
ARTICLE

Task-induced brain state manipulation improves
prediction of individual traits
Abigail S. Greene 1, Siyuan Gao 2, Dustin Scheinost3 & R. Todd Constable 1,3,4

Recent work has begun to relate individual differences in brain functional organization to

human behaviors and cognition, but the best brain state to reveal such relationships remains

an open question. In two large, independent data sets, we here show that cognitive tasks

amplify trait-relevant individual differences in patterns of functional connectivity, such that

predictive models built from task fMRI data outperform models built from resting-state fMRI

data. Further, certain tasks consistently yield better predictions of fluid intelligence than

others, and the task that generates the best-performing models varies by sex. By considering

task-induced brain state and sex, the best-performing model explains over 20% of the

variance in fluid intelligence scores, as compared to <6% of variance explained by rest-based

models. This suggests that identifying and inducing the right brain state in a given group can

better reveal brain-behavior relationships, motivating a paradigm shift from rest- to task-

based functional connectivity analyses.
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T
he potential to “decode” brain activity has generated much
excitement in recent years1,2, both because such analyses
offer a window into neural representation3, and because,

by exploring individual differences in these representations, we
can characterize, predict, and ultimately alter brain–behavior
relationships in health and disease4,5. Functional magnetic reso-
nance imaging (fMRI) provides a means to pursue these goals1,4,
particularly given the shift from studying circumscribed brain
regions to leveraging whole-brain, data-driven techniques to
explore distributed patterns of activation3 and connectivity6,7.
This transition reflects a growing consensus that important
insights into neural function may be found in the organization
and coordination of distributed circuitry8,9, making connectome-
based approaches well suited for advancing predictive modeling
efforts10,11.

Connectome-based analyses usually focus on resting-state
fMRI6 (hereafter, “rest data” and “rest-based” analyses), but rest
is an unconstrained state12 that may fail to capture the full range
of individual differences in functional connectivity13,14. Acquiring
fMRI data while subjects perform a task (hereafter, “task data”
and “task-based” analyses) provides a means to practically and
objectively manipulate brain state, and thus to explore its effects
on patterns of functional connectivity, individual differences in
these patterns, and the relationship of these individual differences
to cognition and behavior15. Previous applications of
connectome-based analyses to task data have focused on char-
acterizing similarities, differences, and transitions among intrinsic
and task-induced brain states16, or on predicting state variables
directly related to the task (e.g., attention17), but the utility of
task-based functional connectivity for prediction of stable, indi-
vidual traits has been relatively unexplored.

In this work, we test the hypothesis that, much like a cardiac
stress test identifies symptoms not observable at rest, tasks may
tax individuals along a particular cognitive dimension, thereby
amplifying individual differences in underlying neural circuitry
and improving predictive models of related cognitive traits. To do
so, we apply connectome-based predictive modeling (CPM)18 to
two, independent data sets (Human Connectome Project (HCP)19

and Philadelphia Neurodevelopmental Cohort (PNC)20), and
show that models built from task data better predict fluid intel-
ligence (gF) than do those built from rest data, thus extending
previous work on task-induced changes in functional connectivity
by demonstrating the utility of these changes for prediction of
stable traits. Not only do task-based models outperform rest-
based models, but certain tasks consistently yield better gF pre-
dictions than others, suggesting that some states may be better
suited to reveal trait-relevant individual differences in functional
organization. Moreover, we demonstrate that states that most
improve trait prediction show a sex dependence. Optimizing
models for prediction may thus require consideration of factors
such as sex in addition to brain state. These findings replicate, and
predictive models generalize, across data sets, suggesting the
broad relevance of these findings.

Altogether, the results suggest an opportunity to use tasks to
perturb the brain during fMRI acquisitions in order to more
comprehensively characterize individual differences in the neural
circuitry underlying complex traits, and to generate useful
behavioral and clinical predictions about individuals on the basis
of these differences.

Results
Connectome-based predictive modeling. These analyses used
fMRI data from the Human Connectome Project (HCP; n= 515);
each subject performed 2 rest (“rest1” and “rest2”) and 7 task
(gambling, language, motor, relational, social, working memory

(WM), and emotion) conditions in the scanner19. These data
were parcellated into 268 nodes using a whole-brain, functional
atlas defined previously in a separate sample21,22. Next, the mean
time courses of each node pair were correlated and correlation
coefficients were Fisher transformed, generating nine connectivity
matrices per subject. Given the complexity of these tasks and the
data-driven nature of this analysis, we performed CPM18 on
matrices from each condition to generate cross-validated task-
and rest-based predictive models of fluid intelligence (gF), as
measured by matrix reasoning test scores (hereafter, “Pmat”; see
Methods for measurement details), from whole-brain patterns of
functional connectivity. Model performance was quantified as the
Spearman’s correlation between predicted and true gF (rs) or as
gF percent variance explained (100rs

2). For main gF CPM ana-
lyses (described in State manipulations improve trait predictions),
significance was assessed using 1000 iterations of non-parametric
permutation testing that accounted for family structure23,24, and
resulting P values were corrected for multiple comparisons using
the false discovery rate25; for all remaining post-hoc analyses,
except as otherwise noted, significance was assessed para-
metrically, and uncorrected P values are presented. Where
applicable, analyses were performed using both rest1 and rest2
data, with comparable results; for clarity, only rest1 results are
reported for most post-hoc analyses. We repeated this analysis
using fMRI data from the Philadelphia Neurodevelopmental
Cohort (PNC; n= 571); each subject performed 1 rest and 2 task
(emotion and WM) runs in the scanner20, and data from all 3
conditions were submitted to the pipeline described above.

Each iteration of the CPM pipeline yields two networks: one
comprised of edges that are positively correlated with gF
(“correlated network” (CN)) and one comprised of edges that
are negatively correlated with gF (“anti-correlated network”
(AN)). For simplicity and improved interpretability, information
in these networks was consolidated by taking the difference
between network strength (i.e., summed edge strengths) in the
CN and AN, and this combined network strength was used to
train and test the models (Methods). All subsequently reported
results are for this combined network, except where otherwise
noted.

Because the edge-selection thresholds used to generate these
networks are inevitably arbitrary, we tested seven different
thresholds; model performance was comparable using all tested
thresholds (Supplementary Table 1). Except as otherwise noted,
all subsequently reported CPM results were generated using an
edge-selection threshold of P < 0.001, and validation and overlap
analyses were performed using a less conservative threshold (P <
0.01) to minimize the effects of overfitting and noise introduced
by trait-irrelevant differences (e.g., differences in task implemen-
tation and subject age across data sets).

State manipulations improve trait predictions. All models, with
the exception of those built from HCP rest2 data, yielded pre-
dictions that trended toward significance (HCP rest1 and rela-
tional task, PNC rest; FDR corrected, q= 0.05 – 0.06) or were
significant (all other conditions; FDR corrected, q < 0.05) in both
the HCP (Fig. 1a–d) and PNC (Fig. 1e–h) data sets. Specifically,
in the HCP data set, the gambling task yielded the best-
performing model: rs

2
= 12.8% (P,q < 0.001). The WM task yiel-

ded the second-best model: rs
2
= 10.6% (P,q < 0.003; Fig. 1b). Rest

yielded the worst-performing models: rest1, rs
2
= 2.9% (P,q=

0.06; Fig. 1d); rest2, rs
2
= 0% (P,q= 0.86). In the PNC data set,

the WM task yielded the best-performing model: rs
2
= 12.3% (P,q

< 0.001; Fig. 1f). The emotion task yielded the second-best model:
rs
2
= 9.9% (P,q < 0.005; Fig. 1g). Rest yielded the worst-

performing model: rs
2
= 3.9% (P,q≤ 0.05; Fig. 1h). In both data
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sets, some tasks yielded better gF predictions than others, but in
all cases, task-based models outperformed rest-based models
(rank sum= 71, two-sided P= 0.018, Mann–Whitney U test),
and this result was stable across 1000 iterations of a split-half
prediction analysis (Supplementary Fig. 1).

Moreover, these patterns were not specific to prediction of gF.
The same pipeline was applied to the PNC data to predict scores
on the Wide Range Achievement Test (WRAT) and the Penn
Verbal Reasoning Test (PVRT); prediction accuracy was even
higher than for Pmat prediction (rs

2
= 8.6–20.8%, all P < 2e−12),

with task-based models again outperforming rest-based models
(Table 1).

Investigation of potential confounds. We conducted a number
of analyses to confirm the robustness of our results. First, because
two versions of the Penn Matrix Reasoning Test were used to
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Fig. 1 Task-induced brain state is a key determinant of individual trait prediction accuracy. a Results from the cross-validated CPM pipeline in each of the 9

HCP conditions (n= 515) using an edge-selection threshold of P < 0.001, plotted as and ordered by percent of fluid intelligence (gF) variance explained.

