
Task-level Timing Models for Guaranteed Performance in

Multiprocessor Networks-on-Chip

P. Poplavko
1,2,*, T. Basten

1
, M. Bekooij

2
, J. van Meerbergen

1,2
 and B. Mesman

1,2,*

1
Department of Electrical Engineering
Eindhoven University of Technology

P.O. Box 513, NL-5600 MB
Eindhoven, The Netherlands

2
Embedded Systems and Architectures on Silicon

Philips Research Laboratories Eindhoven

WDC 31, Prof. Holstlaan, 4, NL-5656 AA
Eindhoven, The Netherlands

{p.poplavko,a.a.basten}@tue.nl, {marco.bekooij,jef.van.meerbergen,bart.mesman}@philips.com

ABSTRACT

We consider a dynamic application running on a multiprocessor

network-on-chip as a set of independent jobs, each job possibly

running on multiple processors. To provide guaranteed quality

and performance, the scheduling of jobs, jobs themselves and the

hardware must be amenable to timing analysis. For a certain class

of applications and multiprocessor architectures, we propose exact

timing models that effectively co-model both the computation and

communication of a job. The models are based on interprocessor

communication (IPC) graphs [4]. Our main contribution is a

precise model of network-on-chip communication, including

buffer models. We use a JPEG-decoder job as an example to

demonstrate that our models can be used in practice to derive

upper bounds on the job execution time and to reason about

optimal buffer sizes.

Categories and Subject Descriptors

B.8 [Performance and Reliability]: Performance Analysis and

Design Aids

General Terms

Design, Performance, Theory

Keywords

system-on-chip, network-on-chip, real-time, data flow graph,

performance evaluation, buffer minimization

 *Supported in part by the IST-2000-30026 project, Ozone.

1. INTRODUCTION
In the design of embedded systems with video applications it is

important to provide guaranteed performance to meet real-time

constraints as often as possible in order to guarantee a good video

quality. To achieve that goal, the applications should be

characterized in terms of real-time scheduling theory.

Many embedded system applications can be seen as being object-

based, i.e., they can be characterized by a dynamic set of objects

that can dynamically appear or disappear depending on some rules

and user actions. An example is a multi-window TV, where the

objects are windows. We consider the set of objects as a set of

real-time jobs. It is assumed that the jobs are started and stopped

by a run-time resource manager. In video applications, each job

will typically possess a lot of internal parallelism, so we allow

different subtasks of one job to execute concurrently on multiple

processors.

To provide predictable performance, the jobs, the scheduling and

the hardware must be amenable to timing analysis. It would be

advantageous to have formal definitions of different scheduling

problems as optimization problems. For both timing analysis and

optimization, a mathematical timing model is required. We aim in

this paper at accurate timing models that effectively co-model the

computation and communication of one job. In order to do that,

some properties of the given application domain can be taken into

account.

In the video application domain, the core part of algorithms often

consists of loops repeating the same set of operations for certain

number of iterations. In this paper, we assume that job is just a

loop. To model the loop body and its parallelism, synchronous

data-flow graph (SDF) model is commonly used in

multiprocessor scheduling [13, 8]. In that model, the subtasks

executed within the loop are encapsulated within multiple data

flow actors, which are nodes of an SDF graph.

In our modeling approach we use SDF models called IPC graphs

(IPC stands for interprocessor communication), studied in [4] and

[17]. IPC graphs model both the computation and communication,

not assuming global synchronization. Although execution times of

the subtask actors may be variable, the worst case timing of

multiple IPC graph iterations is theoretically proven to be

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

CASES ’03, Oct.30−Nov.2, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-676-5/03/0010…$5.00.

periodic, which makes analytical approach to the performance

evaluation possible.

Our work can be positioned in the following ‘design flow’. The

starting point is a job specification in the form of an SDF graph

that describes the computations of the job (computation graph).

In Step 1, the graph is fed to a multiprocessor scheduling ‘tool

suite’. The tools partition the graph into processes, or the parts

that will run on one processor. They also create channels for

communication between processes. The tools produce at the

output a structure we call a configuration network, consisting of

processes and channels. We say that Step 1 actually determines

the intra-job scheduling, because it manages the parallelism

inside a single job.

In Step 2, the configuration network is converted into an IPC

graph, and we use it to reason about the job throughput, execution

time and buffer sizing. We focus particularly on Step 2, leaving

Step 1 for future work. Our main contribution is the modeling of

on-chip communication channels in IPC graphs, including buffer

models. To make accurate modeling possible, we make a few

assumptions.

In intra-job scheduling, we adopt currently the static-order self-

timed scheduling [17]. In such a scheduling, all the data-flow

actors (subtasks) assigned to a given processor are executed in a

static cyclic order as soon as the input data is available.

In this paper, we also assume that jobs run independently, i.e.,

they do not interact with each other and the external world, or, if

they do, that interaction does not influence the timing properties

at the task level. The job independence assumption also

necessitates that jobs do not experience resource conflicts with

each other. This would be possible in a real-time environment

where processing time budgets and communication services with

bandwidth guarantees are given to jobs. Such services can be

offered at a reasonable cost by on-chip router networks through

independent point-to-point network connections [7, 15]. Packet-

switched networks are an attractive way to implement the

interconnect between the on-chip processors in case their number

is large enough. Such a system-on-chip is referred to as a

multiprocessor network-on-chip (MP-NoC).

We start the paper by introducing the required basics of the

synchronous data-flow graphs in Section 2. In Section 3, an MP-

NoC architecture template is introduced that ensures predictable

communication delays and independent communication channels.

