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Abstract— The next generation of robots will have to learn
new tasks or refine the existing ones through direct interaction
with the environment or through a teaching/coaching process
in Programming by Demonstration (PbD) and Learning by
Instruction frameworks. In this paper, we propose to extend the
classical PbD approach with a graphical language that makes
robot coaching easier. The main idea is based on graphical
programming where the user designs complex robot tasks by
using a set of low-level action primitives. Different to other
systems, our action primitives are made general and flexible so
that the user can train them online and therefore easily design
high level tasks.

I. INTRODUCTION

With robots moving out of factories to home and office

environments, it is unfeasible to preprogram them for all

tasks they are required to perform. Furthermore, the end-

user cannot be expected to have a deep knowledge of

programming or robotics algorithms and can thus not extend

the robot’s capabilities by classical programming implemen-

tation. It has been recognized that for successful deployment

of autonomous systems in unstructured environments there is

a need for online task learning and problem solving with and

without interaction with a human, [1]–[5]. This also applies

to medical and traditional factory settings where reprogram-

ming of robots can still be a bottleneck in times of increased

outsourcing and just-in-time production requirements. If the

reprogramming is performed by anyone of the regular factory

staff, robots can be used to solve a more diverse set of tasks

and increase the throughput. One of the examples close to

robot users is the Roomba vacuuming robot from iRobot, [6]

which is designed for a single application. Its control panel

allows a user to partially reprogram the robot by selecting

different room sizes. Robotic systems that are able to perform

more complex tasks commonly use text-based programming

languages with few high-level abstractions, [7].

In cognitive psychology, it is well known that there are at

least three different ways to learn how to solve problems, [8].

One way is by discovery, or exploration. A second way is by

instruction, and a third way is by observation. The robotics

community has been trying to replicate these three teaching

modalities in different ways. For example, the Programming

by Demonstration (PbD) paradigm [1], [9]–[11] is inspired

by the observation whereas learning by discovery is related
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to reinforcement learning (RL) and similar methods. For

teaching a robot by instruction, a language for human-

robot communication is required. Low-level programming

languages such as C++ have significant flexibility, but are

the most difficult to use in case of regular users. In addition,

they require a lot of tedious work when even simple tasks

are considered. Spoken (high-level) languages like English

are easy to use, but require complex translation to low-level

programming languages before the robot understands and

executes the task.

Related to the above, three scientific problems currently

investigated in our research are: (1) Synthesis: the develop-

ment of systems tools necessary for describing and imple-

menting a PbD system; (2) Modeling: given sensor traces

of a human performing a task, segmenting those traces into

logical task components and/or measuring the compatibility

of a given PbD structure to that sequence of components;

and (3) Validation: measuring system’s performance. In

this paper, we study the synthesis and modeling issues by

considering the problem of teaching a robot household and

office tasks given a set of action primitives ranging from

robot localization to object manipulation.

For similar applications, there have been examples where

a set of simple behaviors (follow, stop, turn etc.) are pre-

programmed and, during teaching, the right behavior is

identified through dialog with the teacher, [12]. Conditional

behaviors are however more difficult to model. It is in general

hard to keep track of all instructions in a sentence such as

“If X do A and B, otherwise if Y do C otherwise do D”.

Motivated by this, we propose to use a mid-level, graphical

language for robot instruction. This way, the drawbacks of

high-level languages are avoided and the user is given a

detailed overview of what the goals of different steps in a

task are. It is straightforward to monitor how the program

branches at conditional behaviors and the user (teacher) is

also free to add and change behaviors, something that is hard

to achieve just using verbal communication.

Similar systems use only one of the three teaching modal-

ities mentioned above when teaching robots new tasks. This

often limits the range of the tasks that can be performed

by the robot. We propose an architecture where graphical

programming, PbD and skill refinement through practice can

be used together with reasoning on different levels to allow

a non-expert user to teach the robot a large set of new and

meaningful skills in both autonomous and human-machine



collaborative environments. One of the main contributions

of this paper is the integration of graphical programming

and PbD in a behavior based control framework.

This paper is organized as follows. In Section II, we

shortly review the related work and present our system de-

sign. We continue by presenting the task description system

in Section III and reasoning mechanisms in Section IV and

give details on various PbD solutions in V. Experiments

are described in Section VI and the paper is concluded in

Section VII.

