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ABSTRACT  

We consider a dynamic application running on a multiprocessor 

network-on-chip as a set of independent jobs, each job possibly 

running on multiple processors. To provide guaranteed quality 

and performance, the scheduling of jobs, jobs themselves and the 

hardware must be amenable to timing analysis. For a certain class 

of applications and multiprocessor architectures, we propose exact 

timing models that effectively co-model both the computation and 

communication of a job. The models are based on interprocessor 

communication (IPC) graphs [4]. Our main contribution is a 

precise model of network-on-chip communication, including 

buffer models. We use a JPEG-decoder job as an example to 

demonstrate that our models can be used in practice to derive 

upper bounds on the job execution time and to reason about 

optimal buffer sizes.   

Categories and Subject Descriptors 

B.8 [Performance and Reliability]: Performance Analysis and 

Design Aids 

General Terms 

Design, Performance, Theory 

Keywords 

system-on-chip, network-on-chip, real-time, data flow graph, 

performance evaluation, buffer minimization 
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1. INTRODUCTION 
In the design of embedded systems with video applications it is 

important to provide guaranteed performance to meet real-time 

constraints as often as possible in order to guarantee a good video 

quality. To achieve that goal, the applications should be 

characterized in terms of real-time scheduling theory. 

Many embedded system applications can be seen as being object-

based, i.e., they can be characterized by a dynamic set of objects 

that can dynamically appear or disappear depending on some rules 

and user actions. An example is a multi-window TV, where the 

objects are windows. We consider the set of objects as a set of 

real-time jobs. It is assumed that the jobs are started and stopped 

by a run-time resource manager. In video applications, each job 

will typically possess a lot of internal parallelism, so we allow 

different subtasks of one job to execute concurrently on multiple 

processors.  

To provide predictable performance, the jobs, the scheduling and 

the hardware must be amenable to timing analysis. It would be 

advantageous to have formal definitions of different scheduling 

problems as optimization problems. For both timing analysis and 

optimization, a mathematical timing model is required. We aim in 

this paper at accurate timing models that effectively co-model the 

computation and communication of one job. In order to do that, 

some properties of the given application domain can be taken into 

account. 

In the video application domain, the core part of algorithms often 

consists of loops repeating the same set of operations for certain 

number of iterations. In this paper, we assume that job is just a 

loop. To model the loop body and its parallelism, synchronous 

data-flow graph (SDF) model is commonly used in 

multiprocessor scheduling [13, 8]. In that model, the subtasks 

executed within the loop are encapsulated within multiple data 

flow actors, which are nodes of an SDF graph.  

In our modeling approach we use SDF models called IPC graphs 

(IPC stands for interprocessor communication), studied in [4] and 

[17]. IPC graphs model both the computation and communication, 

not assuming global synchronization. Although execution times of 

the subtask actors may be variable, the worst case timing of 

multiple IPC graph iterations is theoretically proven to be 
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periodic, which makes analytical approach to the performance 

evaluation possible. 

Our work can be positioned in the following ‘design flow’. The 

starting point is a job specification in the form of an SDF graph  

that describes the computations of the job (computation graph). 

In Step 1, the graph is fed to a multiprocessor scheduling ‘tool 

suite’. The tools partition the graph into processes, or the parts 

that will run on one processor. They also create channels for 

communication between processes. The tools produce at the 

output a structure we call a configuration network, consisting of 

processes and channels. We say that Step 1 actually determines 

the intra-job scheduling, because it manages the parallelism 

inside a single job.  

In Step 2, the configuration network is converted into an IPC 

graph, and we use it to reason about the job throughput, execution 

time and buffer sizing. We focus particularly on Step 2, leaving 

Step 1 for future work. Our main contribution is the modeling of 

on-chip communication channels in IPC graphs, including buffer 

models. To make accurate modeling possible, we make a few 

assumptions.  

In intra-job scheduling, we adopt currently the static-order self-

timed scheduling [17]. In such a scheduling, all the data-flow 

actors (subtasks) assigned to a given processor are executed in a 

static cyclic order as soon as the input data is available. 

In this paper, we also assume that jobs run independently, i.e., 

they do not interact with each other and the external world, or, if 

they do, that interaction does not influence the timing properties 

at the task level. The job independence assumption also 

necessitates that jobs do not experience resource conflicts with 

each other. This would be possible in a real-time environment 

where processing time budgets and communication services with 

bandwidth guarantees are given to jobs. Such services can be 

offered at a reasonable cost by on-chip router networks through 

independent point-to-point network connections [7, 15]. Packet-

switched networks are an attractive way to implement the 

interconnect between the on-chip processors in case their number 

is large enough. Such a system-on-chip is referred to as a 

multiprocessor network-on-chip (MP-NoC). 

We start the paper by introducing the required basics of the 

synchronous data-flow graphs in Section 2. In Section 3, an MP-

NoC architecture template is introduced that ensures predictable 

communication delays and independent communication channels. 

Section 4 is the core of the paper, showing how jobs, partitioned 

into a network of processes that communicate via the network, can 

be modeled using IPC graphs. Section 5 demonstrates practical 

use of our models for the derivation of the worst-case 

performance and optimal buffer sizing, using a JPEG decoder job 

as an example. Finally, Section 6 concludes this paper. 