Section 4 is the core of the paper, showing how jobs, partitioned

into a network of processes that communicate via the network, can

be modeled using IPC graphs. Section 5 demonstrates practical

use of our models for the derivation of the worst-case

performance and optimal buffer sizing, using a JPEG decoder job

as an example. Finally, Section 6 concludes this paper.

2. Background

2.1 HSDF Graphs
In the literature on multiprocessor scheduling for DSP

applications, like [10] and [14], the whole application can be seen

as a single job [19]. The job is represented by a dataflow graph

model, where the nodes, called actors, correspond to the

processor code segments that should be executed on a single

processor (computation actors), and edges show data

dependencies between them (data edges) or execution order

constraints (sequence edges). Every edge can carry an infinite

number of tokens between two actors, and can contain initial

tokens (present on the edges at start time).

In this paper, we use synchronous dataflow (SDF) graphs [13] to

model jobs. These models have been widely used to model multi-

rate DSP applications [8]. More specifically, we use only

homogeneous SDF (HSDF) models. Each actor in that model

follows a simple firing rule: whenever there is at least one token

on every input, a firing takes place, meaning that the actor

consumes one token on every input and produces one token on

every output. The rules of execution of the graph is usually

restricted in such a way that actors consume and produce tokens

in a first-in-first-out (FIFO) manner, as we will see later in this

section. In the more general SDF model, actors are allowed to

consume and produce more than one token per input and output

edge per firing, but any SDF graph that satisfies some general

properties can be converted into an equivalent HSDF graph [9].

Following a common practice, we extend HSDF models with

actor execution time annotations (real numbers), representing the

time span between the consumption of input tokens and the

production of output tokens. These annotations can be either fixed

or variable. In HSDF graphs, a key notion is the notion of an

iteration, which is defined as a set of actor firings such that all

actors in the graph fire exactly once.

HSDF graphs are reused in our work to model both computation

only and computation together with communication. Let us briefly

consider the former, before we proceed with the latter in the next

subsection.

Figure 1: HSDF graphs of a producer-consumer

example. (a) Computation graph. (b) IPC graph

(a)

data edge

sequence edge

(b)

5

P2

5
P1

16
C

5
P1

1

W1

5

P2

1
W2

1

1

R1

16
C

initial token

R2

Computation graphs are HSDF graphs that express computations

and data dependencies contained in the algorithm performed by a

job. For example, Figure 1(a) shows a simple computation graph

with three actors, namely, two ‘producers’ (P1 and P2) and one

‘consumer’ (C). In each iteration, first, each producer must

produce a token, and, then, the consumer may fire and consume

the tokens. In this example, we annotate the actors with some

arbitrary computation time values. Computation graphs serve as

an input for static-order intra-job scheduling, which, as already

mentioned, is outside the scope of this paper. The output of the

static-order scheduling can be transformed into an interprocessor

communication (IPC) graph.

2.2 IPC Graphs
An IPC graph is an HSDF graph that models the execution of the

job on a multiprocessor architecture [4, 17 - §7]. It can be seen as

a transformation of the computation graph, where extra actors and

edges have been added. So far, IPC graphs have been applied to

multiprocessors with communication based on a bus and a global

memory. In Section 4, we construct IPC graphs assuming

network-on-chip communication.

In addition to the computation actors of the computation graph,

IPC graphs for the aforementioned bus-based multiprocessors

contain data copy actors, or ‘write’ and ‘read’ actors, that copy

blocks of data (data tokens) from the local memory of a processor

to the global memory and vice versa. In addition to data edges,

sequence edges are introduced. Sequence edges do not imply any

data communication between actors; they only enforce some

sequencing of actor firings. Although they have a different

purpose, they are not distinguished from data edges when

analyzing the timing properties of the graph. For each processor

and for the bus, sequence edges are used to create a distinct cyclic

path, where the actors are put in a specific static order, and an

initial token is placed on the sequence edge at the input of the first

actor in the order. The static ordering eliminates resource conflicts

between the actors assigned to the given resource. The ordering of

actors on a processor or a bus can be decided by a static-order

scheduling algorithm [14, 17].

For example, Figure 1(b) shows an IPC HSDF graph for the

example of Figure 1(a) assuming a two-processor case, where the

producers are assigned to one processor and the consumer is

assigned to the other one. It includes write actors (W1 and W2),

read actors (R1 and R2) and two data edges, derived from the

computation graph, to pass data tokens from the producers to the

consumer. The graph contains two processor cycles, namely, (P1,

W1, P2, W2)* and (R1, R2, C)*, and one bus cycle (W1, R1, W2,

R2)*. Note that in the latter case only two sequence edges are

introduced to enforce that cyclic order, namely, (R1,W2) and

(R2,W1). The other two sequence edges are not necessary due to

the presence of the data edges.

2.3 IPC Graph Properties

2.3.1 IPC Graphs in General
Some major difficulties in the timing analysis of HSDF graphs

appear when, for efficiency reasons, one allows multiple iterations

of an HSDF graph to overlap and when the graph contains cycles.

Both are true for IPC graphs. Fortunately, there exist theoretical

studies on the timing properties of such models. It is, actually, the

main reason why we apply IPC graphs in our work. In this

section, we mention, without proofs, three useful properties of

such HSDF graphs, namely, monotonicity, periodicity and

boundedness. These properties are mainly based on known

properties of the models called event graphs [3]. As it follows

almost directly from [3 - §2.5.2.6], any HSDF graph can be easily

translated into an equivalent event graph. We apply these

properties in Section 5, where we demonstrate the usefulness of

IPC graphs for practical problems.

Let us define self-timed execution of an HSDF graph as a

sequence of firings of each HSDF-graph actor, where every firing

happens immediately when there are tokens on the inputs. As

mentioned in the introduction, this is exactly the kind of execution

assumed in this paper for intra-job scheduling.

