE 5. Experimental results based on actual workflow traces.

of a single task becomes longer with larger RunTimeBase,

when the parameter CCR is fixed, the data transfer time

among tasks also increases correspondingly, and the time

slots on resources is correspondingly lengthened. In addition,

for the indicator resource utilization, the proposed TDSA on

average is 4.34%, 29.62%, 28.11%, and 29.07% higher than

algorithms TDSA-N-DB, GRP-HEFT, FBCWS, and EFT-

MER, respectively.

E. RESULTS BASED ON REAL-WORLD WORKFLOW TRACES

To assess the effectiveness of the proposed mechanisms

in practical applications, the five workflow scheduling

algorithms are compared in the context of five classes of

workflows coming from various fields such as Montage

(astronomy), Inspiral (gravitational-wave physics), Cyber-

Shake (earthquake science), Sipht (bioinformatics), and

Epigenomics (DNA sequence) [46]. The topologies of

workflows belonging to these five classes are shown Figure 6.

From these examples, we can observe that these workflows

cover various kinds of complex task dependencies.

For each type of workflow, two kinds of instances with the

medium and large scale of tasks are adopted. The number

of tasks is around 100 for medium scale workflows, while

that is around 1000 for large scale workflow. Some relevant

parameters of these workflows are summarized in Table 4.

Besides, the following three main parameters of workflows

are summarized: (1) the total amount of data that needs to be

transferred among workflow tasks, (2) the number of edges

among tasks, (3) and mean execution time of workflow tasks.

In the context of these actual workflows, the comparison

results are given in Table 5.

As illustrated in Table 5, the proposed TDSA ismuch better

than the three existing scheduling algorithms, i.e., GRP-

HEFT, FBCWS, and EFT-MER, in terms of both the

normalized makespan and resource utilization. For the

workflow Epigenomics, the superiority of the algorithm

TDSA over the GRP-HEFT, FBCWS, and EFT-MER is more

obvious. The main reason is that this class of workflows

is data-intensive, and the data transfer time among tasks is

much longer than tasks’ runtime. The comparison results

on workflow Epigenomics demonstrate the effectiveness

of the proposed task duplication mechanism in scheduling

data-intensive workflows.

V. CONCLUSION AND FUTURE WORK

In this work, we have studied the problem of workflow

scheduling on heterogeneous cloud resources, and designed

a task duplication based scheduling algorithm to exploit

the existing time slots on resources to advance workflow

tasks’ start/completion time, while ensuring the budgets

of workflows. Moreover, a dynamic sub-budget allocation

mechanism was designed and embedded into the proposed

algorithm to support accurate use of budget. At last,

we assessed the proposed scheduling algorithm by comparing

it with four baseline algorithms in the context of both

synthetic and real-world workflows. The comparison results

37270 VOLUME 9, 2021

F. Yao et al.: TDSA for Budget-Constrained Workflows in Cloud Computing

demonstrated the superiority of the proposed algorithm in

terms of normalized makespan and resource utilization.

The running time of workflow tasks and the amount of

data transferred among workflow tasks are highly uncertain.

Future efforts can be dedicated to dealing with uncertain-

ties in workflow scheduling. Evolutionary computing has

shown strong search capacity in many optimization fields.

How to design problem-specific evolutionary optimization

mechanisms to solve workflow scheduling problems in cloud

computing also worths future direction.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia, ‘‘A view of cloud

computing,’’ Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

[2] H. Chen, X. Zhu, D. Qiu, L. Liu, and Z. Du, ‘‘Scheduling for workflows

with security-sensitive intermediate data by selective tasks duplication in

clouds,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 9, pp. 2674–2688,

Sep. 2017.

[3] M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F. Cunha, and

R. Buyya, ‘‘HPC cloud for scientific and business applications: Taxonomy,

vision, and research challenges,’’ ACM Comput. Surv., vol. 51, no. 1,

pp. 1–29, Apr. 2018.

[4] G. B. Berriman, G. Juve, E. Deelman, M. Regelson, and P. Plavchan,

‘‘The application of cloud computing to astronomy: A study of cost and

performance,’’ in Proc. 6th IEEE Int. Conf. e-Sci. Workshops, Dec. 2010,

pp. 1–7.

[5] Z. Lv and L. Qiao, ‘‘Analysis of healthcare big data,’’ Future Gener.