Gam, gambling task; WM, working memory task; Emo, emotion processing task; Mot, motor task; Lang, language task; Soc, social task; Rel, relational task;

R1, rest1; R2, rest2. b–d Expansion of results presented in a for the WM, emotion, and rest1 conditions; each point represents the relationship between

predicted and observed gF for a single subject, colored by subject sex (F, female; M, male), plotted with the best-fit line and its 95% CI (gray area). rs,

Spearman’s correlation coefficient; significance assessed via 1000 iterations of permutation testing. e–h Results of CPM analyses in the PNC data set (n=

571), presented as in (a–d). i Results of cross-condition prediction analyses; for each measure, networks built from rest data were applied to WM data

(“Rest to WM”) and vice versa (“WM to rest”) to predict the corresponding measure, using an edge-selection threshold of P < 0.01. Pmat, matrix reasoning

test of gF; WRAT, Wide Range Achievement Test; PVRT, Penn Verbal Reasoning Test. j Results of cross-data set validation analyses. Cool colors indicate

HCP-based models; warm colors indicate PNC-based models; shade corresponds to predicted measure in the case of HCP to PNC, and to the measure

used for model building in the case of PNC to HCP. In all cases, the same condition was used for model building and prediction, and an edge-selection

threshold of P < 0.01 was used

Table 1 Task-based models outperform rest-based models in

prediction of two additional intelligence-related measures

(Wide Range Achievement Test (WRAT, n= 558) and Penn

Verbal Reasoning Test (PVRT, n= 563))

Task WRAT PVRT

Working memory 17.9 20.8

Emotion identification 10.4 18.5

Rest 8.6 10.2

Results reported as percent of WRAT and PVRT score variance explained (100rs
2) by models

generated using an edge-selection threshold of P < 0.001
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measure gF in the PNC, this analysis was repeated to predict
percent, rather than number, correct. In addition, the analysis was
performed without 11 PNC subjects with less or non-valid Pmat
scores, separately for subjects who performed each version, and
with incorporation of version into the modeling pipeline at the
edge-selection (via partial correlation) and model-building (via
multilinear regression) steps (Methods). In all cases, one of the
tasks yielded the best-performing model (Supplementary
Table 2).

Similarly, given that two different image reconstruction
methods were used on the HCP data, CPM was performed after
excluding all subjects for whom the r227 algorithm was not
available, and with incorporation of reconstruction method into
the modeling pipeline at the edge-selection (via partial correla-
tion) and model-building (via multilinear regression) steps. Next,
a subset of subjects with identified quality control issues or
missing field maps was excluded. As in previous analyses, task-
based models outperformed rest-based models in all cases
(Supplementary Table 3), suggesting that these issues did not
confound main results.

Although we applied strict motion exclusion criteria (Methods)
and motion was not correlated with gF in 18 out of 21 runs (P >
0.05, Bonferroni corrected), model predictions were frequently
correlated with mean frame-to-frame displacement. The CPM
pipeline was modified to explicitly control for motion at the edge-
selection (via partial correlation) and model-building (via multi-
linear regression) steps. Neither manipulation substantially
affected CPM results (Supplementary Table 4), suggesting that
the shared variance between motion and model predictions, and
between model predictions and gF is largely non-overlapping.

Next, to ensure that differences in HCP and PNC scan
coverage (HCP: 9 nodes lacked coverage in one or more subjects;
PNC: 18 nodes lacked coverage in one or more subjects;
Supplementary Figs. 2 and 3) did not affect results, the analysis
was repeated for the HCP data after excluding the 9 additional
nodes that lacked coverage in the PNC data set. Results were
largely unchanged (Supplementary Table 5, “250 node”). To
investigate the potential effects of parcellation resolution on main
results, a 600-node parcellation was applied to the PNC data and
CPM was repeated; again, results were largely unchanged
(Supplementary Table 5, “600 node”), suggesting that the
resolution of the 268-node atlas does not limit model
performance.

Given variations in condition duration, time courses from all
conditions in a given data set were truncated to include the same
number of frames as the shortest condition in that data set,
connectivity matrices were recalculated using these truncated
time courses, and CPM was repeated on these matrices. Overall,
task-based models again outperformed rest-based models (Sup-
plementary Table 6), suggesting that condition duration did not
drive differences between task- and rest-based models’
performance.

To ensure that results are robust to cross-validation approach,
CPM was repeated using k-fold, rather than leave-one-out, cross-
validation (Methods). Results were largely unchanged (Supple-
mentary Table 7).

Finally, to empirically assess the potential effect of global signal
regression on main results, CPM was repeated on connectivity
matrices computed without global signal regression (Methods).
While the pattern of results remained unchanged (i.e., task-based
models outperformed rest-based models), model performance
decreased substantially overall (Supplementary Table 8). This
result, taken with decreased performance differences among task-
based models, suggests that the global signal may represent an
important confound26 in the search for trait-relevant, task-
specific changes in functional connectivity.

Models generalize across conditions and data sets. To test the
generalizability of these models, two validations were performed:
cross-condition and cross-data set. In all cases, edges that passed
thresholding (P < 0.01) in the training data were selected from the
test data and used to predict gF (Methods). WRAT and PVRT
scores were also used to test whether cross-condition patterns
generalize, and whether models built on one intelligence-related
measure generalize to another. In all tested combinations, task-
based models proved robust enough to yield significant cognitive
predictions (all P < 0.01) when applied to data acquired during
different conditions (Fig. 1i), or to data acquired during similar
conditions in a different data set (Fig. 1j).

In the cross-condition analysis, the models derived from the
best-performing condition shared across data sets (WM) were
applied to data from the worst-performing condition (rest; “WM
to rest”), and vice versa (“rest to WM”; Methods). Interestingly,
rest to WM better predicted gF than did WM to rest (HCP: WM
to rest, rs

2
= 1.4% (P < 0.01); rest to WM, rs

2
= 3.5% (P < 2e−5);

PNC: WM to rest, rs
2
= 2.8% (P < 6e−5); rest to WM, rs

2
= 4.1%

(P < 1e−6); Fig. 1i). The same pattern held for cross-condition
WRAT and PVRT predictions (Fig. 1i). In fact, in all but 2 out of
12 tested cases, the rest-based models performed better when
applied to the WM data than when applied to the rest data for
which they were built (see Fig. 1d, h), suggesting that brain state,
as determined by task, affects model performance more than does
precise edge selection.

In the cross-data set analysis, models derived from one data set
were applied to data from the corresponding condition in the
other data set (e.g., HCP WM models were applied to PNC WM
data (“HCP to PNC”) and vice versa (“PNC to HCP”)), with
analyses limited to the three conditions and nodes that were
shared across data sets (Methods). Given the substantial
differences among HCP and PNC tasks and subject populations
(Discussion), it is noteworthy that cross-data set prediction was
successful (HCP to PNC: WM, rs

2
= 6.4% (P < 9e−10); emotion,

rs
2
= 3.9% (P < 2e−6); and rest, rs

2
= 3.9% (P < 3e−6); PNC to

HCP: WM, rs
2
= 2.7% (P < 2e−4); emotion, rs

2
= 3.6% (P < 2e−5);

and rest, rs
2
= 1.1% (P < 0.02); Fig. 1j). Task-based models built

using Pmat scores in the HCP data yielded significant (all P < 2e
−5) predictions of PVRT and WRAT scores in the PNC data (rs

2

= 3.4 – 12.6%; Fig. 1j), and task-based models built using PVRT
and WRAT scores in the PNC data yielded significant (all P <
0.002) predictions of Pmat in the HCP data (rs

2
= 2.1−3.7%;

Fig. 1j); rest-based models only yielded significant (all P < 0.02)
predictions when HCP-based models were used to predict PVRT
and WRAT in the PNC data (and not when PVRT-based and
WRAT-based models were used to predict Pmat in the HCP data;
Fig. 1j). In all, these results suggest that task-based CPMs of
intelligence generalize across data sets and cognitive measures.

Model edges are spatially distributed and overlapping. We next
sought to understand the relative contributions of different brain
regions to these models. The edges included in each model are
widely distributed throughout the brain (Supplementary Fig. 4).
Nevertheless, considering that there are over 30,000 edges eligible
for selection, overlap among models (computed for both the CN
and AN; Methods) is substantial, with the greatest within-data set
overlap between models derived from WM and emotion tasks
(PNC, 11.02–11.78%; HCP, 6.93–8.71%; Fig. 2a); cross-data set
overlap is also greater for models built from task than rest data
(task: 3.43–4.31%, rest: 1.18–1.37%; Fig. 2a).

Given the models’ sprawling distributions, measures drawn
from network analysis are useful to summarize network structure.
Here, we used node degree, computed as the number of edges
incident to that node, to identify hubs, or nodes that are involved
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in many connections in a given model (Methods). While the
widespread distribution of these predictive networks is again
underscored by this analysis, we highlight several trends.

First, within each data set, patterns of node degree were
relatively stable across 1000 iterations of a split-half prediction
analysis (Supplementary Fig. 1), and qualitatively similar across
conditions (Fig. 2c). This similarity was confirmed by the high
correlation of node degree across conditions and data sets,
particularly between task-based models (within data sets: rs=
0.294–0.389 (all P < 2e−6); between data sets: rs= 0.166–0.279
(all P < 0.01); Fig. 2b). In addition, degree maps demonstrate
substantial bilateral symmetry, as indicated by the correlation of
node degree across hemispheres (rs= 0.17–0.62); task-based
models demonstrate greater symmetry than rest-based models
(Methods; Supplementary Table 9).

Second, the mean degree of better performing models is right-
shifted, and hub regions are similar across conditions (higher
degree is represented with darker colors in Fig. 2c). This is
consistent with the approximately linear, positive relationship
between model performance and number of selected edges
(Supplementary Fig. 5), and suggests that these additional edges
in high-performing models belong to a coherent network or set of
networks that is differentially perturbed by tasks. Taken with the
similarity of node degree patterns across conditions and data sets,
these findings further suggest that CPM is identifying a core gF-
related network differentially perturbed by each condition.