There are certain restrictions that any IPC graph should satisfy for

the aforementioned properties to hold. An IPC graph has to be:

1) a strongly-connected HSDF graph, i.e., for any two actors

there exists a directed cycle (not necessarily a processor or a

bus cycle) that contains both actors;

2) a first-in-first-out (FIFO) HSDF graph, i.e., in the self-timed

execution, the completion events of actor firings occur in the

same order as the corresponding starting events. In other

words, tokens cannot overtake each other in an actor ([3 -

 §2.5.2]).

Note that an HSDF graph can be non-FIFO only if actors have

variable execution times. Tokens can overtake each other because

multiple actor firings can overlap in time. A sufficient condition

that excludes overlapped firings is the following: for any actor,

there is a cycle in the graph that contains that actor and has only

one initial token. Obviously, this property holds for the IPC

graphs discussed in the previous subsection, because each actor

there belongs to a processor cycle and every processor cycle has

only one initial token.

Lemma 1 (Monotonicity) The self-timed execution of any FIFO

HSDF graph is monotonic on the actor execution times in the

sense that increasing actor execution times result in non-

decreasing starting times of firings.

This lemma is applicable for IPC graphs with variable execution

times of the actors. If the execution time of any actor increases,

the starting times of any actor depending on it can only be

postponed to the future.

This lemma can be proven by constructing evolution equations as

described in [3 - §2.5.2] for the corresponding event graph and

observing that these equations are monotonic on the firing times.

The monotonicity property is needed in practice to prove that, in

order to derive the worst-case execution time of a dynamic job,

one can use the worst-case execution times of the actors as the

fixed execution time annotations.

2.3.2 IPC Graphs with Fixed Execution Times
When we use fixed (worst-case) actor execution times, we can

obtain the worst-case throughput of the job using the periodicity

property and bound the job’s execution time by a simple

analytical expression using the boundedness property. Both

properties are introduced in this subsection.

Now suppose an IPC graph with fixed execution times is given.

Let us consider a simple cycle in the graph, i.e., a cyclic path that

cannot contain any actor more than once. The cycle may contain

both data edges and sequence edges. In the remainder, we refer to

simple cycles just as cycles. Let us define the cycle weight as the

sum of execution times of the actors in the cycle. Because the

execution times are fixed, the cycle weight is a constant value.

We define the cycle mean as the cycle weight divided by the total

number of initial tokens on the edges of the cycle. A cycle with

the maximum value of a cycle mean among all cycles in the graph

is called a critical cycle.

The maximum cycle mean (MCM) of the graph can be calculated

in polynomial time [6]. Intuitively, it signifies the average time

distance any initial token in the critical cycle has to travel, until it

comes to the next starting position of another initial token (or

itself). If the same would happen with every initial token in every

cycle of the graph, the graph would come into the same state as

where it started (a period is completed). The tokens of the critical

cycle are the “slowest” ones in this sense, thus, they constrain the

speed of the whole graph.

The following theorem, known in the domain of event graphs ([3 -

 §3.7]) and also applied for HSDF graphs, e.g., in [17 - §7], states

that after some limited number of iterations (N) an IPC graph will

indeed return into a state in which it has been before:

Theorem 2 (Periodicity) For the self-timed execution of a

strongly-connected HSDF graph G(V,E) with fixed actor

execution times, there exist integers K and N, such that for all

v∈V, k ≥K,

s (v, k + N) = s (v,k) + p⋅N (2.1)

where the ‘iteration interval’ p is equal to the MCM; k is the

iteration index; s(v, k) is the firing start time of actor v in a given

iteration of the self-timed execution; K is the number of iterations

before the execution enters a periodic regime; N is the number of

iterations in one period.

Note that, by convention, we assign index 0 the first firings of

actors, in other words, we assume that an actor v starts initially at

time s(v, 0).

Theorem 2 implies that the execution of graph G eventually enters

a periodic regime, where every actor is guaranteed to start exactly

N firings within any half-closed time interval of length p⋅N. This

actually means that the MCM value p is the average iteration

interval of graph G. The actual iteration intervals may vary,

despite the fact that the actor execution times are fixed.

Nevertheless, these variations will periodically repeat every N

iterations.

To characterize a periodic execution, one only needs to find actor

start times s(v,k) during one period (N iterations). Suppose, that

this information is available. Then, we can derive a characteristic

of the graph that we call lateness, denoted σ :

σ = ()())(),(maxmax
1..

vtkpkvs
NnnkVv

+⋅−
−+=∈

 (2.2)

where t(v) is the fixed execution time of actor v and n is an

arbitrary integer such that n≥K (since it doesn’t matter which

particular period we take); to apply this formula in practice, n = K

can be chosen (the starting point of the periodic regime).

The lateness shows how late the iteration with index k can

possibly finish with respect to the reference point of time p⋅k.

Note that when I iterations of the graph complete, the index k of

the last iteration is equal to I − 1. The following corollary follows

immediately from Theorem 2 and the definition of lateness:

Corollary 3 (Boundedness) With the preconditions of

Theorem 2, and for I >K, an upper bound on the completion time

of I iterations of HSDF graph G(V,E) is given by:

HSDF-BOUND(I) = p ⋅ (I − 1) + σ (2.3)

Note that, whereas we can obtain the value of p by computing the

MCM of the graph G, to compute σ, we need a sample of starting

times of all actors during one period, which implies that we also

need to know K and N. In Section 5, where Corollary 3 is actually

applied, we describe a method to compute these values in

practice. We also explain how to compute HSDF-BOUND in case

I ≤ K.