Comput. Syst., vol. 109, pp. 103–110, Aug. 2020.

[6] J. Ekanayake, T. Gunarathne, and J. Qiu, ‘‘Cloud technologies for

bioinformatics applications,’’ IEEE Trans. Parallel Distrib. Syst., vol. 22,

no. 6, pp. 998–1011, Jun. 2011.

[7] Y. Liu, C. Yang, and Q. Sun, ‘‘Thresholds based image extraction schemes

in big data environment in intelligent traffic management,’’ IEEE Trans.

Intell. Transp. Syst., early access, Jun. 5, 2020, doi: 10.1109/TITS.2020.

2994386.

[8] Z. Lv and W. Xiu, ‘‘Interaction of edge-cloud computing based on SDN

and NFV for next generation IoT,’’ IEEE Internet Things J., vol. 7, no. 7,

pp. 5706–5712, Jul. 2020.

[9] Z. Lv and H. Song, ‘‘Mobile Internet of Things under data physical

fusion technology,’’ IEEE Internet Things J., vol. 7, no. 5, pp. 4616–4624,

May 2020.

[10] H. Chen, J. Wen, W. Pedrycz, and G. Wu, ‘‘Big data processing workflows

oriented real-time scheduling algorithm using task-duplication in geo-

distributed clouds,’’ IEEE Trans. Big Data, vol. 6, no. 1, pp. 131–144,

Mar. 2020.

[11] X. Zeng, S. Garg, M. Barika, A. Y. Zomaya, L. Wang, M. Villari, D. Chen,

and R. Ranjan, ‘‘SLA management for big data analytical applications in

clouds: A taxonomy study,’’ ACM Comput. Surv., vol. 53, no. 3, pp. 1–40,

Jul. 2020.

[12] Q. Zhu, ‘‘Research on road traffic situation awareness system based on

image big data,’’ IEEE Intell. Syst., vol. 35, no. 1, pp. 18–26, Jan. 2020.

[13] J. Yan, W. Pu, S. Zhou, H. Liu, and Z. Bao, ‘‘Collaborative detection and

power allocation framework for target tracking in multiple radar system,’’

Inf. Fusion, vol. 55, pp. 173–183, Mar. 2020.

[14] H. R. Faragardi, M. R. Saleh Sedghpour, S. Fazliahmadi, T. Fahringer,

and N. Rasouli, ‘‘GRP-HEFT: A budget-constrained resource provisioning

scheme for workflow scheduling in IaaS clouds,’’ IEEE Trans. Parallel

Distrib. Syst., vol. 31, no. 6, pp. 1239–1254, Jun. 2020.

[15] H. Arabnejad and J. G. Barbosa, ‘‘List scheduling algorithm for

heterogeneous systems by an optimistic cost table,’’ IEEE Trans. Parallel

Distrib. Syst., vol. 25, no. 3, pp. 682–694, Mar. 2014.

[16] M. H. Hilman, M. A. Rodriguez, and R. Buyya, ‘‘Multiple workflows

scheduling in multi-tenant distributed systems: A taxonomy and future

directions,’’ ACM Comput. Surv., vol. 53, no. 1, pp. 1–39, May 2020.

[17] W. Chen, G. Xie, R. Li, Y. Bai, C. Fan, and K. Li, ‘‘Efficient task

scheduling for budget constrained parallel applications on heterogeneous

cloud computing systems,’’ Future Gener. Comput. Syst., vol. 74, pp. 1–11,

Sep. 2017.

[18] S. Singh and I. Chana, ‘‘Cloud resource provisioning: Survey, status and

future research directions,’’Knowl. Inf. Syst., vol. 49, no. 3, pp. 1005–1069,

Dec. 2016.

[19] B. Cao, J. Zhao, Y. Gu, S. Fan, and P. Yang, ‘‘Security-aware industrial

wireless sensor network deployment optimization,’’ IEEE Trans. Ind.

Informat., vol. 16, no. 8, pp. 5309–5316, Aug. 2020.

[20] B. Cao, J. Zhao, P. Yang, Y. Gu, K. Muhammad, J. J. P. C. Rodrigues, and

V. H. C. de Albuquerque, ‘‘Multiobjective 3-D topology optimization of

next-generation wireless data center network,’’ IEEE Trans. Ind. Informat.,

vol. 16, no. 5, pp. 3597–3605, May 2020.