Interestingly, the correlation between CN and AN degree
vectors for a given condition was comparable to or in many cases
substantially greater than cross-condition CN–CN and AN–AN
degree correlations (HCP: WM, rs= 0.657 (P < 3e−33); emotion,
rs= 0.561 (P < 8e−23); rest, rs= 0.292 (P < 2e−6); PNC: WM, rs
= 0.579 (P < 9e−24); emotion, rs= 0.453 (P < 5e−14); rest, rs=
0.422 (P < 4e−12)), suggesting that the CN and AN in fact
represent a single network in which overall patterns of functional
connectivity are linearly related to gF.

An additional way to explore model structure is to identify
canonical brain networks that contribute disproportionately to
predictive models. To do so, we used ten functional networks
derived from the same healthy subjects used to define the 268-
node atlas (Methods; Supplementary Fig. 6) and, for each pair of
networks, computed the fraction of edges in the given model that
belong to that pair, normalized by the fraction of total edges
belonging to that pair. Edge counts are thus scaled such that a
value of 1 indicates proportionate contribution of that network
pair to the model (Fig. 2d).

The results again reflect the distributed nature of these models.
Additionally, in most models, visual (networks 5–7) and motor
(4) regions are overrepresented. HCP networks tend to
demonstrate greater involvement of frontal regions (1–2) than
do corresponding PNC networks, particularly in the emotion task
and rest CNs. Finally, this analysis sheds further light on the
relationships between the CN and AN for a given condition. We
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Fig. 2 Model connections are widely distributed throughout the brain and demonstrate substantial overlap between models. a Edge overlap (number of

shared edges normalized by the total number of unique edges in the models) between each pair of models within (off-diagonal) and between (main

diagonal) data sets. In these and all subsequent matrix visualizations, HCP data are presented in the bottom triangle and PNC data are presented in the

upper triangle. CN, correlated network; AN, anti-correlated network. b Spearman’s correlation of node degree between each pair of models both within

(off-diagonal) and between (main diagonal) data sets. c Visualization of node degree for each model in the HCP (top three rows) and PNC (bottom three

rows) data. CN degree is displayed in warm colors; AN degree is displayed in cool colors; darker color indicates higher degree. LH, left hemisphere; RH,

right hemisphere. d Canonical networks that contribute disproportionately (i.e., value > 1; see main text) to each model. As in a and b, HCP models are

represented in the lower triangles and PNC models in the upper triangles. Each number corresponds to one canonical network (Methods): 1=medial

frontal, 2= frontoparietal, 3= default mode, 4=motor cortex, 5= visual A, 6= visual B, 7= visual association, 8= salience, 9= subcortical, 10=

cerebellum. Models in a–c were generated with an edge-selection threshold of P < 0.01; models in d were generated with an edge-selection threshold of P

< 0.001 for improved visualization and interpretability
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predicted, given the high degree correlation between CN/AN
pairs, that the same networks would be overrepresented in these
pairs, but that their patterns of connectivity with other networks
would differ. This was indeed the case. For example, medial
frontal (1) nodes are overrepresented in the HCP emotion task
CN and AN, but these nodes tend to be connected with medial
frontal (1) and frontoparietal (2) regions in the CN, and with
visual (5) and salience network (8) regions in the AN. Similarly,
visual regions (6–7) are overrepresented in both the PNC WM
CN and AN, but their connections with motor cortex (4) and the
default mode network (3) are overrepresented in the CN, while
their connections with frontoparietal regions (2), salience
network regions (8), and the cerebellum (10) are overrepresented
in the AN.

The best task for gF prediction varies by sex. We next investi-
gated whether patterns of model performance are consistent across
a population or differ by group. Perhaps the most salient demo-
graphic feature, and one that has received much attention in the FC
literature10,27,28, is sex; to test the effect of sex on model perfor-
mance, we divided each sample by sex (HCP: 241 males, 274
females; PNC: 251 males, 320 females), and performed CPM
separately for males and females. In both the HCP and PNC data
sets, we found marked and consistent sex differences in model
performance. Interestingly, among the shared tasks across data sets,
males and females demonstrated opposite patterns of model

performance: emotion task-based models outperformed WM task-
based models in females (PNC: emotion rs

2
= 11.8% (P < 3e−10),

WM rs
2
= 6.3% (P < 6e−6), Steiger’s z= 2.163 (P < 0.02); HCP:

emotion rs
2
= 5.9% (P < 5e−5), WM rs

2
= 0.5% (P > 0.05), Steiger’s

z= 2.357 (P < 0.01); edge-selection threshold of P < 0.01 (see Sup-
plementary Note 1); Fig. 3a, c), while WM task-based models
outperformed emotion task-based models in males (PNC: WM rs

2

= 9.7% (P < 6e−7), emotion rs
2
= 4.0% (P < 0.005), Steiger’s

z= 2.349 (P < 0.01); HCP: WM rs
2
= 20.3% (P < 3e−13), emotion

rs
2
= 7.3% (P < 3e−5), Steiger’s z= 3.016 (P < 0.005); edge-selection

threshold of P < 0.01 (see Fig. 3a, c, Supplementary Note 1)). There
were no significant sex differences in mean frame-to-frame dis-
placement (all P > 0.05, Bonferroni corrected), as determined by
two-tailed t-test, suggesting that systematic differences in head
motion do not explain these findings.

As in the whole-sample analyses (see Model edges are spatially
distributed and overlapping), visualization of node degree
demonstrates that these networks are broadly distributed, with
substantial similarities among models within sex group, and
better performing models again demonstrating right-shifted mean
degree in all but one case (PNC female emotion vs. WM task-
based ANs; Fig. 3b, d).

Discussion
In two large, independent data sets, we have demonstrated that
CPMs built from task-based fMRI data better predict individual
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Fig. 3 Distinct networks, best perturbed by different tasks, underlie fluid intelligence in males and females. a Results from the CPM pipeline run separately

for males (n= 241) and females (n= 274) on data from each of the 9 HCP conditions (edge-selection threshold of P < 0.01). Abbreviations as in Fig. 1.
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traits (here, intelligence-related measures) than those built from
resting-state fMRI data. Insofar as tasks modulate brain state,
this finding suggests that brain state manipulations can yield
important information about individual differences in brain
functional organization and cognition. That is, state manip-
ulations reveal trait differences. Further, some task-based
models performed better than others, and the task that yiel-
ded the best predictions of gF varied by sex. Among the tasks
shared across data sets, CPMs built from data acquired during a
WM task consistently outperformed those built from data
acquired during an emotion task in males, while the opposite
was true in females. In all, this suggests that task-induced
changes in functional connectivity can be task-specific and,
taken with group features such as sex, informative when
developing predictive models of individual traits: by using the
right task in a sex-specific sample, the best model in these
analyses explained over 20% of the variance in gF, as compared
to <6% of variance explained by rest-based models built using
the whole sample.

These findings lend support to the theory that though task-
evoked changes in functional connectivity may comprise small
perturbations of a stable, intrinsic network architecture robust to
brain state, these changes are functionally relevant29–31. In fact,
these results push this idea one step further, suggesting that task-
induced changes in functional connectivity not only subserve
performance of the task at hand (as evidenced, for example, by
better prediction of task performance from task than rest data17),
but also amplify individual differences in neural circuitry
underlying related traits, differences that may not be detectable at
rest. We highlight that this conclusion is revealed by but not
specific to the CPM pipeline; rather, it transcends methodological
approach to suggest that carefully selected cognitive tasks
improve resolution of such differences and correspondingly
permit more complete and robust characterization of
brain–behavior relationships.

These findings involved no correction for task-related activa-
tion32, suggesting that such activations do not hinder—and per-
haps even improve—prediction in the CPM framework. While
interpretation of such an analysis in task data alone may be
limited by the inability to separate individual differences in
intrinsic and task-induced connectivity, the use here of data
acquired during both task execution and rest ensures that any
improvement in prediction with task- relative to rest-based
models derives from task-induced changes in functional con-
nectivity and individual differences in these modulations. More-
over, these results are in spite of substantially longer resting-state
scans than task scans in the HCP data set, which would be
expected to increase reliability of functional connectivity
estimates33,34 in the resting state and thus improve rest-based
model performance35.

That task-based models outperform rest-based models likely
reflects, in large part, the unconstrained nature of the resting
state12. Functional connectivity variability is greater during rest
than tasks, a finding that has been suggested to demonstrate
increased mind wandering at rest36; recent experiences and brain
states significantly alter patterns of resting-state functional
connectivity31,37,38; and in contrast to the task-relevant39, distinct
patterns of connectivity identified during task states, resting-state
connectivity patterns are better characterized by the joint
expression of many states40. In short, rest is messy, and patterns
of functional connectivity derived from it likely reflect many
influences—arousal, attention, high-level processes associated
with conscious thought—that remain difficult to measure. Con-
versely, tasks offer a controlled manipulation of brain state that
taps into relevant circuitry39; any individual differences in this
circuitry will be amplified, facilitating the prediction of related traits.

The utility of specific tasks for trait prediction is highlighted by
the finding of sex differences in model performance: emotion
task-based models outperform WM task-based models for
females, while the opposite is true for males. This finding extends
previous work on sex differences in functional
connectivity10,27,28, and may reflect sex differences in gF-related
neural circuitry, task-related neural circuitry, or both. While sex
differences in task-related circuitry may exist, they likely do not
fully explain sex differences in model performance, as the spatial
distributions of gF-related circuits were found to vary by sex
(Fig. 3b, d). Further, the incorporation of sex into the models
(Methods) failed to improve their performance (Supplementary
Table 10). Together, these findings suggest that there are funda-
mental sex differences in the spatial distribution and modulation
of gF-related networks (as suggested previously41) that cannot be
captured in a single linear model. Further exploration of the
relative contributions of sex differences in gF- and task-related
circuitry to differences in model performance represents an
important area for future investigation.