3. Architectural Issues

3.1 Background
As already mentioned, the IPC-graphs we propose in this paper

co-model computation and communication. In Section 2.2, we

used related work involving bus-based communication to

introduce IPC graphs. However, we assume architectures with

network-based communication, as described in this section.

[5 - §1] describes a general template for multiprocessors. It

consists of multiple processing tiles connected with each other by

an interconnection network. Each tile contains a few processor

cores and local memories. The tile may contain communication

buffers, accessed both by the local processors and the network.

The tile has a small controller, called communication assist, that

performs buffer accesses on behalf of the network. Many

embedded MP-SoCs implemented on silicon, e.g., Daytona [1],

AxPe [16] and Prophid [18], fit nicely into this general template.

Among these architectures, Prophid is the most interesting one for

us, because it uses a simple packet-switched network for

communication and provides performance guarantees for hard

real-time tasks. Prophid contains application-domain-specific

processors communicating through a switch, based on a time-

division multiple access (TDMA) scheme, enabling guaranteed-

bandwidth communication. Different tasks running on the

multiprocessor communicate with each other using asynchronous

message passing, meaning that processors synchronize based on

the availability of data in buffers. Message passing introduces the

buffer overflow issue, which is solved in Prophid using a kind of

end-to-end flow control. We reuse some ideas of the Prophid

architecture in our architecture template.

3.2 Architecture Template
The MP-NoC architecture template adopted in our work is shown

in Figure 2. We focus on defining the issues important for the

timing models introduced in Section 4.

The interconnection network in our template is a network-on-chip

(NoC). Each processing tile is ‘plugged’ into the network through

an input link and an output link. The NoC offers unidirectional

point-to-point connections. The connections must provide

guaranteed bandwidth, and a tightly bounded propagation delay

per connection. The connections must also preserve the ordering

of the communicated data. Other details of the NoC are hidden.

An example of a NoC providing these properties is ÆTHEREAL

[15]. It uses the TDMA scheme, for which reasonably cheap

implementations of the network routers are possible. Note that

several other schemes ensuring guaranteed performance in the

multi-hop networks exist in the literature, but we do not know

whether any of them has been implemented so far in the context

of NoCs. The choice of the particular scheme does not influence

the main idea and the structure of the timing models we present in

this paper.

To keep the processing tile simple, we assume only one

processing core (denoted ‘P’ in Figure 2) per tile. The local

memory layout contains three blocks: the general-purpose

memory (‘M’) for processor instructions and data, the input

communication memory (ICM) and the output communication

memory (OCM). ICM and OCM have ports for the processor and

for the communication assist.

Connections as introduced above are the key components of

channels, which are the basic communication primitives for jobs.

Channels are managed by the communication assists. Each

channel connects two different processing tiles and transfers data

in one direction. A channel contains an input buffer, a data

connection, a flow-control connection and an output buffer. The

buffers are located in the communication memories (ICM and

OCM) at different sides of the channel. Every channel pumps data

from its input buffer to its output buffer through the data

connection. Every communication assist can run multiple

channels concurrently. The example tile in Figure 2 has three

incoming and two outgoing channels.

For our timing models to be valid, we require that the following

memory accesses be independent:

1) the processor and the communication assist accesses;

2) the communication assist accesses to ICM and OCM;

3) the accesses initiated by different channels through the

same ICM/OCM port.

In this context, with ‘independence’ we mean that the variation of

the access time due to contention (if any) is sufficiently small.

Requirements 1) and 2) are achieved by using two dual-ported

memories for ICM and OCM. However, we do not actually

demand that the memory layout be exactly the same as in the

figure, as long as the independence requirements are satisfied.

Requirement 3) can be satisfied if an appropriate arbitration

scheme is used for the ICM/OCM ports. We believe that this can

be achieved at a reasonable cost, and it is a subject of future work.

The communication of a data token through the channel takes

place as follows. First, the processor at the input side puts a token

into the input buffer, where it waits for the tokens in front of it (in

that buffer) to depart. Then, the local communication assist

transfers the token into the input link. We call the time interval

between the start of the transfer and the departure of the token a

transfer delay (t). The exact value of t depends on the NoC

implementation. In an ideal network t = stoken/B, where B is the

bandwidth of the connection and stoken is the size of the token. In a

real network, it also includes the medium access delay, which, in

case of TDMA, would depend on the TDMA frame size. The time

elapsed from the departure to the complete arrival of the token at

the output buffer is the propagation delay of the data connection

(δD). Summed with t it gives the total channel delay.

An end-to-end flow control mechanism helps avoiding output-

buffer overflow. The communication assist at the input side keeps

a (pessimistic) counter of the number of free places (credits) in

the buffer at the output side. The channel is blocked when that

counter reaches zero. The counter is decremented whenever a new

token departs into the network. Every time the processor at the

receiving side frees one or more places in the output buffer, it

triggers a credit packet to be sent back to the sender through the

flow-control connection of the channel, and the credit counter is

incremented accordingly. We assume that a triggered credit packet

takes time δC to reach the input side of the channel.

4. Timing Models
To co-model the computation and communication of a job, it has

to be mapped to a subset of the processors of the target

multiprocessor. In order to do that, starting from the job

computation graph, a set of intra-job scheduling decisions should

be taken. The computation actors should be assigned to processors

and a static order of actors should be set on every processor. The

data edges should be assigned to channels, and the buffer size and

bandwidth values should be set for the channels. The details are

outside of the scope of this paper. Some appropriate methods are

presented, e.g., in [14], [19], and [8]. We represent the final result

of those design decisions in the form of a job configuration

network which can be seen as a refined form of the YAPI process

networks of [12]. The latter has been proposed as a functional

model of DSP multiprocessor applications. On top of YAPI

process networks, we have introduced timing and enforced some

restrictions on the internal structure of the processes and channels.