2. Background 

2.1 HSDF Graphs 
In the literature on multiprocessor scheduling for DSP 

applications, like [10] and [14], the whole application can be seen 

as a single job [19]. The job is represented by a dataflow graph 

model, where the nodes, called actors, correspond to the 

processor code segments that should be executed on a single 

processor (computation actors), and edges show data 

dependencies between them (data edges) or execution order 

constraints (sequence edges). Every edge can carry an infinite 

number of tokens between two actors, and can contain initial 

tokens (present on the edges at start time).  

In this paper, we use synchronous dataflow (SDF) graphs [13] to 

model jobs. These models have been widely used to model multi-

rate DSP applications [8]. More specifically, we use only 

homogeneous SDF (HSDF) models. Each actor in that model 

follows a simple firing rule: whenever there is at least one token 

on every input, a firing takes place, meaning that the actor 

consumes one token on every input and produces one token on 

every output. The rules of execution of the graph is usually 

restricted in such a way that actors consume and produce tokens 

in a first-in-first-out (FIFO) manner, as we will see later in this 

section. In the more general SDF model, actors are allowed to 

consume and produce more than one token per input and output 

edge per firing, but any SDF graph that satisfies some general 

properties can be converted into an equivalent HSDF graph [9]. 

Following a common practice, we extend HSDF models with 

actor execution time annotations (real numbers), representing the 

time span between the consumption of input tokens and the 

production of output tokens. These annotations can be either fixed 

or variable. In HSDF graphs, a key notion is the notion of an 

iteration, which is defined as a set of actor firings such that all 

actors in the graph fire exactly once. 

HSDF graphs are reused in our work to model both computation 

only and computation together with communication. Let us briefly 

consider the former, before we proceed with the latter in the next 

subsection. 

Figure 1: HSDF graphs of a producer-consumer 

example. (a) Computation graph. (b) IPC graph  
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Computation graphs are HSDF graphs that express computations 

and data dependencies contained in the algorithm performed by a 

job. For example, Figure 1(a) shows a simple computation graph 

with three actors, namely, two ‘producers’ (P1 and P2) and one 

‘consumer’ (C). In each iteration, first, each producer must 

produce a token, and, then, the consumer may fire and consume 

the tokens. In this example, we annotate the actors with some 

arbitrary computation time values. Computation graphs serve as 

an input for static-order intra-job scheduling, which, as already 

mentioned, is outside the scope of this paper. The output of the 

static-order scheduling can be transformed into an interprocessor 

communication (IPC) graph. 

2.2 IPC Graphs 
An IPC graph is an HSDF graph that models the execution of the 

job on a multiprocessor architecture [4, 17 - §7]. It can be seen as 

a transformation of the computation graph, where extra actors and 

edges have been added. So far, IPC graphs have been applied to 

multiprocessors with communication based on a bus and a global 

memory. In Section 4, we construct IPC graphs assuming 

network-on-chip communication. 

In addition to the computation actors of the computation graph, 

IPC graphs for the aforementioned bus-based multiprocessors 

contain data copy actors, or ‘write’ and ‘read’ actors, that copy 

blocks of data (data tokens) from the local memory of a processor 

to the global memory and vice versa. In addition to data edges, 

sequence edges are introduced. Sequence edges do not imply any 

data communication between actors; they only enforce some 

sequencing of actor firings. Although they have a different 

purpose, they are not distinguished from data edges when 

analyzing the timing properties of the graph. For each processor 

and for the bus, sequence edges are used to create a distinct cyclic 

path, where the actors are put in a specific static order, and an 

initial token is placed on the sequence edge at the input of the first 

actor in the order. The static ordering eliminates resource conflicts 

between the actors assigned to the given resource. The ordering of 

actors on a processor or a bus can be decided by a static-order 

scheduling algorithm [14, 17]. 

For example, Figure 1(b) shows an IPC HSDF graph for the 

example of Figure 1(a) assuming a two-processor case, where the 

producers are assigned to one processor and the consumer is 

assigned to the other one. It includes write actors (W1 and W2), 

read actors (R1 and R2) and two data edges, derived from the 

computation graph, to pass data tokens from the producers to the 

consumer. The graph contains two processor cycles, namely, (P1, 

W1, P2, W2)* and (R1, R2, C)*, and one bus cycle (W1, R1, W2, 

R2)*. Note that in the latter case only two sequence edges are 

introduced to enforce that cyclic order, namely, (R1,W2) and 

(R2,W1). The other two sequence edges are not necessary due to 

the presence of the data edges. 

2.3 IPC Graph Properties 

2.3.1 IPC Graphs in General 
Some major difficulties in the timing analysis of HSDF graphs 

appear when, for efficiency reasons, one allows multiple iterations 

of an HSDF graph to overlap and when the graph contains cycles. 