II. MOTIVATION AND SYSTEM DESIGN

Our system is based on four different levels of control,

shown in Fig. 1. At the bottom level, there are robot

platform dependent action primitives, implemented in C++.

One or more primitives can be combined into a behavior,

executed at the execution level which also deals with fault

detection and error recovery. At the top, there is a task

level where several behaviors are combined to reach the goal

state. Variations of the approach with different levels have

been widely and successfully used in systems such as ISR,

DAMN, Saphira and others, [13]–[16] and favors platform

portability. What makes our system unique is the training

of the action primitives. Each action primitive comes as an

untrained PbD problem, capable of learning from human

demonstration within its domain. Then, the primitives are

combined in the graphical framework in order to unite several

domains and perform advanced tasks. Section V describes in

detail how some of our action primitives are trained.

Fig. 1. Different control levels of the system.

The PbD paradigm has been successfully applied in sev-

eral areas, ranging from the typical pick-and-place type tasks

[17] to fine manipulation [10] and games such as air hockey

[11] and marble mazes [18]. In classical approaches, it has

only been possible to program variations of the same task.

For example, a PbD system written to handle pick-and-

place tasks can only handle pick-and-place tasks, where as a

system that can be taught how to play air-hockey can only be

used to play air-hockey. By combining PbD with a graphical

task specification interface our system is able to support the

PbD paradigm for a much broader set of tasks.

Systems that rely on graphical programming or task de-

scription have been proposed previously. As an example,

MissionLab included a graphical editor that allowed users to

construct programs in the configuration description language

(CDL) [19]. The CDL can be used to describe a set of

agents, the channels between them and the data-flow graph.

In [20] a program called RoboGlyph was used to program

various tasks for a PUMA 560 manipulator. These examples

show that graphical programming can be successfully used

by a regular end user who is only familiar with typical

computer software such as, for example, word processors.

The main difference to our work is that the low-level items,

corresponding to our action primitives, cannot be trained by

human demonstration.

Another example is the Behavior Composer in ERSP,

[21], which is a graphical programming environment that

allows the user to connect several behavior blocks and

build a behavior based robot task. Compared to our work,

the behaviors operate at a much lower level which means

that more blocks are needed for accomplishing the same

task. Again, the blocks cannot be trained as in our system.

Instead, different parameters and thresholds have to be set.

All behaviors are active in parallel, in opposite to our system

which operates sequentially. Consequently, our system is

more useful for teaching the robot sequential tasks, while

Behavior Composer could be useful for constructing the low-

level action primitives.

Most work presented in the areas of PbD, graphical

programming, RL and behavior based robotics has focused

mainly on one, or perhaps two of the teaching modalities.

Our work is different in the way it integrates all teaching

modalities to form a complete environment where appro-

priate methods can be applied at different levels in the

architecture to solve more complex problems.

Fig. 2. A sorting behavior: sorting the object in front of the robot depending
on the object type, and Pick-and-place behavior used by the sorting behavior.

III. BUILDING A TASK DESCRIPTION

In our system, there are three different teaching modalities

together with a reasoning level that allows a robot to learn

new tasks. In the system, the user is able to i) instruct

the robot through a graphical programming interface (GPI),

effectively providing an outline of a new behavior, ii) the user

may then, by demonstration, train parts of this new behavior

that need further specification, and finally, iii) the robot may

carry out the task under supervision of the human, where

the human has the possibility of giving feedback, such as

corrective motions or penalizing/rewarding the robot for its

decisions.

A. Action Primitives

The basic foundation in our framework are the action

primitives. An action primitive is a flexible “black box”



that is implemented in C++ towards a specific hardware

platform. It is flexible in the sense that it is possible to

train it and black in the sense that the user has no detailed

knowledge of how it works. This also supports the general

idea that users do not have to know the details of a specific

algorithm to be able to use it. An action primitive must

be simple enough so that it can be combined with other

primitives and reused in a variety of tasks. On the other

hand, it also has to be expressive enough so that it is able

to achieve the goal of the task. Example action primitives

are MOVE ARM or CLOSE GRIPPER. Their implementations

are platform dependent and therefore low-level.

B. Behaviors

Different action primitives can be connected using a GPI

to form a behavior, as it will be described in Section III-D.