In this section, we first present the notion of a job configuration

network, and then explain in detail how it is translated into an

IPC graph.

ICM OCM

NoC

buffers

data connections

Communication

Assist

Figure 2 Architecture template

input link

P M

Tile

output link

4.1 Configuration Networks
The structure of a configuration network can be described by a

directed graph. The nodes of the graph represent processes. The

edges of the graph represent channels, in line with Section 3. We

assume that every process has a sequence of computation and

data-copy actors assigned to it. Each process runs on its own

processing tile and executes its own sequence of actors in a static

order within a software loop.

Figure 3(a) shows a configuration network for the “producer-

consumer” job example of Section 2. It consists of two processes,

PPr and PCns, and one channel, CPC. Also, the list of actors is

shown for each process, coming in the same static order as in the

processor cycles in the example of Figure 1(b). These actors copy

the data tokens from the local general-purpose memory to a

communication memory and vice versa.

We assume the channel implementation as presented in the

previous section. All the channels in a configuration network have

the same structure, but, possibly, different parameter values.

Figure 3(b) zooms into the structure and parameters of channel

CPC. We introduce a transfer subproces (denoted ‘T’ in Figure 3)

to model the transfer of tokens from the input buffer to the output

buffer. The output is a delayed buffer, because of the network

propagation delay. Every buffer has an integer parameter sbuf, or

the buffer size, specifying the maximum number of tokens fitting

in that buffer. Figure 3(b) assumes some arbitrary values for all

the parameters of channel CPC.

4.2 HSDF

Models of Components
For the translation of a configuration network into an IPC graph,

first, for every process, buffer, transfer subprocess and delayed

buffer we introduce an HSDF model. In a second step, the models

are assembled together to form one IPC graph.

The processes are modeled by processor cycles, described in

Section 2.2. The transfer subprocess is modeled in a similar way.

Let n be the number of ‘write’ or ‘read’ actors that access the

given channel (they should be equal). The transfer cycle that

models the transfer subprocess consists of n identical actors, each

one annotated with the transfer delay t (see Section 3.2). Note that

different channels, even those running on the same

communication assist, have different independent transfer cycles;

the correctness of this assumption rests on the independence of

the accesses of different channels to OCM/ICM ports.

The models for the (delayed) buffers join different (sub)processes

together. Figure 4(a) shows an example of a buffer model. The

model itself includes only the primitives that are shown with solid

lines. The dashed actors come from the processes or subprocesses

that access the buffer. The actors drawn on the left, or ‘put’

actors, put the tokens into the buffer. The actors on the right, or

‘get’ actors, retrieve the tokens from the buffer. The dashed arcs

in Figure 4(a) are also not part of the model; they show a

while() {

 P1;

 W1(CPC);

 P2;

 W2(CPC);

}

while() {

 R1(CPC);

 R2(CPC);

 C;

}

CPC

CPC

PCns PPr

 stoken = 8

 sbuf-input = 2;

sbuf-output = 1

B=2; δD=0.2; δC=0.3

delayed buffer buffer

Figure 3 Output of intra-job scheduling

(a) Configuration network (b) Channel

T

(a)

(b)

Figure 4 Buffer model examples

(a) buffer, size = 2 (b) delayed buffer, size = 9

i=2

i=1

i=0

j=2

j=1

j=0

i=2

i=1

i=0

j=2

j=1

j=0

δC

δD

δC

δD

δC

δD

(b)

(a)

requirement on the ordering of the actors, that the process and

subprocess models attached to this buffer should satisfy. A dashed

arc requires that a path exist between the source and the sink of

the arc, with the same total number of initial tokens as on the arc.

The buffer model includes data edges (drawn from left to right),

which model data dependencies, and sequence edges, or

backward edges, which model the blocking of put actors when the

buffer is full. The data edges join the ‘put’ and ‘get’ actors that

get the same number in the ordering of buffer accesses. The

positions of the backward edges and the number of initial tokens

on each edge depend on the buffer size sbuf. Figure 4(a) assumes

sbuf = 2. The reader can verify that in any sequence of actor firings

there cannot be more than 2 tokens on the data edges in that

model.

We formulate here, without a proof, the general rule to position

the backward edges. Let us denote the number of actors on one

side with n. Let us index the ‘put’ actors with variable i, and the

‘get’ actors with variable j, both variables getting the values 0..n-1

in correspondence with the static order. The set of backward

sequence edges is defined as follows:

• EBACK = {(j, i) : 0 ≤ j < n ∧ i = (j + sbuf) mod n};

• every backward edge (j, i) contains: () nsj /
buf

+ initial

tokens.

In case of output buffers (the delayed buffers), we first construct

the same model as for the buffer, and then split each data edge and

backward edge into two, introducing an actor in between with a

(propagation) delay annotation δD on the data edges and δC

on the

backward edges (see Figure 4(b)). The backward edges on the left

side get all the initial tokens, because the number of tokens on

these edges models the value in the credit counter, which is

initialized with the size of the output buffer.

4.3 IPC Graph
Figure 5 shows the result of the expansion of the configuration

network into an IPC graph for the example of Figure 3(a). In the

middle, we see a subgraph that models channel CPC. Inside this

subgraph we see a transfer cycle (T1T2)*, both actors are annotated

with a delay stoken/B = 8/2 = 4. The transfer actors serve as ‘get’

actors for the buffer of size 2 on the left and, simultaneously, as

‘put’ actors for the delayed buffer of size 1. The processor cycles

in that graph are identical to the processor cycles in Figure 1(b).

At this point, we have a model that is amenable to timing analysis.