Both are true for IPC graphs. Fortunately, there exist theoretical 

studies on the timing properties of such models. It is, actually, the 

main reason why we apply IPC graphs in our work. In this 

section, we mention, without proofs, three useful properties of 

such HSDF graphs, namely, monotonicity, periodicity and 

boundedness. These properties are mainly based on known 

properties of the models called event graphs [3]. As it follows 

almost directly from [3 - §2.5.2.6], any HSDF graph can be easily 

translated into an equivalent event graph. We apply these 

properties in Section 5, where we demonstrate the usefulness of 

IPC graphs for practical problems. 

Let us define self-timed execution of an HSDF graph as a 

sequence of firings of each HSDF-graph actor, where every firing 

happens immediately when there are tokens on the inputs. As 

mentioned in the introduction, this is exactly the kind of execution 

assumed in this paper for intra-job scheduling. 

There are certain restrictions that any IPC graph should satisfy for 

the aforementioned properties to hold. An IPC graph has to be: 

1) a strongly-connected HSDF graph, i.e., for any two actors 

there exists a directed cycle (not necessarily a processor or a 

bus cycle) that contains both actors; 

2) a first-in-first-out (FIFO) HSDF graph, i.e., in the self-timed 

execution, the completion events of actor firings occur in the 

same order as the corresponding starting events. In other 

words, tokens cannot overtake each other in an actor ([3 -

 §2.5.2]). 

Note that an HSDF graph can be non-FIFO only if actors have 

variable execution times. Tokens can overtake each other because 

multiple actor firings can overlap in time. A sufficient condition 

that excludes overlapped firings is the following: for any actor, 

there is a cycle in the graph that contains that actor and has only 

one initial token. Obviously, this property holds for the IPC 

graphs discussed in the previous subsection, because each actor 

there belongs to a processor cycle and every processor cycle has 

only one initial token. 

Lemma 1 (Monotonicity) The self-timed execution of any FIFO 

HSDF graph is monotonic on the actor execution times in the 

sense that increasing actor execution times result in non-

decreasing starting times of firings. 

This lemma is applicable for IPC graphs with variable execution 

times of the actors. If the execution time of any actor increases, 

the starting times of any actor depending on it can only be 

postponed to the future. 

This lemma can be proven by constructing evolution equations as 

described in [3 - §2.5.2] for the corresponding event graph and 

observing that these equations are monotonic on the firing times. 

The monotonicity property is needed in practice to prove that, in 

order to derive the worst-case execution time of a dynamic job, 

one can use the worst-case execution times of the actors as the 

fixed execution time annotations. 

2.3.2 IPC Graphs with Fixed Execution Times 
When we use fixed (worst-case) actor execution times, we can 

obtain the worst-case throughput of the job using the periodicity 

property and bound the job’s execution time by a simple 

analytical expression using the boundedness property. Both 

properties are introduced in this subsection. 

Now suppose an IPC graph with fixed execution times is given. 

Let us consider a simple cycle in the graph, i.e., a cyclic path that 

cannot contain any actor more than once. The cycle may contain 

both data edges and sequence edges. In the remainder, we refer to 



simple cycles just as cycles. Let us define the cycle weight as the 

sum of execution times of the actors in the cycle. Because the 

execution times are fixed, the cycle weight is a constant value. 

We define the cycle mean as the cycle weight divided by the total 

number of initial tokens on the edges of the cycle. A cycle with 

the maximum value of a cycle mean among all cycles in the graph 

is called a critical cycle. 

The maximum cycle mean (MCM) of the graph can be calculated 

in polynomial time [6]. Intuitively, it signifies the average time 

distance any initial token in the critical cycle has to travel, until it 

comes to the next starting position of another initial token (or 

itself). If the same would happen with every initial token in every 

cycle of the graph, the graph would come into the same state as 

where it started (a period is completed). The tokens of the critical 

cycle are the “slowest” ones in this sense, thus, they constrain the 

speed of the whole graph.  

The following theorem, known in the domain of event graphs ([3 -

 §3.7]) and also applied for HSDF graphs, e.g., in [17 - §7], states 

that after some limited number of iterations (N) an IPC graph will 

indeed return into a state in which it has been before: 

Theorem 2 (Periodicity) For the self-timed execution of a 

strongly-connected HSDF graph G(V,E) with fixed actor 

execution times, there exist integers K and N, such that for all 

v∈V,  k ≥K, 

s (v, k + N) = s (v,k) + p⋅N (2.1) 

where the ‘iteration interval’ p is equal to the MCM; k is the 

iteration index; s(v, k) is the firing start time of actor v in a given 

iteration of the self-timed execution; K is the number of iterations 

before the execution enters a periodic regime; N is the number of 

iterations in one period.  

Note that, by convention, we assign index 0 the first firings of 

actors, in other words, we assume that an actor v starts initially at 

time s(v, 0). 

Theorem 2 implies that the execution of graph G eventually enters 

a periodic regime, where every actor is guaranteed to start exactly 

N firings within any half-closed time interval of length p⋅N. This 

actually means that the MCM value p is the average iteration 

interval of graph G. The actual iteration intervals may vary, 

despite the fact that the actor execution times are fixed. 

Nevertheless, these variations will periodically repeat every N 

iterations. 