While sex differences in functional connectivity that corre-
spond to sex differences in cognition have previously been
reported, including in these data27, we note that the current
findings extend this work by leveraging these differences for trait
prediction in unseen subjects, and by showing, given the
improvements in prediction when the sexes are treated separately,
that males and females are recruiting distinct networks to
represent the same construct. This suggests that prediction per-
formance may improve when models are built separately for
males and females, and highlights the need to build the right
model for each particular group. While group is here defined by
sex, there are likely other relevant features that define groups.
This may have important implications when CPM is applied
clinically, as different patient populations may require distinct
models to predict symptoms and behaviors. These differences
may themselves, in turn, help categorize patients into relevant
subgroups, consistent with the recent demonstration that patterns
of functional connectivity can be used to identify and assign
patients to treatment-relevant subtypes of depression42.

A predictive model is of course most useful if it performs well
and consistently across samples. Overestimation of model per-
formance is common; this is in large part due to overfitting and a
failure to maintain independence of training and test data5,43. By
keeping training and test data separate at every step of the ana-
lysis, we ensured that every prediction was a true test of the
models’ ability to generalize to unseen subjects.

However, given that connectivity analyses usually involve
many more edges than subjects, overfitting is difficult to eliminate
completely43, and likely contributes to the differences between
rest-based CPM performance in these and previous22 analyses
that used a smaller data set44. The described validations—both
cross-condition and cross-data set—were employed to further
protect against overfitting, providing more strenuous tests of
model generalizability.

Cross-condition prediction results demonstrate that models
generalize across brain states, and that brain state may be even
more important than edge selection; that is, even edges that do
not survive thresholding in the WM data are, when summed,
more systematically related to gF than are the most gF-relevant
edges at rest. This explanation is consistent with the finding that
edge-selection threshold does not affect model performance
(Supplementary Table 1).

Differences between the HCP and PNC data make cross-data
set prediction a harder problem, still, as the sample age ranges
and experimental designs differed (even the tasks here treated
as shared across data sets are in fact somewhat different; for
example, the HCP WM task used images of faces, places, tools,

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04920-3 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2807 | DOI: 10.1038/s41467-018-04920-3 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


and body parts, while the PNC WM task used images of geo-
metric figures). As expected, model performance decreased in
these analyses, particularly when using PNC models to predict
gF from HCP data (likely due to differences in data quality and
developmental confounds that render the PNC models less
robust), but prediction remained significant overall, even when
using task-based models constructed from one intelligence-
related measure to predict another. Validation results thus
suggest that the models—particularly those built from task data
—are robust to the particulars of the task, intelligence measure,
and data set.

In addition to its prediction performance, CPM is compelling
in its simplicity, which facilitates model summarization and
interpretation5. Here, we have explored the spatial distribution of
the described models and make several key observations. First,
consistent with past reports22,45–48, gF-related networks are
spatially distributed across the brain, making whole-brain, data-
driven approaches particularly well suited to their elaboration and
application. Second, despite this distribution and the many rele-
vant connections, overlap among models—both within and
between data sets—is substantial, and greater for task- than rest-
based models. Model overlap likely reflects the combined influ-
ences of a core set of trait-relevant edges, state-induced network
reconfiguration30, and methodological limitations; the relative
contributions of each have yet to be determined, and present an
opportunity for future investigation. Third, CN–AN pairs likely
represent a single network in which a particular edge strength
profile predicts gF. Finally, the anatomical distribution of the
models, while complex, is largely consistent with existing
accounts of the neuroanatomy underlying intelligence: visuo-
motor regions are overrepresented in gF-related circuitry, con-
sistent with these regions’ prominent inclusion in network models
of intelligence (e.g.,49), the demonstrated relationship between
motor skills and gF48, and the relevance of visual cortex con-
nectivity to the rule application phase of fluid intelligence test-
ing50; and the greater contribution of frontal regions to the HCP
networks than to the PNC networks agrees with the reported role
of frontal cortex in intelligence51–53, and with the emergence of
this role in adulthood52.

We have demonstrated that functional connectivity changes in
trait-relevant ways with changing brain state, here induced by
distinct tasks. There are many ways to characterize brain state,
and many temporal resolutions at which it can be measured. As
tools to study dynamic functional connectivity continue to
advance54, future investigations may seek to characterize brain
state continuously, or at finer temporal scales to account for
moment-to-moment fluctuations and their relationship to task
design. Such work will be complemented by the use of continuous
performance tasks that yield uninterrupted task-induced brain
states. While the performance of the models described here
suggests that such characterization of brain state may not be
necessary for successful predictive modeling, it would likely
facilitate interpretation of the models and advance our under-
standing of the relationships among brain state, functional
organization, cognition, and behavior.

Further, while the application of a 600-node parcellation to the
PNC data suggested that parcellation resolution does not sub-
stantially affect model performance, other improvements in
registration and parcellation—such as the use of individualized
parcellations55, and of areal features for alignment and parcella-
tion56—may improve the delineation of functionally homo-
geneous regions, as recently demonstrated in the HCP data56,
and correspondingly improve CPM performance. The impact
of alignment and parcellation approaches on predictive model
performance thus remains an important area for future
investigation.

In addition, we have shown that our models generalize across
two very different data sets, but it is likely that our results would
improve with further characterization of relevant state changes
and group features—that is, using the right tasks for the right
subjects. Every data set is, by necessity, limited to a particular set
of tasks and subject population. Development of models in
additional, diverse data sets (e.g., with different tasks, older sub-
jects, or patient populations) will thus be useful to further refine
the models and explore the trends described here.

In summary, we have shown that brain state can be manipu-
lated via cognitive tasks to perturb functional connections in the
brain, better revealing brain-behavior relationships and allowing
improved prediction of individual traits. The task that yields the
best connectome-based predictive models varies by sex, suggest-
ing that both subject group and brain state perturbations should
be considered in functional connectivity and predictive modeling
analyses. Previous work has modeled clinical symptoms in the
same manner17, suggesting the broad relevance of this work and
the exciting possibility that task-based manipulations of brain
state could assist in characterizing neural underpinnings of
behavior and clinical symptoms across a wide range of psychiatric
and neurological disorders.

Methods
Data sets. Two data sets were used in the primary analyses described here: the
Human Connectome Project (HCP) 900 Subjects release, which was the most
recent HCP data release available at the time that this work began, and the Phi-
ladelphia Neurodevelopmental Cohort (PNC) first study release, which was the
only data release available at the time that this work began. These data sets are
described below.

HCP participants. From this data set, we used behavioral and functional imaging
data19. We restricted our analyses to those subjects who participated in all nine
fMRI conditions (seven task, two rest), whose mean frame-to-frame displacement
was less than 0.1 mm and whose maximum frame-to-frame displacement was less
than 0.15 mm (see HCP imaging parameters and preprocessing), and for whom gF
measures were available (n= 515; 241 males; ages 22–36+ ). This conservative
threshold for exclusion due to motion was used to mitigate the substantial effects of
motion on functional connectivity; following this exclusion, there was no sig-
nificant correlation between motion and gF for most conditions (all P > 0.05,
Bonferroni corrected) except the social task, right-left (RL) phase encoding run (rs
=−0.16 (P= 0.00017)), the relational task, left-right (LR) phase encoding run (rs
=−0.15 (P= 0.0008)), and the emotion task, RL phase encoding run
(rs=−0.14 (P= 0.0017)).

HCP imaging parameters and preprocessing. Details of imaging
parameters19,57,58 and preprocessing58,59 have been published elsewhere. In brief,
all fMRI data were acquired on a 3 T Siemens Skyra using a slice-accelerated,
multiband, gradient-echo, echo planar imaging (EPI) sequence (TR= 720 ms, TE
= 33.1 ms, flip angle= 52°, resolution= 2.0 mm3, multiband factor= 8). Images
acquired for each subject include a structural scan and eighteen fMRI scans
(working memory (WM) task, incentive processing (gambling) task, motor task,
language processing task, social cognition task, relational processing task, emotion
processing task, and two resting-state scans; two runs per condition (one LR phase
encoding run and one RL phase encoding run))58,60 split between two sessions.
Each condition was a different length (WM, 5:01; gambling, 3:12; motor, 3:34;
language, 3:57; social, 3:27; relational, 2:56; emotion, 2:16; rest, 14:33; see Effects of
condition duration for further investigation of the potential implications of variable
scan duration). The scanning protocol (as well as procedures for obtaining
informed consent from all participants) was approved by the Institutional Review
Board at Washington University in St. Louis. Use of HCP data for these analyses
was deemed exempt from IRB review by the Yale Human Investigation Committee.
The HCP minimal preprocessing pipeline was used on these data59, which includes
artifact removal, motion correction, and registration to standard space. All sub-
sequent preprocessing was performed in BioImage Suite61 and included standard
preprocessing procedures22, including removal of motion-related components of
the signal; regression of mean time courses in white matter, cerebrospinal fluid, and
gray matter; removal of the linear trend; and low-pass filtering. Mean frame-to-
frame displacement was averaged for the LR and RL runs, yielding nine motion
values per subject; these were used for subject exclusion and motion analyses. All
subsequent analyses and visualizations were performed in BioImage Suite61, Matlab
(Mathworks), and R62,63.
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PNC participants. From this data set, we used behavioral, structural imaging, and
functional imaging data20. We restricted our analyses to those subjects who par-
ticipated in all three fMRI runs (two task, one rest), on whom registration was
successful (nine subjects were excluded for failed registrations), whose mean frame-
to-frame displacement was less than 0.1 mm and whose maximum frame-to-frame
displacement was less than 0.15 mm (as for the HCP data set, and with the same
motivation), and for whom fluid intelligence (gF) measures were available (n=
571; 251 male, ages 8–21). Following exclusion for motion, there was no significant
correlation between motion and gF for any condition (all P > 0.05, Bonferroni
corrected).