[21] L. Zhang, L. Wang, Z. Wen, M. Xiao, and J. Man, ‘‘Minimizing

energy consumption scheduling algorithm of workflows with cost budget

constraint on heterogeneous cloud computing systems,’’ IEEE Access,

vol. 8, pp. 205099–205110, 2020.

[22] L.-C. Canon, A. K. W. Chang, Y. Robert, and F. Vivien, ‘‘Scheduling

independent stochastic tasks under deadline and budget constraints,’’ Int.

J. High Perform. Comput. Appl., vol. 34, no. 2, pp. 246–264, Mar. 2020.

[23] Y. Wang and W. Shi, ‘‘Budget-driven scheduling algorithms for batches of

MapReduce jobs in heterogeneous clouds,’’ IEEE Trans. Cloud Comput.,

vol. 2, no. 3, pp. 306–319, Jul. 2014.

[24] V. Arabnejad, K. Bubendorfer, and B. Ng, ‘‘Budget and deadline aware

e-science workflow scheduling in clouds,’’ IEEE Trans. Parallel Distrib.

Syst., vol. 30, no. 1, pp. 29–44, Jan. 2019.

[25] F. Wu, Q. Wu, and Y. Tan, ‘‘Workflow scheduling in cloud: A survey,’’

J. Supercomput., vol. 71, no. 9, pp. 3373–3418, Sep. 2015.

[26] Z. Lv and N. Kumar, ‘‘Software defined solutions for sensors in 6G/IoE,’’

Comput. Commun., vol. 153, pp. 42–47, Mar. 2020.

[27] B. Cao, X. Wang, W. Zhang, H. Song, and Z. Lv, ‘‘A many-objective

optimization model of industrial Internet of Things based on private

blockchain,’’ IEEE Netw., vol. 34, no. 5, pp. 78–83, Sep. 2020.

[28] K. K. Chakravarthi and L. Shyamala, ‘‘TOPSIS inspired budget and

deadline aware multi-workflow scheduling for cloud computing,’’ J. Syst.

Archit., vol. 114, Mar. 2021, Art. no. 101916.

[29] H. Arabnejad, J. G. Barbosa, and R. Prodan, ‘‘Low-time complex-

ity budget–deadline constrained workflow scheduling on heteroge-

neous resources,’’ Future Gener. Comput. Syst., vol. 55, pp. 29–40,

Feb. 2016.

[30] H. Topcuoglu, S. Hariri, and M.-Y. Wu, ‘‘Performance-effective and low-

complexity task scheduling for heterogeneous computing,’’ IEEE Trans.

Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.

[31] T. Sun, C. Xiao, and X. Xu, ‘‘A scheduling algorithm using sub-deadline

for workflow applications under budget and deadline constrained,’’Cluster

Comput., vol. 22, no. S3, pp. 5987–5996, May 2019.

[32] N. Rizvi and D. Ramesh, ‘‘Fair budget constrained workflow scheduling

approach for heterogeneous clouds,’’ Cluster Comput., vol. 23, no. 4,

pp. 3185–3201, Dec. 2020.

[33] B. Cao, S. Fan, J. Zhao, P. Yang, K. Muhammad, and M. Tanveer,

‘‘Quantum-enhanced multiobjective large-scale optimization via paral-

lelism,’’ Swarm Evol. Comput., vol. 57, Sep. 2020, Art. no. 100697.

[34] N. Zhou, W. Lin, W. Feng, F. Shi, and X. Pang, ‘‘Budget-deadline

constrained approach for scientific workflows scheduling in a cloud

environment,’’ Cluster Comput., pp. 1–15, Sep. 2020.

[35] M. K. Arbab, M. Naghibzadeh, and S. R. K. Tabbakh, ‘‘Communication-

critical task duplication for cloud workflow scheduling with time and

budget concerns,’’ in Proc. 9th Int. Conf. Comput. Knowl. Eng. (ICCKE),

Oct. 2019, pp. 255–262.

[36] I. Gupta, M. S. Kumar, and P. K. Jana, ‘‘Task duplication-based workflow

scheduling for heterogeneous cloud environment,’’ in Proc. 9th Int. Conf.

Contemp. Comput. (IC3), Aug. 2016, pp. 1–7.

[37] M. S. Kumar, I. Gupta, and P. K. Jana, ‘‘Duplication based budget effective

workflow scheduling for cloud computing,’’ in Proc. Int. Conf. Distrib.