Once a set of action primitives has been defined, it constitutes

a behavior that can be reused. For example, the behavior

PICK UP OBJECT consists of the primitives MOVE ARM ;

VISUAL SERVO ; MOVE ARM ; CLOSE GRIPPER. The ac-

tion can be stored and reused in another task. If training data

for the primitives is present when storing it, the trained be-

havior is stored, i.e., if we have trained PICK UP OBJECT on

the object MILK, we can store the behavior as PICK UP MILK,

and the action will be executable without training it in some

other task. Fig. 2 shows an example of a sorting behavior.

The behavior contains another behavior, pick-and-place. Note

that the two instances of the pick-and-place behavior do not

share the same training data, so the robot will move the

object to different positions dependent on its type.

C. Programming by Demonstration

In our framework, a GPI is used to determine the domain

in which PbD is to take place. Using the GPI requires

only moderate knowledge of the capabilities of the plat-

form and no programming experience. Given the GPI, it

is possible to use PbD to solve a larger set of tasks. For

example, in the GPI it is possible to define a pick-and-place

behavior by specifying the following sequence of action

primitives: PP BHVR = LOCATE OBJECT; VISUAL SERV ARM;

GRASP OBJECT; MOVE ARM; RELEASE OBJECT.

The actions in PP BHVR can now be trained to pick up

an object and place it to a certain position. PbD is used

primarily at the action primitive level, but can also be used at

the behavior and task level. The majority of action primitives

must be programmed before they can be executed, e.g., an

object recognition primitive must first be demonstrated the

object to recognize before it can actually recognize it. PbD

can also be performed at the behavior level. By specifying

that a number of PP BHVR are to be executed in a sequence it

is possible to demonstrate, for example, a set table behavior,

[22].

By combining PbD with a GPI, it is therefore possible

to solve a much larger set of tasks. The final step towards

a more autonomous learning is to incorporate a learning

by practice step, where the robot performs a task under

the supervision of a human in such a way that the human

can provide useful feedback. Feedback can be in many

forms such as simple “good robot”/”bad robot”, by supplying

further demonstrations or modifying the robot’s plan.

D. Graphical User Interface

The GUI used to instruct the robot is shown in Fig. 3. From

a menu, the user can select from a wide variety of actions

and behaviors, both trained and untrained. When connecting

components, the GUI uses visual cues to match input types

with the data provided by the active output. This can be seen

as a highlighted (green) input on the OBJECT SIMILARITY

and IMAGE SIMILARITY behaviors in Fig. 3, since they both

require an image as input and that is the data that is provided

by the CAPTURE HAND IMAGE action. The MOVE ARM action

on the other hand does not accept an image as input and

its input connector is therefore disabled (gray). By use of

tooltips the user can also easily investigate the different

inputs and outputs of each action.

Fig. 3. The graphical programming interface.

IV. PLANNING

The behaviors are stored in the behavior database. In

addition to the name of the behavior, inspired by the STRIPS

planner [23], the preconditions and effects are also stored. As

an example, the behavior PICK UP OBJECT is represented in

the XML behavior database as following:

In this case, before an object can be picked up, it has

to be in front of the robot. The effect is that the object

will be held by the gripper and no longer in front of the

robot. By specifying the preconditions and effects for each



behavior, the robot can search the behavior database and

automatically plan a sequence of behaviors that eventually

fulfills the end conditions. When planning for the behav-

ior PICK UP OBJECT, the robot would find that either the

behavior MOVE TO OBJECT or PLACE OBJECT has to come

immediately before, as they are the only behaviors that

fulfill the precondition. The user is also allowed to add

new behaviors to the behavior database. New behaviors are

automatically taken into account by the planner and next time

a task is executed, new behaviors will be considered, e.g.,

DROP OBJECT.

This approach relieves the user of some tedious task

description work. Instead of having to specify all the be-

haviors for, e.g., FETCH MILK it is enough to just describe

the behavior POUR MILK with the precondition that the robot

is already holding the milk. The steps for acquiring the milk

are automatically generated by the planning algorithm. When

there are several ways to satisfy preconditions the robot must

learn from experience and decide which one to select. For

example, if the robot chooses to go to the store instead of

the kitchen to fetch milk, the user might penalize it through

the skill refinement system so that the most preferred place

(kitchen) is always considered first.

V. ACTION PRIMITIVE TRAINING

One of the main contributions of this work is the design

of flexible action primitives that can be trained by human

demonstrations. In this section we provide examples of

how training is done for specific behaviors. Several action

primitives have been implemented in the system, some of

them are listed below. We avoid a detailed description and

refer to our previous work instead, [24], [25].