To characterize a periodic execution, one only needs to find actor 

start times s(v,k) during one period (N iterations). Suppose, that 

this information is available. Then, we can derive a characteristic 

of the graph that we call lateness, denoted σ : 

σ = ( )( ))(),(maxmax
1..

vtkpkvs
NnnkVv

+⋅−
−+=∈

 (2.2) 

where t(v) is the fixed execution time of actor v and n is an 

arbitrary integer such that n≥K (since it doesn’t matter which 

particular period we take); to apply this formula in practice, n = K 

can be chosen (the starting point of the periodic regime). 

The lateness shows how late the iteration with index k can 

possibly finish with respect to the reference point of time p⋅k. 

Note that when I  iterations of the graph complete, the index k of 

the last iteration is equal to I − 1. The following corollary follows 

immediately from Theorem 2 and the definition of lateness: 

Corollary 3 (Boundedness) With the preconditions of 

Theorem 2, and for I >K, an upper bound on the completion time 

of I iterations of HSDF graph G(V,E) is given by: 

HSDF-BOUND(I )  =  p ⋅ (I − 1) + σ (2.3) 

Note  that, whereas we can obtain the value of p by computing the 

MCM of the graph G, to compute σ, we need a sample of starting 

times of all actors during one period, which implies that we also 

need to know K and N. In Section 5, where Corollary 3 is actually 

applied, we describe a method to compute these values in 

practice. We also explain how to compute HSDF-BOUND in case 

I ≤ K. 

3. Architectural Issues 

3.1 Background 
As already mentioned, the IPC-graphs we propose in this paper 

co-model computation and communication. In Section 2.2, we 

used related work involving bus-based communication to 

introduce IPC graphs. However, we assume architectures with 

network-based communication, as described in this section.  

[5 - §1] describes a general template for multiprocessors. It 

consists of multiple processing tiles connected with each other by 

an interconnection network. Each tile contains a few processor 

cores and local memories. The tile may contain communication 

buffers, accessed both by the local processors and the network. 

The tile has a small controller, called communication assist, that 

performs buffer accesses on behalf of the network. Many 

embedded MP-SoCs implemented on silicon, e.g., Daytona [1], 

AxPe [16] and Prophid [18], fit nicely into this general template.  

Among these architectures, Prophid is the most interesting one for 

us, because it uses a simple packet-switched network for 

communication and provides performance guarantees for hard 

real-time tasks. Prophid contains application-domain-specific 

processors communicating through a switch, based on a time-

division multiple access (TDMA) scheme, enabling guaranteed-

bandwidth communication. Different tasks running on the 

multiprocessor communicate with each other using asynchronous 

message passing, meaning that processors synchronize based on 

the availability of data in buffers. Message passing introduces the 

buffer overflow issue, which is solved in Prophid using a kind of 

end-to-end flow control. We reuse some ideas of the Prophid 

architecture in our architecture template.  

3.2 Architecture Template 
The MP-NoC architecture template adopted in our work is shown 

in Figure 2. We focus on defining the issues important for the 

timing models introduced in Section 4. 

The interconnection network in our template is a network-on-chip 

(NoC). Each processing tile is ‘plugged’  into the network through 

an input link and an output link. The NoC offers unidirectional 

point-to-point connections. The connections must provide 

guaranteed bandwidth, and a tightly bounded propagation delay 

per connection. The connections must also preserve the ordering 

of the communicated data. Other details of the NoC are hidden. 

An example of a NoC providing these properties is ÆTHEREAL 



[15]. It uses the TDMA scheme, for which reasonably cheap 

implementations of the network routers are possible. Note that 

several other schemes ensuring guaranteed performance in the 

multi-hop networks exist in the literature, but we do not know 

whether any of them has been implemented so far in the context 

of NoCs. The choice of the particular scheme does not influence 

the main idea and the structure of the timing models we present in 

this paper. 

To keep the processing tile simple, we assume only one 

processing core (denoted ‘P’ in Figure 2) per tile. The local 

memory layout contains three blocks: the general-purpose 

memory (‘M’) for processor instructions and data, the input 

communication memory (ICM) and the output communication 

memory (OCM). ICM and OCM have ports for the processor and 

for the communication assist.  

Connections as introduced above are the key components of 

channels, which are the basic communication primitives for jobs. 

Channels are managed by the communication assists. Each 

channel connects two different processing tiles and transfers data 

in one direction. A channel contains an input buffer, a data 

connection, a flow-control connection and an output buffer. The 

buffers are located in the communication memories (ICM and 

OCM) at different sides of the channel. Every channel pumps data 

from its input buffer to its output buffer through the data 

connection. Every communication assist can run multiple 

channels concurrently. The example tile in Figure 2 has three 

incoming and two outgoing channels.  

For our timing models to be valid, we require that the following 

memory accesses be independent: 

1) the processor and the communication assist accesses; 

2) the communication  assist accesses to ICM and OCM;  

3) the accesses initiated by different channels through the 

same ICM/OCM port. 

In this context, with ‘independence’ we mean that the variation of 

the access time due to contention (if any) is sufficiently small. 