To determine, for example, the average iteration interval p (see

Theorem 2), we find the critical cycle in the graph. Cycle

(R1 δC1T2 δD2 R2 C)* is critical, yielding an iteration interval of

22.5 time units. Note that by introducing two more places in the

output buffer (thus having size 3), we keep the same structure of

the graph, but the edge (R1,T2) would include one extra initial

token. Then, the number of initial tokens in the aforementioned

cycle would become 2, thus, making this cycle no longer critical.

The new critical cycle would be (R1 R2 C)*, resulting in an

iteration interval of 18 time units. Thus, adapting a buffer size can

improve the performance. We will see a practical example of

buffer sizing in the next section.

The techniques explained and illustrated in this section provide a

general means to transform any configuration network of a job to

an IPC graph amenable for timing analysis. In the next section, we

apply these techniques to a case study. An observation can be

made about our IPC graphs that including δD and δC

actors in the

model could potentially violate the requirement that an IPC graph

be a FIFO graph (see Section 2.3). However, we use fixed (worst-

case) propagation delay values for them, so that the tokens cannot

overtake each other in these actors. Instead, one can also use a

sequence of variable propagation delay times, taken from the

measurements, as long as the condition is satisfied that

connections preserve the ordering of the data that is

communicated through them.

5. Case Study for Timing Models

5.1 Prerequisites
In this section, we consider a timing model for a decoder of an

image in the JPEG File Interchange Format (JFIF), here referred

to as the JPEG job. We use some realistic estimations of the

communication and computation costs based on existing

processor (ARM [2]) and NoC (ÆTHEREAL [15]) designs. The

purpose of this case study is to show some methods for using our

IPC graph models for ‘real-life’ problems. In Section 5.2, a timing

analysis problem is solved. In Section 5.3, we demonstrate the

relevance of the buffer-size minimization problem and show that

it can be formally defined using our IPC graphs.

The computation graph of the JPEG decoder job as defined in this

paper is shown in Figure 6. It is a task-level description of the

body of the main loop of the program for the case when the input

file is a 4:1:1 coded image. One iteration of the graph decodes one

minimum coded unit (MCU, 16x16 pixels). All the data edges

assume the same data-token type, an 8×8 pixel block. For clarity,

the actors in Figure 6 are organized in columns and rows. The

columns correspond to processing stages and the rows correspond

to the six blocks of an MCU. The blocks undergo three processing

stages: variable length decoding (VLD), inverse discrete cosine

transform (IDCT), and scaling (SCALE), before they are fed into

a color conversion stage (COLOR).

To measure the execution times of the actors, we have run the

JPEG software from [11] on the ARM7TDMI core instruction set

simulator (ISS) from ARM Ltd [2]. Flat memory model with

single-cycle access and no caches has been assumed (which will

be close to reality in case all data and instructions fit in the local

Figure 5 IPC graph

channel CPC
5

P1

1

W1

5

P2

1

W2

4

T1

4

T2

0,2

δD2

0,3

δC2

0,3

δC1

1

R1

1

R2

16

C

0,2

δD1

memory). In future work we want to deal with remote memory

accesses explicitly in our model.

One image, our ‘reference image’, has been fed as an input to the

program. It takes 20 iterations of the graph to decode the image.

We have provided in the figure the average execution time values

over all iterations (in kilocycles).

We have created for the JPEG job a configuration network,

containing two processes, P1 and P2, and one channel, C12. The

computation graph has been partitioned between the processes, as

shown in Figure 6. We chose to specify the static order of the

actors per process by parsing the graph from left to right and from

top to bottom (wrt to the columns and rows). For each of the six

data edges crossing the splitting border, we have introduced a

write actor in the actor list of P1 and a read actor in the actor list

of P2. All these actors access channel C12.

We have assumed the ARM processor running at 133MHz [2] and

the ÆTHEREAL NoC [15] with a link width of 16 bits and the

clock speed set at 400MHz. We have allocated 1/256th of the link

bandwidth to the channel C12. For the given bandwidth and token

size, we have assessed the execution time of write and read actors

(roughly, 1 kilocycle on the ARM) and channel transfer actors

(being in worst case 5.6 kilocycles and having a 5% variation).

The data propagation delay and the credit transmission delay are

both negligible, we assumed δD = 0.02 kilocycles and δC = 0.3

kilocycles.

Using the aforementioned assumptions and parameter values, we

can build an IPC graph from the configuration network. The

picture of the graph is omitted because it is too large, but it has a

structure similar to Figure 5. It contains 12 and 14 actors in

processor cycles P1 and P2, respectively, and 6 actors in the

transfer cycle. By default, we use the minimum possible buffer

size sbuf=1 for both input and output buffer, but we also

experiment with other buffer sizes in Section 5.3.

For the experiments in this section, we have developed a

simulation tool that computes the sequence of start times of all

actors: s(v,k). This tool simulates the self-timed execution of IPC

graphs. It can be used:

1) to obtain the ‘real’ execution time of I iterations of the

job, by feeding the traces of possibly variable execution

times of the computation actors into the IPC graph

(actor execution times are measured on ARM

simulator).

2) to obtain a sample of start times of actor firings within

one period of execution, assuming fixed execution times

in each iteration. This sample can be used to compute

the lateness σ (see Formula 2.2). The simulation is run

until K and N are detected and then a sample of N

iterations is extracted.

3) to obtain the HSDF-BOUND(I) in case I < K by

simulating I iterations.

5.2 Upper Bound on Execution Time
In job-level scheduling, a job may be required to produce I data

items (e.g., blocks, lines, frames) within a certain time interval. To

know apriori whether the job can meet its deadlines, it may be

necessary to calculate an upper bound on the time the job needs to

execute I iterations, or the job execution time.