MOVE ARM Robot arm movement along a prerecorded

trajectory. Stops if colliding with an obstacle. Trained by the

user by physically dragging the gripper to the desired posi-

tion and orientation. A force/torque sensor is used together

with inverse kinematics to calculate the desired pose.

CLOSE/OPEN GRIPPER Two different primitives for con-

trolling the gripper. No training necessary.

IMAGE SIMILARITY Calculates the similarity between

a stored image and a given image using Receptive Field

Cooccurrence Histograms [24].

OBJECT SIMILARITY Similar to the previous, but in the

training phase a specific object and not the entire image is

learned. Object segmentation is performed using image dif-

ferencing and morphological operations so that a segmented

training image is automatically generated.

OBJECT RECOGITION Evaluates if the object in front

of the camera is exactly the same as the training

object using SIFT-features [26]. Same training proce-

dure as with OBJECT SIMILARITY. The two primitives

OBJECT RECOGNITION and OBJECT SIMILARITY comple-

ment each other. The former is used for recognizing a

specific object, rich in local features and the latter is used for

recognizing object categories, or for recognizing a specific

object with few or no local features.

MOVE TO A navigation primitive that moves the robot to

a specific place. The navigation is SLAM-based using the

SICK laser scanner and sonars to avoid unexpected local

obstacles.

A. Learning Object Recognition

In our framework, objects are learned from human demon-

strations using two steps. First, the robot observes the back-

ground. Then the operator places an object in front of it and

the object is segmented using image differencing, relieving

the user of manually extracting the object. Image differencing

is followed by a number of incremental morphological opera-

tions to achieve better segmentation (errode - dilate - errode),

[27]. These operations are performed using information from

the original image, i.e., a growing effect (covering holes) will

not add black pixels but pixels from the original image. The

result of this step can be seen in Fig. 4.

Fig. 4. Left: The original image. Center: The result after image differenc-
ing. Right: The result after morphological operations

A problem with image differencing is the choice of

a threshold θ that determines if a pixel is part of the

background or not. If θ is set too high, too much of the

background will remain. If θ is set too low, significant

parts of the object may be omitted. In our work, we use

an automatic adjustment of θ based on the result of the

differencing performance. If image differencing was suc-

cessful, the remaining pixels should be concentrated to a

single area where the object has moved. If the differencing

has failed, the pixels are mostly scattered around the entire

image. Thus, the success is measured in terms of detection

variance. In addition, a penalty that is linearly proportional

to the number of pixels remaining is added to cover the case

of very few remaining pixels that have a low variance but

are not sufficient for the object representation. The algorithm

tests every θ from 1 to 150, to find the optimal setting with

the lowest score.

B. Learning Arm Movements

Many tasks require the user to guide the robot arm, either

for teaching the robot how to move the arm along a specific

trajectory or to position the camera mounted on the end-

effector relative to the object. This can be achieved using a

keyboard or a joystick but these devices are not intuitive

for controlling a 6-DOF robot arm. Instead, we use the

force/torque sensor attached to the end-effector and an arm

movement is taught by simply dragging the arm to the

desired pose. The compliant control of the arm is briefly

described below.



Fig. 6. The robot executing the task. The rice package has been recognized and moved to the left bin as demonstrated by the user.

1) Arm Control: The manipulator is equipped with a JR3

force/torque sensor mounted between the end-effector and

the last link, providing 6 DOF force/torque measurements.

It provides decoupled data at 8 kHz per channel, which is

low-pass filtered with the bandwidth 30 Hz (-3 dB) by a

DSP. The data is first read from the DSP and the current

arm configuration is then used to subtract the influence of

gravity on the end-effector. The force/torque vector is then

transformed to the base frame attached to the base of the

mobile platform. If the magnitudes of the force and torque

are both below a threshold the velocity of all joints are set to

zero. Otherwise, the Cartesian velocity of the arm is set to be

proportional to the force. The same applies to the torque. The

Cartesian velocities are then transformed to joint velocities

of the arm using the inverse kinematics.