Requirements 1) and 2) are achieved by using two dual-ported 

memories for ICM and OCM. However, we do not actually 

demand that the memory layout be exactly the same as in the 

figure, as long as the independence requirements are satisfied. 

Requirement 3) can be satisfied if an appropriate arbitration 

scheme is used for the ICM/OCM ports. We believe that this can 

be achieved at a reasonable cost, and it is a subject of future work. 

The communication of a data token through the channel takes 

place as follows. First, the processor at the input side puts a token 

into the input buffer, where it waits for the tokens in front of it (in 

that buffer) to depart. Then, the local communication assist 

transfers the token into the input link. We call the time interval 

between the start of the transfer and the departure of the token a 

transfer delay (t). The exact value of t depends on the NoC 

implementation. In an ideal network t = stoken/B, where B is the 

bandwidth of the connection and stoken is the size of the token. In a 

real network, it also includes the medium access delay, which, in 

case of TDMA, would depend on the TDMA frame size. The time 

elapsed from the departure to the complete arrival of the token at 

the output buffer is the propagation delay of the data connection 

(δD). Summed with t it gives the total channel delay. 

An end-to-end flow control mechanism helps avoiding output-

buffer overflow. The communication assist at the input side keeps 

a (pessimistic) counter of the number of free places (credits) in 

the buffer at the output side. The channel is blocked when that 

counter reaches zero. The counter is decremented whenever a new 

token departs into the network. Every time the processor at the 

receiving side frees one or more places in the output buffer, it 

triggers a credit packet to be sent back to the sender through the 

flow-control connection of the channel, and the credit counter is 

incremented accordingly. We assume that a triggered credit packet 

takes time δC to reach the input side of the channel.  

4. Timing Models 
To co-model the computation and communication of a job, it has 

to be mapped to a subset of the processors of the target 

multiprocessor. In order to do that, starting from the job 

computation graph, a set of intra-job scheduling decisions should 

be taken. The computation actors should be assigned to processors 

and a static order of actors should be set on every processor. The 

data edges should be assigned to channels, and the buffer size and 

bandwidth values should be set for the channels. The details are 

outside of the scope of this paper. Some appropriate methods are 

presented, e.g., in [14], [19], and [8]. We represent the final result 

of those design decisions in the form of a job configuration 

network which can be seen as a refined form of the YAPI process 

networks of [12]. The latter has been proposed as a functional 

model of DSP multiprocessor applications. On top of YAPI 

process networks, we have introduced timing and enforced some 

restrictions on the internal structure of the processes and channels. 

In this section, we first present the notion of a job configuration 

network, and then explain in detail how it is translated into an 

IPC graph. 
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4.1 Configuration Networks 
The structure of a configuration network can be described by a 

directed graph. The nodes of the graph represent processes. The 

edges of the graph represent channels, in line with Section 3. We 

assume that every process has a sequence of computation and 

data-copy actors assigned to it. Each process runs on its own 

processing tile and executes its own sequence of actors in a static 

order within a software loop.  

Figure 3(a) shows a configuration network for the “producer-

consumer” job example of Section 2. It consists of two processes, 

PPr and PCns, and one channel, CPC. Also, the list of actors is 

shown for each process, coming in the same static order as in the 

processor cycles in the example of Figure 1(b). These actors copy 

the data tokens from the local general-purpose memory to a 

communication memory and vice versa. 

We assume the channel implementation as presented in the 

previous section. All the channels in a configuration network have 

the same structure, but, possibly, different parameter values. 

Figure 3(b) zooms into the structure and parameters of channel 

CPC. We introduce a transfer subproces (denoted ‘T’ in Figure 3) 

to model the transfer of tokens from the input buffer to the output 

buffer. The output is a delayed buffer, because of the network 

propagation delay. Every buffer has an integer parameter sbuf, or 

the buffer size, specifying the maximum number of tokens fitting 

in that buffer. Figure 3(b) assumes some arbitrary values for all 

the parameters of channel CPC. 

4.2 HSDF
 

Models of Components 
For the translation of a configuration network into an IPC graph, 

first, for every process, buffer, transfer subprocess and delayed 

buffer we introduce an HSDF model. In a second step, the models 

are assembled together to form one IPC graph. 

The processes are modeled by processor cycles, described in 

Section 2.2. The transfer subprocess is modeled in a similar way. 

Let n be the number of ‘write’ or ‘read’ actors that access the 

given channel (they should be equal). The transfer cycle that 

models the transfer subprocess consists of n identical actors, each 

one annotated with the transfer delay t (see Section 3.2). Note that 

different channels, even those running on the same 

communication assist, have different independent transfer cycles; 

the correctness of this assumption rests on the independence of 

the accesses of different channels to OCM/ICM ports. 

The models for the (delayed) buffers join different (sub)processes 

together. Figure 4(a) shows an example of a buffer model. The 

model itself includes only the primitives that are shown with solid 

lines. The dashed actors come from the processes or subprocesses 

that access the buffer. The actors drawn on the left, or ‘put’ 

actors, put the tokens into the buffer. The actors on the right, or 

‘get’ actors, retrieve the tokens from the buffer. The dashed arcs 

in Figure 4(a) are also not part of the model; they show a 

while() { 
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requirement on the ordering of the actors, that the process and 

subprocess models attached to this buffer should satisfy. A dashed 

arc requires that a path exist between the source and the sink of 

the arc, with the same total number of initial tokens as on the arc. 