PNC imaging parameters and preprocessing. Details of the imaging protocol
have been published elsewhere64. In brief, all fMRI data were acquired on a 3 T
Siemens TIM Trio using a multi-slice, gradient-echo EPI sequence (TR= 3000 ms,
TE= 32 ms, flip angle= 90°, resolution= 3 mm3). During each imaging session,
subjects completed a structural scan and three fMRI scans (WM task, emotion
identification task, and resting-state scan). As in the HCP data set, each condition
was a different length (WM, 11:39; emotion, 10:36; rest, 6:18). The potential
implications of this were explored (see Effects of condition duration). All study
procedures, including protocols for obtaining informed consent from all partici-
pants, were approved by the Institutional Review Boards at the University of
Pennsylvania and the Children’s Hospital of Philadelphia. As for the HCP analyses,
use of the PNC data for these analyses was deemed exempt from IRB review by the
Yale Human Investigation Committee. Standard preprocessing procedures were
applied to these data. Structural scans were skull stripped using an optimized
version of the FMRIB’s Software Library (FSL)65 pipeline66. Slice time and motion
correction were performed in SPM867. The remainder of image preprocessing was
performed in BioImage Suite61 and included linear and nonlinear registration to
the MNI template; regression of mean time courses in white matter, cerebrospinal
fluid, and gray matter; and low-pass filtering. All subsequent analyses and visua-
lizations were performed in BioImage Suite61, Matlab (Mathworks), and R62,63.

Functional parcellation and network definition. The Shen 268-node atlas derived
from an independent data set using a group-wise spectral clustering algorithm21

was applied22 to both the preprocessed HCP and PNC data. After parcellating the
data into 268, functionally coherent nodes, the mean time courses of each node pair
were correlated and correlation coefficients were Fisher transformed, generating
nine 268 × 268 connectivity matrices per HCP subject, and three 268 × 268 con-
nectivity matrices per PNC subject (one per fMRI run; matrices were generated for
both the LR and RL phase encoding runs in the HCP data, and these matrices were
averaged for each condition). Of note, in a subset of subjects in each data set, some
of these nodes lacked sufficient coverage (the scan volume was too restricted); we
adopted the conservative approach of excluding these nodes in all subjects. In the
HCP data, 9 nodes lacked sufficient coverage, and were dropped from all further
HCP analyses. Nine additional nodes lacked sufficient coverage in the PNC data
(for a total of 18 nodes with incomplete coverage in the PNC data); these 18 nodes
were dropped from all further PNC and cross-data set analyses. These nodes were
primarily in subcortical regions (Supplementary Figs. 2 and 3).

The same spectral clustering algorithm was used to assign these 268 nodes to 8
networks21,22, and the subcortical-cerebellar network was split into networks
8–1034 (Supplementary Fig. 6); these networks are named based on their
approximate correspondence to previously defined resting-state networks, and are
numbered for convenience according to the following scheme: 1. Medial frontal, 2.
Frontoparietal, 3. Default mode, 4. Motor, 5. Visual A, 6. Visual B, 7. Visual
association, 8. Salience, 9. Subcortical, 10. Cerebellum. Numbers of nodes in these
networks are presented in Supplementary Table 11.

Cognitive prediction. In both data sets, fluid intelligence was quantified using
matrix reasoning tests. In the HCP data set, a 24-item version of the Penn Pro-
gressive Matrices test was used; this test is an abbreviated form of Raven’s standard
progressive matrices68. In the PNC data set, 24- and 18-item versions of the Penn
Matrix Reasoning Test were used69,70. Integer scores indicate number of correct
responses (HCP: PMAT24_A_CR, range= 5–24, mean= 17.53, s.d.= 4.45, med-
ian= 19; PNC: PMAT_CR (phv00194834.v1.p1.c1), range= 0–23, mean= 12.27,
s.d.= 4.04, median= 12). Percent, rather than number, correct (PMAT_PC
(phv00194837.v1.p1.c1)) was also used in a follow-up analysis of the PNC data (see
Effects of gF measurement technique).

Connectome-based predictive modeling (CPM)18,22 was first carried out for
each data set separately. Briefly, iterative, leave-one-subject-out cross-validation
(LOOCV) was used to predict gF in the left-out subject. The first step of this
pipeline is edge selection. The strength of each edge in n−1 subjects was related
to gF in those subjects using Pearson correlation; the edges with the strongest
positive correlations with gF were assigned to the “correlated network” (CN),
while those with the strongest negative correlations with gF were assigned to the
“anti-correlated network” (AN). This step requires that the significance of edges’
correlations with gF be thresholded, and given the inevitably arbitrary nature of
this threshold, various thresholding methods (based on number of edges (i.e.,
sparsity) or correlation P value) and levels (1%, 2.5%, 5%, 10%, P < 0.01, P <
0.005, P < 0.001) were tested to ensure that variable network size across

conditions and subject groups did not account for differences in model
performance.

Next, “network strength” was calculated for the CN and AN for each subject in
the training group by summing the weights of all CN and AN edges in each
subject’s connectivity matrix, yielding two such summary statistics for each subject.
The difference between these network strengths was calculated to yield a
“combined network” strength measure:

CN strengths ¼
P

i;j
ci;jm

þ
i;j ð1Þ

AN strengths ¼
P

i;j
ci;jm

�
i;j ð2Þ

Combined net strengths ¼ CN strengths � AN strengths ð3Þ

where c is the connectivity matrix for subject s, and m+ and m− are binary
matrices indexing the edges (i,j) that survived thresholding for the CN and AN,
respectively.

Linear regression was then used to evaluate the relationship between network
strength and gF in the same n−1 subjects, yielding a first-degree polynomial that
best fit network strength to gF in a least squares sense; three such models were
built, one each for the CN, AN, and combined network.

In the final step, CN, AN, and combined network strengths were calculated for
the excluded subject, and were submitted to the corresponding models to generate
three gF estimates for that subject. This process was repeated iteratively, with each
subject excluded once, and the entire pipeline was repeated for every condition
(task and rest) in each data set (Fig. 1a–h).

Model performance was quantified as the Spearman’s correlation between
predicted and true gF (rs). An alternative way of expressing this quantity is in terms
of explained variance (rs

2). For clarity and improved interpretability, we often refer
to the latter, and note that conditions that yielded negative correlations between
predicted and true gF (i.e., conditions that could not be used to build a successful
linear model of gF) are assumed to explain none of the variance in gF scores, and
rs
2 is correspondingly set to zero.
Because the iterations of CPM are not independent, the significance of model

predictions in the main gF CPM analyses was assessed via 1000 iterations of
permutation testing, with P equal to the fraction of iterations on which the
correlation between predicted and true (permuted) gF was greater than the
correlation between predicted and true (unpermuted) gF. To account for family
structure in the HCP and PNC data sets, gF permutations were only permitted
among siblings of the same type (i.e., non-twin, dizygotic twin, or monozygotic
twin in the case of HCP data, and non-twin or twin in the case of PNC data), and
among families with identical structure23,24. Of note, one individual in the PNC
sample was missing family information; because it seems unlikely that this
information would have been collected for one family member and not for another,
this individual was assumed to not have siblings in the sample and coded
accordingly. Resulting P values were corrected for multiple comparisons using the
false discovery rate25; both P and q values are presented in the text (see Results,
State manipulations improve trait predictions) to facilitate comparison with
previous work, in which only rest-based model performance was assessed22,34. The
significance of the overall difference between task- and rest-based models’
performance was assessed via Mann-Whitney U test performed on rest- and task-
based model performance measures (i.e., rs

2), pooled across both data sets. Except
as otherwise noted, this and all subsequent P values are presented in their
uncorrected form, given the post-hoc nature of these analyses. The stability of main
gF CPM results and model anatomy (see Analysis of anatomical distribution of
model edges) was evaluated via split-half prediction (i.e., for each data set, the data
were randomly divided in half, models were trained on one half and tested on the
other, and this procedure was repeated 1000 times). Results are presented in
Supplementary Fig. 1.

CPM was repeated for two alternative intelligence-related measures (WRAT
(range= 70–145, mean= 103.22, s.d.= 15.78, median= 102) and PVRT (range=
4–15, mean= 11.68, s.d.= 2.52, median= 12); Table 1) in the PNC data. These
WRAT and PVRT analyses were considered post-hoc, and the corresponding P
values of these and all subsequent analyses, except as otherwise noted, were thus
computed parametrically.

Validation of the models. As discussed in the main text, two validations of these
models were performed: cross-condition and cross-data set. In all cases, models
were generated using an edge-selection threshold of P < 0.01. We chose to use a less
conservative threshold to minimize the potential effects of overfitting and noise
introduced by trait-irrelevant differences (e.g., in task design).

In the cross-condition analyses, models generated from the HCP WM condition
(training data) were applied to the HCP rest matrices (test data), and vice versa
(Fig. 1i). The same analyses were performed using the PNC WM and rest data
(Fig. 1i). Models were generated using the training data from n−1 subjects, and
these models (CN, AN, and combined network) were applied to the test data for
the left-out subject, as described previously (see Cognitive prediction). For
example, in the WM to rest analysis, WM task-based connectivity matrices were

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04920-3 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2807 | DOI: 10.1038/s41467-018-04920-3 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


used for edge selection and model building in n−1 subjects, and these edges were
then selected from the rest-based connectivity matrix in the left-out subject. Their
weights were summed to yield CN, AN, and combined network strengths for the
left-out subject, which were submitted to the corresponding models to generate
predictions of the given subject’s trait measure.