If we model a ‘real-life’ execution of the job, due to data

dependency of the execution time and network jitter, each actor

may take a different time to execute its firing in every iteration.

Nevertheless, due to the monotonicity of IPC graph execution (see

Lemma 1), one can be sure that if one feeds upper bounds on the

execution time for each actor into the IPC graph, the ‘real’ actor

firings will always start earlier than the firings according to the

IPC graph. Corollary 3 gives an upper bound on the completion

time of the IPC graph execution. Consequently, Corollary 3 can

provide a reliable upper bound also for a real job execution time.

We apply Corollary 3 to the JPEG job for the decoding of the

reference image (I = 20), and see how tight the obtained bound is

by comparing it to the real job execution time.

Depending on the result, we draw a conclusion on how useful our

timing models are in this particular case. In fact, execution time

can often be formulated in terms of some application-specific

parameters. This is also true for JPEG. Thus we do two

experiments. In the first one, we use knowledge about the worst-

case values of some application-specific parameters of the

reference image to obtain a parametrical bound. In the second

experiment, we obtain a real worst-case bound valid for any input

image.

For most computation actors of the JPEG job, the variations of the

execution time are very small, so we neglect them in this case

study. The same holds for all the communication actors (read,

write, transfer and δ actors). An exception among the computation

actors is the variable-length decoder (VLD). To reason about the

execution time of VLD, we have analyzed its source code and

observed that its upper bound execution time is a linear function

in three parameters, specific for the VLD algorithm, with positive

architecture-dependent coefficients. We have calculated these

coefficients for the ARM processor from a set of measurements

Figure 6 Computation graph of the JPEG decoder

with a partitioning into two processes

13

9060

13

13

13

13

13

2,5

2,5

2,5

2,5

2,5

2,5

Y1

Y2

Y3

Y4

Cb

Cr

VLD IDCT SCALE COLOR

process P1 process P2

channel C12

made with the ARM simulator. This technique can be strongly

related to known techniques of worst-case execution time

estimation for embedded software, but it yields a parametrical

expression rather than a worst-case constant value.

To derive the parametrical upper bound, we used the set of the

maximum values of every parameter in all 20 executions of the

VLD actor for the reference image. The linear function applied to

this set of parameters yields an upper bound for the actor

execution time. We fed that bound into the IPC graph and

computed the lateness σ of the graph using our simulation tool:

σ = 282 kilocycles. We have also computed MCM of the graph:

p = 188 kilocycles. Applying Corollary 3, we get roughly 3854

kilocycles for the parametrical bound.

To derive the worst-case bound, we have found the maximum

value each parameter can possibly have in any JPEG image.

Again, first we obtain the actor execution time bound, by

calculating the aforementioned linear function on this set of

parameters. Applying Corollary 3 yields 19560 kilocycles for this

bound.

The (simulated) real execution time of the JPEG job on the

reference image is 3203 kilocycles. We see that, for the given

input image, the parametrical upper bound yields only 20%

overestimation, which is small compared to the overestimation

from the worst-case bound, being equal to 511%. The main

conclusion of this subsection is that we have shown a practical

application of our method and timing models to derive an upper

bound on the job execution time on an MP-NoC. In case of

potentially large variations in actor execution times, the timing

models can considerably profit from some information on the

input data parameters. For video applications, such information

can be provided relatively easy, e.g., in video frame headers.

5.3 Buffer Minimization
In Section 4.3, we have seen that the backward edges of the buffer

models may be involved in the critical cycles of an IPC graph.

Such a critical cycle can always be removed by increasing the size

of the buffer from which a backward edge involved in the critical

cycle originates. We define a buffer sizing as a vector of the buffer

sizes of all buffers. A buffer sizing is called rate-optimal, if there

is a critical cycle in the corresponding IPC graph that does not

include any backward edge of any buffer. The name ‘rate-optimal’

refers to the fact that increasing the size of any buffer cannot

reduce the iteration interval p of the IPC graph anymore. The

buffer minimization problem can be defined as finding a rate-

optimal buffer sizing that minimizes the sum of the buffer sizes of

all the buffers. Thus, the models proposed in this paper allow us

to define the buffer minimization problem in the context of on-

chip networks.

Based on this problem formulation, we have found a feasible

solution for it for the JPEG case study. In this exercise, we have

followed the following method:

1) derive an IPC graph annotated with average execution times.

2) determine a rate-optimal buffer sizing by increasing buffers

and changing IPC graph correspondingly. This is repeated to

the point when iteration interval p does no longer change,

where p is computed analytically as the MCM of the IPC

graph.

3) to test the quality of the result, we measure real execution

time for various buffer sizing options

Table 1 illustrates the results of this exercise.

Table 1. Arriving at a rate-optimal buffer sizing

sBUF-IN,

sBUF-OUT

p Real Exec. Time

1,1 152 3203

1,2 138 3066

2,2 131 2978

2,3 no change 2914

3,3 2870

3,4 no change

From this table, we see that the result of step 2, sizing (2,2), is

quite good although not really optimal (form the execution time

point of view), because that would be sizing (3,3). This can be

explained from the fact that step 2 assumes that the execution time

of the VLD actor is always the same (average), whereas in reality

it changes at every iteration.

Buffer minimization has been considered in [8] and other research

work as a linear programming problem, where the buffers are

modeled with a set of linear constraints. However, that work does

not involve an assignment of the actors to processors, nor has it

any direct link with networks. It is interesting to investigate the

relation between our approach with backward edges and the linear

constraints.

6. Conclusions
In this paper, we have sketched an approach to implementation of

the video applications targeting on-chip multiprocessors and

providing guaranteed performance. In this approach, the main

criterion is to support accurate reasoning about the timing. We

have focused on the models enabling us to reason mathematically

about the system requirements and guarantees. We assume that

the basic components of the application are jobs that can be

dynamically activated depending on some rules and user actions.