The buffer model includes data edges (drawn from left to right), 

which model data dependencies, and sequence edges, or 

backward edges, which model the blocking of put actors when the 

buffer is full. The data edges join the ‘put’ and ‘get’ actors that 

get the same number in the ordering of buffer accesses. The 

positions of the backward edges and the number of initial tokens 

on each edge depend on the buffer size sbuf. Figure 4(a) assumes 

sbuf = 2. The reader can verify that in any sequence of actor firings 

there cannot be more than 2 tokens on the data edges in that 

model.  

We formulate here, without a proof, the general rule to position 

the backward edges. Let us denote the number of actors on one 

side with n. Let us index the ‘put’ actors with variable i, and the 

‘get’ actors with variable j, both variables getting the values 0..n-1 

in correspondence with the static order. The set of backward 

sequence edges is defined as follows:  

• EBACK = {( j, i ) : 0 ≤ j < n  ∧   i = ( j + sbuf ) mod n};  

• every backward edge ( j, i) contains: ( ) nsj /
buf

+  initial 

tokens. 

In case of output buffers (the delayed buffers), we first construct 

the same model as for the buffer, and then split each data edge and 

backward edge into two, introducing an actor in between with a 

(propagation) delay annotation δD on the data edges and δC 

on the 

backward edges (see Figure 4(b)). The backward edges on the left 

side get all the initial tokens, because the number of tokens on 

these edges models the value in the credit counter, which is 

initialized with the size of the output buffer. 

4.3 IPC Graph 
Figure 5 shows the result of the expansion of the configuration 

network into an IPC graph for the example of Figure 3(a). In the 

middle, we see a subgraph that models channel CPC. Inside this 

subgraph we see a transfer cycle (T1T2)*, both actors are annotated 

with a delay stoken/B = 8/2 = 4. The transfer actors serve as ‘get’ 

actors for the buffer of size 2 on the left and, simultaneously, as 

‘put’ actors for the delayed buffer of size 1. The processor cycles 

in that graph are identical to the processor cycles in Figure 1(b). 

At this point, we have a model that is amenable to timing analysis. 

To determine, for example, the average iteration interval p (see 

Theorem 2), we find the critical cycle in the graph. Cycle 

(R1 δC1T2 δD2 R2 C)* is critical, yielding an iteration interval of 

22.5 time units. Note that by introducing two more places in the 

output buffer (thus having size 3), we keep the same structure of 

the graph, but the edge (R1,T2) would include one extra initial 

token. Then, the number of initial tokens in the aforementioned 

cycle would become 2, thus, making this cycle no longer critical. 

The new critical cycle would be (R1 R2 C)*, resulting in an 

iteration interval of 18 time units. Thus, adapting a buffer size can 

improve the performance. We will see a practical example of 

buffer sizing in the next section. 

The techniques explained and illustrated in this section provide a 

general means to transform any configuration network of a job to 

an IPC graph amenable for timing analysis. In the next section, we 

apply these techniques to a case study. An observation can be 

made about our IPC graphs that including δD and δC 

actors in the 

model could potentially violate the requirement that an IPC graph 

be a FIFO graph (see Section 2.3). However, we use fixed (worst-

case) propagation delay values for them, so that the tokens cannot 

overtake each other in these actors. Instead, one can also use a 

sequence of variable propagation delay times, taken from the 

measurements, as long as the condition is satisfied that 

connections preserve the ordering of the data that is 

communicated through them. 

5. Case Study for Timing Models 

5.1 Prerequisites 
In this section, we consider a timing model for a decoder of an 

image in the JPEG File Interchange Format (JFIF), here referred 

to as the JPEG job. We use some realistic estimations of the 

communication and computation costs based on existing 

processor (ARM [2]) and NoC (ÆTHEREAL [15]) designs. The 

purpose of this case study is to show some methods for using our 

IPC graph models for ‘real-life’ problems. In Section 5.2, a timing 

analysis problem is solved. In Section 5.3, we demonstrate the 

relevance of the buffer-size minimization problem and show that 

it can be formally defined using our IPC graphs. 

The computation graph of the JPEG decoder job as defined in this 

paper is shown in Figure 6. It is a task-level description of the 

body of the main loop of the program for the case when the input 

file is a 4:1:1 coded image. One iteration of the graph decodes one 

minimum coded unit (MCU, 16x16 pixels). All the data edges 

assume the same data-token type, an 8×8 pixel block. For clarity, 

the actors in Figure 6 are organized in columns and rows. The 

columns correspond to processing stages and the rows correspond 

to the six blocks of an MCU. The blocks undergo three processing 

stages: variable length decoding (VLD), inverse discrete cosine 

transform (IDCT), and scaling (SCALE), before they are fed into 

a color conversion stage (COLOR).  