C. Training the Navigation Primitive

When the program flow reaches an untrained MOVE TO

primitive, it will stop and ask for advice. The user can then

teach the system where to move by i) asking the robot to

follow him/her, or ii) by controlling the robot directly with a

joystick. The FOLLOW behavior is implemented by tracking

the user’s legs with the laser scanner. However, it is easier

to teach more precise locations using the joystick. As the

robot moves, it drops virtual roadmap nodes in its map and

automatically connects these. The nodes indicate free space

Fig. 5. The user drags the robot arm to show it how to grasp the object,
and move the object to the bin.

and the roadmap tree enables the robot to quickly find the

fastest way to a specific location. For more details, see [25].

VI. EXAMPLE TASKS

The experimental platform is an ActivMedia PowerBot,

Fig. 6. It is a non-holonomic differential drive platform with

a 6 DOF robotic manipulator on the top. It has a SICK

LMS200 laser scanner, 28 Polaroid sonar sensors, a Canon

VC-C4 pan-tilt-zoom camera and a Firewire camera on the

last joint of the arm.

One of the behavior that was designed using the system

is an object sorting task. The main goal of the task is

to sort two objects shown in the small image in Fig. 5.

The rice package should be sorted to the left bin, and

the raisins package to the right bin, shown in the larger

image in Fig. 5. First, if the behavior is not constructed, the

user drags the blocks according to Fig. 2 and then presses

the run button. The program starts by opening the robot

gripper, then initializes the arm for movement but stops at

the MOVE CAMERA primitive because this primitive has not

yet been trained. The user is the asked to rotate the camera

to the desired direction using the keyboard. When satisfied,

training of this primitive is complete and the value is stored

for future use. The robot then captures an image of the object,

which requires no training. The program then stops again, at

the object recognition block which is untrained. The training

proceeds according to Section V-A and the robot learns to

recognize the rice box. Then, the robot executes the learned

primitive and realizes that the rice box is indeed present

in the image. Thus, the upper PICK AND PLACE behavior

is executed. However, this behavior is also untrained and

the individual arm movements are shown by the user which

drags the robot arm to the correct positions, see Fig. 5. The

user then executes the task again, this time with the rice

package not in the image. Thus, the rice package is not

recognized and the program chooses the lower branch in

Fig. 2, and once again asks for instruction. After the second

movement have been shown, the program is complete. A few

example images taken during robot performing the learned



sorting task are shown in Fig. 6. Currently, the approach

requires the object to be in a precise pose. We plan to

incorporate a VISUAL SERVO primitive that will allow the

object to be just roughly at the same position. The robot

executed the task 10 times, with 100 % success rate. This

was expected, as it is easy to separate the two objects visually

and the grasping action cannot fail as long as the object is

placed at the correct position. Although this experiment is

not particularly challenging, we believe that it demonstrates

the concept of our approach. The human is able to teach the

robot a combined behavior that is not within any of the PbD

domains of each individual primitive.

Another example of a behavior is the STATUS CHECK

behavior. It involves both navigation, camera movement and

computer vision, and can be trained for many different tasks,

e.g., checking if a certain button is pressed, or if a door

is open or closed. The behavior uses two image similarity

actions and picks the training image that is most similar to

the test image. This behavior can be used by higher order

behaviors, for example if the robot takes the elevator, it

can use the STATUS CHECK to verify that the button has

been pressed successfully. Naturally, the success rate of this

behavior is highly dependent on what it is used for.

VII. CONCLUSIONS

Robots that are to operate in everyday, dynamic environ-

ments such as homes and offices need learning mechanisms

that allow for adaptation to the surrounding. As the reasoning

capabilities of robots are still quite limited, most of the high

level knowledge is acquired through interaction with humans.

In this paper, we have presented a mid-level communication

tool for teaching robots different tasks in a Programming by

Demonstration framework. The tool is based on graphical

programming which does not require any programming skills

making it suitable for regular users.

One of the main contributions of this paper is the in-

tegration of graphical programming and Programming by

Demonstration in a behavior based control framework. The

proposed system allows the user to specify the task structure,

and then, using demonstrations, instruct the robot exactly

how to perform the task following the task structure. Using

this method, we have successfully taught a mobile robot

several behaviors, such as SORT and STATUS CHECK. An

important issue we are dealing with is fault handling and

error recovery. Currently, all action primitives can report

success or failure but to achieve more robust and flexible

performance, the system has to have the support so that the

user can instruct the system what to do in case of failure.

This will be the strongest topic for our future research.
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