In the cross-data set analyses, only data from rest, the WM task, and the
emotion processing task were used. Models generated from each of these
conditions in the HCP data (training data) were applied to the corresponding
condition from the PNC data (test data), and vice versa (Fig. 1j). Given the
missing nodes in the two data sets, only the 250 nodes common to both data sets
were used in all cross-data set analyses. Training data networks were generated
by taking the intersection of the binary matrices m+ and m− from all iterations
of CPM for the given condition. These networks were applied to the test data,
and the strengths of included edges were summed for each subject, yielding CN,
AN, and combined network strength scores for each subject. Model performance
was then quantified as the Spearman’s correlation between network strength and
gF which, given the independence of the training and test data, is equivalent to
prediction. As noted previously, models for which combined network strength
was negatively correlated with gF are assumed to explain none of the variance in
gF, and rs

2 is set to zero.
Thus, these analyses yielded three measures of model performance (for the

CN, AN, and combined network) for each of the four cross-condition analyses
(HCP WM to rest, HCP rest to WM, PNC WM to rest, PNC rest to WM) and six
cross-data set analyses (HCP to PNC WM, PNC to HCP WM, HCP to PNC
emotion, PNC to HCP emotion, HCP to PNC rest, and PNC to HCP rest). This
analysis was repeated using WRAT and PVRT scores in the PNC data (i.e.,
cross-condition analyses as described above, and cross-data set analyses in which
PNC models based on edge correlation with the given measure were used to
predict gF in the corresponding condition of HCP data, and in which HCP gF
models were used to predict the given measure in the corresponding condition of
PNC data).

Analysis of sex differences in model performance. To investigate a potential sex
effect in model performance, we repeated the analysis described above (Cognitive
prediction) with the sample split by sex. Differences between model pairs’ (i.e.,
WM task- and emotion task-based models for a given sex group) performance were
assessed for significance using Steiger’s z71 and corresponding one-tailed P values,
as implemented by Lee and Preacher72. Given the finding of substantial sex dif-
ferences in model performance (Fig. 3), we next sought to improve model per-
formance by explicitly incorporating sex into the CPM pipeline. To do so, we first
adapted the edge-selection step to use partial correlation, rather than correlation,
with sex as a covariate (i.e., to control for any effect of sex on the relationship
between edge strength and gF, and thus select edges that are correlated with gF in a
sex-independent manner) in the HCP data, and with sex and age as covariates in
the PNC data. This manipulation did not affect model performance (Supplemen-
tary Table 10), and is not discussed further here. Next, we adapted the model-
building step to incorporate sex as a second, binary predictor in a multilinear
regression. Similarly, this manipulation did not improve model performance
(Supplementary Table 10), and is not discussed further here. Finally, we compared
mean frame-to-frame displacement in males and females using two-sample t-tests
assuming equal variances, given results of two-sample F tests for equal variance for
each condition.

Effects of head motion. Given the finding that correlations between gF and mean
frame-to-frame displacement did not meet significance in 18 out of 21 runs of the
HCP and PNC data sets, but that model predictions were frequently correlated
with mean frame-to-frame displacement, we sought to better understand the
potential effects of subject motion on model performance. As in the analysis of sex
differences, we explicitly incorporated mean frame-to-frame displacement for each
subject into the CPM pipeline, both at the edge-selection step (again via partial
correlation) and at the model-building step (again via multilinear regression).
Results are presented in Supplementary Table 4.

Effects of gF measurement technique. Given that two versions of the Penn
Matrix Reasoning Test were used to assess gF in the PNC (one with 18 items and
one with 24 items), we repeated the analysis described above (Cognitive prediction)
with the sample split by test version. In addition, as in the sex differences and
motion analyses, we sought to improve model performance by incorporating test
version into the CPM pipeline via partial correlation (now with version as a
covariate) and via multilinear regression (now with the inclusion of a binary
version predictor in the models). We also repeated the CPM analysis using percent,
rather than raw number, correct to train and test the models. Finally, we repeated
the analysis after excluding subjects whose Pmat scores were valid but who
experienced a problem that may have affected performance (version code “V2,” n
= 9) and those whose Pmat scores were not valid (version code “N,” n= 2). All
results are presented in Supplementary Table 2.

Effects of parcellation resolution and scan coverage. It was hypothesized that
increasing the resolution of the parcellation may correspondingly improve model

performance by allowing more subtle individual differences in patterns of FC to
emerge. This prediction was tested in the PNC data set by applying a 600-node
parcellation73 to the data and repeating the CPM analyses as previously described
(Cognitive prediction). Results are presented in Supplementary Table 5.

Further, given the difference in spatial coverage of the acquisitions in the HCP
and PNC data (the latter only included coverage of 250 out of 268 nodes; see
Functional parcellation and network definition), it was verified that this difference
did not account for any observed differences in model performance by limiting the
HCP matrices to the same 250 nodes included in the PNC matrices and repeating
the CPM analyses described above (Cognitive prediction). Results are presented in
Supplementary Table 5.

Effects of HCP reconstruction method and quality issues. Given the develop-
ment of an improved image reconstruction algorithm during HCP Phase II
scanning, we repeated the CPM analyses described above (Cognitive prediction)
including only data reconstructed using the r227 algorithm (n= 402). Next, as
previously described, we sought to improve model performance by incorporating
the version of the reconstruction algorithm into the CPM pipeline via partial
correlation (now with algorithm version as a covariate) and via multilinear
regression (now with the inclusion of a binary algorithm version predictor in the
models). Results are presented in Supplementary Table 3. Finally, given known
quality control (QC) issues, we excluded HCP subjects with QC Issues B, C, and D
(i.e., subjects with focal segmentation and surface errors, subjects for whom data
were collected during a time of coil temporal instability, and subjects with
demonstrated artifact in minimally preprocessed resting-state fMRI data, as
described on the HCP wiki), as well as subjects missing gradient-recalled echo field
maps (again, as described on the HCP wiki). CPM was re-run on this sample subset
(n= 475); results are presented in Supplementary Table 3.

Effects of condition duration. Because every condition in each data set was a
different length, we sought to explore the potential effects of condition duration on
corresponding model performance. To do so, we correlated duration and model
performance; this correlation was found to be negative in the HCP data and
positive in the PNC data, an effect apparently driven by rest runs that were longer
than task runs in the HCP data, and task runs that were longer than rest runs in the
PNC data. That task-based models outperformed rest-based models in both cases
suggests that this effect is not driven by condition duration, but to further explore
the potentially confounding effects of condition duration, we truncated each time
course to include the same number of frames as the shortest condition in that data
set (HCP: 176 frames; PNC: 124 frames) and recalculated connectivity matrices
using these truncated time courses. These matrices were submitted to the CPM
pipeline, and results are presented in Supplementary Table 6.

Effects of cross-validation method. To explore the bias-variance trade-off
inherent in selecting the cross-validation method44, we repeated the analysis
described above (Cognitive prediction) using a k-fold, rather than a leave-one-out,
cross-validation approach to model training and testing, with k= 10. That is, for
each data set, the sample was divided into 10, approximately equally sized groups;
on each fold, the model was trained on 9 groups and tested on the excluded 10th
group. This process was repeated iteratively, with each group excluded once.
Results are presented in Supplementary Table 7.

Effects of global signal regression. In light of the controversy surrounding the
use of global signal regression (GSR)74, we repeated the main CPM analyses using
matrices that were computed without GSR for a subset of the HCP sample used in
the main analyses (n= 514). Results are presented in Supplementary Table 8.

Analysis of anatomical distribution of model edges. We next sought to
understand how different brain regions may contribute to these networks, and to
evaluate the overlap among models built from different conditions and data sets.
Except as otherwise noted, we used the intersection networks (see Validation of the
models) generated with edge-selection thresholds of P < 0.01. As in the cross-
condition and cross-data set analyses, we chose to use a less conservative threshold
to minimize the potential effects of overfitting and noise.

First, we calculated model edge overlap between different conditions within
each data set (e.g., between PNC WM and PNC emotion task-based models) and
between the same condition in different data sets (i.e., HCP WM and PNC WM
task-based models, HCP emotion and PNC emotion task-based models, and HCP
rest- and PNC rest-based models). CNs and ANs were treated separately. For each
model pair, we counted the number of shared edges, and normalized this value by
the total number of unique edges in the models (Fig. 2a). Because some of the
models were substantially larger than others (e.g., Supplementary Fig. 5), we
repeated this analysis using the models generated with sparsity thresholds. The
same patterns held (e.g., WM and emotion task-based models shared the greatest
fraction of edges within and between data sets, while rest-based models generally
demonstrated lower within- and between-data set overlap), though, as would be
expected if models reflect fundamental, trait-relevant circuits, percent overlap
increased with increasing network size. Finally, to ensure that the imposition of an
edge-selection threshold did not itself impact overlap results, we correlated the
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strength of each edge across all subjects with gF in those subjects, yielding a 1 × e
vector of correlation coefficients for all edges in each condition, where e is the
number of edges. We then correlated these vectors to quantify the similarity of gF-
related edge distributions across conditions. Trends were comparable to those
identified in the overlap analyses; these results are presented in Supplementary
Fig. 7.