To measure the execution times of the actors, we have run the 

JPEG software from [11] on the ARM7TDMI core instruction set 

simulator (ISS) from ARM Ltd [2]. Flat memory model with 

single-cycle access and no caches has been assumed (which will 

be close to reality in case all data and instructions fit in the local  
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memory). In future work we want to deal with remote memory 

accesses explicitly in our model. 

One image, our ‘reference image’, has been fed as an input to the 

program. It takes 20 iterations of the graph to decode the image. 

We have provided in the figure the average execution time values 

over all iterations (in kilocycles). 

We have created for the JPEG job a configuration network, 

containing two processes, P1 and P2, and one channel, C12. The 

computation graph has been partitioned between the processes, as 

shown in Figure 6. We chose to specify the static order of the 

actors per process by parsing the graph from left to right and from 

top to bottom (wrt to the columns and rows). For each of the six 

data edges crossing the splitting border, we have introduced a 

write actor in the actor list of P1 and a read actor in the actor list 

of P2. All these actors access channel C12. 

We have assumed the ARM processor running at 133MHz [2] and 

the ÆTHEREAL NoC [15] with a link width of 16 bits and the 

clock speed set at 400MHz. We have allocated 1/256th of the link 

bandwidth to the channel C12. For the given bandwidth and token 

size, we have assessed the execution time of write and read actors 

(roughly, 1 kilocycle on the ARM) and channel transfer actors 

(being in worst case 5.6 kilocycles and having a 5% variation). 

The data propagation delay and the credit transmission delay are 

both negligible, we assumed δD = 0.02 kilocycles and δC = 0.3 

kilocycles. 

Using the aforementioned assumptions and parameter values, we 

can build an IPC graph from the configuration network. The 

picture of the graph is omitted because it is too large, but it has a 

structure similar to Figure 5. It contains 12 and 14 actors in 

processor cycles P1 and P2, respectively, and 6 actors in the 

transfer cycle. By default, we use the minimum possible buffer 

size sbuf=1 for both input and output buffer, but we also 

experiment with other buffer sizes in Section 5.3. 

For the experiments in this section, we have developed a 

simulation tool that computes the sequence of start times of all 

actors: s(v,k). This tool simulates the self-timed execution of IPC 

graphs. It can be used: 

1) to obtain the ‘real’ execution time of I iterations of the 

job, by feeding the traces of possibly variable execution 

times of the computation actors into the IPC graph 

(actor execution times are measured on ARM 

simulator). 

2) to obtain a sample of start times of actor firings within 

one period of execution, assuming fixed execution times 

in each iteration. This sample can be used to compute 

the lateness σ (see Formula 2.2). The simulation is run 

until K and N are detected and then a sample of N 

iterations is extracted. 

3) to obtain the HSDF-BOUND(I) in case I < K by 

simulating I iterations. 

5.2 Upper Bound on Execution Time 
In job-level scheduling, a job may be required to produce I data 

items (e.g., blocks, lines, frames) within a certain time interval. To 

know apriori whether the job can meet its deadlines, it may be 

necessary to calculate an upper bound on the time the job needs to 

execute I iterations, or the job execution time. 

If we model a ‘real-life’ execution of the job, due to data 

dependency of the execution time and network jitter, each actor 

may take a different time to execute its firing in every iteration. 

Nevertheless, due to the monotonicity of IPC graph execution (see 

Lemma 1), one can be sure that if one feeds upper bounds on the 

execution time for each actor into the IPC graph, the ‘real’ actor 

firings will always start earlier than the firings according to the 

IPC graph. Corollary 3 gives an upper bound on the completion 

time of the IPC graph execution. Consequently, Corollary 3 can 

provide a reliable upper bound also for a real job execution time. 

We apply Corollary 3 to the JPEG job for the decoding of the 

reference image (I = 20), and see how tight the obtained bound is 

by comparing it to the real job execution time.  

Depending on the result, we draw a conclusion on how useful our 

timing models are in this particular case. In fact, execution time 

can often be formulated in terms of some application-specific 

parameters. This is also true for JPEG. Thus we do two 

experiments. In the first one, we use knowledge about the worst-

case values of some application-specific parameters of the 

reference image to obtain a parametrical bound. In the second 

experiment, we obtain a real worst-case bound valid for any input 

image.  

For most computation actors of the JPEG job, the variations of the 

execution time are very small, so we neglect them in this case 

study. The same holds for all the communication actors (read, 

write, transfer and δ actors). An exception among the computation 

actors is the variable-length decoder (VLD). To reason about the 

execution time of VLD, we have analyzed its source code and 

observed that its upper bound execution time is a linear function 

in three parameters, specific for the VLD algorithm, with positive 

architecture-dependent coefficients. We have calculated these 

coefficients for the ARM processor from a set of measurements 

Figure 6 Computation graph of the JPEG decoder 
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made with the ARM simulator. This technique can be strongly 

related to known techniques of worst-case execution time 

estimation for embedded software, but it yields a parametrical 

expression rather than a worst-case constant value. 

To derive the parametrical upper bound, we used the set of the 

maximum values of every parameter in all 20 executions of the 

VLD actor for the reference image. The linear function applied to 

this set of parameters yields an upper bound for the actor 

execution time. We fed that bound into the IPC graph and 

computed the lateness σ of the graph using our simulation tool: 

σ = 282 kilocycles. We have also computed MCM of the graph: 

p = 188 kilocycles. Applying Corollary 3, we get roughly 3854 

kilocycles for the parametrical bound.  