Each job may run on multiple processors. We have restricted

ourselves to jobs that can be modeled by executing a number

iterations of a synchronous data flow graph (SDF) [13]. We can

reason about each job in isolation, using guaranteed bandwidth

services offered by the on-chip network for the communication

and processing time budgets for the computation. We consider a

multiprocessor mapping of one separate job and show that we can

reason about the iteration interval, execution time and optimal

buffer sizes of the job by constructing an interprocessor

communication (IPC) graph and applying a timing analysis on it.

The main contribution of this work are the new models for

network-based communication, that we have introduced in the

form of IPC graphs; in the past, IPC graphs have been used only

for multiprocessors with bus-based communication. In a JPEG

decoder case study, we have demonstrated some opportunities to

use the proposed models in practice for timing analysis and buffer

size minimization. The first results are encouraging, but more

experiments are needed. In our future work, we plan more

advanced video applications, like the natural video part of

MPEG-4. Also, an example of communication assist hardware

design providing an interface between an embedded processor

core and the ÆTHEREAL communication network [15] will be

worked out in detail. Another important issue for our future work

is handling the accesses to large data structures in remote

memories. We also plan to extend our work to communicating

jobs, to further develop tool support, and to apply our approach in

a run-time resource manager for MP-NoCs.

7. References
[1] Ackland, B., et al., A Single-Chip, 1.6-Billion, 16-b

MAC/s Multiprocessor DSP. In IEEE Journal of Solid-

State Circuits, vol. 35, no. 3, 412-424, March 2000.

[2] http://www.arm.com

[3] Baccelli, F., Cohen, G., Olsder, G.J., and Quadrat, J.-

P., Synchronization and Linearity. New York: Wiley,

1992.

[4] Bambha, N., Kianzad, V., Khandelia, M., and

Bhattacharrya, S.S., Intermediate Representations for

Design Automation of Multiprocessor DSP Systems.

In Design Automation for Embedded Systems, vol. 7,

307-323, Kluwer Academic Publishers, 2002.

[5] Culler, D.E., and Singh, J.P., Parallel Computer

Architecture: A Hardware/Software Approach,

Morgan Kaufmann Publishers, 1999.

[6] Dasdan, A., and Gupta, R.K., Faster Maximum and

Minimum Cycle Algorithms for System-Performance

Analysis. In IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 17,

no. 10, 889-899, Oct. 1998.

[7] Goossens, K.G.W, et al., Guaranteeing the Quality of

Services in Networks on Chip. In Networks on Chip,

ed. by A. Jantsch and H. Tenhunen, 61-82, Kluwer

Academic Publishers, 2003.

[8] Govindarajan, R., Gao, G.R., and Desai, P.,

Minimizing Buffer Requirements under Rate-Optimal

Schedule in Regular Dataflow Networks. In Journal of

VLSI Signal Processing, vol. 31, 207-229, Kluwer

Academic Publishers, 2002.

[9] Govindarajan, R., and Gao, G.R., Rate-Optimal

Schedule for Multi-Rate DSP Applications. In Journal

of VLSI Signal Processing, vol. 9, no. 3, 211-232,

1995.

[10] Hoang, P., and Rabaey, J., Scheduling of DSP

Programs onto Multiprocessors for Maximum

Throughput. In IEEE Transactions on Signal

Processing, vol. 41, no.6, June 1993.

[11] Kock, E.A. de, Practical Experiences: Multiprocessor

Mapping of Process Networks: a JPEG Decoding Case

Study. In Proceedings 15th International Symposium

on System Synthesis, 68-73, ACM, 2002.

[12] Kock, E.A. de., et al., YAPI: Application Modeling for

Signal Processing Systems. In Proceedings 37th

Design Automation Conference, 402-405, 2000.

[13] Lee, E.A., and Messerschmitt, D.G., Static Scheduling

of Synchronous Data Flow Programs for Digital Signal

Processing. In IEEE Transactions on Computers,

vol. 36, no. 1, 24-35, 1987.

[14] Lauwereins, R., Engels, M., Ade M., and Peperstraete,

J.A., Grape-II: A System-Level Prototyping

Environment for DSP Applications. In IEEE

Computer, vol. 28, no. 2, 35-43, Feb. 1995.

[15] Rijpkema, E., Goossens, K.G.W., and Radulescu, A.,

Trade Offs in the Design of a Router with Both

Guaranteed and Best-Effort Services for Networks on

Chip. In Proceedings of DATE’03, 350-355, ACM,

2003.

[16] Rudack, M., Redeker, M., Hilgenstock, J., and Moch,

S., A Large-Area Integrated Multiprocessor System for

Video Applications. In IEEE Design & Test of

Computers, vol. 19, no. 1, 6-17, 2002.

[17] Sriram, S., and Bhattacharyya, S.S., Embedded

Multiprocessors: Scheduling and Synchronization,

Marcel Dekker, Inc., 2002.

[18] Strik, M.T.J., Timmer, A.H., Meerbergen, J.L.van, and

Rootselaar, G.-J. van, Heterogeneous Multiprocessor

for the Management of Real-time Video and Graphics

Streams. In IEEE Journal of Solid-State Circuits,

vol. 35, no. 11, 1722 –1731, Nov. 2000.

[19] Yang, M.-T., Kasturi, R., and Sivasubramaniam, A.A.,

Pipeline-Based Approach for Scheduling Video

Processing Algorithms on NOW. In IEEE

Transactions on Parallel and Distributed Systems,

vol. 14, no. 2, 119-130, Feb. 2003.