We next asked whether there is shared structure among models that cannot be
captured at the edge level. One could imagine, for example, that a given node is
connected with node i in one model, and with node i+ 1 in another; nodes i and i
+ 1 may be neighboring nodes that belong to the same macroscale network, but
these edges would of course not overlap, and thus this shared structure would be
overlooked in the edge overlap analysis. To pursue this, we drew from network
analysis approaches and calculated binary node degree75 for each model:

Dþ
i ¼
P

j

m
þ;int
i;j ð4Þ

D�
i ¼
P

j

m
�;int
i;j ð5Þ

where m+,int and m−,int are again the intersection CN and AN, respectively; Di
+ is

the degree of the ith node in the CN, and similarly Di
− is the degree of the ith node

in the AN. This yielded 12 node degree vectors: HCP WM CN, HCP WM AN,
HCP emotion CN, HCP emotion AN, HCP rest CN, HCP rest AN, PNC WM CN,
PNC WM AN, PNC emotion CN, PNC emotion AN, PNC rest CN, and PNC rest
AN. The spatial distribution of node degree was visualized for each of the degree
vectors by coloring nodes according to their degree (Figs. 2c, 3b, d), and the
similarity of degree distributions between model pairs was quantified as the
Spearman’s correlation between the corresponding degree vectors (Fig. 2b).
Bilateral symmetry of node degree was quantified by calculating the Spearman’s
correlation between the degree values of all left-hemisphere nodes and their right-
hemisphere homologs, and vice versa. To assign homologs given the asymmetry of
the parcellation, we calculated the distance between each node’s centroid and the
centroids of all nodes in the opposite hemisphere after reflecting them over the
midline; the node in the reflected hemisphere that was closest to the given node was
assigned as its homolog. Nodes that lacked coverage—along with their paired nodes
—were excluded from further analyses. To assess the stability of node degree, we
calculated degree vectors for each of the 1000 iterations of the split-half analysis
and, for each condition, correlated degree vectors for every pair of iterations
(Supplementary Fig. 1).

Finally, to explicitly explore the macroscale networks related to gF and
perturbed by each task, we assigned each edge in m+,int and m−,int to a pair of
canonical networks (i.e., edge (i,j) would be assigned to the network that includes
node i and the network that includes node j; see Functional parcellation and
network definition for an explanation of the canonical networks). Edge counts were
normalized to account for network sizes as follows:

ContributionþA;B ¼
mþ;int

A;B =mþ;int
tot

EA;B=Etot
ð6Þ

Contribution�A;B ¼
m�;int

A;B
=m�;int

tot

EA;B=Etot
ð7Þ

where ContributionþA;B and Contribution�A;B represent the relative contributions of
connections between canonical networks A and B to the intersection CN and AN,
respectively; mþ;int

A;B and m�;int
A;B are the numbers of edges between A and B in the

intersection CN and AN, respectively; mþ;int
tot and m�;int

tot are the total numbers of
edges in the intersection CN and AN, respectively; EA,B is the number of edges
between A and B in the whole brain; and Etot is the total number of edges in the
whole brain. Because these analyses do not evaluate network overlap and sparse
networks facilitate interpretation of results, these steps were performed on
networks generated with an edge-selection threshold of P < 0.001. Assignments are
visualized in a 10 × 10 matrix. These are diagonally symmetric matrices, and
therefore we only display the bottom triangle of each HCP matrix and the upper
triangle of each PNC matrix (Fig. 2d).

Code availability. Matlab scripts to run the main CPM analyses can be found at
(https://www.nitrc.org/projects/bioimagesuite/). BioImage Suite tools used for
analysis and visualization can be accessed at (http://bisweb.yale.edu). Matlab scripts
written to perform additional post-hoc analyses are available from the authors
upon request.

Data availability. The HCP data that support the findings of this study are publicly
available on the ConnectomeDB database (https://db.humanconnectome.org). The
PNC data that support the findings of this study are publicly available on the
database of Genotypes and Phenotypes (dbGaP, accession code phs000607.v1.p1);
a data access request must be approved to protect the confidentiality of
participants.

Received: 2 October 2017 Accepted: 1 June 2018

References
1. Gabrieli, J. D. E., Ghosh, S. S. & Whitfield-Gabrieli, S. Prediction as a

humanitarian and pragmatic contribution from human cognitive
neuroscience. Neuron 85, 11–26 (2015).

2. Haynes, J.-D. & Rees, G. Decoding mental states from brain activity in
humans. Nat. Rev. Neurosci. 7, 523–534 (2006).

3. Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V. Beyond mind-reading:
multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430
(2006).

4. Dubois, J. & Adolphs, R. Building a science of individual differences from
fMRI. Trends Cogn. Sci. 20, 425–443 (2016).

5. Woo, C.-W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better
biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20,
365–377 (2017).

6. van den Heuvel, M. P. & Hulshoff Pol, H. E. Exploring the brain network: a
review on resting-state fMRI functional connectivity. Eur.
Neuropsychopharmacol. 20, 519–534 (2010).

7. Friston, K. J. Functional and effective connectivity: a review. Brain Connect. 1,
13–36 (2011).

8. Cohen, J. D. et al. Computational approaches to fMRI analysis. Nat. Neurosci.
20, 304–313 (2017).

9. Turk-Browne, N. B. Functional interactions as big data in the human brain.
Science 342, 580–584 (2013).

10. Biswal, B. B. et al. Toward discovery science of human brain function. Proc.
Natl Acad. Sci. USA 107, 4734–4739 (2010).

11. Castellanos, F. X., Di Martino, A., Craddock, R. C., Mehta, A. D. & Milham,
M. P. Clinical applications of the functional connectome. Neuroimage 80,
527–540 (2013).

12. Buckner, R. L., Krienen, F. M. & Yeo, B. T. T. Opportunities and limitations of
intrinsic functional connectivity MRI. Nat. Neurosci. 16, 832–837 (2013).

13. Finn, E. S. et al. Can brain state be manipulated to emphasize individual
differences in functional connectivity? Neuroimage 160, 140–151 (2017).

14. Geerligs, L., Rubinov, M., Cam-CAN & Henson, R. N. State and trait
components of functional connectivity: individual differences vary with
mental state. J. Neurosci. 35, 13949–13961 (2015).

15. Hampson, M. et al. Connectivity–behavior analysis reveals that functional
connectivity between left BA39 and Broca’s area varies with reading ability.
Neuroimage 31, 513–519 (2006).

16. Medaglia, J. D., Lynall, M.-E. & Bassett, D. S. Cognitive network neuroscience.
J. Cogn. Neurosci. 27, 1471–1491 (2015).

17. Rosenberg, M. D. et al. A neuromarker of sustained attention from whole-
brain functional connectivity. Nat. Neurosci. 19, 165–171 (2016).

18. Shen, X. et al. Using connectome-based predictive modeling to predict
individual behavior from brain connectivity. Nat. Protoc. 12, 506–518 (2017).

19. Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an
overview. Neuroimage 80, 62–79 (2013).

20. Satterthwaite, T. D. et al. The Philadelphia Neurodevelopmental Cohort: a
publicly available resource for the study of normal and abnormal brain
development in youth. Neuroimage 124, 1115–1119 (2016).

21. Shen, X., Tokoglu, F., Papademetris, X. & Constable, R. T. Groupwise whole-
brain parcellation from resting-state fMRI data for network node
identification. Neuroimage 82, 403–415 (2013).

22. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals
using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

23. Winkler, A. M., Webster, M. A., Vidaurre, D., Nichols, T. E. & Smith, S. M.
Multi-level block permutation. Neuroimage 123, 253–268 (2015).

24. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M. & Nichols, T. E.
Permutation inference for the general linear model. Neuroimage 92, 381–397
(2014).

25. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300
(1995).

26. Aguirre, G. K., Zarahn, E. & D’Esposito, M. The inferential impact of global
signal covariates in functional neuroimaging analyses. Neuroimage 8, 302–306
(1998).

27. Satterthwaite, T. D. et al. Linked sex differences in cognition and functional
connectivity in youth. Cereb. Cortex 25, 2383–2394 (2015).

28. Scheinost, D. et al. Sex differences in normal age trajectories of functional
brain networks. Hum. Brain. Mapp. 36, 1524–1535 (2015).

29. Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic
and task-evoked network architectures of the human brain. Neuron 83,
238–251 (2014).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04920-3 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2807 | DOI: 10.1038/s41467-018-04920-3 |www.nature.com/naturecommunications 11

https://www.nitrc.org/projects/bioimagesuite/
http://bisweb.yale.edu
https://db.humanconnectome.org
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v1.p1
www.nature.com/naturecommunications
www.nature.com/naturecommunications


30. Hearne, L. J., Cocchi, L., Zalesky, A. & Mattingley, J. B. Reconfiguration of
brain network architectures between resting state and complexity-dependent
cognitive reasoning. J. Neurosci. 37, 8399–8411 (2017).

31. Hasson, U., Nusbaum, H. C. & Small, S. L. Task-dependent organization of
brain regions active during rest. Proc. Natl. Acad. Sci. USA 106, 10841–10846
(2009).

32. Fair, D. A. et al. A method for using blocked and event-related fMRI data to
study ‘resting state’ functional connectivity. Neuroimage 35, 396–405 (2007).

33. Birn, R. M. et al. The effect of scan length on the reliability of resting-state
fMRI connectivity estimates. Neuroimage 83, 550–558 (2013).

34. Noble, S. et al. Influences on the test–retest reliability of functional
connectivity MRI and its relationship with behavioral utility. Cereb. Cortex 27,
5415–5429 (2017).