To derive the worst-case bound, we have found the maximum 

value each parameter can possibly have in any JPEG image. 

Again, first we obtain the actor execution time bound, by 

calculating the aforementioned linear function on this set of 

parameters. Applying Corollary 3 yields 19560 kilocycles for this 

bound. 

The (simulated) real execution time of the JPEG job on the 

reference image is 3203 kilocycles. We see that, for the given 

input image, the parametrical upper bound yields only 20% 

overestimation, which is small compared to the overestimation 

from the worst-case bound, being equal to 511%. The main 

conclusion of this subsection is that we have shown a practical 

application of our method and timing models to derive an upper 

bound on the job execution time on an MP-NoC. In case of 

potentially large variations in actor execution times, the timing 

models can considerably profit from some information on the 

input data parameters. For video applications, such information 

can be provided relatively easy, e.g., in video frame headers. 

5.3 Buffer Minimization 
In Section 4.3, we have seen that the backward edges of the buffer 

models may be involved in the critical cycles of an IPC graph. 

Such a critical cycle can always be removed by increasing the size 

of the buffer from which a backward edge involved in the critical 

cycle originates. We define a buffer sizing as a vector of the buffer 

sizes of all buffers. A buffer sizing is called rate-optimal, if there 

is a critical cycle in the corresponding IPC graph that does not 

include any backward edge of any buffer. The name ‘rate-optimal’ 

refers to the fact that increasing the size of any buffer cannot 

reduce the iteration interval p of the IPC graph anymore. The 

buffer minimization problem can be defined as finding a rate-

optimal buffer sizing that minimizes the sum of the buffer sizes of 

all the buffers. Thus, the models proposed in this paper allow us 

to define the buffer minimization problem in the context of on-

chip networks. 

Based on this problem formulation, we have found a feasible 

solution for it for the JPEG case study. In this exercise, we have 

followed the following method: 

1) derive an IPC graph annotated with average execution times. 

2) determine a rate-optimal buffer sizing by increasing buffers 

and changing IPC graph correspondingly. This is repeated to 

the point when iteration interval p does no longer change, 

where p is computed analytically as the MCM of the IPC 

graph. 

3) to test the quality of the result, we measure real execution 

time for various buffer sizing options 

Table 1 illustrates the results of this exercise.  

Table 1. Arriving at a rate-optimal buffer sizing 

sBUF-IN,  

sBUF-OUT 

p Real Exec. Time 

1,1 152 3203 

1,2 138 3066 

2,2 131 2978 

2,3 no change 2914 

3,3  2870 

3,4  no change 

 

From this table, we see that the result of step 2, sizing (2,2), is 

quite good although not really optimal (form the execution time 

point of view), because that would be sizing (3,3). This can be 

explained from the fact that step 2 assumes that the execution time 

of the VLD actor is always the same (average), whereas in reality 

it changes at every iteration. 

Buffer minimization has been considered in [8] and other research 

work as a linear programming problem, where the buffers are 

modeled with a set of linear constraints. However, that work does 

not involve an assignment of the actors to processors, nor has it 

any direct link with networks. It is interesting to investigate the 

relation between our approach with backward edges and the linear 

constraints. 

6. Conclusions  
In this paper, we have sketched an approach to implementation of 

the video applications targeting on-chip multiprocessors and 

providing guaranteed performance. In this approach, the main 

criterion is to support accurate reasoning about the timing. We 

have focused on the models enabling us to reason mathematically 

about the system requirements and guarantees. We assume that 

the basic components of the application are jobs that can be 

dynamically activated depending on some rules and user actions. 

Each job may run on multiple processors. We have restricted 

ourselves to jobs that can be modeled by executing a number 

iterations of a synchronous data flow graph (SDF) [13]. We can 

reason about each job in isolation, using guaranteed bandwidth 

services offered by the on-chip network for the communication 

and processing time budgets for the computation. We consider a 

multiprocessor mapping of one separate job and show that we can 

reason about the iteration interval, execution time and optimal 

buffer sizes of the job by constructing an interprocessor 

communication (IPC) graph and applying a timing analysis on it. 

The main contribution of this work are the new models for 

network-based communication, that we have introduced in the 

form of IPC graphs; in the past, IPC graphs have been used only 

for multiprocessors with bus-based communication. In a JPEG 

decoder case study, we have demonstrated some opportunities to 

use the proposed models in practice for timing analysis and buffer 

size minimization. The first results are encouraging, but more 

experiments are needed. In our future work, we plan more 

advanced video applications, like the natural video part of 



MPEG-4. Also, an example of communication assist hardware 

design providing an interface between an embedded processor 

core and the ÆTHEREAL communication network [15] will be 

worked out in detail. Another important issue for our future work 

is handling the accesses to large data structures in remote 

memories. We also plan to extend our work to communicating 

jobs, to further develop tool support, and to apply our approach in 

a run-time resource manager for MP-NoCs. 
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