Comput. Internet Technol., Springer, 2019, pp. 90–98.

[38] I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Y. Zomaya, ‘‘A balanced

scheduler with data reuse and replication for scientific workflows in cloud

computing systems,’’ Future Gener. Comput. Syst., vol. 74, pp. 168–178,

Sep. 2017.

[39] X. Zhu, J. Wang, H. Guo, D. Zhu, L. T. Yang, and L. Liu, ‘‘Fault-

tolerant scheduling for real-time scientific workflows with elastic resource

provisioning in virtualized clouds,’’ IEEE Trans. Parallel Distrib. Syst.,

vol. 27, no. 12, pp. 3501–3517, Dec. 2016.

[40] S. S. Mousavi Nik, M. Naghibzadeh, and Y. Sedaghat, ‘‘Task replication

to improve the reliability of running workflows on the cloud,’’ Cluster

Comput., to be published.

VOLUME 9, 2021 37271

http://dx.doi.org/10.1109/TITS.2020.2994386
http://dx.doi.org/10.1109/TITS.2020.2994386

F. Yao et al.: TDSA for Budget-Constrained Workflows in Cloud Computing

[41] A. R. Setlur, S. J. Nirmala, H. S. Singh, and S. Khoriya, ‘‘An efficient

fault tolerant workflow scheduling approach using replication heuristics

and checkpointing in the cloud,’’ J. Parallel Distrib. Comput., vol. 136,

pp. 14–28, Feb. 2020.

[42] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, ‘‘Deadline-

constrained workflow scheduling algorithms for infrastructure as a service

clouds,’’ Future Gener. Comput. Syst., vol. 29, no. 1, pp. 158–169,

Jan. 2013.

[43] H. M. Fard, R. Prodan, and T. Fahringer, ‘‘A truthful dynamic workflow

scheduling mechanism for commercial multicloud environments,’’ IEEE

Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1203–1212, Jun. 2013.

[44] Y. C. Lee, H. Han, A. Y. Zomaya, and M. Yousif, ‘‘Resource-efficient

workflow scheduling in clouds,’’Knowl.-Based Syst., vol. 80, pp. 153–162,

May 2015.

[45] T. Xiaoyong, K. Li, Z. Zeng, and B. Veeravalli, ‘‘A novel security-driven

scheduling algorithm for precedence-constrained tasks in heterogeneous

distributed systems,’’ IEEE Trans. Comput., vol. 60, no. 7, pp. 1017–1029,

Jul. 2011.

[46] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K.

Vahi, ‘‘Characterizing and profiling scientific workflows,’’ Future Gener.

Comput. Syst., vol. 29, no. 3, pp. 682–692, Mar. 2013.

FUGUANG YAO received the B.Sc. degree in

construction of engineering, the M.Sc. degree in

instrumental science and technology, and the Ph.D.

degree in instrumental science and technology

from Chongqing University, Chongqing, China,

in 2001, 2004, and 2009, respectively.

He served as the Deputy Director for the

Information Center, Chongqing University of

Education, where he is currently an Associate

Professor. He has been engaged in research and

work in the fields of cloud computing, big data, machine learning, and

education informatization. He has published more than 30 academic articles.

He has presided over more than ten scientific research and teaching research

projects, including four provincial and ministerial projects. He holds two

invention patents, three utility model patents, and three software copyrights.

CHANGJIU PU received the B.Sc. degree in

computer science and technology from Chongqing

Three Gorges University, Chongqing, China,

in 2003, and the M.Sc. degree in computer appli-

cation technology from Southwest University,

Chongqing, in 2009.

He currently serves as an Associate Professor

and the Director for the Data Service Center,

Information Center, Chongqing University of Edu-

cation. He has been engaged in research and work

in the fields of cloud computing, big data, machine learning, and education

informatization. He has published more than 20 academic articles. He has

presided over seven scientific research and teaching research projects.

He holds eight utility model patents and ten software copyrights.

ZONGYIN ZHANG received the B.Sc. degree

in computer science and technical specialty from

Chongqing Normal University, Chongqing, China,

in 2009.

He serves as a Staff Member for the Informa-

tion Center, Chongqing University of Education.

He has been engaged in campus networks and

education informatization.

37272 VOLUME 9, 2021