35. Shah, L. M., Cramer, J. A., Ferguson, M. A., Birn, R. M. & Anderson, J. S.
Reliability and reproducibility of individual differences in functional
connectivity acquired during task and resting state. Brain Behav. 6,
e00456 (2016).

36. Elton, A. & Gao, W. Task-related modulation of functional connectivity variability
and its behavioral correlations. Hum. Brain. Mapp. 36, 3260–3272 (2015).

37. Tailby, C., Masterton, R. A. J., Huang, J. Y., Jackson, G. D. & Abbott, D. F.
Resting state functional connectivity changes induced by prior brain state are
not network specific. Neuroimage 106, 428–440 (2015).

38. Gregory, M. D., Robertson, E. M., Manoach, D. S. & Stickgold, R. Thinking
about a task is associated with increased connectivity in regions activated by
task performance. Brain Connect. 6, 164–168 (2016).

39. Lowe, M. J., Dzemidzic, M., Lurito, J. T., Mathews, V. P. & Phillips, M. D.
Correlations in low-frequency BOLD fluctuations reflect cortico-cortical
connections. Neuroimage 12, 582–587 (2000).

40. Leonardi, N., Shirer, W. R., Greicius, M. D. & Van De Ville, D. Disentangling
dynamic networks: separated and joint expressions of functional connectivity
patterns in time. Hum. Brain. Mapp. 35, 5984–5995 (2014).

41. Schmithorst, V. J. & Holland, S. K. Sex differences in the development of
neuroanatomical functional connectivity underlying intelligence found using
Bayesian connectivity analysis. Neuroimage 35, 406–419 (2007).

42. Drysdale, A. T. et al. Resting-state connectivity biomarkers define
neurophysiological subtypes of depression. Nat. Med. 23, 28–38 (2016).

43. Whelan, R. & Garavan, H. When optimism hurts: inflated predictions in
psychiatric neuroimaging. Biol. Psychiatry 75, 746–748 (2014).

44. Yarkoni, T. & Westfall, J. Choosing prediction over explanation in psychology:
lessons from machine learning. Perspect. Psychol. Sci. 12, 1100–1122 (2017).

45. Choi, Y. Y. et al. Multiple bases of human intelligence revealed by cortical
thickness and neural activation. J. Neurosci. 28, 10323–10329 (2008).

46. Ebisch, S. J. et al. Common and unique neuro-functional basis of induction,
visualization, and spatial relationships as cognitive components of fluid
intelligence. Neuroimage 62, 331–342 (2012).

47. Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. E.
Neural substrates of fluid reasoning: an fMRI study of neocortical activation
during performance of the Raven’s Progressive Matrices Test. Cogn. Psychol.
33, 43–63 (1997).

48. Barbey, A. K., Colom, R., Paul, E. J. & Grafman, J. Architecture of fluid
intelligence and working memory revealed by lesion mapping. Brain. Struct.
Funct. 219, 485–494 (2014).

49. Jung, R. E. & Haier, R. J. The Parieto-Frontal Integration Theory (P-FIT) of
intelligence: converging neuroimaging evidence. Behav. Brain Sci. 30, 135–154
(2007).

50. Santarnecchi, E. et al. Network connectivity correlates of variability in fluid
intelligence performance. Intelligence 65, 35–47 (2017).

51. Duncan, J. et al. A neural basis for general intelligence. Science 289, 457–460
(2000).

52. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K. & Alkire, M. T. Structural brain
variation and general intelligence. Neuroimage 23, 425–433 (2004).

53. Gray, J. R., Chabris, C. F. & Braver, T. S. Neural mechanisms of general fluid
intelligence. Nat. Neurosci. 6, 316–322 (2003).

54. Hutchison, R. M. et al. Dynamic functional connectivity: promise, issues, and
interpretations. Neuroimage 80, 360–378 (2013).

55. Salehi M., Karbasi A., Scheinost D., Constable R.T. A submodular approach to
create individualized parcellations of the human brain. In: Descoteaux M.,
Maier-Hein L., Franz A., Jannin P., Collins D., Duchesne S. (eds) Medical
Image Computing and Computer Assisted Intervention − MICCAI
2017. Lecture Notes in Computer Science, 10433, 478-485 (Springer, Cham,
2017).

56. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex.
Nature 536, 171–178 (2016).

57. Uğurbil, K. et al. Pushing spatial and temporal resolution for functional and
diffusion MRI in the Human Connectome Project. Neuroimage 80, 80–104
(2013).

58. Smith, S. M. et al. Resting-state fMRI in the Human Connectome Project.
Neuroimage 80, 144–168 (2013).

59. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human
Connectome Project. Neuroimage 80, 105–124 (2013).

60. Barch, D. M. et al. Function in the human connectome: task-fMRI and
individual differences in behavior. Neuroimage 80, 169–189 (2013).

61. Joshi, A. et al. Unified framework for development, deployment and robust
testing of neuroimaging algorithms. Neuroinformatics 9, 69–84 (2011).

62. R. Core Team (2017). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.

63. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag,
New York, 2009).

64. Satterthwaite, T. D. et al. Neuroimaging of the Philadelphia
Neurodevelopmental Cohort. Neuroimage 86, 544–553 (2014).

65. Smith, S. M. et al. Advances in functional and structural MR image analysis
and implementation as FSL. Neuroimage 23, S208–S219 (2004).

66. Lutkenhoff, E. S. et al. Optimized brain extraction for pathological brains
(optiBET). PLoS ONE 9, e115551 (2014).

67. Frackowiak, R. S. J. et al. Human Brain Function (Academic Press, London,
2004).

68. Bilker, W. B. et al. Development of abbreviated nine-item forms of the Raven’s
standard progressive matrices test. Assessment 19, 354–369 (2012).

69. Moore, T. M., Reise, S. P., Gur, R. E., Hakonarson, H. & Gur, R. C.
Psychometric properties of the Penn Computerized Neurocognitive Battery.
Neuropsychology 29, 235–246 (2015).

70. Gur, R. C. et al. A cognitive neuroscience-based computerized battery for
efficient measurement of individual differences: standardization and initial
construct validation. J. Neurosci. Methods 187, 254–262 (2010).

71. Steiger, J. H. Tests for comparing elements of a correlation matrix. Psychol.
Bull. 87, 245–251 (1980).

72. Lee, I. A. & Preacher, K. J. Calculation for the test of the difference between
two dependent correlations with one variable in common. Computer Software.
http://quantpsy.org/corrtest/corrtest2.htm (2013).

73. Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P. & Mayberg, H. S.
A whole brain fMRI atlas generated via spatially constrained spectral
clustering. Hum. Brain. Mapp. 33, 1914–1928 (2012).

74. Murphy, K. & Fox, M. D. Towards a consensus regarding global signal
regression for resting state functional connectivity MRI. Neuroimage 154,
169–173 (2017).

75. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity:
uses and interpretations. Neuroimage 52, 1059–1069 (2010).

Acknowledgements
Data were provided in part by the Human Connectome Project, WU-Minn Consortium

(Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded

by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience

Research; and by the McDonnell Center for Systems Neuroscience at Washington

University. The remainder of the data used in this study were provided by the Phila-

delphia Neurodevelopmental Cohort (Principal Investigators: Hakon Hakonarson and

Raquel Gur; phs000607.v1.p1). Support for the collection of the data sets was provided by

grant RC2MH089983 awarded to Raquel Gur and RC2MH089924 awarded to Hakon

Hakonarson. All subjects were recruited through the Center for Applied Genomics at

The Children’s Hospital in Philadelphia. This work was also supported by NIH Medical

Scientist Training Program Training Grant T32GM007205 (A.S.G.). Many thanks to

Corey Horien, Xilin Shen, Monica Rosenberg, Evelyn Lake, Daniel Barson, Xenophon

Papademetris, Mehraveh Salehi, and Stephanie Noble for their assistance with and

feedback on this project.

Author contributions
A.S.G., S.G., D.S., and R.T.C. conceptualized the study. A.S.G. and S.G. performed the

analyses with support from D.S. D.S. and R.T.C. provided guidance on result inter-

pretation and follow-up analysis design. A.S.G. wrote the manuscript, with contributions

from D.S. and R.T.C. and comments from S.G.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-

018-04920-3.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/

reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04920-3

12 NATURE COMMUNICATIONS |  (2018) 9:2807 | DOI: 10.1038/s41467-018-04920-3 | www.nature.com/naturecommunications

https://www.R-project.org/
http://quantpsy.org/corrtest/corrtest2.htm
https://doi.org/10.1038/s41467-018-04920-3
https://doi.org/10.1038/s41467-018-04920-3
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
www.nature.com/naturecommunications


Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04920-3 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2807 | DOI: 10.1038/s41467-018-04920-3 |www.nature.com/naturecommunications 13

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Task-induced brain state manipulation improves prediction of individual traits
	Results
	Connectome-based predictive modeling
	State manipulations improve trait predictions
	Investigation of potential confounds
	Models generalize across conditions and data sets
	Model edges are spatially distributed and overlapping
	The best task for gF prediction varies by sex

	Discussion
	Methods
	Data sets
	HCP participants
	HCP imaging parameters and preprocessing
	PNC participants
	PNC imaging parameters and preprocessing
	Functional parcellation and network definition
	Cognitive prediction
	Validation of the models
	Analysis of sex differences in model performance
	Effects of head motion
	Effects of gF measurement technique
	Effects of parcellation resolution and scan coverage
	Effects of HCP reconstruction method and quality issues
	Effects of condition duration
	Effects of cross-validation method
	Effects of global signal regression
	Analysis of anatomical distribution of model edges
	Code availability
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS


